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Abstract
When an individual reports a negative interac-
tion with some system, how can their personal
experience be contextualized within broader pat-
terns of system behavior? We study the report-
ing database problem, where individual reports
of adverse events arrive sequentially, and are ag-
gregated over time. In this work, our goal is to
identify whether there are subgroups—defined by
any combination of relevant features—that are
disproportionately likely to experience harmful
interactions with the system. We formalize this
problem as a sequential hypothesis test, and iden-
tify conditions on reporting behavior that are suf-
ficient for making inferences about disparities in
true rates of harm across subgroups. We show
that algorithms for sequential hypothesis tests can
be applied to this problem with a standard multi-
ple testing correction. We then demonstrate our
method on real-world datasets, including mort-
gage decisions and vaccine side effects; on each,
our method (re-)identifies subgroups known to
experience disproportionate harm using only a
fraction of the data that was initially used to dis-
cover them.

1. Introduction
The impact of injustice is most acutely felt by the individual.
But if an individual experiences harm, how can they know
whether their experience is an isolated incident or part of a
larger pattern of discrimination?

Fairness work has historically focused on model develop-
ers and third-party auditors as the main actors involved in
creating fair mechanisms, motivating methods to construct
models that are fair with respect to pre-defined subgroups at
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development time (e.g., as surveyed in Pessach & Shmueli
(2022))—or in identifying unfair ones, motivating post-hoc
audits that occur after the entire decision-making process
has completed (e.g., Byun et al. (2024); Martinez & Kirch-
ner (2021)). However, in most applications where fairness
is a concern, problems with the system may only emerge
over time, and it is not necessarily obvious which subgroups
might be important. Moreover, such approaches to fairness
provide no mechanism for individuals to raise concerns.

It is exactly this question of individual agency that drives
our work. In addition to normative reasons, which suggest
that individuals ought to have a voice in expressing concerns
with their treatment (e.g., the literature on contestability of
algorithmic decisions (Vaccaro et al., 2019)), recent legis-
lation has also highlighted individual reporting as a policy
mandate for the governance of AI systems (e.g., the E.U.
AI act (European Parliament, 2023)). While such legisla-
tion has yet to see full implementation, mechanisms for
individual incident reporting already exist in a variety of
domains, including consumer finance, medical devices, and
vaccines and pharmaceuticals. A key component of report-
ing databases in the latter settings is that information from
individual reports are aggregated to build collective knowl-
edge about specific vaccines or pharmaceuticals—and, when
applicable, this aggregated information can drive down-
stream decisionmaking, such as updating vaccine guidelines
or drug treatment protocols (e.g., Oster et al. (2022)).

In this paper, we consider what a realistic approach to as-
sessing fairness claims from an incident reporting database
might look like in practice. We are primarily interested in
designing a framework for the general public to report and
contest large-scale harms by leveraging reports of individual
experience to inform collective evidence of discrimination.
To this end, we propose reporting databases, which allow
individuals to submit reports of negative interactions, as a
new mechanism for post-deployment fairness auditing. In
particular, we identify conditions on reporting behavior and
show how they can be used to to make inferences about rates
of true harm in Section 3. Our formalization of the problem
allows us to leverage known approaches to sequential hy-
pothesis testing. In Section 4 we show how to instantiate
two reasonable algorithms for our test and provide theoreti-
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cal guarantees for each. Finally, in Section 5, we illustrate
the usefulness of our approach using real-world datasets, for
applications with known disparity in per-subgroup rates of
harm. On both real vaccine incident reports and on mort-
gage allocation decisions, our algorithm correctly identifies
groups that disproportionately experience harm—and does
so using a comparatively small number of reports.

1.1. Related work & application context

The reporting database problem is at the intersection of
various challenges addressed in fairness and statistics. We
discuss additional work, including application and policy
context, in Appendix A.

Algorithmic accountability via (individual) reports.
Some recent work considers methods for learning about
fairness problems via individual reports from both theoreti-
cal (Globus-Harris et al., 2022) and practical (Agostini et al.,
2024) perspectives. However, most discussion of individual
experiences in machine learning fairness literature is limited
to contexts where the objective is to assess, appeal, contest
or seek recourse for that individual to change their individ-
ual outcomes, rather than forming a collective judgment
about the system as a whole (Sharifi-Malvajerdi et al., 2019;
Ustun et al., 2019; Karimi et al., 2022).

Work on identifying fairness-related issues via reporting
data has typically focused on learning in batch contexts,
e.g. via positive-unlabeled learning for handling disparate
reporting rates across subgroups (e.g., Shanmugam et al.
(2024); Wu & He (2022)). In other works, identifying dis-
parate reporting rates is itself is the central challenge (e.g.,
Liu & Garg (2022); Liu et al. (2024)). On the other hand,
an emerging body of literature from the human-computer
interaction community develops the concept of contestabil-
ity (e.g., Almada (2019); Vaccaro et al. (2019); Landau et al.
(2024)); though contestability is still typically understood
in terms of individual outcomes, we see our work as one
possible path to implementing this ideal.

Fairness auditing as hypothesis testing. Existing pro-
posals to formalize fairness auditing via hypothesis test-
ing mainly consider batch settings (i.e. post-hoc or pre-
deployment) (Cen & Alur, 2024; Cherian & Candès, 2023).
Two more closely related works are that of Chugg et al.
(2024) and Feng et al. (2024), who propose applying se-
quential hypothesis tests with the explicit goal of identifying
problems in deployed systems in real time. However, as
neither of these works study a reporting model, we propose
fundamentally different tests: they test equality of means
across different groups, while we compare within groups.

Key definitions & clarifications. Finally, we note that for
AI systems, the term “incident database” has been used to

describe systems for monitoring the adverse impact of algo-
rithmic deployments, which often take the form of accident
catalogs that focus on one-off, large-scale events (e.g., Feffer
et al. (2023); Raji et al. (2022); McGregor (2021); Ojew-
ale et al. (2024); Turri & Dzombak (2023)). However, in
the context of our work, we are actively excluding these
accident catalog databases. Instead, we focus on reporting
databases that provide records of individual experiences of
adverse events that are tied to specific systems.

2. Model, Notation, and Preliminaries
The goal of constructing a reporting database is to determine
whether some system that individuals interact with—for ex-
ample, an (algorithmic) loan decision system, or a medical
treatment—results in disproportionate harm to some mean-
ingful subgroups. For the reporting database associated with
a particular system, we will use Y ∈ {0, 1} as an indicator
variable that denotes the undesirable event corresponding
to that system. For example, in loan decisions, this could
correspond to the event that a highly-qualified individual
was denied a loan; in the medical setting, this may be an
adverse physical side effect due to the treatment.

Subgroup definitions. Individuals are characterized with
feature vectors X ∈ X , and we index individuals as Xi

(“features of individual i”) or Xt (“features of the individual
who reports at time t”). Every individual Xi “belongs to”
at least one group G, and we will denote the event that Xi

belongs to G as {Xi ∈ G}; we will use G to denote the set
of all possible groups. This set of possible groups G can be
defined arbitrarily as long as all groups can be determined
as a function of covariates X . We allow for groups to be
overlapping—that is, we allow each individual Xi to be in
multiple groups so that |{G′ ∈ G : Xi ∈ G′}| ≥ 1.

Reference population. The system for which the database
is constructed naturally has a corresponding reference pop-
ulation of eligible individuals. For example, this could be
everyone who has applied for a loan, or everyone who has
been prescribed a certain medication. Thus, given a set
of groups G, we assume that it is possible to compute the
composition of the reference population.

Assumption 2.1 (Reference population). For every G ∈ G,
the quantity µ0

G := Pr[X ∈ G] is known. Throughout this
work, we refer to the set {µ0

G}G∈G as base preponderances.

Probabilistic model of reporting. As the database admin-
istrator, the high-level goal is to determine whether there
exists some subgroup G ∈ G where Pr[Y | X ∈ G] is ab-
normally high. Crucially, the database does not have access
to information about every individual who interacts with the
system; instead, individuals may report to the database if
they believe that they experienced bad event Y . We thus let
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Ri be a random variable representing whether individual i
decides to report (with Ri = 0 indicating no report).

Each report Xt is received sequentially, and assumed to be
sampled i.i.d. from some underlying reporting distribution.
Given a group G, we denote its corresponding mean among
reports Pr[Xt ∈ G | Rt = 1] as µG. We will sometimes
refer to {µG}G∈G as (reporting) preponderances, as they
represent the proportion of reports that each G comprises. A
central claim of this paper is that comparing µG to µ0

G—i.e.,
the extent to which group G is (over)represented within the
reporting database—can be a useful signal for Pr[Y | G] in
a wide class of applications.1

3. Identifying Discrimination by Modeling
Preponderance

A major challenge of assessing potentially-differential rates
of harm across subgroups using only reporting data is to
relate the event that someone submits a report to the event
that they experienced harm. That is, if someone did ex-
perience a negative outcome, how likely is it for them to
have reported it, and conversely, if someone submitted a
report, how likely is it to reflect “true” harm? Moreover, as
is known from prior work, reporting rates themselves can
vary across subgroups.

Our central proposal is to conduct a hypothesis test for each
group to determine whether it is overrepresented by a factor
of β among reports. That is, for each G ∈ G, we test the
following hypotheses:

HG
0 : µG < βµ0

G HG
1 : µG > βµ0

G. (1)

In Section 4, we will discuss concrete algorithms for con-
ducting this test sequentially and their corresponding the-
oretical guarantees. Before doing so, we first argue that
testing for preponderance among reports, i.e., tracking µG

in this way, can be a meaningful way to identify discrimi-
nation, even when exact reporting behavior is unknown. In
Sections 3.1 and 3.2, we describe two distinct ways that this
particular test can be interpreted; in Appendix B, we discuss
some practical considerations for the modeling task.

