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Abstract

Autonomous Driving Systems (ADSs) are revo-001
lutionizing transportation by reducing human002
intervention, improving operational efficiency,003
and enhancing safety. Large Language Mod-004
els (LLMs) have been integrated into ADSs005
to support high-level decision-making through006
their powerful reasoning, instruction-following,007
and communication abilities. However, LLM-008
based single-agent ADSs face three major chal-009
lenges: limited perception, insufficient collab-010
oration, and high computational demands. To011
address these issues, recent advances in LLM-012
based multi-agent ADSs leverage language-013
driven communication and coordination to en-014
hance inter-agent collaboration. This paper pro-015
vides a frontier survey of this emerging inter-016
section between NLP and multi-agent ADSs.017
We begin with a background introduction to re-018
lated concepts, followed by a categorization of019
existing LLM-based methods based on differ-020
ent agent interaction modes. We then discuss021
agent-human interactions in scenarios where022
LLM-based agents engage with humans. Fi-023
nally, we summarize key applications, datasets,024
and challenges to support future research1.025

1 Introduction026

Autonomous driving systems (ADSs) are redefin-027

ing driving behaviors, reshaping global transporta-028

tion networks, and driving a technological revolu-029

tion (Yurtsever et al., 2020). Traditional ADSs pri-030

marily rely on data-driven approaches (as detailed031

in Appendix A), focusing on system development032

while overlooking dynamic interactions with the033

environment. To enhance engagement with diverse034

and complex driving scenarios, agentic roles have035

been incorporated into ADSs (Durante et al., 2024)036

using methods like reinforcement learning (Zhang037

et al., 2024b) and active learning (Lu et al., 2024).038

Despite notable progress, these methods struggle039

1https://anonymous.4open.science/r/LLM-based_
Multi-agent_ADS-3A5C/README.md

with “long-tail” scenarios, where rare but criti- 040

cal driving situations, such as sudden obstacles, 041

pose significant challenges to model performance. 042

Furthermore, their “black-box” nature limits inter- 043

pretability, making their decisions difficult to trust. 044

LLM-based single-agent ADSs help overcome 045

the limitations of data-driven methods (Wang et al., 046

2024a). Pre-trained on vast, multi-domain datasets, 047

LLMs excel in knowledge transfer and generaliza- 048

tion (Achiam et al., 2023), enabling strong perfor- 049

mance in traffic scenarios under zero-shot settings, 050

thus addressing the long-tail issue (Yang et al., 051

2023). Moreover, techniques such as Reinforce- 052

ment Learning from Human Feedback (RLHF) and 053

Chain-of-Thought (CoT) (Zhao et al., 2023), en- 054

hance language-based interaction and logical rea- 055

soning, allowing LLMs to make human-like, real- 056

time decisions while providing interpretable and 057

trustworthy feedback across various driving con- 058

ditions. For instance, Drive-Like-a-Human (Fu 059

et al., 2024) builds a closed-loop system compris- 060

ing environment, agent, memory, and expert mod- 061

ules. The agent interacts with the environment, 062

reflects on expert feedback, and ultimately accumu- 063

lates experience. For example, DiLu (Wen et al., 064

2024) replaces human experts with a reflection 065

module and integrates an LLM-based reasoning en- 066

gine to enable continuous decision-making. Agent- 067

Driver (Mao et al., 2024) designs a tool library to 068

collect environmental data and uses LLMs’ cogni- 069

tive memory and reasoning to improve planning. 070

However, as shown in Figure 1, researchers have 071

identified three critical limitations of LLM-based 072

single-agent ADSs in complex traffic environments: 073

❶ Limited Perception: LLMs can only respond 074

to sensor inputs and lack predictive and generaliza- 075

tion capabilities. As a result, LLM-based single- 076

agent ADSs cannot complement incomplete sensor 077

information and thus miss critical information in 078

driving scenarios, such as pedestrians or vehicles 079

hidden in complex intersection environments (Hu 080
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Figure 1: Limitations of LLM-based single-agent ADSs.
At an intersection without traffic lights, an accident has
occurred ahead, causing Veh1 to be stuck. Due to lim-
ited perception, Veh1 is unable to assess the situation
and cannot proceed. Veh2 intends to go straight, and
Veh3 wants to turn left. However, due to insufficient
collaboration, they are also unable to navigate the inter-
section efficiently. Furthermore, due to high computing
demands, the lightweight agent on Veh1 struggles to
handle the complex driving scenario and has to rely on
a more powerful cloud-based agent for assistance.

