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ABSTRACT

Development of robust and effective strategies for retrosynthetic planning requires
a deep understanding of the synthesis process. A critical step in achieving this
goal is accurately identifying synthetic intermediates. Current machine learning-
based methods often overlook the valuable context from the overall route, focus-
ing only on predicting reactants from the product, requiring cost annotations for
every reaction step, and ignoring the multi-faced nature of molecular, resulting in
inaccurate synthetic route predictions. Therefore, we introduce RetroInText, an
advanced end-to-end framework based on a multimodal Large Language Model
(LLM), featuring in-context learning with TEXT descriptions of synthetic routes.
First, RetroInText including ChatGPT presents detailed descriptions of the reac-
tion procedure. It learns the distinct compound representations in parallel with
corresponding molecule encoders to extract multi-modal representations including
3D features. Subsequently, we propose an attention-based mechanism that offers
a fusion module to complement these multi-modal representations with in-context
learning and a fine-tuned LLM for a single-step model. As a result, RetroInText
accurately represents and effectively captures the complex relationship between
molecules and the synthetic route. In experiments on the USPTO pathways dataset
RetroBench, RetroInText outperformed state-of-the-art methods, achieving up to
a 5% improvement in Top-1 test accuracy, particularly for long synthetic routes.
These results demonstrate the superiority of RetroInText by integrating with con-
text information over routes. They also demonstrate its potential for advancing
pathway design and facilitating the development of organic chemistry.

1 INTRODUCTION

Multi-step retrosynthesis planning is a fundamental strategy in organic chemistry, crucial for drug
discovery and chemical biology, as it systematically breaks down complex target molecules into
simpler, easily accessible precursors (Zheng et al., 2022; Zhong et al., 2023). Recent advancements
in deep learning have facilitated the development of various approaches, which can be categorized
as template-based, semi-template-based, and template-free approaches aimed at streamlining this
process (Zhong et al., 2023; Obonyo et al., 2023; Chen et al., 2020; Coley et al., 2017). Neverthe-
less, existing methods primarily rely on graph or SMILES representations, and are often limited in
capturing the intricate complexities of chemical structures, thereby constraining their scalability and
effectiveness in addressing complex retrosynthetic challenges.

Most of the existing retrosynthetic planning strategies (Tripp et al., 2024; Liu et al., 2024c) con-
ceptualize retrosynthetic planning as a search problem, where the synthetic route is represented as
a tree or graph, with molecules as nodes. However, a significant limitation of these approaches
lies in their reliance on heuristic search algorithms to determine which nodes (molecules) should
be expanded. This dependency often leads to several critical challenges, such as ensuring that the
expanded nodes are commercially available compounds, avoiding computational inefficiencies, and
maintaining the overall feasibility of the synthetic routes (Liu et al., 2023a). Additionally, due to the
complex chemical space, each molecule can exhibit a vast number of potential transformations—up

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to 10K (Szymkuć et al., 2016). The depth of the search tree, which corresponds to the route length,
often varies between 10 to 20 steps, depending on the complexity of the target molecule (Obonyo
et al., 2023). This vast combinatorial space, combined with the scarcity of high-quality, structured
data for retrosynthetic tasks, limits current methods’ ability to effectively explore and prioritize
routes, leading to inefficiencies and sub-optimal solutions.

Inspired by the success of LLM, which trained on extensive text corpora, generating coherent text
encompassing a wide range of topics and sentiments (Ying et al., 2021). Liu et al. (Liu et al., 2024d)
introduced a text-assisted retrosynthesis prediction method that utilizes pre-trained language mod-
els to aid reactant generation. In addition, Bran et al. (M. Bran et al., 2024) proposed ChemCrow,
by integrating 17 expert-designed tools, ChemCrow enhances the Large Language Models (LLM)
performance in chemistry. However, the current LLM method does not include a route length adjust-
ment to guide future searches (Liu et al., 2023a). Despite these advancements, current LLM-based
methods exhibit notable limitations, particularly the lack of an effective adaptation mechanism for
route length, which is critical for guiding retrosynthetic planning (Liu et al., 2023a).

To address these gaps, we propose RetroInText, a novel template-free retrosynthesis framework (as
shown in Figure. 1). RetroInText incorporates ChatGPT to generate detailed reaction procedure
descriptions, which include key information about the synthesis pathway, such as transition states,
structural transformations, and energy barriers. These descriptions provide a textual representation
of the reaction context, complementing molecular graph and 3D representations to enhance retrosyn-
thesis prediction. In particular, we first use ChatGPT to obtain a description of the entire pathway,
starting with the target product based on its name. This textual description, along with the molecular
3D geometry information is used as input information for training. For each selection step, we in-
troduced multiple value functions, such as ScScore (Coley et al., 2018) and the text captioning score
to rank candidate reactants. We employ an existing pre-trained MolT5 as our single-step approach
to intermediate prediction. Therefore, RetroInText is a context-aware model that integrates molec-
ular captioning and context embeddings. RetroInText utilizes contextual information from previous
steps for the entire pathway, thereby enhancing retrosynthesis prediction accuracy.