3.1. Preponderance as relative risk

The first interpretation of our test allows us to make infer-
ences about relative risk, the ratio between the rate of harm
experienced by group G and on average over the popula-
tion. In this interpretation, the key quantity is the report-to-
incidence ratio.

Definition 3.1 (Report-to-incidence ratio). We define the
report-to-incidence-ratio (RIR) as ρ := Pr[R=1]

Pr[Y=1] , and the

1Because we allow groups to overlap, we cannot enforce∑
G µ0

G = 1 or
∑

G µG = 1.

group-conditional analogue as ρG := Pr[R=1|G]
Pr[Y=1|G] .

In Proposition 3.2, we show that if the group-conditional
RIR of some group G is at most some constant multiple
of the population-wide RIR, then we can convert a lower
bound on report preponderance into a lower bound on true
relative risk (see Appendix C for proof).

Proposition 3.2. Define the relative risk of group G to
be RRG := Pr[Y=1|G]

Pr[Y=1] . Suppose that for some group G we
have ρG ≤ b ·ρ. Suppose that we determine that µG ≥ βµ0

G

for some β > 1. Then, the true relative risk experienced by
G is at least RRG ≥ β/b.

Suppose we take maxG ρG/ρ ≤ b = 1.25, i.e., no group
over-reports 25% more often than the population average.
Then, if a test identifies a group G for which µG ≥ 1.75·µ0

G,
this implies that the true relative risk for group G is at
least RRG ≥ 1.4—that is, G experiences harm 40% more
frequently relative to the population average.

3.2. Preponderance as true incidence rate

We now discuss an alternate way to convert a lower bound
on preponderance into a guarantee on real-world harm. In
this case, we can infer the true incidence rate of harm (that is,
no longer relative to the average) if we are able to estimate—
or willing to make assumptions on—true and false reporting
behavior in groups. Moreover, assumptions (or estimations)
of these reporting rates need only be made in relation to the
population average reporting rate Pr[R].

Definition 3.3 (Reporting rates). Let r := Pr[R] be the
average reporting rate over the full population. Let γTR

G :=
1
r Pr[Ri = 1 | Yi = 1, Xi ∈ G], γFR

G := 1
r Pr[Ri = 1 |

Yi = 0, Xi ∈ G]. Finally, let IRG := Pr[Y | G] represent
the true incidence rate, i.e. the likelihood that an individual
in G experiences Y .

Note that r · γTR
G represents the (possibly group-conditional)

rate at which individuals Xi ∈ G who experience Y actually
report, while r · γFR

G represents the rate that individuals
Xi ∈ G who do not experience Y report. Thus, γTR

G and
γFR
G represent how much more (or less) a particular group G

makes true or false reports relative to how much the whole
population reports on average (which includes both true
and false reports). The following proposition makes the
relationships between γTR

G , γFR
G , and our quantity of interest

IRG, more precise.

Proposition 3.4. Suppose that, for some G, it is determined
that µG ≥ βµ0

G for some β > 1. As long as γTR
G > γFR

G for

every G ∈ G, IRG ≥ β−γFR
G

γTR
G−γFR

G
.

See Appendix C for the (short) proof. Proposition 3.4 shows
that the exact computation of IRG depends on reporting
rates γTR

G and γFR
G . While these quantities are not directly
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estimable from reporting data—in fact, estimating reporting
rates is itself a distinct research challenge (see, e.g., Liu et al.
(2024))—these results can nevertheless guide qualitative
interpretation of how severe IRG is.

For example, suppose a test is run for β = 1.5. Suppose G
overreports relative to the population average, with γFR

G = 1,
and γTR

G = 2. Under these (generous) assumptions, we will
have IRG = 0.5, an extremely high incidence rate for any
application—regardless of incidence rates for other groups.

Alternatively, suppose reporting rates did not vary by group
(i.e., γTR

G = γTR and γFR
G = γFR for all G). Then, we can

lower bound the disparities between true incidence rates
across groups: if G is flagged at β > 1, there must be some
other group G′ with IRG − IRG′ ≥ β−1

γTR−γFR . If it is further
assumed that γFR = 0, then IRG − IRG′ ≥ β − 1.

4. Identifying Subgroups with High Reporting
Overrepresentation

How might the test proposed in Equation (1) be carried out
in practice, with reports arriving over time, and what prop-
erties might we want for such a test? In this section, we
provide two ways to instantiate this sequential hypothesis
test. For each, we provide two types of guarantees. The first
is (sequential) α-validity, which, roughly speaking, guaran-
tees correctness of groups identified in GFlag. More formally,
we say that a sequential test is valid for a single group G at
level α if Pr[∃t : HG

0 rejected] ≤ α when HG
0 is true. Be-

cause we are testing for all groups in G simultaneously, we
say that a sequential test is valid with respect to all groups
G if Pr[∃t, ∃G : HG

0 erroneously rejected] ≤ α.

The second type of guarantee is power, which guarantees
that the test will identify a harmed group, if one exists. In
particular, we are interested in the stopping time T of the
test, which is the number of samples required for the test to
reject the first null, i.e. to raise an alarm for any group.

At a high level, our algorithms for conducting this test follow
the protocol outlined in Algorithm 1. For each group G,
we maintain a test statistic ωG

t that is updated as reports Xt

are received over time. At each time t, each of these test
statistics are compared to a threshold θt(α), which depends
on the test level α; the null hypothesis HG

0 for group G is
rejected if ωG

t > θt(α). For ease of exposition, Algorithm 1
is written so that groups corresponding to rejected nulls are
collected in a set GFlag; in practice, a database administrator
may choose to stop the test entirely as soon as one harmed
group has been found.

Correcting for multiple hypothesis testing across groups is
handled by a simple Bonferroni correction—that is, given
a particular test level α, we test each individual group G
at level α/|G| rather than level α. Though Bonferroni cor-

rections often seem onerous in non-sequential settings, we
show that, for sequential problems, the Bonferroni correc-
tion incurs only a modest increase in stopping time.

In Section 4.1, we give a simple sequential Z-test-inspired
approach which leverages a finite-time Law of the Iterated
Logarithm. Section 4.2 presents a more complicated algo-
rithm that leverages recent developments in anytime-valid
inference. The main differences in each algorithm lie in
how they implement Lines 1 and 6 of Algorithm 1—that is,
how test statistics and thresholds are computed. For each
instantiation of Algorithm 1, we show validity and power
guarantees. Omitted proofs are given in Appendix C.

Algorithm 1: General protocol for testing overrepresen-
tation
Input: Set of groups G; base preponderances

{µ0
G}G∈G ; test level α; relative strength β

1 Initialize test statistic ωG
0 for every G ∈ G and set

threshold θ0(α);
2 Initialize set of rejected nulls (flagged groups)
GFlag := ∅;

3 for t = 1, 2, . . . do
4 See report Xt;
5 for G ∈ G do
6 Update test statistic ωG

t and compute threshold
θt(α);

7 if ωG
t ≥ θt(α) then

8 Add G to GFlag and take requisite action for
G, if applicable.

4.1. Sequential Z-test

One simple observation that arises from the model presented
in Section 2 is that if each report Xt is drawn i.i.d. from
some underlying distribution, then one might expect to be
able to use concentration as a tool to conduct this test, since
as time passes, the fraction of reports within the database
from group G should converge to the true mean µG. We
refer to this style of approach as a sequential Z-test, as it
relies on measuring deviation from the mean.

Updating the test statistic ωG
t . Given this intuition, the

test statistic is a simple count of the number of times a report
from each group has been seen, i.e. (with ωG

0 = 0),

ωG
t ← ωG

t−1 + 1[Xt ∈ G]. (2)

Setting the threshold θt(α). Given the way that ωG
t accu-

mulates evidence, one natural way to construct the threshold
at each t is to use the mean under the alternative, plus a
correction term for both sample complexity and repeated
testing over time. With C set to either

√
βµ0

G(1− βµ0
G) or
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1/2, the threshold (including a Bonferroni correction) is

θt(α) := t·βµ0
G+C

√
2.07t ln

(
|G| (2 + log2(t))

2

α

)
. (3)

Theoretical guarantees. Our first guarantee is a bound
on the probability that any group is incorrectly flagged.

Theorem 4.1 (Validity). Running Algorithm 1 with θt(α)
as in Equation (3), setting C = 1/2, and ωG

t updated as in
Equation (2), guarantees that the probability that GFlag will
ever contain a group G whereHG

0 is true is at most α, i.e.

Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

The choice of C affects the nature of the guarantee: the true,
finite-sample anytime-validity guarantee requires C = 1/2.
If instead C =

√
βµ0

G(1− βµ0
G), then, strictly speaking,

the guarantee holds only asymptotically. However, a higher
value of C affects stopping time unfavorably, so the asymp-
totic approximation can be useful practically. In this case,
care must be taken to ensure that the algorithm does not erro-
neously reject too early due to noise; one way to implement
this is to mandate a minimum stopping time.

Finally, we give a stopping time guarantee for this test.

