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ABSTRACT

Modern CAPTCHAs often rely on vision tasks that are supposedly hard for com-
puters but easy for humans. Although image recognition models pose a signif-
icant threat to such CAPTCHAs, they can be fooled by hiding “random” noise
in images. However, these methods are model-specific and thus can not aid
CAPTCHAs in fooling all models. We show in this work that by allowing for
more significant changes to the images while preserving the semantic informa-
tion and keeping it solvable by humans, we can fool many state-of-the-art models.
Specifically, we demonstrate that by adding masks of various intensities the Top
1 Accuracy (Acc@1) drops by more than 50%-points for all models, and suppos-
edly robust models such as vision transformers see an Acc@1 drop of 80%-points.
These masks can therefore effectively fool modern image classifiers, thus showing
that machines have not caught up with humans – yet.

1 INTRODUCTION

Not surprisingly, CAPTCHAs are threatened by advanced image recognition models. Plesner
et al. (2024) has recently shown that the most popular CAPTCHA environment (reCAPTCHA by
Google (6sense, 2023)) can be solved equally well by machines and humans.1 If CAPTCHAs are to
have a future, a new approach is needed.

Adversarial machine learning is related to CAPTCHAs, as researchers try to build samples where the
machine fails to recognize the image while the human does not register any manipulation happening.
On the one hand, these imperceptible manipulations are more ambitious than CAPTCHAs since even
the earliest CAPTCHAs did not bother to hide the manipulation of the input. On the other hand,
adversarial image generation is not robust enough for automatic bot detection, as it often tailors the
attack to a specific model.

We want images that can effectively fool every machine learning model, but we do not mind having
a visible manipulation. However, the manipulation should be easy for humans to filter out. In
other words, we do not mind if many pixels are changed a lot, as long as the image is still easily
recognizable to humans. This can be achieved if the image manipulation is somehow predictable,
for instance by overlaying the original image with a periodic signal like a grid. A promising new
form of CAPTCHAs, known as hCaptcha, is doing exactly that, and in this work, we want to get a
clearer understanding of what this approach can and cannot do.

The signals, or masks, inspired by hCaptcha can be surprisingly simple. In addition, to fully assess
their capabilities and potential impact on vision models, we have established the following key
motivations for this study.

1. Exploration of significant adversarial perturbations: In contrast to traditional adversar-
ial attacks that aim for imperceptibility, our study focuses on the domain of CAPTCHAs
where visible perturbations are acceptable. In this context, we can allow aggressive pertur-
bations, as the limit is not imperceptibility but rather semantic preservation for humans.

1This result has been covered widely in popular media like Ars Technica (https://arstechnica.co
m/ai/2024/09/ai-defeats-traffic-image-captcha-in-another-triumph-of-mac
hine-over-man/) and New Scientist (https://www.newscientist.com/article/2448687
-an-ai-can-beat-captcha-tests-100-per-cent-of-the-time/).
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2. Exploiting the human-machine vision gap: Our research aims to understand and leverage
the difference in human and machine perception to construct images that can be used for
CAPTCHAs.

3. Accessibility of attacks: The simplicity and ease of execution of the proposed attacks
make them readily available to large-scale CAPTCHA systems.

4. Evaluating robustified models: We aim to benchmark models that have been specifically
fine-tuned for robustness in our use case. This evaluation will provide valuable insights
into the effectiveness of current robustification techniques against our proposed class of
adversarial examples.

In summary, our work examines adversarial examples through the lens of CAPTCHA services. We
challenge the constraints of imperceptibility in adversarial attacks, proposing that any semantics-
preserving distortion that effectively differentiates human users from automated solvers is acceptable
within this domain. This approach allows for large perturbations, shifting our focus to metrics that
quantify semantic change rather than visual imperceptibility.

Although reCAPTCHA has been broken, hCaptcha remains undefeated in the ongoing attack-
defense arms race and has recently added multiple new challenges and layers of security mea-
sures (QIN2DIM, 2022; allerallegro, 2022).

Approach To investigate these issues, we focus on evaluating the performance of state-of-the-art
vision models against a range of image filters inspired by hCaptcha techniques. Our study aims to:

1. Quantify the drop in Acc@1 and Acc@5 accuracy when various filters are applied to input
images.

2. Compare the resilience of different model architectures to these adversarial examples.
3. Assess whether models specifically designed for robustness offer significant advantages in

this context.

Our preliminary findings underscore the effectiveness of masks in challenging even the most ad-
vanced vision models, motivating our deeper investigation of these adversarial techniques.

Through this research, we hope to contribute to the ongoing discussion on AI safety and reliability,
emphasizing the need for vision models that can maintain high performance in the face of real-
world image manipulations. Our findings have implications not only for the development of more
robust models but also for the broader challenge of creating computer vision systems that can match
human-level adaptability in visual perception tasks.

