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Abstract

Discrimination mitigation within machine learning (ML) models is complicated be-
cause multiple factors may interweave with each other including hierarchically and
historically. Yet few existing fairness measures can capture the discrimination level
within ML models when dealing with multiple sensitive attributes. To bridge this
gap, we propose a fairness measure based on distances between sets from a manifold
perspective, named ‘harmonic fairness measure via manifolds (HFM)’ with three
optional versions, which can deal with a fine-grained discrimination evaluation for
several sensitive attributes of binary/multiple values. To accelerate the computation
of distances of sets, we further propose approximation algorithms for efficient bias
evaluation. The empirical results demonstrate that our proposed fairness measure
HFM is valid and the approximation algorithms are effective and efficient.

1 Introduction

As techniques of machine learning (ML) and deep learning (DL) are flourishing developed and ML/DL
systems are widely deployed in real life nowadays, the concern about the underlying discrimination
hidden in these models has grown, particularly in high-stakes domains such as healthcare, recruitment,
and jurisdiction [26], where equity for all stakeholders is pivotal to prevent unjust outcomes, akin
to a discriminatory Matthew effect. It is of significance to prevent ML models from perpetuating
or exacerbating inappropriate human prejudices for not only model performance but also societal
welfare. Effectively addressing and eliminating discrimination usually requires a comprehensive
grasp of its occurrence, causes, and mechanisms. For instance, a case involving a person changing
their gender for lower car insurance rates highlights the complexity of fairness in ML.

Although the impressive practical advancements of ML and DL thrive on abundant data, their
trustworthiness and equity heavily hinge on data quality. In fact, one of the primary sources of
unfairness identified in the existing literature is biases from the data, possibly collected from various
sources such as device measurements and historically biassed human decisions [32]. Moreover,
the challenge of data imbalance often looms in human-sensitive domains, amplifying concerns of
discrimination and bias propagation in ML models. Then misinformed model training would amplify
imbalances and biases in data, with wide-reaching societal implications. For example, optimising
aggregated prediction errors can advantage privileged groups over marginalised ones. In addition,
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missing data like instances or values may introduce disparities between the dataset and the target
population, leading to biassed results as well. Therefore, in order to ensure fairness and mitigate
biases, it is crucial to correctly cope with data imbalance and prevent ML models from perpetuating
or even exacerbating inappropriate human prejudices.

To mitigate bias within ML models, the very first step is to promptly recognise its occurrence. How-
ever, promptly detecting discrimination fully, truly, and faithfully is not quite easy because of plenty of
factors interweaving with each other. First, learning algorithms might yield unfair outcomes even with
purely clean data due to proxy attributes for sensitive features or tendentious algorithmic objectives.
For instance, the educational background of one person might be a proxy attribute for those born in
families with a preference for boys. Second, the existence of multiple sensitive attributes and their
twist with each other highlight the complexity of bias tackling, like one member from a marginalised
group could become one of the majority concerning another factor, or vice versa. Third, dynamic
changes and historical factors may need to be taken into account, as bias hidden in data, data imbal-
ance, and present decisions may interweave, causing some interrelated impact and vicious circles. De-
spite many fairness measures that have been proposed to facilitate bias mitigation, existing measures
can only focus on either group or individual fairness, rather than incorporating both together. Besides,
most of them mainly focus on one or more sensitive attributes with binary values, yet few could handle
bias appropriately when facing multiple sensitive attributes with even multiple values. Therefore,
it motivates us to investigate a proper tool to deal with bias in such aforementioned scenarios.

In this paper, we investigate the possibility of assessing the discrimination level of ML models in
the existence of several sensitive attributes with multiple values. To this end, we introduce a novel
fairness measure from a manifold perspective, named ‘harmonic fairness measure via manifolds
(HFM)’, with three optional versions (that is, previous, maximum, and average HFM). However,
the direct calculation of HFM lies on a core distance between two sets, which might be pretty
costly. Therefore, we further propose two approximation algorithms that quickly estimate the
distance between sets, named ‘Approximation of distance between sets for one sensitive attribute
(ApproxDist)’ and ‘Approximation of extended distance between sets for several sensitive attributes
(ExtendDist)’ respectively, in order to speed up the calculation and enlarge its practical applicable
values. Furthermore, we also investigate their algorithmic properties under certain reasonable
assumptions, in other words, how effective they could be in achieving the approximation goal.

Our contribution in this work is three-fold: (1) We propose a fairness measure named HFM that could
reflect the discrimination level of classifiers even simultaneously facing several sensitive attributes
with multiple values. Note that HFM has three optional versions, of which all are built upon a
concept of distances between sets from the manifold perspective. (2) We propose two approximation
algorithms (that is, ApproxDist and ExtendDist) that accelerate the estimation of distances between
sets, to mitigate its disadvantage of costly direct calculation of HFM. (3) Comprehensive experiments
are conducted to demonstrate the effectiveness of the proposed HFM and approximation algorithms.

2 Methodology

In this section, we formally study the measurement of fairness from a manifold perspective.