et al., 2024c). ❷ Insufficient Collaboration: A081

single LLM-based agent cannot coordinate with082

other vehicles or infrastructure, leading to subopti-083

mal performance in scenarios requiring multi-agent084

interactions, such as merging of lanes or navigate085

roundabouts (Hu et al., 2021). ❸ High Compu-086

tational Demands: With billions of parameters087

in LLMs, these methods require substantial inde-088

pendent computational resources, making real-time089

deployment challenging, particularly in resource-090

limited in-vehicle systems (Cui et al., 2023).091

To address these limitations, LLM-based multi-092

agent ADSs enable distinct agents to communi-093

cate and collaborate, improving safety and perfor-094

mance. First, LLMs enhance contextual aware-095

ness by allowing agents to share data, extend their096

perceptual range, and enhance the detection of oc-097

cluded objects in complex environments (Hu et al.,098

2024c). Second, real-time coordination among099

LLM-based agents mitigates insufficient collabo-100

ration, enabling joint decisions in tasks like lane101

merging and roundabout navigation, ultimately102

leading to safer and more efficient driving opera-103

tions (Hu et al., 2021). Third, LLMs optimize com-104

putational efficiency by distributing tasks across105

agents, reducing individual load and enabling real-106

time processing in resource-limited systems.107

As LLM capabilities continue to advance, they108

are playing an increasingly significant role in ADS109

as intelligent driving assistants. Several reviews110

have focused on two primary aspects: i) the integra-111

tion of LLMs in data-driven methods (Yang et al.,112

2023; Li et al., 2023) and ii) the applications of 113

specific LLM types, such as vision-based (Zhou 114

et al., 2024b) and multimodal-based (Fourati et al., 115

2024; Cui et al., 2024c) models in ADS. However, 116

no comprehensive survey has systematically exam- 117

ined the emerging field of LLM-based multi-agent 118

ADSs. This gap motivates us to provide a com- 119

prehensive review that consolidates existing knowl- 120

edge and offers insights to guide future research 121

and the development of advanced ADSs. 122

In this study, we present a comprehensive survey 123

of LLM-based multi-agent systems. Specifically, 124

Section 2 introduces the core concepts, includ- 125

ing agent environments and profiles, inter-agent 126

interaction mechanisms, and agent-human interac- 127

tions. Section 3 provides a structured review of 128

existing studies: multi-vehicle interaction, vehicle- 129

infrastructure interaction, and vehicle-assistant in- 130

teraction. As agent capabilities continue to grow, 131

human-vehicle co-driving is emerging as the dom- 132

inant autonomous driving paradigm, with human 133

playing an increasingly vital role. Humans collab- 134

orate with agents by providing guidance or super- 135

vising their behavior. Therefore, we consider hu- 136

mans as special virtual agents and examine human- 137

agent interactions in Section 4. Section 5 explores 138

various applications, while Section 6 compiles a 139

comprehensive collection of public datasets and 140

open-source resources. Section 7 discusses existing 141

challenges and future research directions. Finally, 142

Section 8 concludes the study. 143

2 LLM-based Agents for ADS 144

2.1 LLM-based Single-Agent ADS 145

Achieving human-level driving is an ultimate goal 146

of ADS. As shown in Figure 2(a), the LLM-based 147

single agent retrieves past driving experiences from 148

the memory, integrates them with real-time envi- 149

ronmental information for reasoning, and makes 150

driving decisions. Additionally, the driving agent 151

reflects on its decision and updates its memory 152

accordingly, ensuring safe and efficient driving ac- 153

tions. However, the complex and dynamic nature 154

of real-world driving scenarios, where interactions 155

with other vehicles significantly impact decision- 156

making, suggests that neglecting these interactions 157

can lead to suboptimal or unsafe driving outcomes. 158

2.2 LLM-based Multi-Agent ADS 159

With interactions among multiple agents, LLM- 160

based multi-agent ADS leverages collective intelli- 161
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Agent
The drive agent retrieves 
driving experience, reasons 
about traffic conditions based 
LLMs, reflects on unexpected 
obstacles, and updates its 
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and achieve driving 
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Figure 2: Overview of LLM-based (a) single- and (b) multi-agent ADSs, with key terms and differences highlighted.

Table 1: Comparison of Agent Profiling Methods.

Method Advantage Limitation

Pre-defined Rely on prior knowledge to
reduce the difficulty of
scenario modeling and
embed strict safety rules and
regulatory constraints.

Labor-intensive to create and
maintain, and lacks
adaptability to novel or
dynamic autonomous driving
scenarios.

Model-generated Synthesize new agent roles
on-the-fly, letting simulators or
fleets adapt to unseen driving
contexts.

Generated profiles may
violate traffic laws and have
limited understanding of
safety-critical environments.

Data-derived Can learn complex,
real-world driving behaviors
and patterns from large
datasets, potentially improving
naturalistic interactions.

Coverage remains limited by
the availability of vast,
high-quality autonomous
driving data, and privacy or
commercial constraints may
restrict data sharing.

gence and specialized skills, with each agent play-162

ing a distinct role, communicating and collaborat-163

ing within the system. This enhances the efficiency164

and safety of autonomous driving. Below, we intro-165

duce the LLM-based multi-agent ADS, as shown166

in Figure 2(b), and provide a detailed analysis of167

its three key modules: Agent Environment and168

Profile, LLM-based Multi-Agent Interaction, and169

LLM-based Agent-Human Interaction.170

2.2.1 Agent Environment and Profile171

Similar to the single-agent architecture in Fig-172

ure 2(a), multi-agent systems first obtain rele-173

vant information from their environments, enabling174

them to make informed decisions and take appropri-175

ate actions. The environmental conditions define176

the settings and necessary context for agents in177

LLM-based multi-agent ADS to operate effectively.178

Generally, there are two environment types, i.e.,179

physical environment and simulation environment.180

Physical environment represents the real-world181

setting where driver agents gather information us-182

ing various sensors, such as cameras and LiDAR, 183

and interact with other traffic participants. How- 184

ever, due to the high cost of vehicles and strict reg- 185

ulations on public roads, collecting large amounts 186

of data in real world is impractical. As a viable 187

alternative, the Simulation environment provides 188

a simulated setting constructed by humans. It can 189

accurately model specific conditions without in- 190

curring the high costs and complexities associated 191

with real-world data collection, allowing agents to 192

freely test actions and strategies across a variety of 193

scenarios (Dosovitskiy et al., 2017). 194

In LLM-based multi-agent systems, each agent 195

is assigned distinct roles with specific functions 196

through profiles, enabling them to collaborate on 197

complex driving tasks or simulate intricate traffic 198

scenarios. These profiles are crucial in defining 199

the functionality of the agent, its interaction with 200

the environment, and its collaboration with other 201

agents. Existing work (Li et al., 2024) generates 202

agent profiles using three types of methods: Pre- 203

defined, Model-generated, and Data-derived. 204

Table 1 summarizes the advantages and limita- 205

tions of different agent profiling methods in ADSs. 206

Specifically, within Pre-defined methods, system 207

designers explicitly define agent profiles based on 208

prior knowledge and the analysis of complex sce- 209

narios (Chen et al., 2024a). Each agent has unique 210

attributes and behavior patterns that can be adjusted 211

based on the scenario. In driving environments, the 212

objectives of ADS require the collaboration of ve- 213

hicle agents, infrastructure agents, and drivers. In 214

particular, ❶ Vehicle agents denote various types of 215

autonomous vehicles, traveling according to preset 216
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routes and traffic rules, while communicating and217

collaborating with other vehicles and driver agents.218

❷ Infrastructure agents, e.g., traffic lights, road con-219

dition monitors, and parking facilities, provide real-220

time traffic information and instructions, influenc-221

ing the behavior of driver and vehicle agents. How-222

ever, manually crafting such roles is labor-intensive223

and often brittle when scenarios shift, which has224

stimulated interest in automatic profile construc-225

tion, either generated by LLMs or extracted from226

large-scale datasets. Model-generated methods227

create agent profiles using advanced LLMs based228

on the interaction context and the goals that need229

to be accomplished (Zhou et al., 2024c) and Data-230

derived Profile design agent profiles based on pre-231

existing datasets (Guo et al., 2024).232

2.2.2 LLM-based Multi-Agent Interaction233

In LLM-based multi-agent ADS, effective commu-234

nication and coordination among agents are crucial235

to improve collective intelligence and solve com-236

plex traffic scenarios. Agent interactions depend237

on both the interaction mode and the underlying238

interaction structure, as summarized in Table 3.239

The interaction mode can be classified as: co-240

operative, competitive, and debate mode. ❶ In241

cooperative mode, agents work together to achieve242

shared objectives by exchanging information (Chen243

et al., 2024d; Jin et al., 2024). ❷ In competitive244

mode, agents strive to accomplish their individual245

goals and compete with others (Yao et al., 2024).246

❸ The Debate mode enables agents to debate with247

each other, propose their own solutions, criticize248

the solutions of other agents, and collaboratively249

identify optimal strategies (Liang et al., 2024).250

The interaction structure delineates the archi-251

tecture of communication networks within LLM-252

based multi-agent ADS, including centralized, de-253

centralized, hierarchical, and shared message pool254

structures, as shown in Figure 3. Specifically, ❶ the255

centralized interaction structures defines a central256

agent or a group of central agents to manage interac-257

tions among all agents (Zhou et al., 2024c). ❷ The258

decentralized interaction structure allows for direct259

communication between agents, with all agents260

being equal to each other (Hu et al., 2024b). ❸ Hi-261

erarchical structures focus on interactions within a262

layer or with adjacent layers (Ohmer et al., 2022).263

❹ The shared memory interaction structure main-264

tains a shared message pool, allowing agents to265

send and extract the necessary information (Jiang266

et al., 2024a). We provide a more detailed intro-267

Decentralized

Shared Message PoolHierarchical

Message
pool

LLM-based
Manage  Agent

Centralized
Interaction mode

Cooperative

Competitive

Debate

Figure 3: Different interaction modes and structures.