2 RELATED WORK

Deep learning models have achieved unprecedented performance in computer vision tasks, fre-
quently exceeding human-level accuracy on image classification benchmarks (He et al., 2015; 2016;
Russakovsky et al., 2015; Dosovitskiy et al., 2021). State-of-the-art architectures such as Vision
Transformers (ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022), and EVA-02 (Fang
et al., 2024) now form the foundation of numerous critical applications, ranging from autonomous
vehicles (Yurtsever et al., 2020) to medical imaging (Chen et al., 2022; Shamshad et al., 2023). How-
ever, the robustness of these models against adversarial attacks remains a pressing concern for their
deployment in real-world scenarios, which could compromise their reliability and security (Serban
et al., 2020).

The field of adversarial examples in machine learning has seen significant advances in recent
years (Hendrycks et al., 2021). Our work on geometric masks for CAPTCHAs builds on the foun-
dational concept of robust and non-robust features in machine learning models, as proposed by
(Ilyas et al., 2019). This perspective suggests that adversarial examples exploit non-robust features
susceptible to imperceptible perturbations while preserving robust features crucial for human inter-
pretation.

Expanding on this framework, recent studies have demonstrated the potential of geometric metrics to
detect adversarial samples. Venkatesh & Steinbach (2022) showed promising results using density
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and coverage metrics to identify adversarial examples in datasets such as MNIST and biomedical
imagery. This approach aligns with our focus on geometric perturbations that disrupt machine learn-
ing models’ reliance on non-robust features while maintaining image semantic integrity for human
solvers.

In the specific context of CAPTCHAs, researchers have explored various innovative approaches to
enhance security against automated solvers. Sheikh & Banday (2022) proposed a novel animated
CAPTCHA technique based on the persistence of vision, which displays text characters in multiple
layers within an animated image. This word-level adversarial attack demonstrates ongoing efforts
to develop more robust CAPTCHA systems that can effectively distinguish between human and ma-
chine solvers. Similarly, Hajjdiab (2017) introduced a random CAPTCHA system to match images
that eliminates the need for an image database while maintaining ease of use. Their approach gener-
ates random images and asks users to match feature points between two images, leveraging concepts
from computer vision research.

By synthesizing these diverse research directions, our work aims to contribute to the ongoing efforts
to enhance the robustness of machine learning models against adversarial attacks, particularly in
the context of CAPTCHA systems. We seek to leverage insights from geometric perturbations,
adversarial training, and innovative CAPTCHA designs to develop more effective and secure visual
challenges that maintain a clear distinction between human and machine solvers.

3 METHODOLOGY

In this section, we will go over the data that we used for the analysis along with the model choices.
We have selected multiple models, which we will evaluate on the datasets to demonstrate the effec-
tiveness of the masks we have constructed.

Models We selected several models to evaluate the performance of, namely: “Con-
vNeXt XXLarge” (Liu et al., 2022), Open CLIP’s “EVA01-g-14-plus” (Fang et al., 2023b) and
“EVA02-L-14” (Fang et al., 2024), “DFN5B-CLIP-ViT-H” by Apple (Fang et al., 2023a), the origi-
nal “ViT-L-14-378” and “ViT-H-14-378-quickgelu” (Dosovitskiy et al., 2021), “ResNet50x64” (He
et al., 2015), and RoBERTa-B and RoBERTa-L (Conneau et al., 2020); the RoBERTa models are
selected as they are supposed to be robust against adversarial attacks.2 Due to time constraints, we
were not able to test the method presented recently by Fort & Lakshminarayanan (2024); we leave
this for future work. The models were selected to represent landmark architectures in both convo-
lutional and transformer-based approaches. This selection allows us to evaluate the effectiveness of
our masks across different model paradigms.

Data We conducted our experiments using both the enriched ImageNet dataset with 1,000 entries
provided by “visual-layer” on HuggingFace and the reduced ImageNette dataset (Howard, 2019).
The ImageNette dataset, consisting of approximately 10,000 images evenly distributed across 10
categories, was chosen to make the computations more feasible. To accommodate the need for
multiple iterations on each image, we created three smaller datasets: SubSet200, SubSet500,
and ResizedAll. SubSet200 and SubSet500 contain 2,000 and 5,000 images, respectively,
maintaining the full resolution of ImageNette. ResizedAll includes all ImageNette images scaled
down to 128x128 pixels, a standard size for CAPTCHAs, to speed up image processing. Note that
this resizing may result in a slight performance drop compared to full-resolution images. Table 1
shows results for the clean images, and the models generally achieve Acc@1 accuracy in the high
80% to low 90% range, with Acc@5 accuracy in the high 90% range.

We defined four masks – “Circle”, “Diamond”, “Square” and “Knit” – which we apply to the images
at various intensities. These masks were selected based on an experiment involving 1,600 web-
scraped and hand-labeled images from hCaptcha. The number and intensity of mask elements are
determined by the density and opacity values, with the density fixed to a constant value in our
subsequent experiments focusing on the effects of varying opacity; for details, see Appendix A.1.