We use S = {(xi, yi)}ni=1 to denote a dataset where the instances are iid. (independent and
identically distributed), drawn from an feature-label space X×Y based on an unknown distribution.
The feature/input space X is arbitrary, and the label/output space Y = {1, 2, ..., nc}(nc ⩾ 2) is
finite, which could be binary or multi-class classification, depending on the number of labels (i.e.,
the value of nc). Presuming that the considered dataset S is composed of the instances including
sensitive attributes, the features of one instance including sensitive attributes a=[a1, a2, ..., ana ]

T

is represented as x ≜ (x̆,a), where na ⩾ 1 is the number of sensitive attributes allowing multiple
attributes and ai∈Z+(1⩽ i⩽na) allows both binary and multiple values. A function f ∈F : X 7→Y
represents a hypothesis in a space of hypotheses F , of which the prediction for one instance x is
denoted by f(x) or ŷ. Note that i ∈ [n] is used to represent i ∈ {1, 2, ..., n} for brevity.

2.1 Model fairness assessment from a manifold perspective

Given the dataset S = {(x̆i,ai, yi)|i ∈ [n]} composed of instances including sensitive attributes,
here we denote one instance by x = (x̆,a) = [x1, ..., xnx

, a1, ..., ana
]T for clarity, where na is the
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number of sensitive/protected attributes and nx is that of unprotected attributes in x. In this paper,
we introduce a new fairness measure in scenarios of one or more sensitive attributes from a manifold
perspective, which works for both binary and multiple possible values. Inspired by the principle of
individual fairness—similar treatment for similar individuals, if we view the instances (with the same
sensitive attributes) as data points on certain manifolds, the manifold representing members from
the marginalised/unprivileged group(s) is supposed to be as close as possible to that representing
members from the privileged group. To measure the fairness with respect to the sensitive attribute,
we proposed a fairness measure that is inspired by ‘the distance of sets’ introduced in mathematics.

Distance between sets for one sensitive attribute with binary values For a certain bi-valued
sensitive attribute ai∈Ai={0, 1}, S can be divided into two subsets S1={(x, y)∈ S | ai=1} and
S̄1=S \ S1= {(x, y)∈ S | ai ̸=1}, where ai=1 means the corresponding instance is a member
from the privileged group. Then given a specific distance metric d(·, ·) (e.g., the standard Euclidean
metric) on the feature space, the distance between these two subsets (that is, S1 and S̄1) is defined by

D(S1, S̄1) ≜ max
{

max
(x,y)∈S1

min
(x′,y′)∈S̄1

d
(
(x̆, y), (x̆′, y′)

)
, max
(x′,y′)∈S̄1

min
(x,y)∈S1

d
(
(x̆, y), (x̆′, y′)

)}
, (1)

and it is viewed as the distance between the manifolds of marginalised group(s) and that of the
privileged group. Notice that this distance satisfies three basic properties: identity, symmetry, and
triangle inequality. Analogously, for a trained classifier f(·), we can calculate

Df (S1, S̄1) = max
{

max
(x,y)∈S1

min
(x′,y′)∈S̄1

d
(
(x̆, ŷ), (x̆′, ŷ′)

)
, max
(x′,y′)∈S̄1

min
(x,y)∈S1

d
(
(x̆, ŷ), (x̆′, ŷ′)

)}
. (2)

By recording the true label y and the prediction ŷ as one denotation (say ÿ) for simplification, we
could rewrite (1) and (2) as

D·(S1, S̄1) ≜ max
{

max
(x,y)∈S1

min
(x′,y′)∈S̄1

d
(
(x̆, ÿ), (x̆′, ÿ′)

)
, max
(x′,y′)∈S̄1

min
(x,y)∈S1

d
(
(x̆, ÿ), (x̆′, ÿ′)

)}
. (3)

We will continue using the above notations in the subsequent context for simplification.

Distance between sets for one sensitive attribute with multiple values As for the scenarios where
only one sensitive attribute exists, let a = [ai]

T be a single sensitive attribute, in other words, na=1,
ai∈Ai={1, 2, ..., nai}, nai ⩾ 3, and nai ∈Z+. Then the original dataset S can be divided into a few
disjoint sets according to the value of this attribute ai, that is, Sj = {(x, y) ∈ S | ai = j},∀j ∈ Ai.
We can now extend (3) and introduce the following distance measures: (i) maximal distance measure
for one sensitive attribute

D·,a(S, ai) ≜ max1⩽j⩽nai

{
max(x,y)∈Sj

min(x′,y′)∈S̄j
d
(
(x̆, ÿ), (x̆′, ÿ′)

)}
, (4)

and (ii) average distance measure for one sensitive attribute

D
avg
·,a (S, ai) ≜ 1

n

∑nai
j=1

∑
(x,y)∈Sj

min(x′,y′)∈S̄j
d
(
(x̆, ÿ), (x̆′, ÿ′)

)
, (5)

where S̄j= S\Sj . Notice that D·,a(S, ai)=D·(S1, S̄1) when Ai={0, 1}.

Distance between sets for multiple sensitive attributes with multiple values Now we discuss the
general case, where we have several sensitive attributes a = [a1, a2, ..., ana ]

T and each ai ∈ Ai =
{1, 2, .., nai

}, where nai
is the number of values for this sensitive attribute ai (1 ⩽ i ⩽ na). We

can now introduce the following generalised distance measures: (i) maximal distance measure for
sensitive attributes

D·,a(S) ≜ max1⩽i⩽na D·,a(S, ai) , (6)

and (ii) average distance measure for sensitive attributes

D
avg
·,a (S) ≜

1
na

∑na
i=1 D

avg
·,a (S, ai) . (7)

Remark. (1) It is easy to see that D·,a(S) ⩾ Davg
·,a(S). (2) Both D·,a(S, ai) and Davg