duction to LLM-based multi-agent ADSs based on 268

their interaction structures and modes in Section 3. 269

2.2.3 LLM-based Agent-Human Interaction 270

Recent studies show that human-machine co- 271

driving systems use LLMs to improve agent-human 272

interactions, enabling vehicles to communicate and 273

collaborate seamlessly with human drivers through 274

natural language (Feng et al., 2024). This allows 275

vehicles to better understand and respond to human 276

intent, provide context-aware responses, enhance 277

driving safety and comfort, and offer personalized 278

recommendations based on driver preferences. Hu- 279

mans also play a crucial role in guiding and super- 280

vising agent behavior, enhancing the agents’ capa- 281

bilities while ensuring safety and compliance with 282

legal standards. We examine the role of humans 283

as special virtual agents and explore agent-human 284

interaction dynamics in Section 4. 285

3 LLM-based Multi-Agent Interaction 286

Mutual interaction is central to multi-agent ADSs, 287

enabling systems to solve complex problems be- 288

yond the capabilities of a single agent. Through 289

information exchange and coordinated decision- 290

making, multiple agents effectively complete 291

shared tasks and achieve overarching objectives (Li 292

et al., 2024). This section reviews recent stud- 293

ies on multi-agent ADSs, emphasizing interactions 294

among vehicles, infrastructures, and assisted agents 295

in driving scenarios. As shown in Figure 4, we cate- 296

gorize existing methods into three interaction types: 297

multi-vehicle interaction, vehicle-infrastructure in- 298

teraction, and vehicle-assistant interaction. 299

3.1 Multi-Vehicle Interaction 300

Multi-vehicle interactions involve multiple au- 301

tonomous vehicles powered by LLMs exchanging 302

real-time information, such as locations, speeds, 303
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Drive-as-You-Speak (Cui et al., 2024a), Reason-and-React (Cui et al., 2024b),
DriVLMe (Huang et al., 2024a), AccidentGPT (Wang et al., 2024b),

ConnectGPT (Tong and Solmaz, 2024)
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ChatSim (Wei et al., 2024), ALGPT (Zhou et al., 2024c), AD-H (Zhang et al., 2024c),
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Multi-Vehicle
Interaction

LanguageMPC (Sha et al., 2023), AgentsCoDriver (Hu et al., 2024a), KoMA (Jiang et al., 2024a),
AgentsCoMerge (Hu et al., 2024b), CoDrivingLLM (Fang et al., 2024),CoMAL (Yao et al., 2024),

Complement-Vehicle’s-FOV (Dona et al., 2024)

Figure 4: A taxonomy of LLM-based Multi-Agent Autonomous Driving Systems.

sensor data, and intended trajectories. By shar-304

ing partial observations of the environment or ne-305

gotiating maneuvers, multiple vehicles overcome306

the inherent limitations of single-agent ADS, such307

as restricted perception and lack of collaboration.308

Typically, these interactions operate in a coopera-309

tive mode. LanguageMPC (Sha et al., 2023) em-310

ploys a centralized structure, where a central agent311

acts as the “brain” of the fleet, providing coordina-312

tion and control commands to each vehicle agent.313

In contrast, other decentralized approaches (Fang314

et al., 2024; Dona et al., 2024) treat all agents315

equally, allowing direct communication between316

multiple agents. For instance, AgentsCoDriver (Hu317

et al., 2024a) designs a communication module that318

generates messages for inter-agent communication319

when the agent deems it necessary. AgentsCoM-320

erge (Hu et al., 2024b) and CoDrivingLLM (Fang321

et al., 2024) incorporate agent communication into322

the reasoning process, facilitating intention sharing323

and negotiation before decision-making. Addition-324

ally, KoMA (Jiang et al., 2024a) and CoMAL (Yao325

et al., 2024) build a shared memory pool, allowing326

agents to send and retrieve the necessary informa-327

tion to facilitate interaction between agents.328

3.2 Vehicle-Infrastructure Interaction329

The interaction between vehicles and external330

agents, such as traffic lights, roadside sensors, and331

LLM-powered control centers, not only helps au-332

tonomous vehicles make more intelligent decisions333

but also alleviates on-board computing require-334

ments. This enables LLM-based multi-agent ADSs 335

to operate effectively in real-world environments. 336

EC-Drive (Chen et al., 2024a) proposes an Edge- 337

Cloud collaboration framework with a hierarchical 338

interaction structure. The edge agent processes real- 339

time sensor data and makes preliminary decisions 340

under normal conditions. When anomalies are de- 341

tected or the edge agent generates a low-confidence 342

prediction, the system flags these instances and up- 343

loads them to the cloud agent equipped with LLMs. 344

The cloud agent then performs detailed reasoning 345

to generate optimized decisions and combines them 346

with the output of the edge agent to update the driv- 347

ing plan. Following a similar architecture, Tang 348

et al. (2024) uses agents deployed on remote clouds 349

or network edges to assist connected driving agents 350

in handling complex driving decisions. 351

3.3 Vehicle-Assistant Interaction 352

Beyond the interactions between the primary 353

agents in driving scenarios, additional interactions 354

among assisted agents play a crucial role in LLM- 355

based multiagent ADSs. Both ChatSim (Wei et al., 356

2024) and ALGPT (Zhou et al., 2024c) employ a 357

manager (PM) agent to interpret user instructions 358

and coordinate tasks among other agents. Chat- 359

Sim (Wei et al., 2024) adopts a centralized struc- 360

ture in which the PM agent decouples an overall 361

demand into specific subtasks and dispatches in- 362

structions to other team agents. Similarly, the PM 363

agent in ALGPT (Zhou et al., 2024c) formulates 364

a work plan upon receiving user commands and 365
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assembles an agent team with the plan. Specifi-366