2We highlight results for a subset of these, namely ConvNeXt, EVA02, ViT-H-14, ResNet50, and RoBERTa-
L, and leave the rest for the appendix.
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(a) “Circle” mask (b) “Diamond” mask (c) “Square” mask (d) “Word” mask

(e) “Circle” mask
(reconstructed)

(f) “Diamond” mask
(reconstructed)

(g) “Square” mask
(reconstructed)

(h) “Knit” mask
(custom)

(i) Original image
(for reconstructions)

Figure 1: Selected examples by hCaptcha and their optimized reconstructions. The “Word” overlay
was omitted and replaced with a custom “Knit” mask.

Table 1: Acc@1 and Acc@5 (in %) for Different Models on the ResizedAll dataset. All models
are accurate on the unmodified images with accuracies in the mid to high 80s or above.

Model Acc@1 (%) Acc@5 (%)

ConvNeXt 84.75 95.82
EVA02 92.67 97.97
Apple: ViT-H 93.10 99.29
ResNet 89.54 98.26
ViT-H-14 93.10 99.29
ViT-L-14 91.47 98.77
RoBERTa-B 84.61 97.18
RoBERTa-L 93.61 98.45

Perceptual Quality and the Accuracy Metric Perceptual quality is a crucial aspect of our evalua-
tion, assessing the visual fidelity of adversarial examples. We used a weighted average metric to cap-
ture various aspects of image quality. This metric combines cosine similarity (15% weight) (Singhal
et al., 2001), Peak Signal-to-Noise Ratio (PSNR, 25% weight) (Faragallah et al., 2021), Structural
Similarity Index (SSIM, 35% weight) (Wang et al., 2004), and Learned Perceptual Image Patch
Similarity (LPIPS, 25% weight) (Zhang et al., 2018). The weights were chosen to balance the im-
portance of each component in the overall quality assessment.

Moreover, we evaluate the models based on their accuracy. The models predict a likelihood for each
of their pre-trained classes so the classes can be sorted by likelihood in descending order from top
to bottom. We focus on the accuracy@k (with k = 1 and k = 5), denoted Acc@k, which measures
how often the ground truth label is in the top k classes.

4 RESULTS

We perform three experiments, one per dataset, with the range of models mentioned earlier. We only
show the key partial results here with full tables in the Appendix.

4.1 EXPERIMENT 1 – SUBSET500

We evaluate how the rank of the correct class changes when applying the masks by measuring the
rank (the position after sorting) of the ground-truth class before and after applying a mask to an
image. In addition, we measure the perceptual quality of the images. We then look at the mean

4
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Figure 2: Accuracy vs. Perceptual Quality Trade-off. As expected, we see a drop in the perceptual
quality of images with the more aggressive attacks that drops the accuracy rank more.

change in rank across models and images, and report the results for each combination of mask and
opacity.

The results of our experiment are visualized in Figure 2 (the specific values can be found in Table 4
in the Appendix). The figure reveals a clear trend in the trade-off between adversarial effectiveness
and perceptual quality. The plot shows a clear inverse relationship between these two factors, as
indicated by the polynomial regression curve of degree 2. This relationship suggests that as the
effectiveness of the adversarial attack increases (lower ∆ Accuracy Rank), the perceptual quality
of adversarial examples tends to decrease. This could be expected, but we noticeably see instances
with significant drops in rank (> 10) while having a relatively high perceptual quality (> 0.4).

The different mask types (circle, square, diamond, and knit) and opacity levels demonstrate varying
performance across this trade-off spectrum. The scatter plot reveals clusters of points corresponding
to different mask types, with some masks consistently outperforming others in terms of balancing
attack effectiveness and perceptual quality. Most importantly, it shows that these geometric pattern
masks generalize across SOTA models.

4.2 EXPERIMENT 2 – SUBSET200

This experiment measures the drop in Acc@1 and Acc@5 for the subset of images in SubSet200
that all models correctly classify. Thus, for the images used in this experiment, Acc@1 (and Acc@5)
is 100% before applying the masks.

We show in Table 2 the change in accuracy observed in the experiment. The table shows that the
circle mask is very effective in confusing models, and even with a relatively low opacity the Acc@1
drops by almost 20%-points for ResNet. We also see that RoBERTa, as a supposedly robust model,
is worse than ViT for masks and opacity levels. Based on the results, we see that diamond-shaped
masks pose the least threat to the models at any opacity, but the square masks are almost as effective
as the circle masks. In an extension of this, we also looked at the confidence scores, the results of
which are in Appendix A.7.

4.3 EXPERIMENT 3 – RESIZEDALL

In this experiment, we used the ResizedAll dataset to measure the drop in Acc@1 and Acc@5
of the models for CAPTCHA-sized images. We see the result of this in Table 3, and an important

5
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Table 2: Drop [%-points] in Acc@1 (and Acc@5) for SubSet200 for various opacity values of the
masks. We see that a robust model like RoBERTa drops in accuracy to the circle mask. However,
RoBERTa and ViT are both more robust against diamond and square masks than the CNN models.