Theorem 4.2 (Power). Let T be the stopping time of Al-
gorithm 1 with θt(α) as in Equation (3), C = 1/2, and ωG

t

as in Equation (2). Let ∆max = maxG∈G µG − βµ0
G. If

∆max > 0, then Pr[T <∞] = 1. Furthermore, with proba-

bility 1− α/|G|, we have T ≤ Õ
(

ln(|G|)+ln(1/α)
∆2

max

)
, and for

any δ ∈ (0, α/|G|), we have with probability at least 1 − δ

that T ≤ Õ
(

ln(1/δ)
∆2

max

)
.

4.2. Betting-style approach

We refer to our second algorithm as a betting-style approach,
due to the way we construct our test statistics (Shafer, 2021;
Waudby-Smith & Ramdas, 2024; Vovk & Wang, 2021;
Chugg et al., 2024); one way to interpret this approach
is that the test “bets against” the null hypothesis HG

0 be-
ing true. We direct the reader to these references for more
detailed technical exposition.

Updating the test statistic ωG
t . As in the previous ap-

proach, we let ωG
t represent some accumulated amount of

evidence against the null hypothesis HG
0 by time t, with a

higher value of ωG
t corresponding to greater level of evi-

dence.2 We initialize ωG
0 = 0, and use the update rule

ωG
t ← ωG

t−1 + ln
(
1 + λG

t (1Xt∈G − βµ0
G)
)
, (4)

2The quantity exp(ωG
t ) can also be referred to as an e-value

(Vovk & Wang, 2021), a measure of evidence against a null hy-
pothesis similar to a p-value.

with λG
1 , . . . , λ

G
t ∈ [0, 1]. Here, the algorithm accumulates

a nonlinear function, with an adaptive parameter λG
t that

weights the influence of each new sample. Our setting of λt

is motivated by the goal of minimizing stopping time under
the alternative, and thus to maximize ωG

t . Drawing from
the well-studied problem of portfolio optimization in the
online learning literature (Cover, 1991; Zinkevich, 2003;
Hazan et al., 2016), we use Online Newton Step (Hazan
et al., 2007; Cutkosky & Orabona, 2018) to ensure that ωG

t

is not too far from the best achievable in hindsight. This
results in the following update for {λt}t≥1:

λG
t+1 ← Proj

[0,1]

(
λG
t + 2

2−ln(3) ·
zt

1+
∑

s∈[t] z
2
s

)
, (5)

where zt =
1[Xt∈G]−βµ0

G

1+λG
t (1[Xt∈G]−βµ0

G)
, and λ0 = 0.3

Setting the threshold θt(α). Unlike the sequential Z-test,
we use the same threshold for all timesteps. Including a
Bonferroni correction, we use θt(α) := ln(|G|/α) for all
t; the motivation for this setting will become clear in our
discussion of Theorem 4.3.

Theoretical guarantees. We first give a validity guarantee
that is essentially identical to the Sequential Z-test.

Theorem 4.3 (Validity). Running Algorithm 1 with θt(α) =
ln (|G|/α) and ωG

t updated as per Equations (4) and (5)
guarantees that the probability that GFlag will ever contains
a group G whereHG

0 is true is at most α, i.e.

Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

This result follows directly from the prior work referenced
at the beginning of this section. At a high level, every se-
quence {exp(ωG

t )}t≥1 is a non-negative super-martingale
underHG

0 ; informally, this means that under the null hypoth-
esis, the sequence {exp(ωG

t )}t≥1 should be non-increasing,
in expectation. This allows us to apply Ville’s inequal-
ity, which guarantees that it is unlikely that exp(ωG

t ) ever
becomes too large under HG

0 . More specifically, for any
α ∈ (0, 1), under the null, Pr[∃t : exp(ωG

t ) > 1/α] ≤ α.
Thus, maintaining a threshold of θt(α) = ln(|G|/α) is suf-
ficient to provide a per-hypothesis α/|G|-validity guarantee,
and thus α-validity overall.

We also provide the following bound on stopping time; see
Appendix C.3 for additional discussion of the ω⋆ notion of
gap.

Theorem 4.4 (Power). Let T be the stopping time of Al-
gorithm 1 with θt(α) = ln (|G|/α) and ωG

t updated as per
Equations (4) and (5). If maxG∈G µG−βµ0

G > 0, then, we

3The constant 2
2−ln(3)

is due to Cutkosky & Orabona (2018),
who give a tighter version of ONS than in Hazan et al. (2007).
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have that Pr[T <∞] = 1. Furthermore,

E[T ] ≤ O
(

1

ω2
⋆

+
ln(|G|) + ln(1/α)

ω⋆

)
where ω⋆ := maxG∈G,λ∈[0,1] E[ln(1 + λ(1Xt∈G − βµ0

G))]
is the maximal expected one-step increase in ωG

t over all
groups and choices of λ.

We conclude this section with two further remarks on Theo-
rems 4.2 and 4.4 in the context of our test. First, our model-
ing in Section 3 measures severity of harm via a multiplica-
tive factor of overrepresentation. However, both notions of
gap in Theorems 4.2 and 4.4 also on the absolute size of the
group µG. Thus, for two groups G and G′ with identical
multiplicative gaps, i.e. µG/µ0

G = µG′/µ0
G′ , the test would

stop faster in expectation for G if and only if µ0
G > µ0

G′ .
That is, if two groups are “harmed” to the same extent, both
algorithms will identify the larger one first.

Second, for both tests, the Bonferroni correction results in
only an additive factor (ln(|G|)/∆2

max in Theorem 4.1, and
ln(|G|)/ω⋆ in Theorem 4.3) in stopping time over the scenario
where we had only been testing the one group with the
largest gap. This means that, in terms of worst-case guar-
antee on stopping time, the contribution of the Bonferroni
correction is small relative to the contribution of the test
level α and, especially, to the gap. In fact, the impact of
Bonferroni on real-world data appears to be much smaller
even than this additive term.

5. Real-World Examples
To demonstrate the applicability of our approach, we apply
our framework to two real-world datasets. We begin by
showing that our approach correctly and quickly identifies
that young men experience myocarditis after the COVID-19
vaccine; then, on mortgage allocation data, we show that
we identify known instances of discrimination under several
reasonable reporting models. Code for all experiments, in-
cluding instructions for data download and pre-processing,
is available in the supplemental materials; additional experi-
mental details can be found in Appendix D.

5.1. Myocarditis from COVID-19 vaccines

It is by now well-known that COVID-19 vaccines induce an
elevated risk of myocarditis among young men. While initial
suspicions of elevated myocarditis risk relied on case studies
(e.g., Mouch et al. (2021); Larson et al. (2021); Marshall
et al. (2021)), a more systematic understanding—including
the pattern of disproportionate impact—was made possi-
ble by post-hoc analysis of reports from incident databases.
Barda et al. (2021) appears to be the first analysis based
on a database of reports, but did not disaggregate by demo-
graphic subgroups; the confirmation of young men as the

most drastically-impacted group came in later studies (e.g.,
Witberg et al. (2021); Oster et al. (2022)).

In the U.S., these reports are collected inthe Vaccine Ad-
verse Event Reporting System (VAERS). If we had been
able to run the hypothesis tests proposed in the preceding
sections on the reports collected in VAERS, would we have
correctly identified this problem—and if so, how quickly?
Concretely, we let Yi be the event that individual i experi-
ences myocarditis after receiving a COVID-19 vaccine, and
run the test with the end-goal of identifying elevated inci-
dence rate Pr[Yi | Xi ∈ G] for group(s) G corresponding
to adolescent men (ages 12-17 and 18-29).

Defining G. We consider (intersections of) sex and age
buckets to be the subgroups of interest.4 Age buckets are
discretized into 0-4, 5-11, 12-17, 18-29, 30-39, 40-49, 50-
64, 65-74, and 75+; the sex categories represented in the
data are (binary) male and female. After removing groups
for which no vaccines were recorded, G contains 29 groups.

Setting β. For this application, absolute incidence rate
(that is, Pr[Y = 1 | G]) is the quantity of interest to
use for determining β. As suggested by Proposition 3.4,
setting β requires considering three quantities of inter-
est: the threshold on an “unacceptable” incidence rate,
the relative rates of true reporting γTR

G , and the relative
rates of false reporting γFR

G . Then, we can set β =
maxG

(
(γTR

G − γFR
G ) · IR + γFR

G

)
.

We will choose 0 as the threshold on an “unacceptable” inci-
dence rate. It is therefore sufficient to set β = maxG(γ

FR
G ).

While this is quantity cannot be determined from report data
alone, a conservative assumption could be that any group
erroneously reports at most twice the average reporting rate
over the population, with γFR

G = 2.0. If the algorithm is
first run with β = 2.0, stopping and flagging a group very
quickly, the test may be re-run with increasing values of β,
as a higher β corresponds to a more severe true incidence
rate; thus, we also show results for β = 2.5 and β = 3.5

Results. We begin by running our algorithms on the ac-
tual sequence of reports in chronological order, as received
in VAERS. In particular, we consider Algorithm 1 instanti-
ated with ωG

t updated according to Equation (2) and θt(α)
as in (3) and C = 1/2 (Finite-sample Z-test); with ωG

t up-
dated according to Equation (2) and θt(α) as in (3) and
C =

√
βµ0

G(1− βµ0
G) (Asymptotic Z-test); and with ωG

t

updated according to Equations (4) and (5), and θt(α) =

4While in principle it would have been interesting to also con-
sider race/ethnicity, we are limited by the availability (and granu-
larity) of the data given in VAERS, which does not include infor-
mation on ethnicity/race in reports.