We evaluated RetroInText on the RetroBench dataset constructed by Liu et al. (Liu et al., 2023a),
they determined all possible synthetic routes for each target, resulting in a comprehensive set of
routes for 128, 469 molecules. RetroBench dataset was constructed based on the USPTO-full dataset
(Chen et al., 2020), which is a foundational resource for retrosynthetic planning. Extensive experi-
mental results on retrosynthetic planning tasks demonstrate that RetroInText outperforms template-
free baselines, achieving up to a 5% improvement in Top-1 test accuracy. Additionally, ablation
experiments confirm the effectiveness of textual information and LLM. In brief, we highlight our
main contributions as follows:

• We propose the RetroInText framework as a template-free approach to multi-step retrosyn-
thesis prediction. When predicting subsequent steps in retrosynthesis, this framework inte-
grates in-context textual information from previous steps.

• With RetroInText, we leverage the advantage of LLM and ChatGPT as our generative mod-
els and evaluate the reactions based on their molecular descriptions. A combination of
textual information, molecular graphs, and 3D geometry information is used to select the
optimal molecule in the selection phase.

• Extensive experiments have demonstrated that RetroInText achieves a competitive level
of performance. Furthermore, RetroInText is tested in experiments to show its ability to
predict complex reactions.

2 RELATED WORK

Single Step Retrosynthesis. Existing single-step retrosynthesis methods are categorized into
template-based, semi-template-based, and template-free approaches. Template-based methods ex-
tract reaction templates from chemical reaction databases and model retrosynthesis as a classification
or template retrieval task, mapping the product to reactants using predicted templates (Gaiński et al.,
2024; Chen & Jung, 2021; Xie et al., 2023; Zhang et al., 2024a). Semi-template-based methods de-
compose the retrosynthesis problem into two steps. Including identifying reaction centers to gener-
ate synthons, and converting these synthons into reactants using generative models or adding leaving
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Figure 1: Overview of the RetroInText. A Multiple Step Search Model Workflow of RetroInText.
B Feature Embedding. The product is represented as a molecular graph and 3D geometry features.
It is combined with text embeddings generated by ChatGPT and processed through SciBERT for
multimodal integration. C Single Step Model Workflow. C.1 A fine-tuned MolT5 model generates
potential reactants from the product, ranked by C.2 Evaluation Metrics. Reactants are evaluated
using ScScore, captioning score, and prediction score to determine synthetic routes’ quality and
feasibility. D MolT5 transforms the product SMILES into potential reactant structures.
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groups (Zhong et al., 2023; Somnath et al., 2021; Zhu et al., 2023; Lan et al., 2024). Template-free
methods treat retrosynthesis as either a sequence-to-sequence task using SMILES or a graph-editing
task to modify atoms and bonds (Igashov et al., 2024; Andronov et al., 2024; Laabid et al., 2024;
Yao et al., 2024; Liu et al., 2024d; Zhang et al., 2024b). With the development of multimodal LLMs,
reasoning capabilities are being extended to retrosynthesis (M. Bran et al., 2024). Although textual
information from LLM such as ChatGPT has been employed in single-step retrosynthesis models
(Qian et al., 2023; Liu et al., 2024d), its integration into multi-step retrosynthesis processes remains
unexplored (Christofidellis et al., 2023; Liu et al., 2023b).

Retrosynthesis Planning. Retrosynthesis Planning (RP) employs search algorithms to identify opti-
mal candidates from single-step model predictions iteratively until all target compounds are sourced
from existing commercial suppliers (Liu et al., 2023c; Zhao et al., 2023; Liu et al., 2024a; Zhang
et al., 2024b; Zeng et al., 2024). These search algorithms can broadly be categorized into sev-
eral types: Monte Carlo Tree Search (MCTS) employs a policy network to enhance retrosynthetic
planning efficiency by effectively exploring and navigating the solution space (Segler et al., 2018).
Retro* (Chen et al., 2020) proposed an AND-OR RP model using an A*-like heuristic, where OR
nodes (reactions) require any child, and AND nodes (products) require all children. Modeling RP
as an AND-OR tree has proven sound and effective. Recent works have focused on developing ac-
tive frameworks (Torren-Peraire et al., 2024) and new evaluation methods (Tripp et al., 2024; Tian
et al., 2024; Maziarz et al., 2024). For example, (Schreck et al., 2019) and (Liu et al.) assign a
uniform cost of 1 to each reaction, optimizing for the shortest route. However, shorter routes may
result in lower yields compared to longer routes. Consequently, (Liu et al., 2023a) proposed a novel
multi-step planning approach based on a conventional search algorithm, but they lack an adapta-
tion mechanism for route length and full-route information (Yuan et al., 2024). The aforementioned
methodologies require the annotation of costs for every reaction step, and incorporating reliable re-
action quality data from chemists or laboratory experimentation entails significant expenses. As a
result, these approaches often become economically impractical.