cally, agents no longer communicate point-to-point367

with each other but instead communicate through a368

shared message pool, greatly improving efficiency.369

Additionally, hierarchical agent architectures fur-370

ther enhance the performance and effectiveness371

of LLM-based multi-agent ADSs. AD-H (Zhang372

et al., 2024c) assigns high-level reasoning tasks to373

the multimodal LLM-based planner agent while374

delegating low-level control signal generation to375

a lightweight controller agent. These agents inter-376

act through mid-level commands generated by the377

multimodal LLMs. In LDPD (Liu et al., 2024a),378

the teacher agent leverages the LLM for complex379

cooperative decision reasoning and trains smaller380

student agents via its own decision demonstrations381

to achieve cooperative decision-making. Surre-382

alDriver (Jin et al., 2024) introduces a CoachAgent383

to evaluate DriverAgent’s driving behavior and pro-384

vide guidelines for continuous improvement.385

Different from the conventional collaborative386

interaction mode, V-HOI (Zhang et al., 2024a) pro-387

poses a hybrid interaction mode that blends collab-388

oration with debate. It establishes various agents389

across different LLMs to evaluate reasoning logic390

from different aspects, enabling cross-agent rea-391

soning. This process culminates in a debate-style392

integration of responses from various LLMs, im-393

proving predictions for enhanced decision-making.394

4 LLM-based Agent-Human Interaction395

Depending on the roles of human assume when in-396

teracting with agents, we classify current methods397

as: instructor paradigm and partnership paradigm.398

4.1 Instructor Paradigm399

In Figure 5, the instructor paradigm involves agents400

interacting with humans in a conversational manner,401

where humans act as “tutors” to offer quantitative402

and qualitative feedback to improve agent decision-403

making (Li et al., 2017). Quantitative feedback typ-404

ically includes binary evaluations or ratings, while405

qualitative feedback consists of language sugges-406

tions for refinement. Agents incorporate this feed-407

back to adapt and perform better in complex driving408

scenarios. For instance, Wang et al. (2023) propose409

“Expert-Oriented Black-box Tuning”, where do-410

main experts provide feedback to optimize model411

performance. Similarly, Ma et al. (2024) present412

a human-guided learning pipeline that integrates413

driver feedback to refine agent decision-making.414

Partnership paradigmInstructor paradigm
I’m approaching a busy 
intersection. 
I’ll proceed at normal speed to pass 
before the light switches.

Pedestrians may appear 
unexpectedly. Could we adjust your 
approach? (Qualitative feedback)

I’ll reduce acceleration and 
continuously monitor the crosswalk 
and sidewalks for pedestrians.

Good. After crossing, let’s reflect.
The improved decision is scored 
9/10. (Quantitative feedback)

Please drive to the 
Miami. I need to apply 
for a passport.

Okay, I will drive to 
the Miami and take 
the seaside route 
base users interests.

The weather is so nice 
today!

It really is a beautiful 
day, and I've found the 
perfect music to match 
it.

Figure 5: Two modes of agent-human interaction.

4.2 Partnership Paradigm 415

As shown in Figure 5, the partnership paradigm 416

emphasizes collaboration, where agents and hu- 417

mans interact as equals to accomplish complex 418

driving tasks. In this paradigm, agents assist in 419

decision-making by adapting to individual driver 420

preferences and real-time traffic conditions. For 421

instance, Talk2Drive (Cui et al., 2023), DaYS (Cui 422

et al., 2024a) and Receive (Cui et al., 2024b) utilize 423

memory modules to store human-vehicle interac- 424

tions, enabling a more personalized driving experi- 425

ence based on individual driver preferences, such as 426

overtaking speed and following distance. Addition- 427

ally, infrastructure agents in AccidentGPT (Wang 428

et al., 2024b) and ConnectGPT (Tong and Solmaz, 429

2024) connect vehicles to monitor traffic condi- 430

tions, identify potential hazards, and provide proac- 431

tive safety warnings, blind spot alerts, and driving 432

suggestions through agent-human interaction. 433

5 Applications 434

5.1 Collaborative Perception 435

Despite significant advancements in the perception 436

modules of ADS, LLM-based single-agent ADS 437

continues to face substantial challenges, including 438

constrained sensing ranges and persistent occlusion 439

issues (Han et al., 2023). These two key limitations 440

hinder their comprehensive understanding of the 441

driving environment and can lead to suboptimal 442

decision-making, especially in complex and dy- 443

namic traffic scenarios (Hu et al., 2024c). 444

Dona et al. (2024) propose a multi-agent coop- 445

erative framework that enhances the ego vehicle’s 446

field-of-view (FOV) by integrating complementary 447

visual perspectives through inter-vehicle dialogues 448

mediated by onboard LLMs, significantly expand- 449

ing the ego vehicle’s environmental comprehen- 450

sion. However, in complex road scenarios, reliance 451
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on a single LLM can lead to erroneous interpreta-452