Opacity
Model Mask 20% 30% 40% 50%

ConvNeXt
Circle 15.36 (4.40) 28.49 (12.47) 43.73 (24.76) 62.11 (40.72)
Diamond 3.86 (0.36) 9.22 (2.11) 18.55 (6.20) 34.40 (16.14)
Square 6.51 (0.90) 18.73 (5.30) 35.54 (15.00) 55.90 (32.53)

EVA02
Circle 10.78 (1.33) 21.63 (5.60) 34.22 (14.58) 43.55 (27.17)
Diamond 1.87 (0.00) 6.63 (0.30) 15.12 (1.81) 26.33 (5.78)
Square 6.93 (0.30) 16.02 (2.23) 28.73 (8.43) 41.69 (19.64)

ResNet
Circle 19.70 (5.66) 32.35 (12.35) 45.36 (22.47) 59.94 (33.31)
Diamond 10.12 (2.23) 25.30 (10.12) 47.83 (24.94) 68.73 (45.72)
Square 12.65 (3.19) 27.23 (10.96) 47.11 (24.76) 67.65 (41.87)

ViT-H-14
Circle 4.22 (0.78) 11.75 (3.31) 27.59 (12.17) 49.40 (28.25)
Diamond 0.72 (0.00) 1.39 (0.24) 3.07 (0.42) 7.41 (2.05)
Square 1.81 (0.06) 3.25 (0.66) 12.59 (3.80) 31.45 (17.17)

RoBERTa-L
Circle 7.29 (1.93) 21.51 (8.31) 42.77 (21.75) 62.89 (39.70)
Diamond 1.51 (0.06) 4.82 (0.96) 12.41 (3.25) 25.12 (9.82)
Square 4.76 (0.84) 12.83 (3.07) 28.73 (11.20) 52.83 (30.00)

Table 3: Drop [%-points] in Acc@1 (and Acc@5) for resized ImageNette (ResizedAll) for
various opacity values of the masks. First and foremost, we notice a large drop in accuracy even
with low opacity values caused by the resizing of the images. With the resizing operation, all the
masks are now effective, and RoBERTa and ViT are no longer more robust than the CNN models.

Opacity
Model Mask 20% 30% 40% 50%

ConvNeXt
Circle 29.19 (22.42) 60.03 (54.46) 77.90 (81.72) 83.17 (92.15)
Diamond 14.13 (7.85) 27.61 (17.67) 44.90 (34.26) 60.64 (55.38)
Square 19.20 (9.64) 34.41 (22.54) 56.46 (46.97) 73.45 (73.76)

EVA02
Circle 31.79 (18.02) 49.85 (35.62) 60.88 (51.76) 70.18 (64.66)
Diamond 18.53 (5.83) 30.72 (12.45) 44.20 (23.03) 55.31 (36.42)
Square 23.75 (8.20) 39.69 (19.66) 57.61 (40.56) 69.98 (61.78)

ResNet
Circle 63.53 (48.57) 76.44 (69.36) 79.43 (73.21) 80.14 (74.74)
Diamond 42.94 (23.41) 69.33 (50.58) 82.46 (73.29) 86.93 (87.20)
Square 36.27 (19.40) 66.85 (51.60) 83.77 (81.84) 88.41 (94.35)

ViT-H-14
Circle 21.15 (8.89) 47.78 (26.80) 71.36 (51.07) 85.55 (71.71)
Diamond 5.26 (1.25) 10.55 (3.33) 18.80 (8.50) 32.89 (20.92)
Square 10.78 (4.17) 26.94 (15.49) 55.77 (43.32) 78.86 (71.37)

RoBERTa-L
Circle 37.21 (17.90) 66.50 (47.53) 83.84 (73.32) 91.09 (85.24)
Diamond 12.64 (3.84) 24.93 (10.62) 43.00 (22.82) 59.68 (40.75)
Square 19.83 (6.32) 40.93 (20.68) 68.47 (52.44) 86.17 (80.77)

conclusion regarding the combination of masks and resolution changes is that while the drops in
Acc@1 are similar to earlier, the drops in Acc@5 are larger. Compared to the results from the
previous experiment, it is evident that in this setting, masks at much lower opacity ratios are more
successful in distorting models’ performance. Based on these results, the scaling of images combines
very well with masks. In closer analysis, it is also evident that EVA02 is the one that suffers the least
from circular masks at opacity values > 30% in both datasets, but it comes at a trade-off of being
more sensitive to diamond-shaped masks.
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5 CONCLUSION

In this study, we have demonstrated the high effectiveness of geometric masks in fooling state-of-
the-art vision models, and the experiments leverage the gaps between human and machine abilities.
This suggests potential new directions for developing more robust vision models over the long term
while creating secure visual challenges in the short term. We show that there is a clear trade-off
in the perceptual quality of images for them to be effective against vision models. However, while
the perceptual quality decreases, the accuracy of the models also drops, often with more than 50%-
points. This highlights vulnerabilities in advanced vision systems and underscores the continued
capability of CAPTCHA-style challenges in differentiating humans from machines.

Although our study focused on specific mask types and datasets, one could easily expand into other
masks or determine how effectively models can be fine-tuned on images with masks applied. Fur-
thermore, one could try the methods on the recently published DeepMind model which is supposed
to be very robust against adversarial examples (Fort & Lakshminarayanan, 2024). In addition, a
detailed human evaluation of the masks should be performed.