3 PRELIMINARY

3.1 SINGLE-STEP RETROSYNTHESIS

Define the space of all molecules as M. The single-step retrosynthesis aims to input a target
molecule T ∈ M, resulting in a prediction of the potential reactions and their related reactants
as outcomes. We denote it as an injection:

O(·): T → {Ri, Ii, c(Ri)}ki=1, (1)

where O(·) represents the single-step model, which outputs at most k reactions Ri with their fol-
lowing reactant sets Ii and costs c(Ri). The costs can be the actual price of the reaction or just a
negative log-likelihood of this reaction under the model.

3.2 RETROSYNTHETIC SCORING METHOD

The goal of retrosynthetic planning is to find a series of reactions that transform the starting material
set S ⊆ M to the target molecule Mt ∈ M:

Mt → I → S, (2)

I = {m1 . . . ,mj} ⊆ M\S stands for the set of intermediate molecules. Beginning with the target
molecule Mt, current strategies perform series single-step retrosynthesis predictions by model O(·)
until all molecules at the leaf nodes are from S, form pathways to synthesis Mt, which can be
formulated as:

P = {p1, p2, ..., pn}, (3)
where P represents the set of pathways to synthesis Mt.

4 METHODOLOGY

As shown in Figure. 1, our proposed framework RetroInText incorporates a pre-trained molecular
representation model 3DInfomax (Stärk et al., 2022), which is utilized to embed both molecular
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graph information and 3D structural data. We feature ChatGPT-3.5 for generating contextual textual
information along the multi-step pathway. Additionally, we propose an attention-based mechanism
that offers a fusion module to complement these multi-modal representations with in-context learn-
ing and a fine-tuned LLM MolT5 as a single-step retrosynthesis model.

4.1 RETROSYNTHESIS MODEL

4.1.1 SINGLE-STEP MODEL

We adopt MolT5 (Edwards et al., 2022) as our single-step model O(·). Specifically, MolT5 is a
transformer-based model with an encoder-decoder architecture based on the T5 model, pre-trained
on 100 million molecular SMILES as well as a C4 dataset which contains 700G textual data. The
model is suited to generation tasks such as molecular captioning. It already contains a wealth of
molecular and textual information. However, to adapt the model to our task, we apply a translation-
based approach to fine-tune the model. Specifically, we extract all reactions from the training set and
treat the products and reactants in SMILES as two distinct "languages" for translation. Details of
fine-tuning MolT5 can be seen in Appendix A.3. In summary, we fine-tune MolT5 to accommodate
retrosynthesis tasks (as shown in Figure. 1 D):

translation : products → reactants, (4)
where products is the intermediate molecule during retrosynthetic planning, while the reactants
represent the corresponding reactant molecules. This approach equips the model with the capability
to handle retrosynthesis tasks. We use it as our single-step model in the expansion phase to predict
Top-k reactions and their corresponding reactants. The results of the single-step models can be seen
in Appendix C.1.

4.1.2 MOLECULAR REPRESENTATION

Molecule Graph Encoder. We use 3DInfomax as the molecular graph and 3D encoder (Figure. 1B).
The 3DInfomax model consists of a 2D GNN and a 3D GNN, utilizing a contrastive learning ap-
proach during training. It aligns the molecular graphs with the 3D conformations, maximizing
the mutual information between the 2D GNN and the 3D conformation GNN, allowing the model
to leverage both molecular structure and 3D conformation information simultaneously. We apply
3DInfomax during the selection process to fully utilize both molecular structure and 3D conforma-
tion information. The molecule is represented as a graph G = (V, E), where V and E stands for
the set of molecule nodes and edges respectively. RetroInText also includes information about the
molecule’s conformation as 3D cloud points {x1, · · · , xm} ⊂ R3. Then we use 3DInfomax as the
M_Encoder of the graph to get the molecular model:

Hm = M_Encoder(G), (5)
where Hm ∈ Rd, wherein d represents the output dimension of the model and the G corresponds to
the graph representation of the intermediate molecules.

Textual Generator and Encoder. In this study, we utilize ChatGPT to generate text. Based on the
IUPAC names of the products and intermediates, we create textual descriptions of the intermediate
molecules along all pathways using ChatGPT. Chemical structures are uniquely represented by IU-
PAC names, which are derived from a set of rules mapping structures to linguistic phrases. Chemical
structures described by IUPAC names are more natural and language-like than those described by
SMILES. IUPAC names serve as a bridge between chemical molecules and LLMs. Details can be
seen in Appendix B. We use the following prompts to generate textual descriptions:

Describe the key transition states involved in the synthesis of {{products}} from the intermedi-
ates {{intermediates}}. Explain the structural changes and energy barriers for each transition
state, and reply to me in a sentence.

where {{products}} corresponds to the IUPAC name of the product, and {{intermediates}} cor-
responds to the IUPAC names of all intermediate molecules. In cases with multiple intermediate
molecules, they are concatenated using commas. When we obtain text information on the pathway
to the target molecule T = {t1, t2, . . . , tn}, SciBERT (Beltagy et al., 2019) is used as T_Encoder
for the textual modal (Figure. 1 B).