5Re-using this data is statistically valid due to the equivalence
between one-sided hypothesis testing and confidence sequences.
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Asymptotic Z-test Finite-sample Z-test Betting-style test
(M, 18-29) (M, 12-17) (M, 18-29) (M, 12-17) (M, 18-29) (M, 12-17)

β = 2.0 34 (Feb. 22) 256 (May 10) 69 (Mar. 28) 530 (May 30) 61 (Mar. 23) 241 (May 8)
β = 2.5 49 (Mar. 10) 302 (May 15) 74 (Mar. 31) 546 (Jun. 1) 69 (Mar. 28) 259 (May 11)
β = 3.0 70 (Mar. 30) 324 (May 18) 111 (Apr. 20) 612 (Jun. 6) 80 (Apr. 5) 302 (May 15)

Table 1: On real historical sequence of myocarditis reports, time to identification of harmed groups. In each cell, we report the number of
total reports to the rejection of the hypothesis corresponding to (M, 18-29) and the number of total reports corresponding to (M, 12-17). In
all tests, the (M, 18-29) group is identified first—vaccines were authorized for the 12-15 age group only in May.

ln(|G|/α) (Betting-style test). For the asymptotically-valid
Z-test, we require a minimum stopping time of t = 25,
to prevent early rejections. We run all experiments for
α = 0.1.

In Table 1, we report the stopping time—that is, the number
of reports it takes for the first null hypothesis to be rejected—
of each algorithm for various values of β, as well as the
corresponding date by which an alarm would have been
triggered. Note that, in all tests, the (M, 18-19) group is
identified first. This is consistent with the timeline of regu-
latory approvals: vaccines were authorized for ages 12-15
only by May 10 (Lovelace, 2021).

To explore the robustness of these results, we also run syn-
thetic experiments, permuting the ordering of reports to get
a sense of possible variance in the stopping time. We run
100 random permutations of the full set of reports. Figure 1
tracks the number of reports it takes for each algorithm to
reject the null hypothesis for any group—that is, a scenario
when the test is stopped and an alarm is raised as soon as
one harmed group is identified. Each point on these plots
reflects the number of trials (out of 100) in which a rejection
has occurred by time t, when tests are run at β = 2.

In Figure 1, we compare the performance of the three al-
gorithms. To interpret the figure, by time t = 100, the
asymptotically-valid z-test had already identified harm in
all 100 permutations; the betting-style test identified harm
in around 80 permutations; and the finite-sample z-test had
only identified harm in around 20 permutations. Figure 1
shows a clear ordering in terms of how quickly each al-
gorithm tends to identify harm: the asymptotically-valid
sequential z-test (dashed, red) is faster than the betting-style
algorithm (solid, purple), which is faster than the finite-
sample z-test (dotted, yellow).

Overall, our experimental results suggest that our proposed
tests would in fact have been effective in determining that
young men were disproportionately affected by myocarditis.
Moreover, though it is difficult to determine exact timelines
and the nature of clinical practice during early phases of
the vaccine rollout, it is possible that such a test could have
identified problems using less data—that is, more quickly—

Figure 1: Stopping time (i.e. first identification of harm) for each
algorithm, over 100 random permutations of COVID-19 vaccine
reports, with β = 2. Each point on the plot reflects the number of
trials (out of 100) in which a rejection has occured by time t.

than was actually used for this finding.

5.2. Mortgage Allocations

In 2021, Martinez & Kirchner (2021) found that, based on
publicly-released data from the Home Mortgage Disclosure
Act (HMDA), substantial racial disparities in 2019 loan ap-
provals persisted even after controlling for financial status
of applicants—most notably, healthy debt-to-income ratios
(DTI). If loan applicants had been able to submit reports
when they believed they had experienced unfavorable out-
comes, could those reports have been used to identify this
discrimination? If so, how accurately, and how quickly?

We are interested primarily in disparity among applicants
with healthy DTI, even though all loan applicants would
have been eligible to submit reports. Concretely, we let
Ai = 0 be the event that a loan is not made to applicant i,
and Zi = 1 be the event that applicant i has a healthy debt-
to-income ratio. Then, we let Yi = {Ai = 0, Zi = 1} be the
event that individual i has a healthy DTI and did not receive
a loan, and run the test with the end-goal of identifying
groups that have relatively high rates of loan denials for

7
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Reporting model
Asymptotic Z-test Finite-sample Z-test Betting-style test

Stopping time Rel. risk Stopping time Rel. risk Stopping time Rel. risk

β = 1.2
Correlated 85 1.62 2002 1.67 638 1.70
All Denials 69 1.59 1546 1.60 519 1.65
Anti-Corr. 60 1.50 1065 1.53 403 1.65

β = 1.4
Correlated 316 1.69 4306 1.73 1542 1.77
All Denials 163 1.62 3214 1.72 1073 1.72
Anti-Corr. 95 1.47 2215 1.66 718 1.68

β = 1.6
Correlated 886 1.68 11755 1.73 4157 1.82
All Denials 586 1.69 7410 1.72 2714 1.75
Anti-Corr. 271 1.05 4668 1.72 1688 1.71

β = 1.8
Correlated 4959 1.74 —1 — 164252 1.98
All Denials 2703 1.72 297513 1.73 9977 1.89
Anti-Corr. 935 1.58 14072 1.73 4629 1.76

Table 2: Average stopping times (i.e. time to first alarm) and true relative risk (i.e., Pr[Ai=0,Zi=1|Xi∈G]
Pr[Ai=0,Zi=1]

) of first-identified group over 100
random permutations, for varying β, across algorithms and reporting models. For β = 1.8, some combinations of algorithm/reporting
model failed to stop within 40,000 steps for some trials: 1stopped in 0/100 trials, 2stopped in 99/100 trials, 3stopped in 76/100 trials.

applicants with healthy DTI, i.e. Pr[Ai=0,Zi=1|Xi∈G]
Pr[Ai=0,Zi=1] .

Defining G. While Martinez & Kirchner (2021) analyzed
disparities with respect to race, we define groups as all pos-
sible intersections of demographic features across gender,
race, and age. The available race categories include Native,
Asian, Black, Pacific Islander, White, and Latino; sex cate-
gories include female, male, and unknown/nonbinary; and
age categories include <25, 25-34, 35-44, 45-54, 55-64, and
65+. In total, after removing groups which comprise less
than 0.1% of all loan applicants, G contains 115 groups.

Setting β. In this application, the quantity of interest is
relative risk, so we draw on Proposition 3.2 to inform our
setting of β. We will set our relative risk threshold to be 1.2—
that is, we want our algorithm to raise an alarm when any
group experiences event Y 20% more frequently than aver-
age over the population. Recall Definition 3.1 and Propo-
sition 3.2: to flag relative risk at 1.2, β should be set to
1.2 · b where b = maxG ρG/ρ, with ρG = Pr[R=1|G]

Pr[Y=1|G] and

ρ = Pr[R=1]
Pr[Y=1] ; that is, b is the extent to which the group-

conditional report-to-incidence ratio for any group deviates
from the population average report-to-incidence ratio.

As before, we can first test at β = 1.2 , then re-test for
higher values of β; in this case, we will also test β =
{1.4, 1.6, 1.8}. Setting β = 1.2 corresponds to assuming
b = 1, i.e., no variance in report-to-incidence ratios across
groups; the additional values of β suggest possible values
of b = 7/6, 4/3, and 3/2, respectively.

Reporting models. The existence of verifiable disparities
in this dataset allows us to evaluate the efficacy of our meth-

ods under varying models of reporting—that is, whether our
algorithms identify groups that do in fact have high rates
of healthy DTI denials, even if it is not the case that every
report Xi corresponds to Yi actually occurring. Modeling
the idea that reporting behavior may be related to finan-
cial health, we simulate the following possible patterns of
reporting.

(1) Correlated: The likelihood of reporting increases with
financial health. That is, “Healthy” denials report with
probability 0.9, “Manageable” with probability 0.5,
“Unmanageable” with probability 0.3, and “Struggling”
with probability 0.1. Under this reporting model, the
95th-percentile (among all groups) ρG/ρ is 1.2, and
maxG ρG/ρ = 1.4.

(2) All Denials: All denials submit reports regardless of
financial health. Under this reporting model, the 95th-
percentile ρG/ρ is 1.5, and maxG ρG/ρ = 2.3.

(3) Anti-Correlated: The (unlikely) case where individu-
als with worse financial health are more likely to re-
port, i.e. “Healthy” denials report with probability 0.1,
“Manageable” with probability 0.5, “Unmanageable”
with probability 0.7, and “Struggling” with probability
0.9. Under this reporting model, the 95th-percentile
ρG/ρ is 1.8, and maxG ρG/ρ = 2.7.

Note that the ground-truth ratios ρG/ρ would have been
unknown at the time that a practitioner sets β; we are
able to determine these only because we have full infor-
mation about the dataset and control over the reporting
model. However, these computations suggest that the as-
sumptions on reporting rates implied by the settings of
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β = {1.2, 1.4, 1.6, 1.8} are generally reasonable, especially
after considering outliers—note the disparity between the
95th-percentile vs max ratios of ρG/ρ, especially for the All
Denials and Anti-Correlated models.