·,a(S, ai)
measure the fairness regarding the sensitive attribute ai. (3) As their names suggest, the maximal
distance represents the largest possible disparity between instances with different sensitive attributes,
while the average distance reflects the average disparity between instances with different sensitive
attributes. The formal distance measures are more stringent, they are susceptible to data noise. In
contrast, the latter type of distance measures are more resilient against the influence of data noise.
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Algorithm 1 Acceleration sub-procedure, aka. AcceleDist ({(x̆i, ai)}ni=1, {ÿi}ni=1,w;m2)

Input: Data points {(x̆i, ai)}ni=1, its corresponding value {ÿi}ni=1, where ÿi could be its true label yi or
prediction ŷi by the classifier f(·), a random vector w for projection, and a hyper-parameter m2

Output: Approximation of D·,a(S, ai) and nDavg
·,a(S, ai)

1: Project data points onto a one-dimensional space based on (9), in order to obtain {g(xi, ÿi;w)}ni=1

2: Sort original data points based on {g(xi, ÿi;w)}ni=1 as their corresponding values, in ascending order
3: for i from 1 to n do
4: Set the anchor data point (xi, ÿi) in this round
5: // If ai=j (marked for clarity), to approximate min(x′,y′)∈S̄j

d
(
(x̆i, ÿi), (x̆

′, ÿ′)
)

6: Compute the distances d((x̆i, ÿi), ·) for at most m2 nearby data points that meets a ̸= ai and
g(x̆, ÿ;w) ⩽ g(x̆i, ÿi;w)

7: Find the minimum among them, recorded as dsmin
8: Compute the distances d((x̆i, ÿi), ·) for at most m2 nearby data points that meets a ̸= ai and

g(x, ÿ;w) ⩾ g(xi, ÿi;w)
9: Find the minimum among them, recorded as drmin

10: d
(i)
min = min{dsmin, d

r
min}

11: end for
12: return max{d(i)min | i ∈ [n]} and

∑n
i=1 d

(i)
min

We remark that Da(S), D
avg
a (S) reflect the biases from the data and Df,a(S), D

avg
f,a(S) reflect the

extra biases from the learning algorithm. Then the following values could be used to reflect the
fairness degree of this classifier, that is,

df prev(f) = Df,a(S)/Da(S) − 1 , (8a)
df(f) = log (Df,a(S)/Da(S)) , (8b)

df avg(f) = log (D
avg
f,a

(S)/Davg
a (S)) . (8c)

We name the fairness degrees of one classifier, defined above by (8), as ‘previous harmonic fairness
measure via manifolds (HFM)’, ‘maximum HFM’, and ‘average HFM’, respectively.

2.2 A prompt approximation of distances between sets for Euclidean spaces

To reduce the high computational complexity (O(n2)) of directly calculating (4) and (5), we propose
a prompt approximation algorithm with the computational complexity of O(n log n), in order to use
distances of sets to measure the discriminative level of classifiers in practice.

Since the core operation in these two equations is to evaluate the distance between data points inside
X × Y , to reduce the number of distance evaluation operations involved in them, we observe that
the distance between similar data points tends to be closer than others after projecting them onto a
general one-dimensional linear subspace. To be concrete, let g : X × Y 7→ R be a random projection,
then we could write g as

g(x, ÿ;w) = g(x̆,a, ÿ;w) = [ÿ, x1, ..., xnx ]
Tw , (9)

where w= [w0, w1, ..., wnx
]T is a non-zero random vector. Now, we choose a random projection

g :X×Y 7→R, and then sort all the projected data points on R. According to (9), it is likely that for the
instance (x, y) in Sj , the desired instance argmin(x′,y′)∈S̄j

d
(
(x̆, y), (x̆′, y′)

)
would be somewhere

near it after the projection, and vice versa. Thus, by using the projections, we could accelerate the
process in (4) and (5) by checking several adjacent instances rather than traversing the whole dataset.

Then we could propose an approximation algorithm to estimate the distance between sets in (4) and (5),
named as ‘Approximation of distance between sets for one sensitive attribute (ApproxDist)’, shown in
Algorithm 2. As for the distance in (6) and (7), we propose ‘Approximation of extended distance be-
tween sets for several sensitive attributes (ExtendDist)’, shown in Algorithm 3. Note that there exists
a sub-route within ApproxDist to obtain approximated distances between sets, which is named as ‘Ac-
celeration sub-procedure (AcceleDist)’ and shown in Algorithm 1. As the time complexity of sorting
in line 2 of Algorithm 1 could reach O(n log n), we could get the computational complexity of Algo-
rithm 1 as follows: i) The complexity of line 1 is O(n); and ii) The complexity from line 4 to line 10 is
O(2m2 +1). Thus the overall time complexity of Algorithm 1 would be O(n(log n+m2 +1)), and
that of Algorithm 2 be O(m1n(log n+m2)), and that of Algorithm 3 be O(nam1n(log n+m2)). As
both m1 and m2 are the designated constants, and na is also a fixed constant for one specific dataset,
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Algorithm 2 Approximation of distance between sets for one sensitive attribute with binary/multiple values,
aka. ApproxDist ({(x̆i, ai)}ni=1, {ÿi}ni=1;m1,m2)

Input: Dataset S = {(xi, yi)}ni=1, prediction of S by the classifier f(·) that has been trained, that is, {ŷi}ni=1,
and two hyper-parameters m1 and m2 as the designated numbers for repetition and comparison respectively

Output: Approximation of D·,a(S, ai) and Davg
·,a(S, ai)