Ht = T_Encoder(T ), (6)
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To ensure no information leakage and to eliminate variations in the textual content generated by
ChatGPT during the test phase, we use only the structural information of the product molecules
as the textual information for each step. This also ensures that the selected intermediates remain
closely aligned with the product molecules. We generate textual descriptions using the following
prompts:

Delineate the structural features, functional aspects, and applicable implementations of the
molecules {NAME}. They commence with the introduction: "The molecule is ..." and reply to
me in a sentence.

where {NAME} corresponds to the IUPAC names of the products. SciBERT is also used as the
encoder for textual information.

Multi-modal Fusion. While obtaining the molecular representations Hm and textual representa-
tions Ht, we use an attention mechanism to fuse the two, treating the textual information as Q and
the molecular representations as K and V :

Q = HtW
Q, K = HmWK , V = HmW V , (7a)

Attention = softmax
(
QKT

√
dk

)
V , (7b)

Hf = Attention(Q,K,V ), (7c)

where WQ ∈ Rd×dq ,WK ∈ Rd×dk and W V ∈ Rd×dv are trainable parameters, Hf represents
the fused representation (as shown in Figure. 1 B).

4.1.3 MODEL TRAINING

We trained two different versions of the model: one is a scoring model to deal with the situation in
which there is no textual information during the testing phase, and the other incorporates the fusion
module into the model training process, which means WQ,WK and W V is incorporated into the
model training. This allows the model to adapt to scenarios where textual information is present
during testing:

ŷ = MLP (Hf ), (8)

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2, (9)

where ŷ represents the model’s prediction score, and the model is trained using the Mean Squared
Error (MSE) loss.

4.2 SCORING METHOD FOR GUIDING THE SEARCH

To guide the retrosynthesis search process, we employ a scoring framework that effectively ranks
candidate pathways by combining synthetic complexity, reaction costs, and textual alignment. The
scoring framework consists of three components: synthetic complexity score (ScScore), reaction
cost score, and captioning score.

Synthetic Complexity and Reaction Cost Scores. The synthetic complexity score (ScScore), rang-
ing from 1 to 5, quantifies molecular complexity while considering synthetic accessibility (Coley
et al., 2018). For a retrosynthesis pathway, the synthetic complexity score Vt is defined in Equa-
tion 10a, where Ii denotes the i-th intermediate molecule, and n represents the total number of
intermediates. This normalization ensures that lower scores correspond to simpler and more acces-
sible intermediates.

The reaction cost score Vm, as defined in Equation 10b, evaluates the cumulative cost of reactions
within the pathway, where c(Ri) reflects the reaction cost for Ri, the reaction producing the inter-
mediate molecule. This metric accounts for the feasibility and efficiency of the associated chemical
transformations.

The overall pathway score V , defined in Equation 10c, combines the synthetic complexity and
reaction cost scores, prioritizing pathways that are both synthetically accessible and cost-efficient.
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Vt =

n∑
i=1

(1− ScScore(Ii)− 1

4
), (10a)

Vm =

n∑
i=1

c(Ri), (10b)

V = Vt + Vm, (10c)

Captioning Score for Pathway Reranking.

In addition to the core scoring components, we integrate the captioning score during the selection
phase to enhance the selection process. The captioning score leverages textual descriptions gener-
ated during retrosynthesis planning to evaluate the alignment between the descriptions of interme-
diate molecules and the overall pathway context. This alignment provides an additional layer of
interpretability and ensures the textual coherence of selected pathways.

During training, the synthetic complexity score, reaction cost score, and textual alignment are treated
as true values, allowing the model to learn a unified scoring strategy. At inference, the combined
scoring framework, including the captioning score, refines pathway ranking by ensuring both chem-
ical feasibility and contextual consistency.

The inference process is summarized in Algorithm 1, where the scoring framework ranks pathways
and guides molecule expansion. This integrated approach enables RetroInText to effectively identify
retrosynthesis pathways that are optimal across multiple dimensions.

Algorithm 1 Retrosynthesis Planning Algorithm
Input: target molecule Mt, starting material set S, textual information T
Initialize: reactants set R = {}, path set P = {Mt}
while P is not empty do

Take path p from P , predict reactants Ip for expansion given p by O(·)
for reactant I(i)

p in Ip do
if I(i)

p ∈ S then Put I(i)
p into R

else
rank p′ = p+ [I(i)

p ] by computing captioning score of T
put ranked p′ into P

end if
end for

end while
return predicted reactant set R

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. We use the public dataset RetroBench (Liu et al., 2023a)(as shown in Table. 1) for evalua-
tion, which includes 46, 458 molecules as the training set, 5, 803 molecules as the validation set and
5, 838 molecules as the Test set. The synthetic pathways for each molecule are extracted from the
USTPO-full reaction network. All reactions along the pathways for each molecule in the training
and validation set are extracted to fine-tune the MolT5 model.

Baselines. Retrosynthetic planning strategies integrate retrosynthesis models with search algo-
rithms. We compare our model with template-based models, including Retrosim (Coley et al.,
2017), Neuralsym (Segler & Waller, 2017), and GLN (Dai et al., 2019). We also compare with
template-free models, such as Transformer (Karpov et al., 2019) Megan (Sacha et al., 2021) and
FusionRetro (Liu et al., 2023a), as well as semi-template-based models, including G2Gs (Shi et al.,
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Dataset

#Molecules Depth
2 3 4 5 6 7 8 9 10 11 12 13

Training 22,903 12,004 5,849 3,268 1,432 594 276 107 25 0 0 0
Validation 2,862 1,500 731 408 179 74 34 13 2 0 0 0
Test 2,862 1,500 731 408 179 74 34 13 2 32 2 1

Table 1: Statistics of molecules at various depths summarized from the dataset.