Results. We run all three algorithms discussed in Section
4 at α = 0.1, for all four reporting models discussed above,
and for β = {1.2, 1.4, 1.6, 1.8}. For the asymptotically-
valid Z-test, we (heuristically) choose a higher minimum
stopping time of 50, to reflect the more challenging problem
instance compared to the vaccine reporting problem. For
each algorithm, reporting model, and β, we again run 100
random permutations.6

One important question for this application is the extent to
which our tests identify the type of harm we are interested
in, across various reporting models: while the algorithms
guarantee statistical validity in terms of overrepresentation
(i.e., in terms of whether µG ≥ βµ0

G), they cannot intrin-
sically guarantee that reports themselves reflect true harm.
With the benefit of hindsight (and access to the full dataset),
we are able to calculate “ground truth” relative risks; the
hope for our algorithms is that they identify groups that
actually do experience elevated relative risk.

Our results suggest that this is indeed generally the case,
although the actual behavior varies by algorithm and report-
ing model. Table 2 shows report the average stopping times
and average true relative risks of the first-identified group
for 100 permutations. Across all algorithms and values of β,
the stopping time under the Correlated reporting model is
the longest, followed by the All Denials and Anti-Correlated
reporting models. On the other hand, the relative risk of the
group that is first identified in each of these settings follows
the same ordering, with the Correlated model having the
highest relative risk. That is, more “favorable” reporting
behavior required a test to run longer, but the group identi-
fied is more severely harmed, whereas more “adversarial”
reporting behavior raised an alarm sooner, but identified a
less severely-harmed group.

Similar tradeoffs arise when comparing algorithms: the
asymptotically-valid Z-test stops far more quickly, but ap-
pears to identify less severely-harmed groups. On the other
hand, while the betting-style test and the finite-sample Z-test
tend to identify similarly-harmed groups, the latter stops
much faster than the former; overall, it appears that the
betting-style test is a reasonable approach to balancing fast
identification with confidence in the severity of harm.

While overall trends across algorithms and reporting models
are consistent across values of β, seeing these results for
different β highlights an additional insight. While it is to be

6Since we are simulating reporting, there is no “true” historical
sequence of reports to run an algorithm on, unlike in Table 1.

expected that stopping times (and the ground-truth relative
risks) should increase with β, the increase in stopping time is
dramatic—by sometimes by orders of magnitude—even for
what appear to be relatively small changes in β. Moreover,
the disparity in stopping time across reporting models also
increases dramatically with β. In fact, for β = 1.8, some
combinations of reporting and algorithm do not stop within
40,000 steps in at least one trial.

6. Discussion
This work is an initial approach to using reporting databases
for post-deployment auditing; we believe there is a rich
range of future work that develops the ideas in this paper,
both technically and conceptually.

On the statistical and algorithmic side, because our frame-
work allows for plugging in any existing sequential test, new
methods that control for multiple hypothesis testing both
over time and over the number of distinct hypotheses would
be directly beneficial for this application. On the other
hand, one might hope for online methods that do not require
pre-specifying hypotheses and instead develops them se-
quentially in a quasi-unsupervised fashion, or that improve
guarantees by exploiting relationships across hypotheses, as
has proven useful in multi-objective learning.

More conceptually, while the application examples in Sec-
tion 5 are somewhat stylized, they demonstrate that report-
ing databases can be promising starting points for new types
of post-deployment evaluation. For reporting databases to
be practically useful, there are a plethora of additional con-
siderations to incorporate from a variety of disciplines. For
instance, if a reporting system was available, how would
individuals engage with them in theory, and in practice?
To what extent do, and should, individual incentives affect
the database, and how it is designed? How can the result
of a test (a null hypothesis rejection) be contextualized by
existing and emerging legal frameworks?

To the best of our knowledge, we are the first to propose
individual incident reporting to identify patterns of dispro-
portionate harm in interactions with a particular system;
more generally, however, one might imagine that similar re-
porting systems can be developed to provide insights about
concerns beyond fairness. In fact, while the framework
introduced in our work is not intrinsically about algorith-
mic deployments, it is one way to operationalize recent
regulatory movement in AI policy towards allowing for or
requiring individual reports. Any way to make such reports
actionable at large scale must, to some extent, aggregate of
individual reports to develop more systematic evaluations of
an underlying algorithm. We therefore see our work as one
step towards giving voice to individual experiences—and
towards having them make a difference.
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A. Additional Related Work
Identifying and defining subgroups. One approach to subgroup definition, following the line of work in multicalibration
(Hébert-Johnson et al., 2018), is to simply enumerate over all possible combinations of covariates. For sequential problems,
per-group guarantees can be provided for subgroups that are learned online (Dai et al., 2024), though these guarantees are
in terms of prediction quality rather than statistical validity. For sequential experiments, Adam et al. (2024) propose an
approach to early stopping that does not require the experimenter to pre-specify the group experiencing harm, but instead
identifies those who appear to be harmed more frequently. Though this is in spirit similar to the idea of identifying groups
that report more frequently, their algorithm is substantially different from ours, in addition to the distinct application context.

Sequential and multiple hypothesis testing with anytime guarantees. One of our proposed tests provides anytime-
validity guarantees by adapting the analysis of (Jamieson et al., 2014) and (Balsubramani, 2014). Our second proposed test
leverages the recent literature on e-values (e.g. (Waudby-Smith & Ramdas, 2024; Vovk & Wang, 2021)), which can be used
to construct sequential tests that have validity guarantees in finite samples. While existing literature suggests methods for
global null testing that can aggregate e-processes (e.g., Cho et al. (2024) or Chi et al. (2022)), such approaches are unable to
provide per-hypothesis guarantees. More classical approaches include Wald’s Sequential Probability Ratio Test (SPRT) and
its extensions, such as Max-SPRT (Kulldorff et al., 2011), or a sequential generalization of the Holm procedure Bartroff &
Song (2014).

Application & policy context. Sequential hypothesis tests have been used for real-world monitoring of adverse incidents
in vaccines and medical devices (see, e.g., (Shimabukuro et al., 2015)). Descriptive studies have identified disparate adverse
impacts in pharmaceutical (Lee et al., 2023; Whitley & Lindsey, 2009) and vaccine settings (Oster et al., 2022). More
generally, post-market surveillance is standard across various industries, especially as it relates to product safety enforcement
and monitoring.

In AI policy contexts, there have already been several calls to adopt a post-market surveillance regime for AI governance
(e.g., Raji et al. (2022)). The U.N. General Assembly’s first AI Resolution (7 8/265 and 78/311) explicitly encourages “the
incorporation of feedback mechanisms to allow evidence-based discovery and reporting by end-users and third parties of [...]
misuses of artificial intelligence systems and artificial intelligence incidents” (Assembly, 2024). In the U.S., Biden’s (now
repealed) AI Executive order explicitly directs the Department of Health and Human Services (HHS) to “establish a [...]
central tracking repository for associated incidents that cause harm, including through bias or discrimination” (Biden, 2023).
In the E.U., Chapter IX of the 2024 EU AI Act focuses on post-market surveillance, with Articles 85 and 87 specifically
highlighting individual reporting of harms.

B. Practical Considerations
Choosing G. In our experiments in Section 5, we choose to define subgroups as all possible combinations of available
demographic characteristics. That said, a practitioner may seek to define G more carefully in accordance with their
application. For instance, if the goal is to illustrate discrimination in a legal sense, G should be defined with respect to
(protected) demographic features, rather than arbitrary combinations of covariates. On the other hand, groups need not be
solely demographic, which allows our approach to test for safety rather than solely fairness. For example, G could include
which batch of a medication an individual received; our tests could then help identify whether some batches were improperly
manufactured.

Baseline rates {µ0
G}G∈G . A natural question that arises from the modeling in this section is how {µ0

G}G∈G can be
determined, or if Assumption 2.1 is strictly necessary. Practically speaking, these base preponderances may be estimated,
possibly with some amount of noise; however, the estimation problem can be addressed with standard techniques and
is not core to our contribution. Similarly, in practice these baseline preponderances may change over time (e.g. if some
subgroups increased uptake of a vaccine, or applied for loans more frequently, over time); however, such situations are
relatively straightforward to handle under our algorithmic frameworks (see, e.g., the variants discussed in Chugg et al.
(2024)). We therefore focus on the case where we have access to the true, underlying values of {µ0

G}G∈G for ease and clarity
of exposition.

Note that testing against base preponderances of the reference population (i.e., to compare µG to µ0
G) is a new test proposed

by this work, and the analysis in Sections 3.1 and 3.2 is specific to this test. Existing approaches to monitoring in incident
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databases compare to different baselines, most commonly the historical overall incidence rate for the specific symptom,
sometimes by subgroup (Shimabukuro et al., 2015; Kulldorff et al., 2011; Oster et al., 2022). These baselines could, in
principle, be plugged into the algorithms in Section 4, but new analysis for (possibly group-varying) reporting rates would be
necessary to draw inferences about analogous quantities of interest (e.g., RR or IR), as current approaches do not generally
consider reporting behavior. In contrast, our modeling allows us to identify what quantities may affect the true incidence
rate even if they may be unmeasurable.

Setting β. Finally, to run the test proposed in Equation (1), it is necessary to determine how to set the value of β. As we
will see in Section 4, when β is set too high, then the test may never identify problematic groups, or identify them more
slowly; on the other hand, as is clear from the previous subsections, rejecting the null hypothesis for a smaller β requires
more stringent assumptions on reporting behavior. Thus, we suggest a procedure to set β as follows: (1) choose a relative
risk or incidence rate threshold where it would be problematic for any group if RRG or IRG surpassed that threshold; (2)
make the corresponding assumptions about reporting behavior; (3) use these quantities to compute a reasonable β. We give
some example computations in Section 5. Due to an equivalence between hypothesis testing and confidence intervals, it is
statistically valid to rerun tests with different βs once data collection has begun. Thus, it may be prudent to begin by setting
the lowest β that reporting assumptions would allow; then, if the tests appear to be stopping very quickly, to re-run them at
higher βs, which would allow a practitioner to get a better sense of the severity of the harm.