Overall, this study contributes to the ongoing discussion on AI safety and reliability, highlighting the
persistent challenge of creating truly robust vision systems that can match human-level adaptability
in visual perception tasks.

Finally, for thousands of years, humans have pondered what makes humans different from animals.
A popular story from ancient Greece goes that after Plato gave the tongue-in-cheek definition of man
as ”featherless bipeds”, Diogenes the Cynic plucked a chicken and brought it into Plato’s Academy,
saying, ”Here is Plato’s man.”3

More recently, the question has been what makes humans different from machines – with the Turing
test being a famous example. Given recent advances in computer science and neuroscience, it can
be argued that machines will eventually surpass humans at every task – the so-called Technological
Singularity event. But until that happens, there exist AI-hard tasks where humans surpass machines.
And if the least intelligent human can surpass the most intelligent machine on a task, then the task
could be a good CAPTCHA. The computer vision domain may be an area where AI-hard tasks can
be found, but it needs to move beyond simple image classification. Even smart humans can struggle
to recognize different breeds of dogs or tell very similar colors apart. However, machines are very
good at this, as they can easily memorize all possibilities. Meanwhile, the machines struggle to
classify images with noise or other artifacts not seen during training, while humans excel at this.

CAPTCHA generation might sound like a mundane and boring topic, but it is rooted in a question
as old as philosophy: What makes a human “human”?
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 HYPERPARAMETER OPTIMIZATION

In our hyperparameter optimization phase, we focused on classification models because of their in-
terpretability advantages over segmentation models. Our initial dataset comprised 1600 scraped and
annotated hCaptcha samples, which we used to benchmark several state-of-the-art closed-vocabulary
classification models. The “EVA01-g-14 model”, trained on “LAION-400M”, emerged as the top
performer with Acc@1 of 94.39% and Acc@5 of 98.93%. Other models like “ConvNeXt-XXLarge”
and “ViT-H-14” also showed strong performance, although none achieved 100% accuracy, a notable
departure from the results typically seen with reCAPTCHAv2 (Plesner et al., 2024).

Upon analysis of the misclassified images, we observed a combination of imperceptible perturba-
tions and perceptible geometric masks. We identified four distinct geometric mask types for re-
construction and added a novel “knit” mask, essentially a modified “diamond” mask allowing for
overlapping shapes. We intentionally left out word-level adversarial attack masks, as they have been
proven to be easy to mitigate (Zhang et al., 2023; Dong et al., 2023; Shayegani et al., 2023). For each
mask, we parameterized three variables: “opacity” (alpha value of the overlay), “density” (shapes
per row/column and nesting, ranging from 0-100), and “epsilon” (for white-box FGSM attacks with
CLIP-ViT on ImageNet).

We conducted a hyperparameter grid search using the visual-layer/imagenet-1k-vl-
enriched dataset on HuggingFace, testing 5-20 examples per combination on the validation set.
We chose the CLIP ViT model for this phase due to its superior adversarial robustness, as noted
by Wang et al. (2024). Our optimization metric combined the difference in model accuracy pre-
and post-mask application with an average of three perceptual quality metrics. To identify optimal
parameters, we selected examples with the highest perceptual quality for each level of accuracy
difference and performed a linear regression. We then focused on samples above the regression
line in multidimensional space. This approach proved to be more tractable than our attempts with
multi-objective optimization with multiple variables.

Our findings revealed that FGSM perturbations generally degraded the results when combined with
masks. We determined that the optimal density value was consistently 70, while the most effective
opacity range was 50-170 (equivalent to 19%-66% alpha). These insights allowed us to isolate the
best-performing masks for a comprehensive benchmark against the latest models.

This rigorous optimization process, grounded in semantic computer vision research, enabled us to
systematically explore the parameter space and identify the most effective adversarial techniques
inspired by hCaptcha challenges. The results, visualized in Figure 1, provide a quantitative basis for
comparing the masks.

A.2 GENERALIZABILITY OF MASKS – TABLE

The table with values plotted in Figure 2 can be found in Table 4.

A.3 ACC@1 AND ACC@5 ACCURACY FOR SUBSET500.

In Tables 5 and 6 we show the full tables with drops in accuracy for all the tested models. We see
that the circle mask is very aggressive against all models.

A.4 ACC@1 AND ACC@5 ACCURACY FOR SUBSET200.