1: for j from 1 to m1 do
2: Take two orthogonal vectors w0 and w1 where each wk ∈ [−1,+1]1+nx (k = {0, 1})
3: for k from 0 to 1 do
4: tkmax, t

k
avg =AcceleDist ({(x̆i, ai)}ni=1, {ÿi}ni=1,wk;m2)

5: end for
6: djmax = min{tkmax | k ∈ {0, 1}} = min{t0max, t

1
max}

7: djavg = min{tkavg | k ∈ {0, 1}} = min{t0avg, t
1
avg}

8: end for
9: return min{djmax | j ∈ [m1]} and 1

n
min{djavg | j ∈ [m1]}

Algorithm 3 Approximation of extended distance between sets for several sensitive attributes with bi-
nary/multiple values, aka. ExtendDist ({(x̆i,ai)}ni=1, {ÿi}ni=1;m1,m2),

Input: Dataset S = {(xi, yi)}ni=1 = {(x̆i,ai, yi)}ni=1 where ai = [ai,1, ai,2, ..., ai,na ]
T, prediction of S

by the classifier f(·) that has been trained, that is, {ŷi}ni=1, and two hyper-parameters m1 and m2 as the
designated numbers for repetition and comparison respectively

Output: Approximation of D·,a(S) and Davg
·,a(S)

1: for j from 1 to na do
2: d

(j)
max, d

(j)
avg = ApproxDist ({(x̆i, ai,j)}ni=1, {ÿi}ni=1;m1,m2)

3: end for
4: return max1⩽j⩽na{d

(j)
max | j ∈ [na]} and 1

na

∑na
j=1 d

(j)
avg

the time complexity of computing the distance is then down to O(n log n), which is more welcome
than O(n2) for the direct computation. Note that a simplified and faster version of ApproxDist is also
provided in Appendix B.1, with the same computational complexity of O(m1n(log n+m2)).

It is worth noting that in line 9 of Algorithm 2, we use the minimal instead of their average value.
The reason is that in each projection, the exact distance for one instance would not be larger than the
calculated distance for it via AcceleDist; and the same observation holds for all of the projections in
ApproxDist. Thus, the calculated distance via ApproxDist is always no less than the exact distance, and
the minimal operator should be taken finally after multiple projections. Also note that we demonstrate
the algorithmic effectiveness of Algorithm 2 under certain reasonable assumptions in Appendix B.2.

3 Empirical results

In this section, we elaborate on our experiments to evaluate the effectiveness of the proposed HFM in
(8) as well as ExtendDist and ApproxDist. More details are elaborated in Appendix C to save space.

Comparison between HFM and baseline fairness measures The aim of this experiment is to eval-
uate the effectiveness of the proposed HFM compared with baseline fairness measures. We compare
the correlation (referring to the Pearson correlation coefficient) between the performance difference
and different fairness measures, and report the empirical results in Fig. 1–2 and Appendix C.2.

For one single sensitive attribute in Fig. 1, df avg is highly correlated with recall/sensitivity and f1
score. Besides, even df avg only describes the extra bias, its correlation with ∆(performance) is still
close to that of DR (and sometimes DP), which means the average HFM (i.e., df avg) can capture the
bias within classifiers indeed and that it captures the bias more finely than df prev and df . Moreover,
df avg shows higher correlation with ∆(performance) than df in most cases, which means df avg may
capture the extra bias level of classifiers better than df in practice. Similar observations could also be
found in Fig. 2 for multiple sensitive attributes. Besides, we observe that the correlation between
df avg and ∆Accuracy (resp. ∆f1 score, ∆Specificity) achieves half of that of DR, and df avg even
outperforms DR concerning ∆Recall. Given that HFM only captures the extra bias introduced by
classifiers, we believe at least df avg could capture quite a part of bias within.
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Figure 1: Correlation heatmap between normal
evaluation metric and fairness, for one sensitive at-
tribute. The used notations refer to those in Table 2.
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Figure 2: Correlation heatmap between normal evaluation
metric and fairness measure, for all sensitive attributes within
the dataset. The notations used here refer to those in Table 3.
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Figure 3: Comparison of approximation distances with precise distances that are calculated directly by definition,
evaluated on test data. (a–b), (c–d), (e–f), and (g–h) Scatter plots for comparison between approximated and
precise values of D·,a(S), D·,a(S, ai), Davg

·,a(S), and Davg
·,a(S, ai), respectively; (i–j) Time cost comparison

between ExtendDist and direct computation; (k–l) Time cost comparison between ApproxDist and direct
computation. Note that ‘prev’ denotes approximation results obtained by the simplified Algorithm 4.

Validity of approximation algorithms for distances between sets in Euclidean spaces To verify
whether ApproxDist and ExtendDist could achieve the true distance between sets precisely and timely,
we employ scatter plots to compare their values and time cost, presented in Fig. 3 and Appendix C.3.