C. Omitted Proofs
C.1. Omitted proofs from Section 2

We prove Proposition 3.2, restated below.

Proposition 3.2. Define the relative risk of group G to be RRG := Pr[Y=1|G]
Pr[Y=1] . Suppose that for some group G we have

ρG ≤ b · ρ. Suppose that we determine that µG ≥ βµ0
G for some β > 1. Then, the true relative risk experienced by G is at

least RRG ≥ β/b.

Proof of Proposition 3.2. First, note that by definition of ρ, ρG, and RRG, we have

ρG ≤ b · ρ ⇐⇒ Pr[R = 1 | G]

Pr[Y = 1 | G]
≤ b · Pr[R = 1]

Pr[Y = 1]
⇐⇒ RRG ≥

Pr[R = 1 | G]

Pr[R = 1]
· 1
b
.

By Bayes’ rule, Pr[R=1|G]
Pr[R=1] = Pr[G|R=1]

Pr[G] = µG

µ0
G

; furthermore, by assumption, we have µG

µ0
G
≥ β. The result follows from

combining with the previous display.

We prove Proposition 3.4, restated below.

Proposition 3.4. Suppose that, for some G, it is determined that µG ≥ βµ0
G for some β > 1. As long as γTR

G > γFR
G for

every G ∈ G, IRG ≥ β−γFR
G

γTR
G−γFR

G
.

Proof of Proposition 3.4. Recall that we have defined µG = Pr[G | R], and µ0
G = Pr[G] is known by Assumption 2.1. By

Bayes’ rule, we have µG = Pr[G | R] = Pr[G] Pr[R|G]
Pr[R] = µ0

G
Pr[R|G]

r , Now, let us decompose Pr[R | G] by “true” reports
(Y = 1) and “false” reports (Y = 0). By the law of total probability, Pr[R | G] = r ·

(
γTR
G IRG + γFR

G (1− IRG)
)
; more

precisely,

1

r
Pr[R | G] = Pr[R | G, Y = 1]Pr[Y | G] + Pr[R | G, Y = 0](1− Pr[Y | G])

= γTR
G IRG + γFR

G (1− IRG)

= γFR
G + IRG(γ

TR
G − γFR

G );

combining this with the Bayes’ rule computation, cancelling the 1
r factor, gives us IRG =

µG
µ0
G

−γFR
G

γTR
G −γFR

G
. The result follows from

the assumption that µG/µ0
G ≥ β.
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C.2. Omitted proofs for Sequential Z-test

We prove Theorem 4.1, restated below.

Theorem 4.1 (Validity). Running Algorithm 1 with θt(α) as in Equation (3), setting C = 1/2, and ωG
t updated as in

Equation (2), guarantees that the probability that GFlag will ever contain a group G whereHG
0 is true is at most α, i.e.

Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

To prove this result, we will use a foundational result known as Ville’s inequality (Ville, 1939).

Theorem C.1 (Ville’s inequality). Let {Mt}t∈N+ be a non-negative supermartingale, i.e. for all t, Mt ≥ 0, and E[Mt+1 |
Ft] ≤Mt, where Ft is the filtration (history) of all realizations of randomness up to and including time t. Then, for any
x ∈ (0, 1), we have Pr[∃t : Mt > E[M0]/x] ≤ x.

The central thrust of our proof of Theorem 4.1 is due to Koolen (2017) (which itself draws from Balsubramani (2014), and is
a refinement of Jamieson et al. (2014)); we reproduce the argument in the context of our work below, though we emphasize
that we do not claim the proof technique as ours.

Proof of Theorem 4.1. It is sufficient to show that for any group G where HG
0 holds, we have Pr[∃t : G ∈ GFlag] ≤ α/|G|;

the statement of the theorem follows from the Bonferroni correction over all |G| hypotheses.

Ville’s inequality (Theorem C.1) appears similar in form to the statement we hope to prove; we therefore seek to transform
our test statistic ωG

t =
∑

s∈[t] 1[Xs ∈ G] into a quantity that can be interpreted as a (non-negative) supermartingale.
Although {ωG

t }t∈N+ is by itself clearly not a non-negative supermartingale, each ωG
t is the sum of t Bernoulli trials with

mean µG, and Bernoulli random variables are sub-Gaussian with variance parameter 1/4. Each ωG
t therefore satisfies the

property that E[exp(η(ωG
t − E[ωG

t ])] ≤ exp(η2/8).

This holds for any η, so we will construct a distribution ϕ on η and use it to construct a martingale Mt. In particular, note that
underHG

0 , E[ωG
t ] < t ·βµ0

G. Thus, we let St := ωG
t −E[ωG

t ] = ωG
t − tβµ0

G. We will let Mt =
∫
ϕ(η) exp(ηSt− tη2/8)dη.

Then, for any distribution ϕ, {Mt}t∈N+ is a non-negative supermartingale with respect to the randomness in realizations of
reports Xt. To see this, we have

E[Mt+1 | Ft] = E
[∫

ϕ(η) exp
(
η(St + 1[Xt+1 ∈ G]− βµ0

G)−
(t+1)η2

8

)
dη

∣∣∣∣Ft

]
=

∫
ϕ(η) exp

(
ηSt − tη2

8

)
E
[
exp

(
η(1[Xt+1 ∈ G]− βµ0

G)−
(t+1)η2

8

) ∣∣∣∣Ft

]
dη

≤
∫

ϕ(η) exp
(
ηSt − tη2

8

)
dη

= Mt,

where the inequality is due to 1
tE[ω

G
t ] ≤ βµ0

G and subgaussianity. It thus remains to use this martingale to compute an
appropriate threshold θt(α) on ωG

t .

Mt will satisfy the conditions of Theorem C.1 for any choice of ϕ, including one which puts point mass of 1 on η = η′ and
0 elsewhere, i.e. ϕ(η′) = 1 and ϕ(η) = 0 for any η ̸= η′. One path towards establishing the threshold θt(α) is to simply
pick one value of η; however, such an η cannot depend on t and would thus result in a suboptimal threshold. Instead, we
will construct ϕ such that it is a discrete distribution, indexed by i ∈ N+, so that η takes values η1, . . . , ηi with probability
ϕ1, . . . , ϕi; this allows each ηi to depend on t and therefore more finer-grained optimization of the threshold. Before
committing to the exact distribution ϕ, we first illustrate how ϕi and ηi will be used in the threshold.

Note that Mt =
∑

i∈N+ ϕi exp(ηiSt − tη2i /8) ≥ maxi ϕi exp(ηiSt − tη2i /8), so for any δ, we have

{Mt ≥ 1/δ} ⊇ {max
i

ϕi exp(ηiSt − tη2i /8) > 1/δ} =
{
St ≥ min

i

(
tηi
8

+
1

ηi
ln

1

ϕiδ

)}
,

and thus, picking θt(α) = tβµ0
G +mini

(
tηi

8 + 1
ηi

ln 1
ϕiα/|G|

)
would guarantee that Pr[∃t : ωG

t > θt(α)] ≤ α/|G|.
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Finally, we must commit to ϕi, ηi, then optimize for i. Let ϕi = 1
i(i+1) (note that

∑
i ϕi = 1, so this is a valid

distribution), ηi = 2
√

2 ln(1/ϕi(α/|G|))
2i , and i = ⌊log2(t)⌉. For i = log2(t) (without rounding), this would have yielded

ηi = 2
√

2 ln((log2(t)+1)(log2(t))/(α/|G|))
t and θt(α) = 1

2

√
2t ln((log2 t)(log2 t+ 1)/α/|G|). The statement follows from

handling the numerical impact of rounding.

Remark C.2. A key constant in the proof of the version of the algorithm that is valid in finite samples is the subgaussian
variance parameter, for which we used 1/4 (and which propagates to a multiplicative factor of

√
1/4 = 1/2 on the threshold).

This is because the variance any Bernoulli is at most 1/4; however, this also motivates the choice of constant for the
asymptotically-valid version of the test, which instead uses the variance parameter βµ0

G(1− βµ0
G).

We now prove the power result.

Theorem 4.2 (Power). Let T be the stopping time of Algorithm 1 with θt(α) as in Equation (3), C = 1/2, and ωG
t as in

Equation (2). Let ∆max = maxG∈G µG−βµ0
G. If ∆max > 0, then Pr[T <∞] = 1. Furthermore, with probability 1−α/|G|,

we have T ≤ Õ
(

ln(|G|)+ln(1/α)
∆2

max

)
, and for any δ ∈ (0, α/|G|), we have with probability at least 1− δ that T ≤ Õ

(
ln(1/δ)
∆2

max

)
.

Proof. Let G⋆ := argmaxG∈G µG − βµ0
G and let ∆ := µG⋆ − βµ0

G⋆ . Without loss of generality, we can consider only the
test corresponding to G⋆ (while still testing at level α/|G|). Recall that for this instantiation of Algorithm 1, the test statistic
ωG⋆

t =
∑

s∈[t] 1[Xs ∈ G⋆] is simply the number of all reports belonging to G⋆ by time t, and that stopping time T is the

first time where ωG⋆

t surpasses the threshold θt(α), i.e., T := inft∈N+ ωG⋆

t > tβµ0
G⋆ + 1

2

√
2.06t ln

(
|G| (2+log2(t))

2

α

)
. For

ease of notation, we will denote C1 := 1
2

√
2.06 = 0.718 within this proof.