In the following we show the full tables with Acc@1 and Acc@5 in Tables 7 and 8 when evaluating
on SubSet200 as done in Experiment 2. Noticeably, RoBERTa-B performs much worse than
RoBERTa-L as its accuracy drops much more. As mentioned in the main results, we see in general
that the models have a harder time dealing with the “circles” mask.
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Table 4: Generalizability of Masks

Opacity Mask ∆ Acc Rank Quality Score

50

Circle -14.57 0.45 15.02
Diamond -3.27 0.50 3.76
Knit -0.66 0.54 1.19
Square -5.04 0.49 5.54

80

Circle -52.72 0.31 53.03
Diamond -13.72 0.36 14.08
Knit -2.03 0.41 2.44
Square -22.01 0.37 22.37

110

Circle -113.07 0.21 113.27
Diamond -39.55 0.26 39.81
Knit -3.62 0.32 3.93
Square -60.57 0.27 60.84

140

Circle -203.89 0.12 204.01
Diamond -90.79 0.18 90.97
Knit -5.47 0.24 5.71
Square -134.75 0.18 134.94

170

Circle -310.80 0.07 310.88
Diamond -188.92 0.12 189.04
Knit -9.21 0.18 9.39
Square -264.90 0.12 265.02

Table 5: Drop [%-points] in Acc@1 for
SubSet500 for a range of opacity values.

Opacity
Model Mask 19% 31% 43% 54% 66%

ConvNeXt

Circle 13.0 33.6 51.2 64.6 69.2
Diamond 4.8 13.6 31.8 49.6 64.6
Knit 2.2 3.2 8.0 11.4 18.0
Square 6.8 18.4 36.4 52.0 65.6

EVA01

Circle 7.2 15.4 33.0 49.2 65.0
Diamond 2.6 8.6 19.6 33.0 54.8
Knit 1.2 1.2 4.4 6.6 10.6
Square 4.2 9.0 17.4 31.4 55.8

EVA02

Circle 9.4 19.0 31.4 50.4 63.8
Diamond 2.4 5.6 10.6 19.0 38.0
Knit 2.8 4.8 5.2 6.8 8.8
Square 6.8 12.4 20.8 37.4 61.8

ResNet

Circle 31.0 54.6 60.0 62.4 63.4
Diamond 13.2 31.6 50.4 59.4 62.2
Knit 5.0 11.2 14.4 19.4 27.6
Square 15.2 38.8 56.0 62.2 63.4

ViT-H-14

Circle 5.8 20.6 48.2 70.8 80.2
Diamond 2.0 5.4 15.2 34.4 61.8
Knit 1.6 2.4 2.8 6.2 8.0
Square 3.2 9.6 25.0 54.2 77.2

Table 6: Drop [%-points] in Acc@5 for
SubSet500 for a range of opacity values.

Opacity
Model Mask 19% 31% 43% 54% 66%

ConvNeXt

Circle 7.60 29.60 54.80 73.40 85.00
Diamond 2.60 8.80 24.20 51.40 71.60
Knit 1.80 2.20 4.60 7.80 13.20
Square 4.80 13.20 28.80 54.80 76.80

EVA01

Circle 4.80 14.00 27.80 50.60 75.40
Diamond 2.40 6.60 14.80 31.00 57.60
Knit 1.40 2.80 4.60 6.20 8.00
Square 3.40 7.00 12.60 28.20 61.00

EVA02

Circle 4.60 12.20 24.40 44.60 65.00
Diamond 1.40 3.60 6.60 14.80 34.80
Knit 0.40 0.40 1.80 3.20 4.80
Square 2.20 6.60 15.00 31.40 63.60

ResNet

Circle 34.20 67.40 80.40 85.40 86.20
Diamond 12.20 28.80 56.00 75.60 85.00
Knit 4.40 8.00 10.20 15.00 20.80
Square 15.20 40.20 66.40 82.20 86.60

ViT-H-14

Circle 2.60 16.20 46.00 77.60 90.80
Diamond 0.20 2.20 10.60 28.60 61.20
Knit -0.60 0.60 1.00 2.00 3.20
Square 1.40 6.40 18.60 50.20 82.80

A.5 ACC@1 AND ACC@5 ACCURACY FOR RESIZEDALL .

Table 9 and Table 10 show the full tables with the drops in Acc@1 and Acc@5, respectively when
applying the masks to the resized images in ImageNette (ResizedAll).

A.6 GROUND TRUTH CONFIDENCE FOR SUBSET200

In extension to Acc@1 and Acc@5 results, then it is useful to compare the results on the confidence
of the ground truth for all the same masks, cf. Table 11, as it provides a better idea of how stable
the Acc@5 scores are. Initially, the confidence in ground truth is very high and stands far from the
next prediction for most of the cases shift of up 67% in confidence for an opacity level in the range
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Table 7: Drop [%-points] in Acc@1 for
SubSet200 for a range of opacity values.