2020) and GraphRetro (Somnath et al., 2021). Additionally, we compared RetroInText with Fu-
sionRetro+CREBM (Liu et al., 2024b) that incorporate energy functions for reranking. In detail,
CREBM is a framework that enhances molecule synthesis by integrating energy functions to eval-
uate and rerank synthetic routes, thereby improving the quality of the generated pathways. Upon
completion of the retrosynthesis training, we employ the first A*-like algorithm guided AND-OR
tree search methods Retro* (Chen et al., 2020), Retro*-0, which is indeed a beam search algorithm,
and Greedy DFS search algorithms.

Evaluation Metrics. We utilized the commonly employed evaluation performance metrics Top-k
(k = 1, 2, 3, 4, 5) exact match accuracy to evaluate the retrosynthesis performance proposed by Liu
et al. (2023a). The exact match accuracy is computed by comparing predicted reactants SMILES
to the dataset’s ground truth on the benchmark dataset. More experimental setups can be found in
Appendix A.

5.2 RESULTS

Comparison with Baselines. The performance of all methods is presented in Table. 2. Compared
with all template-free models and the reranked CREAM model and the SOTA model FusitonRetro
(Liu et al., 2023a), our model RetroInText achieved the best performance, exceeding the Top-1
accuracy of FusionRetro with CREBM by 1.8%, achieving SOTA performance. RetroInText also
demonstrated superior performance across different search algorithms, even approaching the top
results of template-based methods with Retro*-0 and Greedy DFS, highlighting the benefits of using
LLM and route description.

Single-step Models
Search Algorithm Retro* Retro*-0 Greedy DFS

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1
Template-based

Retrosim (Coley et al., 2017) 35.1 40.5 42.9 44.0 44.6 35.0 40.5 43.0 44.1 44.6 31.5
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 54.4 42.0 49.3 52.0 53.6 54.3 39.2
GLN (Dai et al., 2019) 39.6 48.9 52.7 54.6 55.7 39.5 48.7 52.6 54.5 55.6 38.0

Semi-template-based
G2Gs (Shi et al., 2020) 5.4 8.3 9.9 10.9 11.7 4.2 6.5 7.6 8.3 8.9 3.8
GraphRetro (Somnath et al., 2021) 15.3 19.5 21.0 21.9 22.4 15.3 19.5 21.0 21.9 22.2 14.4
GraphRetro+CREBM (Liu et al., 2024b) 16.3 20.1 21.6 22.3 22.7 16.3 20.2 21.6 22.3 22.7 -

Template-free
Transformer (Karpov et al., 2019) 31.3 40.4 44.7 47.2 48.9 31.2 40.5 45.1 47.3 48.7 26.7
Transformer+CREBM 35.0 43.4 46.7 48.7 49.7 34.0 43.1 46.4 48.3 49.4 -
Megan (Sacha et al., 2021) 18.8 27.9 32.7 36.6 38.1 18.6 27.7 32.6 36.4 38.5 32.9
FusionRetro (Liu et al., 2023a) 37.5 45.0 48.3 50.6 51.5 37.4 45.0 48.4 50.4 51.1 35.2
FusionRetro+CREBM (Liu et al., 2024b) 39.4 46.6 49.3 50.7 51.5 39.6 46.7 49.5 51.0 51.7 33.8
RetroInText (Ours) 41.2 48.7 51.8 53.3 54.2 42.1 49.9 53.0 54.7 55.7 39.8

Table 2: Summary of retrosynthetic planning results for exact match accuracy (%).

Analysis for the Depth of Routes. To better evaluate the performance of our proposed model
across varying levels of retrosynthetic complexity, we analyzed the prediction accuracy at different
depths using Greedy DFS, as shown in Figure. 2. Our model RetroInText demonstrates competitive
performance across different depths, particularly excelling in longer synthesis routes. Compared to
other baselines, our model maintains a more stable decline with increasing depth. While models
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like GraphRetro and Megan sharply drop beyond depth 4, RetroInText retains a significant margin,
demonstrating robustness and effectiveness in deeper, more complex retrosynthetic planning.

2 3 4 5 6 7 8

Depth

0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Greedy DFS

Retrosim
Transformer
GraphRetro

G2Gs
Megan
Neuralsym

GLN
FusionRetro
RetroInText

Figure 2: Test accuracy of retrosynthesis models combined with Greedy DFS at different depths.
The red star stands for our method RetroInText.