As shown in Fig. 3(c)–3(d), the approximated values of maximal distance Da(S, ai) are highly
correlated with their corresponding precise values. Besides, their linear fit line and the identity line
(that is, f(x) = x) are near and almost parallel, which means the approximated values are pretty close
to their precise value. Similar observations are concluded for the average distance Davg

a (S, ai) in
Fig. 3(g)–3(h), maximal distance Da(S) in Fig. 3(a)–3(b), and average distance Davg

a (S) in Fig. 3(e)–
3(f), respectively. As for the execution time of approximation and direct computation in Fig. 3(k)–3(l),
ApproxDist may take a bit longer time in scenarios of multi-value cases than that of binary values,
while all of them could achieve a shorter time than precise values when the execution of direct
computation is costly. As for the execution time of approximation and direct computation in Fig. 3(i)–
3(j), ExtendDist would obtain a bigger advantage when computing precise values is expensive, while
on the opposite, we do not need ExtendDist that much and can directly calculate them instead.
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4 Conclusion

In this paper, we investigate how to evaluate the discrimination level of classifiers in the face
of multi-attribute protection scenarios and present a novel harmonic fairness measure with three
optional versions, of which all are based on distances between sets from a manifold perspective.
To accelerate the computation of distances between sets and reduce its time cost from O(n2) to
O(n log n), we further propose two approximation algorithms to resolve bias evaluation in scenarios
for single attribute protection and multi-attribute protection, respectively. The empirical results have
demonstrated that the proposed fairness measure and approximation algorithms are valid and effective.
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A Related work

In this section, we firstly introduce existing techniques to enhance fairness and then summarise
available metrics to measure fairness for ML models in turn.

A.1 Techniques to enhance fairness

Existing mechanisms to mitigate biases and enhance fairness in ML models could be typically divided
into three types: pre-processing, in-processing, and post-processing mechanisms, based on when
manipulations are applied during model training pipelines. Particularly, recent work on in-processing
fairness for DL models mainly falls under two types of approaches: constraint-based and adversarial
learning methods [31]. Constraint-based methods usually incorporate fairness metrics directly into
the model optimisation objectives as constraints or regularisation terms. For instance, Zemel et
al. [36], the pioneer in this direction, put demographic parity constraints on model predictions.
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Subsequent work also includes using approximations [35] or modified training schemes [25] to
improve scalability. Adversarial methods intend to learn representations as fairly as possible by
removing sensitive attribute information. In such procedures, additional prediction heads may be
introduced for attribute subgroup predictions and the information concerning sensitive attributes
would be removed through inverse gradient updating [34, 20] or disentangling features [18, 23, 30, 12].
Other fairness enhancing techniques include data augmentations [24], sampling [29, 22], data noising
[38], dataset balancing with generative methods [14, 16, 28], and reweighting mechanisms [39, 11].
Recently, mixup operations [33, 37, 31] are adopted to enhance fairness by blending inputs across
subgroups [5, 7]. However, most of these studies focus on protecting one single sensitive attribute
and are hardly able to deal with several sensitive attributes all at once. And multi-attribute fairness
protection remains relatively rarely explored.

A.2 Existing fairness metrics and multi-attribute fairness protection

The well-known fairness metrics are generally divided into group fairness—such as demographic
parity (DP), equality of opportunity (EO), and predictive quality parity (PQP)—and individual
fairness [8, 2, 40, 17, 27]. The former mainly focuses on statistical/demographic equality among
groups defined by sensitive attributes, while the latter cares more about the principle that ‘similar
individuals should be evaluated or treated similarly.’ However, satisfying fairness metrics all at once
is hard to achieve because they are usually not compatible with each other [1]. In practice, it may
need to deliberate on the choice of the specified distance in individual fairness [17, 8]. Moreover, the
three commonly used group fairness measures (that is, DP, EO, and PQP) can only deal with one
single sensitive attribute with binary values. Although extending them to scenarios of one sensitive
attribute with multiple values is possible, they are still limited when facing several sensitive attributes
at the same time. Recent work includes a newly proposed fairness measure named discriminative risk
(DR) [3] that is capable of capturing bias from both individual and group fairness aspects and two
fairness frameworks (that is, InfoFair [19] and MultiFair [31]) to deliver fair predictions in face of
multiple sensitive attributes. Yet these two fairness frameworks are not measures that could directly
evaluate the discrimination level of ML models.

B Supplemental methodology

B.1 Additional approximation algorithm

There is a simplified and faster version of ApproxDist, described in Algorithm 4. This major difference
is that: while Algorithm 4 takes only one random vector each time, ApproxDist of Algorithm 2
take a few orthogonal random vectors each time and do the projection-relevant process for all these
orthogonal vectors. The number of these orthogonal vectors could be nx + 1, or smaller (such as
two or three) if the practitioners would like to save more time in practice. For instance, we set two
orthogonal random vectors in Algorithm 2 at present. Then we take the minimum among all estimated
distances. This modification may slightly increase the time cost of approximation a bit compared
with the simplified Algorithm 4, yet will still significantly accelerate the execution speed and the
effectiveness of the projection algorithm, compared with the direct calculation of distances.

Algorithm 4 Simplified approximation of distance between sets for one sensitive attribute, aka.
ApproxDist ({(x̆i,ai)}ni=1, {ÿi}ni=1;m1,m2)

Input: Dataset S={(xi, yi)}ni=1, prediction of S by the classifier f(·) that has been trained, that is, {ŷi}ni=1,
and two hyper-parameters m1 and m2 as the designated numbers for repetition and comparison respectively

Output: Approximation of distance D·(S1, S̄1) in (3)
1: for j from 1 to m1 do
2: Take a random vector w from the space W={w=[w0, w1, ..., wnx ]

T|
∑nx

i=0 |wi|=1} ⊆ [−1, 1]1+nx

3: djmax, _ = AcceleDist ({(x̆i,ai)}ni=1, {ÿi}ni=1,w;m2)
4: end for
5: return min{djmax | j ∈ [m1]}
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B.2 Algorithmic effectiveness analysis of ApproxDist

As ApproxDist in Algorithm 2 is the core component devised to facilitate the approximation of
direct calculation of the distance between sets, in this section, we detail more about its algorithmic
effectiveness under some conditions.