tions and hallucinatory predictions when process-453

ing complex traffic situations. To address this lim-454

itation, V-HOI MLCR (Zhang et al., 2024a) in-455

troduces a collaborative debate framework among456

different LLMs for video-based Human-Object In-457

teraction (HOI) detection tasks. This framework458

first implements a Cross-Agent Reasoning scheme,459

assigning distinct roles to various agents within an460

LLM to conduct reasoning from multiple perspec-461

tives. Subsequently, a cyclic debate mechanism is462

employed to evaluate and aggregate responses from463

multiple agents, culminating in the final outcome.464

5.2 Collaborative Decision-Making465

After obtaining environmental information, the466

ADS performs three core functions: route planning,467

trajectory optimization, and real-time decision-468

making. In complex traffic scenarios such as round-469

about navigation and lane merging, LLM-based470

multi-agent systems enable coordinated motion471

planning through three key mechanisms: ❶ real-472

time intention sharing between agents, ❷ adaptive473

communication protocols, and ❸ dynamic negoti-474

ation frameworks. This collaborative architecture475

allows ADS to precisely coordinate their trajecto-476

ries, maneuver strategies, and environmental inter-477

actions while maintaining operational safety.478

LanguageMPC (Sha et al., 2023) uses LLMs479

to perform scenario analysis and decision-making.480

Additionally, it introduces a multi-vehicle control481

method where distributed LLMs govern individ-482

ual vehicle operations, while a central LLM facil-483

itates multi-vehicle communication and coordina-484

tion. AgentsCoDriver (Hu et al., 2024a) presents485

a comprehensive LLM-based multi-vehicle collab-486

orative decision-making framework with life-long487

learning capabilities, moving the field towards prac-488

tical applications. This framework consists of five489

parts, as follows: the observation module, cogni-490

tive memory module, and reasoning engine sup-491

port the high-level decision-making process for492

AD; the communication module enables negotia-493

tion and collaboration among vehicles; and the rein-494

forcement reflection module reflects the output and495

decision-making process. Similarly, AgentsCoM-496

erge (Hu et al., 2024b) combines vision-based and497

text-based scene understanding to gather essential498

environmental information and incorporates a hier-499

archical planning module to allow agents to make500

informed decisions and effectively plan trajecto-501

ries. Instead of directly interacting with each other,502

agents in KoMA (Jiang et al., 2024a) analyze and 503

infer the intentions of surrounding vehicles via an 504

interaction module to enhance decision-making. It 505

also introduces a shared memory module to store 506

successful driving experiences and a ranking-based 507

reflection module to review them. 508

5.3 Collaborative Cloud-Edge Deployment 509

Although many innovative studies have explored 510

the application of LLM-based multi-agent ADS, 511

significant technical challenges remain in deploy- 512

ing LLMs locally on autonomous vehicles due 513

to their huge computational resource require- 514

ments (Sun et al., 2024a). To address these issues, 515

Tang et al. (2024) apply remote LLMs to provide as- 516

sistance for connected autonomous vehicles, which 517

communicate between themselves and with LLMs 518

via vehicle-to-everything technologies. Moreover, 519

this study evaluates LLMs’ comprehension of driv- 520

ing theory and skills in a manner akin to human 521

driver tests. However, remote LLM deployment 522

can introduce inference latency, posing risks in 523

emergency scenarios. To further improve system 524

efficiency, Chen et al. (2024a) introduce a novel 525

edge-cloud collaborative ADS with drift detection 526

capabilities, using small LLMs on edge devices 527

and GPT-4 on cloud to process motion planning 528

data and complex inference tasks, respectively. 529

5.4 Collaborative Assistance-Tools 530

The long-term data accumulation in both industry 531

and academia has enabled great success in highway 532

driving and automatic parking (Liu et al., 2024b). 533

However, collecting real-world data remains costly, 534

especially for multi-agents or customized scenar- 535

ios. Additionally, the uncontrollable nature of real 536

scenarios makes it challenging to capture certain 537

corner cases. To address these issues, many LLM- 538

based studies focus on simulating multi-agent ADS, 539

offering a cost-effective alternative to real-world 540

data collection. For example, ChatSim (Wei et al., 541

2024) provides editable photo-realistic 3D driv- 542

ing scenario simulations via natural language com- 543

mands and external digital assets. The system 544

leverages multiple LLM agents with specialized 545

roles to decompose complex commands into spe- 546

cific editing tasks, introducing novel McNeRF and 547

Mclight methods that generate customized high- 548

quality output. HumanSim (Zhou et al., 2024a) 549

integrates LLMs to simulate human-like driving 550

behaviors in multi-agent systems via pre-defined 551

driver characters. By employing navigation strate- 552
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Table 2: Single-agent and multi-agent autonomous driving datasets.

Datasets Dataset Type Sensor Type Tasks
KITTI (Geiger et al., 2012) Single-agent Camera, LiDAR 2D/3D detection, tracking, depth estimation
nuScenes (Geiger et al., 2020) Single-agent Cameras, LiDAR, Radars 3D detection, tracking, trajectory forecasting
BDD100K (Yu et al., 2020) Single-agent Camera Object detection, lane detection, segmentation
Waymo (Sun et al., 2020) Single-agent Camera, LiDAR, Radars 2D/3D detection, tracking, domain adaptation
BDD-X (Kim et al., 2018) Single-agent BDD Object detection, driving scenario captioning
nuScenes-QA (Qian et al., 2024) Single-agent nuScenes 3D detection, tracking, visual QA
DriveLM (Sima et al., 2025) Single-agent nuScenes, Waymo Multi-modal planning, question answering
DAIR-V2X (Yu et al., 2022) Multi-agent Camera, LiDAR (multi-vehicle) Cooperative perception, tracking
TUMTraf-V2X (Zimmer et al., 2024) Multi-agent Multi-vehicle camera, LiDAR Cooperative perception, multi-agent tracking
V2V4Real (Xu et al., 2023) Multi-agent Multi-vehicle camera, LiDAR Cooperative detection, tracking
V2XSet (Xu et al., 2022) Multi-agent Multi-vehicle camera, LiDAR Multi-agent detection, tracking