Ablation Experiments. To better understand the contribution of each component within our pro-
posed framework, we conducted a series of ablation experiments. As shown in Table. 3, our model
RetroInText, consistently outperforms the baseline model across all Top-N accuracy metrics, demon-
strating the effectiveness of our proposed enhancements. For instance, in terms of Top1 accu-
racy, RetroInText achieves a 4.0% increase over MolT5(SMILES). Similarly, compared to RetroIn-
Text(Graph), where we tested using FusionRetro (Liu et al., 2023a), which achieved 37.5%, RetroIn-
Text shows a 3.7% improvement. These results suggest that the synergy between structural features
and text-aware components substantially enhances predictive accuracy. Additionally, the removal of
the textual component, as indicated by the RetroInText (w/o text) configuration, results in a Top1
accuracy of 40.2%. Compared to the complete RetroInText model, which achieves 41.2%, high-
lighting the value of the textual module in providing essential contextual information that supports
more accurate predictions. Further details on the analyses and experimental setup can be found in
Appendix C, which provides additional insights into the significance of each module.

Additionally, we conducted experiments across different depths, which demonstrate that incorpo-
rating textual information consistently improves performance at all levels. As shown in Table. 4
Retro* outperforms Retro*(w/o text), particularly at increasing depths, showing robustness in pre-
dicting long synthetic routes. The most pronounced gains in Top-1 to Top-5 accuracy occur at deeper
paths (Depths 5 to 8), highlighting the effectiveness of textual data in enhancing prediction accuracy
for complex retrosynthetic planning tasks.

Methods Top-1 Top-2 Top-3 Top-4 Top-5

RetroInText(SMILES) 35.6 41.6 44.1 45.4 46.2
MolT5 (SMILES) 37.2 43.7 46.2 47.4 48.3
RetroInText (Graph) 37.5 45.0 48.2 50.0 50.9
RetroInText (w/o text) 40.2 47.3 50.2 51.7 52.7
RetroInText (Ours) 41.2 48.7 51.8 53.3 54.2

Table 3: Ablation study of RetroInText for exact match accuracy (%).
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Depth Retro*(w/o text) Retro*

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5

Depth2 45.0 52.4 55.4 57.2 58.3 44.9 52.3 55.4 57.3 58.3
Depth3 38.9 45.9 49.3 50.5 51.5 40.0 47.9 51.5 53.0 53.9
Depth4 33.7 40.9 42.5 43.6 43.6 36.1 43.6 46.4 47.7 48.3
Depth5 35.5 41.7 43.4 44.4 44.4 39.0 47.8 50.3 51.2 51.7
Depth6 33.0 36.3 36.9 38.0 38.0 36.3 40.8 41.9 43.0 44.1
Depth7 25.7 31.1 31.1 31.1 31.1 28.4 33.8 35.1 35.1 35.1
Depth8 29.4 41.2 41.2 41.2 41.2 32.4 41.2 44.1 47.1 47.1

Table 4: Exact match accuracy (%) at different depths of ground truth synthetic routes.

6 CONCLUSIONS

In this work, we propose RetroInText, a novel framework for retrosynthetic planning that leverages
contextual information along the synthetic route through ChatGPT. RetroInText employs in-context
learning to incorporate textual information from previous steps, enhancing realistic retrosynthetic
planning. Additionally, we used a fine-tuned LLM, MolT5 (Edwards et al., 2022), along with a pre-
trained molecular representation model to integrate both molecular structure and 3D conformational
data, improving the selection process. Experiments on the RetroBench dataset demonstrate that
RetroInText outperforms existing template-free methods, achieving SOTA performance. Further
experiments at various depths and ablation studies show the strength of text information during
retrosynthetic planning. In the future, we are planning to develop an end-to-end question-answering
model (Maziarz et al., 2022; Liu et al., 2023d) to further improve retrosynthetic step selection and
enhance the utility of a deep learning-based retrosynthesis model.
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Śmieja. RetroGFN: Diverse and feasible retrosynthesis using GFlownets. In ICLR 2024 Workshop
on Generative and Experimental Perspectives for Biomolecular Design, 2024.

Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M. Bronstein, and Bruno Correia. Retro-
bridge: Modeling retrosynthesis with markov bridges. In The Twelfth International Conference
on Learning Representations, 2024.

Pavel Karpov, Guillaume Godin, and Igor V Tetko. A transformer model for retrosynthesis. In
International Conference on Artificial Neural Networks, pp. 817–830. Springer, 2019.

Junsu Kim, Sungsoo Ahn, Hankook Lee, and Jinwoo Shin. Self-improved retrosynthetic planning.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5486–5495.
PMLR, 18–24 Jul 2021.

Najwa Laabid, Severi Rissanen, Markus Heinonen, Arno Solin, and Vikas Garg. Aligned diffusion
models for retrosynthesis. In ICML 2024 Workshop on Structured Probabilistic Inference &
Generative Modeling, 2024.

Zixun Lan, Binjie Hong, Jiajun Zhu, Zuo Zeng, Zhenfu Liu, Limin Yu, and Fei Ma. Retrosynthesis
prediction via search in (hyper) graph, 2024.

G Liu, D Xue, S Xie, Y Xia, A Tripp, K Maziarz, M Segler, T Qin, Z Zhang, and TY Liu. Retrosyn-
thetic planning with dual value networks, 2023.

Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language
model for molecular science with graph, image, and text. Computers in biology and medicine,
171:108073, 2024a.

Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin Zhao, and
Dinghao Wu. Fusionretro: molecule representation fusion via in-context learning for retrosyn-
thetic planning. In International Conference on Machine Learning, pp. 22028–22041. PMLR,
2023a.

Songtao Liu, Hanjun Dai, Yue Zhao, and Peng Liu. Preference optimization for molecule synthe-
sis with conditional residual energy-based models. In Forty-first International Conference on
Machine Learning, 2024b.

Xiaoyi Liu, Hongpeng Yang, Chengwei Ai, Yijie Ding, Fei Guo, and Jijun Tang. Mvml-mpi: Multi-
view multi-label learning for metabolic pathway inference. Briefings in Bioinformatics, 24(6):
bbad393, 2023b.

Xiaoyi Liu, Chengwei Ai, Hongpeng Yang, Ruihan Dong, Jijun Tang, Shuangjia Zheng, and Fei
Guo. Retrocaptioner: beyond attention in end-to-end retrosynthesis transformer via contrastively
captioned learnable graph representation. Bioinformatics, 40(9):btae561, 2024c.

Yifeng Liu, Hanwen Xu, Tangqi Fang, Haocheng Xi, Zixuan Liu, Sheng Zhang, Hoifung Poon, and
Sheng Wang. T-rex: Text-assisted retrosynthesis prediction, 2024d.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-Yan
Liu. MolXPT: Wrapping molecules with text for generative pre-training. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers), pp. 1606–1616, Toronto, Canada,
July 2023c. Association for Computational Linguistics.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang, and
Tat-Seng Chua. MolCA: Molecular graph-language modeling with cross-modal projector and
uni-modal adapter. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 15623–15638, Singapore,
December 2023d. Association for Computational Linguistics.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, pp. 1–11, 2024.

Krzysztof Maziarz, Henry Richard Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine
Schneider, Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molec-
ular scaffolds with structural motifs. In International Conference on Learning Representations,
2022.

Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
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A EXPERIMENTAL PROCEDURE AND SETUP

A.1 EVALUATION METRIC

The current search algorithms (Segler et al., 2018; Chen et al., 2020; Kim et al., 2021; Yu et al.,
2022; Obonyo et al., 2023; Yuan et al., 2024; Xie et al., 2024) mainly use search success rate as
an evaluation metric, without verifying whether the identified materials can indeed synthesize target
molecules. When combining existing one-step models, which achieve top-k accuracies in the range
of 60% to 80%, with the Retro* algorithm, we observe that the search success rates for the overall
multi-step retrosynthesis process reach between 85% and 94% (Figure. 3)(Liu et al., 2023a). This
result is counterintuitive, as one would expect the success rate to decrease with each additional
synthesis step. Therefore, we use the new evaluation metric proposed by FusionRetro (Liu et al.,
2023a): the set of precise matches between the suggested actual material and the baseline truth.
That is, it is correct when the set of actual materials obtained from the model is consistent with at
least one of the possible multiple synthesis paths in the target molecule test set, and paper cuttings
search is also conducted. When the length of the predicted synthesis path exceeds the depth of the
real synthesis path, the search is stopped. We use the starting materials obtained from the reaction
network in RetroBench as the base facts and compare them with the starting materials identified
through the search process.
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Figure 3: Performance of different retrosynthesis model for retrosynthesis prediction and multi-step
planning on USPTO dataset.

A.2 IMPLEMENTATION DETAILS

We use Pytorch (Paszke et al., 2019) to implement our models. The codes of all baselines are
implemented referring to the implementations of FusionRetro (Liu et al., 2023a) and CREBM (Liu
et al., 2024b) . All the experiments of baselines are conducted on a single NVIDIA 4090 with 24GB
memory size. The softwares that we use for experiments are Python 3.8.19, CUDA 11.5.119, einops
0.7.0, pytorch 2.2.0, pytorch-scatter 2.1.2, pytorch-sparse 0.6.18, numpy 1.24.4, torchvision 0.17.0.
The total inference time is 79.5 hours.
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A.3 FINE-TUNE PROCESS

All reaction in the training set is extracted as the fine-tuned dataset which includes more than 150K
reactions. We trained it for 40 epochs, and chose the best checkpoint as a single-step model. The
detailed training parameters are shown in Table. 5.

Parameter Value Description
Learning rate 5 · 10−5 Step size for optimization

Batch size 8 Number of samples per batch
Epochs 40 Number of training iterations

Hidden layers 24 Number of layers in the model
Hidden units 768 Number of neurons per layer
Head number 12 Number of multi-head per layer

Save steps 5000 Save checkpoint step
Beam number 4 Beam search number
Weight decay 0.1 Regularization coefficient

Table 5: Fine-tune parameters.

B MOLECULE NAME GENERATION

Before using ChatGPT to generate the text information for the routes, we should get the IUPAC
names as mentioned in Section 4.1.2. Specifically, we extracted all the intermediates with the
matched depth in the training set for all products then generated products and corresponding in-
termediate names. For the test set, we generated the IUPAC names of the products, but we only need
them during creation. PubChemPy generates IUPAC names for all molecules.