We first introduce an important lemma, stated in Lemma 1, that confirms the observation that ‘the
distance between similar data points tends to be closer than others after projecting them onto a general
one-dimensional linear subspace’. It demonstrates by (10) that the probability P(v1,v2) also goes
to zero when the ratio r1/r2 goes to zero. Additionally, it is easy to observe that P(v1,v2) reaches
the same order of magnitude as r1/r2, and especially, when r1 equals r2, P(v1,v2) could be roughly
viewed as 1/2 for coarse approximation. It means that the breaking probability of the aforementioned
statement—similar data points leading to closer distances—tends to increase as r1 gradually gets
closer to r2. And the profound meaning behind Lemma 1 is that the bigger the gap of lengths between
v1 and v2 is, the more effective and efficient our proposed approximation algorithms would be.
Lemma 1. Let v1 (resp. v2) be a vector in the n-dimensional Euclidean space Rn with length r1
(resp. r2) such that r1 ⩽ r2. Let w ⊂ Rn be a unit vector. We define P(v1,v2) as the probability
that |⟨w,v1⟩| ⩾ |⟨w,v2⟩|. Then,

sinϕ

π
· r1
r2

⩽ P(v1,v2) ⩽

(
1 +

r21
r22

)−1/2

· r1
r2

, (10)

where ϕ represents the angle between v1 and v2 .

Proof. Notice that |⟨w,v1⟩| ⩾ |⟨w,v2⟩| is equivalent to

⟨v2 − v1,w⟩⟨v1 + v2,w⟩ ⩽ 0 . (11)

If w satisfies (11), then it lies between two hyperplanes that are perpendicular to v1−v2 and v1+v2

respectively. Denote by θ the angle between these two hyperplanes (which is equal to the acute angle
between v2 − v1 and v1 + v2), then P(v1,v2) = θ/π. Moreover,

sin2 θ = 1− cos2 θ =
4∥v1∥2∥v2∥2 − 4⟨v1,v2⟩2

(∥v1∥2 + ∥v2∥2)2 − 4⟨v1,v2⟩2
. (12)

Here ∥vi∥2 = ⟨vi,vi⟩ = r2i (i = 1, 2) is the square length of the vector. Recall that ⟨v1,v2⟩ =
∥v1∥∥v2∥cos ϕ. By (12), we have

∥v1∥2

∥v2∥2
sin2 ϕ ⩽ sin2 θ ⩽

4∥v1∥2∥v2∥2

(∥v1∥2 + ∥v2∥2)2
. (13)

Combining (13) with the fact that 2
π θ ⩽ sin θ ⩽ θ, we conclude that the probability P(v2,v2) =

θ
π

satisfies the desired inequalities.

Our main result in this section is Proposition 2, whereby (15), the efficiency of ApproxDist decreases
as the scaled density µ of the original dataset increases. Meanwhile, when dealing with large-scale
datasets, the more insensitive attributes we have, the more efficient ApproxDist is. In general, the
efficiency of ApproxDist depends on the shape of these two subsets of S. Roughly speaking, the more
separated these two sets are from each other, the more efficient ApproxDist is.
Proposition 2. Let S= {(xi, yi)}ni=1 ⊂ X × Y be a (k+1)-dimensional dataset where instances
have (k+1) features, an evenly distributed dataset with a size of n that is a random draw of the
feature-label space X × Y . For any two subsets of S with distance d (ref. (3)), suppose further that
the scaled density

lim sup
B⊂Rk+1 an Euclidean ball

1

Vol(B)
#(B ∩ S) =

µ

Vol(B(d))
, (14)

for some positive real number µ (here # denotes the number of points of a finite set and B(d) denotes
a ball of radius d). Then, with probability at least

1−
(

πµ

m2Vol(B(1))

((
1 +

n

µ

) 1
k+1 − α

))m1

, (15)

ApproxDist could reach an approximate solution that is at most α times of the distance between these
two subsets.
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Proof. Let S0 and S1 be two sub-datasets of S. We fix the instance v0 ∈ S0 such that d ≜
D(S0, S1) = d(v0,v1) for some v1 ∈ S1. For simplicity, we may set v0 as the origin. The
probability that an instance v ∈ S1 has a shorter length than v1 after projection to a line (see (9))
is denoted as P(v1,v). By assumption, we only need to consider those instances whose length is
greater than αd (outside the ball B(αd) centered at origin). Hence, the desired probability is bounded
from below by

1−
(

1

m2

∑
v/∈B(αd)

P(v0,v)

)m1

. (16)

However, (16) is based on the extreme assumption that all instances lie on the same two-dimensional
plane. In our case, the instances are evenly distributed. Hence, we may adjust the probability by
multiplying

Vol(S1(∥v∥d ))

Vol(Sk(∥v∥d ))
=

Γ(k+1
2 )

π
k−1
2

·
(

d

∥v∥

)k−1

,

where Γ(·) denotes the Gamma function and Vol(Si(r)) denotes the area of the i-th dimensional
sphere of radius r. Hence, by Lemma 1, the desired probability is lower bounded by

1−
(

1

m2

∑
v/∈B(αd)

(
1 +

d2

∥v∥2

)− 1
2

·
Γ( k+1

2
)

π
k−1
2

·
(

d

∥v∥

)k)m1

. (17)

Under our assumption, (17) attains the lowest value when the data are evenly distributed inside a
hollow ball B0 \B(d) centered at v0. The radius of B0, denoted as r0, satisfies

n− 1 = µ
Vol(B0 \B(d))