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circle 4.46 15.36 28.49 43.73 62.11
Diamond 0.78 3.86 9.22 18.55 34.40
Square 1.39 6.51 18.73 35.54 55.90

EVA02
Circle 1.27 10.78 21.63 34.22 43.55
Diamond 0.54 1.87 6.63 15.12 26.33
Square 1.20 6.93 16.02 28.73 41.69

Apple: ViT-H
Circle 1.02 4.22 11.75 27.59 49.40
Diamond 0.36 0.72 1.39 3.07 7.41
Square 0.78 1.81 3.25 12.59 31.45

ResNet
Circle 5.24 19.70 32.35 45.36 59.94
Diamond 2.05 10.12 25.30 47.83 68.73
Square 2.89 12.65 27.23 47.11 67.65

ViT-H-14
Circle 1.02 4.22 11.75 27.59 49.40
Diamond 0.36 0.72 1.39 3.07 7.41
Square 0.78 1.81 3.25 12.59 31.45

ViT-L-14
Circle 1.93 6.93 13.67 20.42 29.88
Diamond 0.30 1.33 2.59 5.84 11.69
Square 1.69 6.08 10.42 16.02 26.57

RoBERTa-B
Circle 10.84 36.81 61.51 78.31 90.12
Diamond 3.13 10.06 23.67 42.23 61.14
Square 7.35 22.29 39.40 64.70 83.92

RoBERTa-L
Circle 1.02 7.29 21.51 42.77 62.89
Diamond 0.42 1.51 4.82 12.41 25.12
Square 0.78 4.76 12.83 28.73 52.83

Table 8: Drop [%-points] in Acc@5 for
SubSet200 for a range of opacity values.

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circle 0.48) 4.40) 12.47) 24.76) 40.72)
Diamond 0.00) 0.36) 2.11) 6.20) 16.14)
Square 0.06 0.90 5.30 15.00 32.53

EVA02
Circle 0.06 1.33 5.60 14.58 27.17
Diamond 0.00 0.00 0.30 1.81 5.78
Square 0.00 0.30 2.23 8.43 19.64

Apple: ViT-H
Circle 0.06 0.78 3.31 12.17 28.25
Diamond 0.00 0.00 0.24 0.42 2.05
Square 0.00 0.06 0.66 3.80 17.17

ResNet
Circle 0.84 5.66 12.35 22.47 33.31
Diamond 0.18 2.23 10.12 24.94 45.72
Square 0.42 3.19 10.96 24.76 41.87

ViT-H-14
Circle 0.06 0.78 3.31 12.17 28.25
Diamond 0.00 0.00 0.24 0.42 2.05
Square 0.00 0.06 0.66 3.80 17.17

ViT-L-14
Circle 0.12 1.45 3.98 7.89 13.43
Diamond 0.00 0.12 0.42 0.96 2.65
Square 0.00 0.60 2.47 5.24 10.06

RoBERTa-B
Circle 1.57 13.19 35.72 57.29 74.46
Diamond 0.00 1.39 5.96 16.45 34.64
Square 0.36 4.82 13.73 37.11 65.54

RoBERTa-L
Circle 0.06 1.93 8.31 21.75 39.70
Diamond 0.00 0.06 0.96 3.25 9.82
Square 0.00 0.84 3.07 11.20 30.00

Table 9: Drop [%-points] in Acc@1 for resized
ImageNette (ResizedAll).

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circle 5.59 29.19 60.03 77.90 83.17
Diamond 2.14 14.13 27.61 44.90 60.64
Square 5.95 19.20 34.41 56.46 73.45

EVA02
Circle 5.52 31.79 49.85 60.88 70.18
Diamond 6.32 18.53 30.72 44.20 55.31
Square 13.79 23.75 39.69 57.61 69.98

Apple: ViT-H
Circle 2.80 21.15 47.78 71.36 85.55
Diamond -0.14 5.26 10.55 18.80 32.89
Square 2.34 10.78 26.94 55.77 78.86

ResNet
Circle 17.02 63.53 76.44 79.43 80.14
Diamond 10.86 42.94 69.33 82.46 86.93
Square 10.28 36.27 66.85 83.77 88.41

ViT-H-14
Circle 2.80 21.15 47.78 71.36 85.55
Diamond -0.14 5.26 10.55 18.80 32.89
Square 2.34 10.78 26.94 55.77 78.86

ViT-L-14
Circle 9.17 28.73 44.13 57.61 67.10
Diamond 3.20 9.58 17.10 28.60 42.83
Square 6.22 15.86 27.39 43.12 60.12

RoBERTa-B
Circle 12.68 43.45 65.91 80.44 84.31
Diamond 5.55 22.64 39.30 56.07 70.51
Square 10.11 29.60 52.57 73.37 82.81

RoBERTa-L
Circle 7.69 37.21 66.50 83.84 91.09
Diamond 4.30 12.64 24.93 43.00 59.68
Square 7.03 19.83 40.93 68.47 86.17

Table 10: Drop [%-points] in Acc@5 for resized
ImageNette (ResizedAll).