For the first claim, it is sufficient to show lim inft→∞ Pr[T > t] = 0.7 Recall that, by our modeling, we can consider ωG⋆

t to
be the sum of t i.i.d. Bernoulli trials with parameter µG⋆ . Applying Hoeffding’s inequality to this sum yields for any t that

Pr[T > t] = Pr

[
ωG⋆

t < tβµ0
G⋆ + C1

√
t · ln

(
|G| (2 + log2(t))

2

α

)]

≤ exp

(
−2

(
∆2t− 2∆C1

√
t · ln

(
|G| (2 + log2(t))

2

α

)))
.

Note that
√
t ln(log2(t))

t → 0; it can thus be seen that limt→∞ Pr[T > t] = limt→∞ exp(−t) = 1.

For the second claim, we apply Hoeffding’s inequality again to see that for all t,

Pr

[
ωG⋆

t ≤ E[ωG⋆

t ]− C1

√
t ln

(
(2 + log2(t))

2

δ

)]
≤ Pr

[
ωG⋆

t ≤ E[ωG⋆

t ]−

√
t

2
ln

(
1

δ

)]
≤ δ.

Thus, with probability at least 1− δ, for all t simultaneously, ωG⋆

t > tµG⋆ − C1

√
t ln
(

(2+log2(t))
2

δ

)
. The algorithm stops

at time t if and only if

tµG⋆ − C1

√
t ln

(
(2 + log2(t))

2

δ

)
> tβµ0

G⋆ + C1

√
t ln

(
(2 + log2(t))

2

α/|G|

)
.

Rearranging, we have
t(√

ln
(

(2+log2(t))
2

α/|G|

)
+

√
ln
(

(2+log2(t))
2

δ

))2 ≥
C1

∆2
.

7For a simple proof of this fact, see the solution to Problem 1.13 in Bertsekas & Tsitsiklis (2008).
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Note that we can can upper bound the denominator of the left hand side as
(√

ln
(

(2+log2(t))
2

α/|G|

)
+

√
ln
(

(2+log2(t))
2

δ

))2

≤

4 ln
(

(2+log2(t))
2

min(α/|G|,δ)

)
. Setting t

4 ln
(

(2+log2(t))2

min(α/|G|,δ)

) ≥ C1

∆2 and rearranging gives

t

1 + ln((2 + log2(t))
2)
≥ 4C1 ln(max(α/|G|, 1/δ)

∆2
(6)

Thus, with probability 1− δ, the algorithm terminates at the smallest t satisfying Equation (6). The statement of the theorem
follows from separating the two cases for δ < α/|G| and δ ≥ α/|G|, and noting that Õ notation suppresses the (negligible)
log-log factor.

C.3. Omitted proofs for betting-style algorithm

We first prove Theorem 4.3, restated for the sake of presentation.

Theorem 4.3 (Validity). Running Algorithm 1 with θt(α) = ln (|G|/α) and ωG
t updated as per Equations (4) and (5)

guarantees that the probability that GFlag will ever contains a group G whereHG
0 is true is at most α, i.e.

Pr
[
∃t : ∃G ∈ GFlag s.t. HG

0 holds
]
≤ α.

Proof. First note that for any G for whichHG
0 holds, the sequence {exp(ωG

t )}t≥0 is a non-negative super-martingale. The
non-negative property follows directly from the quantity being an exponential of a real (albeit possibly negative) number,
while the fact that it is a super-martingale follows from the computations below:

E[exp(ωG
t )|Ft] = E[exp(ωG

t−1 + ln(1 + λG
t (1Xt∈G − βµ0

G)))|Ft]

= exp(ωG
t−1) · (1 + λG

t (E[1Xt∈G|Ft]− βµ0
G))

= exp(ωG
t−1) · (1 + λG

t (µG − βµ0
G))

≤ exp(ωG
t−1) · (1 + λG

t (βµ
0
G − βµ0

G))

= exp(ωG
t−1),

where the first equality follows by Eq. 4, the second by re-arranging and noting that all quantities except 1Xt∈G are
completely determined by Ft

8, and the third by definition (see Section 2). Finally, the inequality follows because µG ≤ βµ0
G

underHG
0 and λG

t ≥ 0.

Next, for any group G such thatHG
0 holds, we can apply Ville’s inequality (Theorem C.1), plugging in the super-martingale

{exp(ωG
t )}t≥0 and taking x to be θt(α) = log (|G|/α). This yields the following guarantee:

Pr[∃t : ωG
t > log(|G|/α)] = Pr[∃t : exp(ωG

t ) > |G|/α]
≤ E[exp(ωG

0 )] · α/|G|
= α/|G|,

where the final line follows because ωG
0 is initialized as 0 and hence exp(ωG

0 ) is equal to 1.

Finally, by union bound we get the desired guarantee:

Pr[∃t : ∃G ∈ GFlag s.t. HG
0 holds] ≤

∑
G s.t. HG

0 holds

Pr[∃t : ωG
t > log (|G|/α)]

≤ |G s.t. HG
0 holds| · α/|G|

≤ α.

Before proving Theorem 4.4, we first state and prove some helper results.

8In particular, it is imposed that λG
t be ’predictable’ which precisely implies that it is fixed given Ft.
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Claim C.3. For any T ≥ 4 and group G, we have that the expected value over the randomness in the realizations of each
Xt of ωG

T defined as per Equations (4) and (5) can be lower bounded as

E[ωG
T ] ≥ E

[
max
λ∈[0,1]

ωT (λ)

]
− 2 lnT.

where we define ωG
T (λ) to be the quantity obtained by applying Equation (4) with λG

t := λ for all t ∈ [T ].

Proof. By the definition of regret we have that maxλ∈[0,1] ω
G
T (λ)− ωG

T ≤ RT . Rearranging and taking expectations, we
have

E[ωG
T ] ≥ E

[
max
λ∈[0,1]

ωG
T (λ)

]
− E[RT ].

Next, it can be verified that Equation (5) implements the Online Newton Step algorithm for ln(1+ λG
t (1Xt∈G− βµ0

G)) (see
Appendix C of Cutkosky & Orabona (2018)). We therefore have that RT ≤ 1

2−ln(3) ln(T +1) in general, and RT ≤ 2 ln(T )

for T ≥ 4. The statement of the claim plugging this into the expression above.

Lemma C.4. For each group G, taking λ⋆
G = Proj[0,1]

[
µG − βµ0

G

βµ0
G(1− βµ0

G)

]
maximizes expected log-wealth (at every step t).

The resulting expected log-wealth at time T (had λ⋆
G been used at every time t) is equal to

E
[
ωG
T (λ

⋆
G)
]
= T · ωG

⋆

where we denote ωG
⋆ := E[ln(1 + λ⋆

G(1Xt∈G − βµ0
G)] the expected one-step wealth change under the bet λ⋆

G.

Proof. For a fixed λ, the log-wealth at time T is given by

ωG
T (λ) = NT ln (1 + λ(1− βµ0

G)) + (T −NT ) ln (1− λβµ0
G),

where NT =
∑T

t=1 1Xt∈G. Taking expectations, we have that E[NT ] = T · µG and therefore

E
[
ωG
T (λ)

]
= T ·

[
µG ln (1 + λ(1− βµ0

G)) + (1− µG) ln (1− λβµ0
G)
]
. (7)

To maximize (7), we only need to find λ⋆
G ∈ [0, 1] that maximizes the expressions in the square brackets. Taking the

derivative we see that the function is concave, and, therefore, we can solve for λ⋆
G by setting the derivative to 0 and then

projecting the resulting value to [0, 1]. This yields λ⋆
G = Proj[0,1]

[
µG−βµ0

G

βµ0
G(1−βµ0

G)

]
. Plugging this back into (7) we get

E
[
ωG
T (λ

⋆
G)
]
= T ·

[
µG ln (1 + λ⋆

G(1− βµ0
G)) + (1− µG) ln (1− λ⋆

Gβµ
0
G)
]

= T · E[ln(1 + λ⋆
G(1Xt∈G − βµ0

G)]

:= T · ωG
⋆ .

Remark C.5. Note that we can explicitly compute

ωG
⋆ = µG ln

(
1 + ∆G

βµ0
G(1−µG)

)
+ ln

(
1− ∆G

1−βµ0
G

)
,

where ∆G = µG − βµ0
G, but this quantity is difficult to analyze, and it is not clear that ωG

⋆ can be explicitly lower bounded
as O(∆G).