Vol(B(d))
= µ

((r0
d

)k+1

− 1
)
. (18)

In this situation, we may write the summation part of (17) as an integration. To be more specific, (17)
is lower bounded by

1−
(

1

m2

∫ r0

αd

A(x)µVol(Sk(x))dx

)m1

. (19)

where A(x) = (1 + d2

x2 )
− 1

2
Γ( k+1

2 )

π(k−1)/2 · ( dx )
k. Moreover, (19) can be simplified as

1−
(

1

m2Vol(B(1))

∫ r0

αd

πµ

d
· x√

x2 + d2
dx

)m1

. (20)

Combining (18) and (20), we conclude that the desired probability is lower bounded by

1−
(

πµ

m2Vol(B(1))

(((
1 +

n

µ

) 2
k+1

+ 1
) 1

2 − (α2 + 1)
1
2

))m1

. (21)

And the proposition follows from (21).

Now we discuss the choice of hyper-parameters (i.e., m1 and m2) according to (15). In fact, (15)
can be approximately written as 1 − c · n

m1
k+1 /mm1

2 . We can calculate the order of magnitude of
n

m1
k+1 /mm1

2 by taking the logarithm:

−λ ≜ lg
(
n

m1
k+1 /mm1

2

)
= m1

(
lgn

k + 1
− lgm2

)
. (22)

Therefore ApproxDist could reach an approximate solution with probability at least (1− c · 10−λ).
In practice, we choose positive integers m2 and m1 such that λ is reasonably large, ensuring that the
algorithm will reach an approximate solution with high probability.

C Supplemental empirical results

In this section, we elaborate on our experiments to evaluate the effectiveness of the proposed HFM
in (8) and ExtendDist in Algorithm 3, as well as ApproxDist in Algorithm 2. These experiments
are conducted to explore the following research questions: RQ1. Compared with baseline fairness
measures, does the proposed HFM capture the discrimination level of one classifier effectively,
as well as from both individual and group fairness aspects, and can it capture the discrimination
level when facing several sensitive attributes with multiple values at the same time? RQ2. Can
ApproxDist approximate the direct computation of distances in (4) and (5) precisely, and how efficient
is ApproxDist compared with the direct computation? And by extension, can ExtendDist approximate
the direct computation of distances in (6) and (7) precisely, and how efficient is ExtendDist?

11



C.1 Experimental setups

In this subsection, we present the experimental settings we use, including datasets, evaluation metrics,
baseline fairness measures, and implementation details.

Datasets Five public datasets were adopted in the experiments: Ricci,2 Credit,3 Income,4 PPR, and
PPVR.5 Each of them has two sensitive attributes except Ricci, with more details provided in Table 1.

Table 1: Dataset statistics. The column ‘#inst’ represents the number of instances; The jointboth column
represents that both two of the sensitive attribute values of one instance belong to the corresponding privileged
group; The jointeither column represents for this instance, at least one of its sensitive values belongs to the
corresponding privileged group.

Dataset #inst #feature #member in the privileged group
raw processed 1st priv 2nd priv jointboth jointeither

ricci 118 5 6 68 in race — — —
credit 1000 21 58 690 in sex 851 in age 625 916

income 30162 14 98 25933 in race 20380 in sex 18038 28275
ppr 6167 11 401 4994 in sex 2100 in race 1620 5474

ppvr 4010 11 327 3173 in sex 1452 in race 1119 3506

Evaluation metrics As data imbalance usually exists within unfair datasets, we consider several
criteria to evaluate the prediction performance from different perspectives, including accuracy,
precision, recall (aka. sensitivity), f1 score, and specificity. For efficiency metrics, we directly
compare the time cost of different methods.

Baseline fairness measures To evaluate the validity of HFM in capturing the discriminative degree
of classifiers, we compare it with three commonly-used group fairness measures (that is, demographic
parity (DP) [9, 10], equality of opportunity (EO) [13], and predictive quality parity (PQP) [4, 32])6

and discriminative risk (DR)7 [3] that could reflect the bias level of ML models from both individual-
and group-fairness aspects.

Implementation details We mainly use bagging, AdaBoost, LightGBM [21], FairGBM [6], and
AdaFair [15] as learning algorithms, where FairGBM and AdaFair are two fairness-aware ensemble-
based methods. Plus, certain kinds of classifiers are used in Section 3—including decision trees (DT),
naive Bayesian (NB) classifiers, k-nearest neighbours (KNN) classifiers, Logistic Regression (LR),
support vector machines (SVM), linear SVMs (linSVM), and multilayer perceptrons (MLP)—so that
we have a larger learner pools to choose from based on different fairness-relevant rules. Standard
5-fold cross-validation is used in these experiments, in other words, in each iteration, the entire
dataset is divided into two parts, with 80% as the training set and 20% as the test set. Also, features
of datasets are scaled in preprocessing to lie between 0 and 1. Except for the experiments for RQ3,
we set the hyper-parameters m1 = 25 and m2 = ⌈2 lg(n)⌉ in other experiments.