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circle 3.91 22.42 54.46 81.72 92.15
Diamond 1.36 7.85 17.67 34.26 55.38
Square 2.93 9.64 22.54 46.97 73.76

EVA02
Circle 2.53 18.02 35.62 51.76 64.66
Diamond 1.85 5.83 12.45 23.03 36.42
Square 3.46 8.20 19.66 40.56 61.78

Apple: ViT-H
Circle 1.16 8.89 26.80 51.07 71.71
Diamond -0.12 1.25 3.33 8.50 20.92
Square 0.65 4.17 15.49 43.32 71.37

ResNet
Circle 6.64 48.57 69.36 73.21 74.74
Diamond 3.54 23.41 50.58 73.29 87.20
Square 3.54 19.40 51.60 81.84 94.35

ViT-H-14
Circle 1.16 8.89 26.80 51.07 71.71
Diamond -0.12 1.25 3.33 8.50 20.92
Square 0.65 4.17 15.49 43.32 71.37

ViT-L-14
Circle 3.37 15.84 27.93 41.92 53.82
Diamond 0.94 2.96 6.27 12.43 24.19
Square 2.64 6.73 12.49 24.04 42.20

RoBERTa-B
Circle 5.85 28.52 53.14 76.14 84.35
Diamond 2.03 10.01 22.89 40.94 62.95
Square 3.42 15.13 36.91 67.46 87.65

RoBERTa-L
Circle 2.06 17.90 47.53 73.32 85.24
Diamond 0.75 3.84 10.62 22.82 40.75
Square 1.29 6.32 20.68 52.44 80.77

of 50% is not sufficient to drop the model’s Acc@5 below 50%, as it does for Acc@1 and becomes
harder for human perception. A drop of ground truth confidence also agrees with the fact that better
resistance against some shapes comes at the cost of being more sensitive to the other ones, as it
happens based on examples of EVA02 and ViT-H-14.

A.7 GROUND TRUTH CONFIDENCE FOR RESIZEDALL

We see that the confidence of the ground truth drops further for many instances Table 12 which indi-
cates that it can be easier to be combined with an FGSM-like attack and target Acc@5 specifically.
The table also demonstrates that VIT-L-14 (not presented in the main sections of the paper) is more

12
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resistant to masks of circular shape than ViT-H-14 at opacity levels ¿40%, but more sensitive to the
other shapes in both datasets.

Table 11: Ground truth conf drop for
SubSet200 [%].

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circles 5.645 18.905 33.361 49.333 66.130
Diamond 1.044 4.936 11.614 22.641 38.619
Square 2.067 9.481 22.784 39.798 59.099

EVA02
Circles 1.589 12.123 24.320 36.740 47.974
Diamond -0.169 2.543 8.605 18.073 29.397
Square 1.688 9.081 19.313 31.203 44.633

Apple: ViT-H
Circles 0.041 3.274 11.708 28.551 50.050
Diamond -0.545 -0.587 0.059 2.073 6.705
Square -0.496 0.457 2.806 11.959 31.869

ResNet
Circles 8.323 26.143 41.388 56.402 69.312
Diamond 3.928 15.906 33.133 55.247 72.711
Square 4.559 17.200 33.441 53.504 71.878

ViT-H-14
Circles 0.041 3.274 11.708 28.551 50.050
Diamond -0.545 -0.587 0.059 2.073 6.705
Square -0.496 0.457 2.806 11.959 31.869

ViT-L-14
Circles 5.912 14.392 22.576 31.488 42.215
Diamond 1.229 4.030 7.882 13.611 21.541
Square 5.112 13.642 21.162 29.442 40.269

RoBERTa-B
Circles 10.594 37.631 60.838 75.623 85.685
Diamond 2.048 10.495 24.429 43.469 61.539
Square 6.831 22.112 41.473 63.348 80.237

RoBERTa-L
Circles 1.809 10.122 25.972 47.397 66.992
Diamond 0.731 2.408 6.760 15.256 29.578
Square 1.115 6.424 15.523 32.914 56.083

Table 12: Ground truth conf drop for
ResizedAll [%].

Opacity
Model Mask 10% 20% 30% 40% 50%

ConvNeXt
Circles 9.617 36.234 68.709 86.811 91.899
Diamond 6.480 18.077 33.547 53.098 70.053
Square 10.775 23.225 40.300 64.181 82.371

EVA02
Circles 6.761 33.178 53.924 67.718 78.523
Diamond 7.933 18.738 31.381 44.827 56.812
Square 15.902 27.058 42.733 61.524 75.634

Apple: ViT-H
Circles 3.520 21.009 48.194 73.760 88.807
Diamond 1.688 5.023 9.470 17.993 33.330
Square 2.825 9.920 26.234 56.025 80.729

ResNet
Circles 24.530 76.365 88.196 89.980 90.633
Diamond 15.953 52.373 76.141 86.627 90.562
Square 14.456 44.220 73.281 88.062 91.925

ViT-H-14
Circles 3.435 20.802 48.019 73.709 88.582
Diamond 1.829 5.373 9.629 17.986 34.228
Square 4.098 10.902 27.179 56.860 81.146

ViT-L-14
Circles 14.812 36.936 53.223 66.353 75.476
Diamond 9.480 16.366 24.668 36.806 50.707
Square 10.737 23.081 35.193 51.176 67.486

RoBERTa-B
Circles 19.521 53.359 75.171 89.228 92.515
Diamond 10.482 28.408 47.659 66.300 80.111
Square 16.796 38.781 63.461 82.539 91.357

RoBERTa-L
Circles 11.479 42.415 71.558 89.207 96.184
Diamond 7.859 15.928 29.738 48.025 65.297
Square 10.725 23.512 45.274 73.033 91.098
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