gies, HumanSim facilitates behavior-level control553

of vehicle movements, making it easier to gener-554

ate corner cases in multi-agent environments. In555

addition, ALGPT (Zhou et al., 2024c) uses a multi-556

agent cooperative framework for open-vocabulary,557

multimodal auto-annotation in autonomous driving.558

It introduces a Standard Operating Procedure to de-559

fine agent roles and share documentation, enhanc-560

ing interaction effectiveness. ALGPT also builds561

specialized knowledge bases for each agent using562

CoT and In-Context Learning (Brown et al., 2020).563

6 Datasets and Benchmark564

We organize recent open-source work to foster565

research on advanced ADSs. Mainstream ADS566

datasets are summarized in Table 2, with further567

details provided in Appendix C.568

7 Challenges and Future Directions569

❶ Hallucination, Safety & Trustworthiness. Hal-570

lucination refers to LLMs generating outputs that571

are factually incorrect or non-sensical (Huang et al.,572

2023). In complex driving scenarios, a single driv-573

ing agent’s hallucinations in an LLM-based multi-574

agent ADS can be accepted and further propagated575

by other agents in the network via the inter-agent576

communication, potentially leading to serious ac-577

cidents. Detecting agent-level hallucinations and578

managing inter-agent information flow are key to579

enhancing system safety and trust (Fan et al., 2024).580

Recent advances in spatiotemporal traffic analy-581

sis (Zhang et al., 2024d; Jiang et al., 2024b) further582

support real-time condition assessment, improving583

vehicle-road interaction and overall ADS safety.584

❷ Legal, Security & Privacy. As agents au-585

tonomously exchange and process information586

within multi-agent ADS, the distribution of legal li-587

ability between individual users and manufacturers588

becomes ambiguous, particularly in cases involving589

system failures or collisions. In addition, vulnera-590

ble communication methods and strict user privacy591

requirements place high demands on cryptographic 592

protocols and data management. These interrelated 593

concerns collectively represent critical directions 594

for future research and regulatory initiatives. 595

❸ Multi-Modality Ability. In current multi-agent 596

systems, agents primarily use LLMs for scene un- 597

derstanding and decision-making. Perception out- 598

puts are converted into text via manual prompts or 599

interpreters, then processed by LLMs to generate 600

decisions. This pipeline is limited by perception 601

performance and may cause information loss (Gao 602

et al., 2023). Integrating language understanding 603

with multimodal data fusion offers a promising di- 604

rection for future multimodal multi-agent ADSs. 605

❹ Real-World Deployment & Scalability. LLM- 606

based multi-agent ADS can scale up by adding 607

more agents to handle increasingly complex driv- 608

ing scenarios. However, more LLM agents increase 609

the demand for computing resources, while their 610

interactions impose strict requirements on commu- 611

nication efficiency, which is critical for real-time 612

decision-making (Huang et al., 2024b). Therefore, 613

under limited computing resources, it is crucial 614

to develop a system architecture that supports dis- 615

tributed computing and efficient communication, as 616

well as agents capable of adapting to various real- 617

world environments and tasks, to optimize multi- 618

agent ADS within resource constraints. 619

8 Conclusion 620

This paper systematically reviews LLM-based 621

multi-agent ADSs and traces their evolution from 622

single-agent to multi-agent systems. We detail 623

their core components, including agent environ- 624

ments and profiles, inter-agent interaction, and 625

agent-human communication. Existing studies are 626

categorized by interaction types and applications. 627

We further compile public datasets and open-source 628

implementations, and discuss challenges and future 629

directions. We hope this review will inspire NLP 630

community to explore more practical and impactful 631

applications in LLM-based multi-agent ADS. 632
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Limitations633

Despite being a survey, this work still has sev-634

eral limitations. ❶ Emerging Research and Lim-635

ited Data. As LLM-based multi-agent ADS is an636

emerging field, the current body of research is still637

growing. While this may limit the breadth of our638

classification, we have aimed to provide a repre-639

sentative and forward-looking overview based on640

the most relevant and recent work. ❷ Some Un-641

verified Work. Given the novelty of this topic,642

some referenced works are from unreviewed arXiv643

preprints. We include them to reflect the latest644

progress and ideas, while acknowledging that their645

findings may require further validation through646

peer review. ❸ Limited Discussion on Real-world647

Applications. Although industrial adoption of648

LLM-based multi-agent ADS is underway, pub-649

lic documentation remains limited. As a result, this650

review focuses on academic contributions, and real-651

world deployments are left for future investigation652

as more information becomes available.653
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A Data-driven Autonomous Driving 1089

System 1090

Traditional ADS rely on data-driven approaches, 1091

which are categorized into modular and end-to-end 1092

frameworks (Chen et al., 2024b). Modular-based 1093

systems break the entire autonomous driving pro- 1094

cess into separate components, such as perception 1095

module, prediction module, and planning module. 1096

Perception modules are responsible for obtaining 1097

information about the vehicle’s surrounding envi- 1098

ronment, aiming to identify and locate important 1099

traffic elements such as obstacles, pedestrians, and 1100

vehicles near the autonomous vehicle, usually in- 1101

cluding tasks such as object detection (Wang et al., 1102

2021) and object occupancy prediction (Tong et al., 1103

2023). Prediction modules estimate the future mo- 1104

tions of surrounding traffic participants based on 1105

the information provided by the perception module, 1106

usually including tasks such as trajectory predic- 1107

tion and motion prediction (Shi et al., 2022). Plan- 1108

ning module aims to derive safe and comfortable 1109

driving routes and decisions through the results 1110

of perception and prediction (Sauer et al., 2018). 1111

Each module is individually developed and inte- 1112

grated into onboard vehicles to achieve safe and 1113

efficient autonomous driving functions. Although 1114

modular methods have achieved remarkable results 1115

in many driving scenarios, the stacking design of 1116

multiple modules can lead to the loss of key infor- 1117

mation during transmission and introduce redun- 1118

dant calculations. Furthermore, due to the inconsis- 1119

tency in the optimization objectives of each module, 1120

the modular-based system may accumulate errors, 1121

which can negatively impact the vehicle’s overall 1122

decision-making performance. End-to-end-based 1123

systems integrate the entire driving process into a 1124

single neural network, and then directly optimize 1125

the entire driving pipeline from sensor inputs to pro- 1126

duce driving actions (Chen et al., 2024b). However, 1127

this approach introduces the “black box” problem, 1128

meaning a lack of transparency in the decision- 1129

making process, complicating interpretation and 1130

validation. 1131

B LLMs in Autonomous Driving System 1132

As shown in Figure 6, 7, LLMs, with their powerful 1133

open-world cognitive and reasoning capabilities, 1134

have shown significant potential in ADSs (Yang 1135

et al., 2023; Li et al., 2023). LC-LLM (Peng 1136

et al., 2024) is an explainable lane change predic- 1137

tion model that leverages LLMs to process driving 1138
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scenario information as natural language prompts.1139