2https://rdrr.io/cran/Stat2Data/man/Ricci.html
3https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data
4https://archive.ics.uci.edu/ml/datasets/adult
5https://github.com/propublica/compas-analysis/, that is, Propublica-Recidivism and

Propublica-Violent-Recidivism datasets
6Three commonly used group fairness measures of one classifier f(·) are evaluated as

DP(f) = |PD[f(x)=1|a=1] − PD[f(x)=1|a=0]| , (23a)

EO(f) = |PD[f(x)=1|a=1, y=1] − PD[f(x)=1|a=0, y=1]|, (23b)

PQP(f) = |PD[y=1|a=1, f(x)=1] − PD[y=1|a=0, f(x)=1]|, (23c)
respectively, where x = (x̆,a), y, and f(x) are respectively features, the true label, and the prediction of this
classifier for one instance. Note that a = 1 and 0 respectively mean that the instance x belongs to the privileged
group and marginalised groups.

7The discriminative risk (DR) of this classifier is evaluated as
DR(f) = ED[I(f(x̆,a) ̸= f(x̆, ã))] , (24)

where ã represents the disturbed sensitive attributes. DR reflects its bias degree from both individual- and
group-fairness aspects.
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https://rdrr.io/cran/Stat2Data/man/Ricci.html
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https://github.com/propublica/compas-analysis/
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Figure 4: Plots of best test-set fairness-performance trade-offs per fairness metric [6] (the smaller the better).
(a) Plot of fairness-accuracy trade-off for one single sensitive attribute; (b) Plot of fairness-accuracy trade-off for
all sensitive attributes; (c–d) Plots of fairness-f1 score trade-off for one sensitive attribute and for all sensitive
attributes, respectively. Note that the notations in (a) and (c) refer to those in Table 2, and that in (b) and (d) refer
to those in Table 3.

C.2 Comparison between HFM and baseline fairness measures

The aim of this experiment is to evaluate the effectiveness of the proposed HFM compared with
baseline fairness measures. As groundtruth discriminative levels of classifiers remain unknown and
it is hard to directly compare different methods from that perspective, we compare the correlation
(referring to the Pearson correlation coefficient) between the performance difference and different
fairness measures. The empirical results are reported in Figures 1–2 in Section 3, as well as Fig. 4
and Tables 2–3.

For one single sensitive attribute, we can see from Fig. 1 that df avg is highly correlated with
recall/sensitivity and f1 score. Besides, even df avg only describes the extra bias, its correlation with
∆(performance) is still close to that of DR (and sometimes DP), which means the average HFM
(i.e., df avg) can capture the bias within classifiers indeed and that it captures the bias more finely
than df prev and df . Moreover, df avg shows higher correlation with ∆(performance) than df in most
cases, which means df avg may capture the extra bias level of classifiers better than df in practice.

As for multiple sensitive attributes, we can see from Fig. 2 that df avg is highly correlated with
recall/sensitivity and f1 score and that df avg shows higher correlation with ∆(performance) than
df in most cases, which is similar to our observation in Fig. 1. Note that the original DR [3]
calculates all sensitive attributes with binary or multiple values as a whole, and for comparison with
HFM, we calculate here DRi for each sensitive attribute and DRavg = 1

na

∑na

i=1 DRi, analogously
to df avg. Besides, we observe that the correlation between df avg and ∆Accuracy (resp. ∆f1 score,
∆Specificity) achieves half of that of DR, and df avg even outperforms DR concerning ∆Recall.
Given that HFM only captures the extra bias introduced by classifiers, we believe at least df avg could
capture quite a part of bias within.

Furthermore, we report plots of fairness-performance trade-offs per fairness measure in Fig. 4. We
can see that: 1) for one single sensitive attribute, HFM (i.e., df and df avg) achieves the best result
in Fig. 4(a) and 4(c); and 2) for all sensitive attributes on one dataset, df and df avg perform closely
and both outperform DRavg in Fig. 4(b) and 4(d). This observation demonstrates the effectiveness
of HFM from another perspective, in other words, HFM could work well if fairness-performance
trade-offs need to be considered.

C.3 Validity of approximation algorithms for distances between sets in Euclidean spaces

In this subsection, we evaluate the performance of the proposed ApproxDist and ExtendDist compared
with the precise distance that is directly calculated by definitions. To verify whether they could
achieve the true distance between sets precisely and timely, we employ scatter plots to compare their
values and time cost, presented in Fig. 3. Note that Da(S, ai) and Davg

a (S, ai) are computed together
in ApproxDist at one time, and so are Da(S) and Davg

a (S, ai) in ExtendDist. Also notice that the
simplified Algorithm 4 is included for comparison to its current version in scenarios of binary values.

Validity of ApproxDist As we can see from Figures 3(c) and 3(d), the approximated values of
maximal distance Da(S, ai) are highly correlated with their corresponding precise values. Besides,
their linear fit line and the identity line (that is, f(x) = x) are near and almost parallel, which means
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the approximated values are pretty close to their precise value. Similar observations are concluded
for the average distance Davg

a (S, ai) shown in Figures 3(g) and 3(h). As for the execution time of
approximation and direct computation in Figures 3(k) and 3(l), ApproxDist may take a bit longer time
in scenarios of multi-value cases than that of binary values, while all of them could achieve a shorter
time than precise values when the execution of direct computation is costly.

Validity of ExtendDist As we can see from Figures 3(a) and 3(b), the approximated values of
maximal distance Da(S) are highly correlated with their corresponding precise values. Besides, their
linear fit line and the identity line are near and almost parallel, which means the approximated values
are pretty close to their precise value. Similar observations are concluded for the average distance
Davg

a (S) shown in Figures 3(e) and 3(f). As for the execution time of approximation and direct
computation in Figures 3(i) and 3(j), ExtendDist would obtain a bigger advantage when computing
precise values is expensive, while on the opposite, we do not need ExtendDist that much and can
directly calculate them instead.
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