We now prove Theorem 4.4, which we restate below.
Theorem 4.4 (Power). Let T be the stopping time of Algorithm 1 with θt(α) = ln (|G|/α) and ωG

t updated as per
Equations (4) and (5). If maxG∈G µG − βµ0

G > 0, then, we have that Pr[T <∞] = 1. Furthermore,

E[T ] ≤ O
(

1

ω2
⋆

+
ln(|G|) + ln(1/α)

ω⋆

)
where ω⋆ := maxG∈G,λ∈[0,1] E[ln(1+λ(1Xt∈G− βµ0

G))] is the maximal expected one-step increase in ωG
t over all groups

and choices of λ.
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Proof. Let G⋆ := argmaxG ωG
⋆ and denote the corresponding one-step wealth change ω⋆ = ωG⋆

⋆ . Note that under the
alternative this will correspond to a strictly positive quantity and is equivalent to the definition in the theorem statement. We
can analyze the likelihood that its null has not been rejected by time t as follows:

Pr
[
ωG⋆

t < ln(|G|/α)
]
= Pr

[
ωG⋆

t − E[ωG⋆

t ] < ln(|G|/α)− E[ωG⋆

t ]
]

≤ Pr
[
ωG⋆

t − E[ωG⋆

t ] < ln(|G|/α)− (t · ω⋆ − 2 ln t)
]
,

where the inequality follows by Claim C.3 and Lemma C.4, and the fact that E[maxλ∈[0,1] ω
G⋆

t (λ)] ≥ E[ωG⋆

t (λG⋆

⋆ )] = t ·ω⋆.
Whenever t is large enough such that ln(t)

t ≤ ω⋆

4 , we have

Pr[ωG⋆

t < ln(|G|/α)] ≤ Pr
[
ωG⋆

t − E[ωG⋆

t ] < ln(|G|/α)− 3
4 (t · ω⋆)

]
. (8)

Since
√
t ≥ ln t for all t ∈ N⋆, this is satisfied in particular by taking t ≥ 24

ω2
⋆

. Further, note that ln(|G|/α) ≤ t·ω⋆

4 whenever

t ≥ 22·ln (|G|/α)
ω⋆

. So, for t ≥ max{ 2
4

ω2
⋆
, 22·ln (|G|/α)

ω⋆
}, we have

Pr[ωG⋆

t < ln(|G|/α)] ≤ Pr
[
ωG⋆

t − E[ωG⋆

t ] < − 1
2 (t · ω⋆)

]
.

Now, note that since λG
t ∈ [0, 1], we have that each ln(1 + λG

t (1Xt∈G − βµ0
G)) lies in [ln (1− βµ0

G), ln (2− βµ0
G)] and is

therefore sub-Gaussian with parameter σ = 1
2 ln

(
1 + 1

1−βµ0
G

)
; then, Hoeffding’s inequality gives

Pr
[
ωG⋆

t − E[ωG⋆

t ] < − 1
2 (t · ω⋆)

]
= Pr

∑
i∈[t]

ln(1 + λG⋆

t (1Xt∈G⋆ − βµ0
G⋆))− E[ωG⋆

t ] ≤ −1

2
t · ω⋆


≤ exp

− ( 12 t · ω⋆)
2

1
2 t ln

2(1 + 1
1−βµ0

G⋆
)


= exp

− ω2
⋆

2 ln2(1 + 1
1−βµ0

G⋆
)
· t


≤ exp

(
− (1− βµ0

G⋆)2

2
· ω2

⋆ · t
)
.

where for the last inequality we used ln (1 + x) ≤ x. Now we are ready to analyze the stopping time T of Algorithm 1.

Test of power one. Let Et be the event that we stop at time t, i.e. Et = {∃G such that ωG
t ≥ |G|/α}. We have that

Pr[T =∞] = Pr
[
lim
t→∞

∩s≤t¬Et

]
= lim

t→∞
Pr[∩s≤t¬Et]

≤ lim
t→∞

Pr[¬Et]

= lim
t→∞

Pr[∀G, ωG
t < ln(|G|/α)]

≤ lim
t→∞

Pr
[
ωG⋆

t < ln(|G|/α)
]

≤ lim
t→∞

exp

(
− (1− βµ0

G)
2

2
· ω2

⋆ · t
)

= 0.
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Expected Stopping Time. Since T is a positive integer, we can express the expected stopping time as

E[T ] =
∞∑
t=1

Pr[T > t]

=

∞∑
t=1

Pr[¬E1 ∧ . . . ∧ ¬Et]

≤
∞∑
t=1

Pr[¬Et]

=

∞∑
t=1

Pr[∀G, ωG
t < ln(|G|/α)]

≤
∞∑
t=1

Pr
[
ωG⋆

t < ln(|G|/α)
]

≤ max

{
24

ω2
⋆

,
22 · ln(|G|/α)

ω⋆

}
+

∞∑
t=1

exp

(
− (1− βµ0

G⋆)2

2
· ω2

⋆ · t
)

(9)

= max

{
24

ω2
⋆

,
22 · ln(|G|/α)

ω⋆

}
+

1

exp ((1− βµ0
G⋆)2ω2

⋆/2)− 1

≤ max

{
24

ω2
⋆

,
22 · ln(|G|/α)

ω⋆

}
+

2

(1− βµ0
G⋆)2ω2

⋆

(10)

≤ O
(

1

ω2
⋆

+
ln(|G|/α)

ω⋆

)

where (9) follows from the upper bound on Pr
[
ωG⋆

t < ln(|G|/α)
]

for t ≥ max
{

24

ω2
⋆
, 22·ln(|G|/α)

ω⋆

}
derived in (8), and (10)

follows from exp(x) ≥ 1 + x.

D. Supplemental Material for Experimental Results
D.1. Supplemental material for vaccine side effect experiments

Data sources. The Vaccine Adverse Event Reporting System (VAERS) is a national adverse event incident database for
U.S.-licensed vaccines, co-managed by the Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug
Administration (FDA) (Chen et al., 1994; Shimabukuro et al., 2015). The database is a combination of voluntary reports
from patients that have received the vaccine, as well as mandatory reports from vaccine manufacturers and healthcare
professionals. For this case study, we filter the set of publicly-available reports from VAERS to reports about the COVID-19
vaccine with a complaint keyword including “myocarditis.” As for how a database administrator would have known to focus
on myocarditis a priori, one might imagine, for example, that the series of case studies found in early 2021 raised the alarm
that more systematic analysis was warranted for myocarditis in particular.

To determine per-demographic base rates, i.e. to compute {µ0
G}G∈G , we utilize VaxView, a government dataset tracking

national vaccine coverage (publicly accessible here), managed by the CDC. VaxView does not track vaccination rates
by granular subgroups, only providing coverage rates disaggregated by age, gender, and ethnicity separately. We thus
impute the vaccination rates for intersections of subgroups (e.g., “12-17, M”) by multiplying the known marginal rates (i.e.,
µ0
(12−17,M) := µ0

(12−17) · µ
0
(M)).

Additional results: Impact of Bonferroni correction. In Figure 2, we show the same axes as in Figure 1—number of
reports to first alarm on the x-axis, vs. number of permutations in which an alarm was triggered on the y-axis—for the three
algorithms at β = 2. Here, we show the impact of Bonferroni correction for multiple hypothesis testing on stopping time.
As expected, the invalid version of the test, which has a lower threshold for rejecting each null, stops more quickly for
all three algorithms (dashed, lighter). The difference between the invalid version and the valid version (solid, darker) is
relatively minor, though the impact varies across algorithms.
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Figure 2: Impact of multiple hypothesis correction on stopping time across algorithms. As in Figure 1, each point on the plot reflects the
number of trials (out of 100) in which a rejection has occurred by time t. In all plots, the lighter, dashed line reflects stopping time of the
invalid test that does not correct for multiple testing; the dark, solid line reflects stopping time of the valid test including a Bonferroni
correction.

D.2. Supplemental material for mortgage allocation experiments

Data sources. We use the data (and preprocessing code) of Martinez & Kirchner (2021), which uses 2019 data from
the HMDA.9 The analysis of Martinez & Kirchner (2021) used the full year of data from 2019; we reduce the dataset to
applications for conventional loans at three of the largest lending institutions, from applicants who have positive income. We
assume that reports will only come from applicants whose loans were denied; in all, there are 183k applicants which satisfy
these criteria.

Reporting models. The dataset gives several levels of financial health as measured by DTI—in ascending order,
are“Struggling”, “Unmanageable,” “Manageable,” and “Healthy.” Modeling the idea that reporting behavior may be
related to financial health, we use these categories to simulate the following possible patterns of reporting.

(1) Correlated: The likelihood of reporting increases with financial health. That is, “Healthy” denials report with
probability 0.9, “Manageable” with probability 0.5, “Unmanageable” with probability 0.3, and “Struggling” with
probability 0.1. Under this reporting model, the 95th-percentile (among all groups) ρG/ρ is 1.2, and maxG ρG/ρ = 1.4.

(2) All Denials: All denials submit reports regardless of financial health. Under this reporting model, the 95th-percentile
ρG/ρ is 1.5, and maxG ρG/ρ = 2.3.

(3) Anti-Correlated: The (unlikely) case where individuals with worse financial health are more likely to report, i.e.
“Healthy” denials report with probability 0.1, “Manageable” with probability 0.5, “Unmanageable” with probability 0.7,
and “Struggling” with probability 0.9. Under this reporting model, the 95th-percentile ρG/ρ is 1.8, and maxG ρG/ρ =
2.7.

Note that the ground-truth ratios ρG/ρ would have been unknown at the time that a practitioner sets β; we are able to
determine these only because we have full information about the dataset and control over the reporting model. However,
these computations suggest that the assumptions on reporting rates implied by the settings of β = {1.2, 1.4, 1.6, 1.8} are
generally reasonable, especially after considering outliers—note the disparity between the 95th-percentile vs max ratios of
ρG/ρ, especially for the All Denials and Anti-Correlated models.

9The Consumer Financial Protection Bureau (CFPB) collects and publishes this data from financial institutions annually, with a
two-year lag; the report (and our work) uses 2019 data which is finalized as of Dec. 31, 2022. The most recent year for which data is
available is 2022, though it is available for edits through 2025.
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