By incorporating CoT reasoning and supervised1140

finetuning, it not only predicts lane change inten-1141

tions and trajectories but also provides transpar-1142

ent and reliable explanations for its predictions.1143

GPT-Driver (Mao et al., 2023) regards the motion1144

planning task as a language modeling problem, us-1145

ing a fine-tuned GPT-3.5 model (Ye et al., 2023)1146

to generate driving trajectories. DriveGPT4 (Xu1147

et al., 2024) introduces an interpretable end-to-end1148

autonomous driving system that uses multimodal1149

LLMs to process multi-frame video inputs and tex-1150

tual queries, enabling vehicle action interpretation1151

and low-level control prediction. By employing a1152

visual instruction tuning dataset and mixfinetuning1153

strategy, it provides a novel approach to directly1154

map sensory inputs to actions, achieving superior1155

performance in autonomous driving tasks. Driving1156

with LLM (Chen et al., 2024c) integrates vector-1157

ized numeric data with pre-trained LLMs to im-1158

prove context understanding in driving scenarios1159

and enhances the interpretability of driving deci-1160

sions.1161

C Datasets and Benchmark1162

Single-agent Autonomous Driving Dataset.1163

Single-agent datasets are obtained from a single ref-1164

erence agent, which can be the ego vehicle or road-1165

side infrastructure, using various sensors. Main-1166

stream singel-agent autonomous driving datasets1167

like KITTI (Geiger et al., 2012), nuScenes (Geiger1168

et al., 2020), and Waymo (Sun et al., 2020) provide1169

comprehensive multimodal sensor data, enabling1170

researchers to develop and benchmark algorithms1171

for multiple tasks such as object detection, tracking,1172

and segmentation.1173

In addition to these foundational datasets, newer1174

ones like BDD-X (Kim et al., 2018), Driv-1175

eLM (Sima et al., 2025), and nuScenes-QA (Qian1176

et al., 2024) introduce action descriptions, detailed1177

captions, and question-answer pairs that can be1178

used to interact with LLMs. Combining language1179

information with visual data can enrich semantic1180

and contextual understanding, promote a deeper un-1181

derstanding of driving scenarios, and enhance the1182

safety and interaction capabilities of autonomous1183

vehicles.1184

Multi-agent Autonomous Driving Dataset. Be-1185

yond single-vehicle view datasets, integrating more1186

viewpoints of traffic elements, such as drivers, vehi-1187

cles and infrastructures into the data also brings ad-1188

vantages to AD systems. Multi-agent autonomous 1189

driving datasets, such as DAIR-V2X (Yu et al., 1190

2022), V2XSet (Xu et al., 2022), V2V4Real (Xu 1191

et al., 2023), and TUMTraf-V2X (Zimmer et al., 1192

2024) typically include data from multiple vehi- 1193

cles or infrastructure sensors, capturing the inter- 1194

actions and dependencies between different agents 1195

and additional knowledge regarding the environ- 1196

ments. These datasets are essential for researching 1197

and developing cooperative perception, prediction, 1198

and planning strategies that enable vehicles to over- 1199

come the limitations of single agent datasets such 1200

as limited field of view (FOV) and occlusion. 1201

Benchmark. Several benchmarks are par- 1202

ticularly well-suited for evaluating collaborative 1203

decision-making in autonomous driving. The IN- 1204

TERACTION dataset (Zhan et al., 2019) includes 1205

a variety of real-world interactive scenarios, such 1206

as roundabouts and lane merging. It provides ve- 1207

hicle trajectories that enable an assessment of co- 1208

operative maneuvering and negotiation behaviors. 1209

Another important benchmark is the Waymo Open 1210

Motion Dataset (Ettinger et al., 2021), which is ex- 1211

plicitly designed for interactive multi-agent motion 1212

prediction and planning. It features challenging 1213

scenarios, including merges and unprotected left 1214

turns, along with detailed annotations of interac- 1215

tive agents. In addition, the SMARTS benchmark 1216

(Zhou et al., 2021) offers standardized scenarios 1217

for multi-agent autonomous driving research, par- 1218

ticularly focusing on ramp merging and navigating 1219

unsignalized intersections. This work allows for 1220

direct comparisons of algorithms in cooperative 1221

traffic management tasks. These benchmarks pro- 1222

vide comprehensive test bases for evaluating the co- 1223

ordination, safety, and adaptability of LLM-based 1224

multi-agent decision-making systems. 1225

D LLM-enhanced Multi-Agent ADSs 1226

To highlight the application of LLMs and other 1227

NLP technologies in multi-agent ADSs, we have 1228

specially prepared Table 4. This table systemati- 1229

cally sorts out existing research from the two di- 1230

mensions of “environment & subject characteris- 1231

tics” and “interaction mode”, and marks the LLMs 1232

and key technologies used in each solution one 1233

by one. Our goal is to help readers quickly grasp 1234

the landscape of this cross-domain research and 1235

better understand how LLM capabilities are being 1236

adapted to complex ADS scenarios. 1237
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Reasoning OutputScenario Description
You are driving on a highway road 
with 8 lanes, and you are currently 
driving in the rightmost. 
Your current speed is 25.0 m/s,
acceleration is 0.0 m/s^2, and lane 
position is 360 m.

There are other vehicles around :
Veh1 is driving on the lane to your 
left and is ahead of you. The speed 
of it is 21.2 m/s, acceleration is 0.2 
m/s^2, and lane position is 372 m.

Veh2 is driving on the same lane as 
you and is ahead of you. The speed 
of it is 25.0 m/s, acceleration is -0.1 
m/s^2, and lane position is 400 m.

You are a driving agent with 
proficient driving skills. The 
autonomous vehicle you drive runs 
very smoothly without sudden 
braking or acceleration. Your task is 
to transport various passengers to 
the required location and provide as 
a safety comfortable riding 
experience as much as possible.

LLMs as the reason 
module of agents

Agent Profile

I should first check if I can accelerate, 
then maintain current speed, finally 
decelerate. I can also try to change 
lanes but with caution. 
At First, I need to observe the veh1. 
The distance between me and veh1 is 
400 - 360 = 40 m, and the difference in 
speed is 25.00 - 25.00 = 0.00 m/s. 
Veh1 is traveling 40 m ahead of me 
and the speed is same. This distance is 
safe but my speed is already at the 
desired level, so I should not 
accelerate. 
Since I cannot accelerate, I want to 
know if I can maintain my current 
speed. I should observe car veh1.

Final Answer: maintain current speed

Figure 6: An example of an LLM-based single-agent ADS (Wen et al., 2024).

Agent Profile & Scenario Description

Veh1’s message: Veh2, I am turning right, 
my speed is 2.03 m/s, and we should keep a 
safe distance to avoid collision.

Veh2’s reasoning process and decision:

Veh2’s message: Veh1, since you are turning 
right and in the intersection area, I will decelerate 
speed to keep a safe distance with you.

My position and speed: I am 30 m away from the center of 
the intersection and my current speed is 6.34 m/s.

Message from the other vehicle: Veh1 said that it is turning 
right, its speed is 3.06 m/s, and I should keep a safe distance.

Intersection condition: Veh1 is in the intersection area and 
the intersection area is not clear.

I am going to approach the intersection, Veh1 is in the 
interaction area and turning right, and I should decelerate to 
keep a safe distance with it.

Final Answer: Decelerate 

Veh1’s reason process and decision

communication

Agent Profile
You are an intelligent driving agent with 
skilled driving skills that can provide a 
safe and comfortable driving experience.

Scenario Description
You are driving through a congested 
intersection at a speed of 25m/s and an 
acceleration of 0.0 m/s^2. Veh2 is also 
driving through the intersection at a speed 
of 10m/s and an acceleration of 0.5 m/s^2.

Figure 7: The communication among multiple agents in an LLM-based multi-agent system (Hu et al., 2024a).
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Table 3: Comparison of Interaction Modes and System Structures in LLM-Based Multi-Agent ADSs.

Dimension Advantage Limitation

Mode

Co-operative Enhances traffic flow efficiency and reduces
collision risk by sharing agent intents and
aligning actions.

Unexpected selfish behavior from uncooperative
agents can propagate unsafe plans to the entire
fleet.

Competitive Can lead to more assertive and individually
optimized behaviors in contested scenarios,
such as securing a lane change in dense traffic.

Risks escalating conflicts and reducing overall
traffic system stability if not properly regulated,
potentially leading to gridlock or unsafe
maneuvers.

Debate LLM-based driving agents critique each
other’s plans, surfacing hazards and
converging on safer, more optimal strategies
before execution.

Can lead to significant communication overhead
and decision delay, which is a problem for
real-time driving decisions.

Structure

Centralised Enables strong global coordination and
optimized system-wide decisions for traffic
management due to a comprehensive
overview.

Single-point failure and uplink delays can
endanger all participating vehicles.

Decentralised Offers high robustness and scalability as
individual agent failures have limited systemic
impact, allowing for agile responses to local
traffic conditions.

Lacks a global picture; local optima (e.g., platoon
break-ups) can degrade overall traffic efficiency
and safety.

Hierarchical Layered clusters (vehicle → platoon → cloud)
scale to city-wide fleets while containing
message volume within each tier.

Can introduce communication delays between
layers and may suffer from inflexibility if the
hierarchy is too rigid to adapt to highly dynamic
situations.

Shared Message Pool Allows flexible, asynchronous information
sharing, reducing direct communication
burdens and enabling opportunistic
coordination.

Contention and information overload risk stale or
conflicting data, demanding strict access control.
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Table 4: Comparative Summary of LLM-Based Multi-Agent ADS Research.

Paper Date Environment Profile-Method Profile-Setting Structure Mode Human-Feedback Technology LLM Model

LanguageMPC
(Sha et al., 2023)

2023/10 Simulation Pre-defined Vehicle agents,
Human

Centralized Cooperative Instructor Paradigm COT, Commonsense Reasoning GPT-3.5

AgentsCoDriver
(Hu et al., 2024a)

2024/04 Simulation Pre-defined Vehicle agents Decentralized Cooperative - CoT, Text Embedding, ICL,
RAG

GPT-3.5-turbo

KoMA
(Jiang et al., 2024a)

2024/07 Simulation Pre-defined Vehicle agents Shared Message
pool

Cooperative Instructor Paradigm CoT GPT-4

AgentsCoMerge
(Hu et al., 2024b)

2024/08 Simulation Pre-defined Vehicle agents Decentralized,
Hierarchical

Cooperative Instructor Paradigm CoT, Dialog System GPT/Claude/Gemini
Series

CoDrivingLLM
(Fang et al., 2024)

2024/09 Simulation Pre-defined Vehicle agents Centralized Cooperative Instructor Paradigm CoT, RAG GPT-4o

CoMAL
(Yao et al., 2024)

2024/10 Simulation Pre-defined Vehicle agents,
Human

Shared Message
pool

Cooperative Instructor Paradigm Prompt Engineering, Text
Generation

GPT-4o-mini,
Qwen-72B,

Qwen-32B, Qwen-7B

Complement-
Vehicle’s-FOV
(Dona et al., 2024)

2024/08 Simulation Pre-defined Vehicle agents,
Infrastructure

agents, Human

Decentralized,
Hierarchical,
Centralized

Cooperative Instructor Paradigm,
Partnership Paradigm

Prompt Engineering, Zero-Shot
Learning, Dialogue System

GPT-4V, GPT-4o

CAV-LLM-Driving-
Assistant
(Tang et al., 2024)

2024/11 Simulation Pre-defined Vehicle
agents,Human

Decentralized Cooperative Instructor Paradigm Prompt Engineering,
Conversational AI

GPT-4V, GPT-4o

EC-Drive
(Chen et al., 2024a)

2024/08 Simulation Pre-defined Vehicle agents,
Infrastructure

agents

Hierarchical Cooperative Instructor Paradigm CoT, Scene-to-Text Generation LLaMA-Adapter
(7B), GPT-4

ChatSim
(Wei et al., 2024)

2024/02 Simulation Pre-defined,
Model-generated

Human,
Assistant agents

Hierarchical,
Centralized

Cooperative Instructor Paradigm CoT, Information Extraction,
Structured Data Generation

GPT-4

ALGPT
(Zhou et al., 2024c)

2024/01 Simulation Pre-defined,
Model-generated

Assistant agents Hierarchical Cooperative - CoT, ICL GPT series

AD-H
(Zhang et al., 2024c)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Hierarchical Cooperative Instructor Paradigm Natural Language
Understanding, Text Generation

LLaVA-7B-V1.5

SurrealDriver
(Jin et al., 2024)

2023/09 Simulation Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical Cooperative Instructor Paradigm CoT, GPT series, Llama,
PaLM

LDPD
(Liu et al., 2024a)

2024/10 Simulation Model-generated Vehicle agents Hierarchical,
Centralized

Cooperative - CoT GPT-4o

V-HOI MLCR
(Zhang et al., 2024a)

2024/03 Simulation Pre-defined Vehicle agents,
Human

Hierarchical Cooperative,
Debate

Instructor Paradigm CoT, RAG, Text Embedding GPT-4, GPT-3.5

Co-Pilot
(Wang et al., 2023)

2023 Physics Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm CoT, Natural Language
Understanding, RAG

GPT-3.5-turbo-0301

PPE
(Ma et al., 2024)

2024 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Partnership Paradigm CoT, RAG, Structure Data
Generation

GPT-4-turbo-preview
and GPT-3.5-turbo

Drive-as-You-Speak
(Cui et al., 2024a)

2023/09 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm,
Partnership Paradigm

CoT, Natural Language
Understanding, RAG

GPT-4

Reason-and-React
(Cui et al., 2024b)

2023/10 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm,
Partnership Paradigm

CoT, RAG, Nature Language
Understanding

GPT-4

DriVLMe
(Huang et al., 2024a)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm CoT Prompting Vicuna-7B + LoRA

AccidentGPT
(Wang et al., 2024b)

2024/06 Physics Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical,
Centralized,

Decentralized

Cooperative Instructor Paradigm CoT, Dialogue System, Text
Generation, HCI

GPT-4

ConnectGPT
(Tong and Solmaz,
2024)

2024/06 Physics Pre-defined Vehicle agents,
Infrastructure

agents, Human

Hierarchical,
Centralized,

Decentralized

Cooperative Instructor Paradigm CoT, Dialogue System, Text
Generation, HCI

GPT-4

DriveAgent
(Hou et al., 2025)

2025/05 Physics Pre-defined Assistant agents Decentralized Cooperative - CoT LLaMA-3.2-Vision

CCMA
(Zhang et al., 2025)

2025 Simulation Pre-defined Vehicle agents,
Assistant agents

Hierarchical,
Decentralized

Cooperative - CoT, RAG GLM-4v-9B

V2V-LLM
(Chiu et al., 2025)

2025/02 Simulation Pre-defined Vehicle agents Decentralized Cooperative - CoT LLaVA-v1.5-7b

IITI
(Fang et al., 2025)

2025/03 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm CoT, HCI, RAG Llama3

Tell-drive
(Xu et al., 2025)

2025/02 Simulation Pre-defined Vehicle agents Hierarchical,
Decentralized

Cooperative - CoT, RAG GPT-4o-min

Human-RLHF
(Sun et al., 2024b)

2024/06 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm CoT, HCI GPT-4o

GameChat
(Mahadevan et al.,
2025)

2025/03 Simulation Pre-defined Vehicle agents,
Human

Decentralized Cooperative Instructor Paradigm CoT, Dialogue System GPT-4o-mini

hybrid LLM-DDQN
(Yan et al., 2025)

2024/10 Simulation Pre-defined Vehicle agents,
Infrastructure

agents

Decentralized,
Hierarchical

Cooperative - CoT, ICL GPT-3.5,
Llama3.1-8B,
Llama3.1-70B
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