C MORE RESULTS

C.1 SINGLE-STEP MODEL RESULTS

All the reactions in the test dataset are extracted for evaluating single-step models, with an overall
24, 972 reactions. The results are shown in Table. 6

Models
Top-k accuracy (%)

Top-1 Top-3 Top-5 Top-10

FusionRetro 31.1 39.4 42.3 47.0
Transformer 28.1 38.7 41.8 46.0
MolT5-small 20.8 30.0 33.9 38.3
MolT5-base(Ours) 33.3 39.9 42.1 44.5

Table 6: Retrosynthesis prediction results for exact match accuracy (%)

C.2 PROMPT IMPACT ON PATHWAY DESCRIPTIONS

To test the impact of text quality on the model, Specifically, two distinct prompts were evalu-
ated, as outlined in Table. 7, to assess their impact on the textual descriptions of the molecule
O=C1N=C(O)CN1N=C(O)C=Cc1ccc(Cl)c(C(F)(F)F)c1.The first prompt was designed to generate
detailed, yet excessively verbose descriptions, while the second prompt focused on producing con-
cise and targeted textual outputs.

Prompt1 was characterized by a lack of specificity, resulting in verbose descriptions with consider-
able redundancy. These excessive details, which included irrelevant information, had a detrimen-
tal effect on the model’s accuracy. In contrast, Prompt 2 was deliberately designed to prioritize
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clarity and relevance, avoiding superfluous content. The generated text was both concise and well-
structured, contributing to an enhancement in downstream model performance.As illustrated in Ta-
ble. 8, the use of text generated from the higher-quality prompt led to a notable improvement in the
performance of the framework. Specifically, the Top-1 accuracy increased from 39.2% to 41.2%,
while the Top-5 accuracy improved from 46.9% to 54.2%. These results underscore the significance
of carefully crafting prompts to generate concise, high-quality text in order to achieve better model
predictions.

Target Molecule Prompt Text
O=C1N=C(O)CN1N=C(O)C=
Cc1ccc(Cl)c(C(F)(F)F)c1

Please describe the structural features,
functional aspects, and applicable imple-
mentation methods of the molecule prod-
uct, and describe the potential intermediate
molecules intermediates in the synthesis
pathway, with each intermediate molecule
separated by "[SEP]". Additionally, pro-
vide a different reaction pathway and de-
scribe it.

The molecule 3-[4-chloro-3-
(trifluoromethyl)phenyl]-N-(2,4-
dioxoimidazolidin-1-yl)prop-2-enamide
is a complex organic compound that
features a substituted phenyl group, an
imidazolidin-1-yl moiety, and a prop-2-
enamide functional group.

O=C1N=C(O)CN1N=C(O)C=
Cc1ccc(Cl)c(C(F)(F)F)c1

Describe the key transition states involved
in the synthesis of products from the inter-
mediates intermediates. Explain the struc-
tural changes and energy barriers for each
transition state, and reply to me in a sen-
tence.

The key transition states involved in the
synthesis include the formation of an imine
intermediate through the condensation of
the prop-2-enoic acid and the amine group,
followed by the cyclization of the imine to
form the imidazolidin-1-yl ring.

Table 7: Comparison of Prompts and Textual Descriptions

Model Top-1 Top-2 Top-3 Top-4 Top-5

RetroInText (prompt1) 39.2 43.4 45.6 45.7 46.9

RetroInText (prompt2) 41.2 48.7 51.2 53.3 54.2

Table 8: Comparison of prompt influence on textual quality for molecular descriptions and reactions

Target Molecule Text (ChatGPT-3.5) Text (ChatGPT-4) Similarity
CC(C)Nc1ncnc2cscc12 There are two key transition states involved

in the synthesis: the conversion of 2-chloro-
N-propan-2-ylthieno[3,4-d]pyrimidin-4-amine
to N-propan-2-ylthieno[3,4-d]pyrimidin-
4-amine, with the structural change being
the displacement of the chlorine atom by
the amine group, and the conversion of N-
propan-2-ylthieno[3,4-d]pyrimidin-4-amine to
N-propan-2-ylthieno[3,4-d]pyrimidin-4-amine,
with the structural change being the formation
of the final amine functionality; both transitions
have energy barriers that must be overcome for
the reactions to proceed.

The key transition states involved in the synthe-
sis of N-propan-2-ylthieno[3,4-d]pyrimidin-4-
amine from 2-chloro-N-propan-2-ylthieno[3,4-
d]pyrimidin-4-amine include a nucleophilic sub-
stitution, where the chlorine atom is replaced by
an amine group, and a tautomeric shift, where the
newly added amine group rearranges to a more
stable position on the pyrimidine ring; both tran-
sition states involve overcoming energy barriers
associated with breaking and forming chemical
bonds and achieving the most stable and low en-
ergy conformation of the molecule.

These texts by different
models describe the
same key transition
states, including the nu-
cleophilic substitution
where the chlorine atom
is replaced by an amine
group, and a tautomeric
shift. Both mention
energy barriers involved
in the transition states.

CN=C(O)NCCNCc1cc[nH]n1 The key transition states involved in the
synthesis of 1-methyl-3-[2-(1H-pyrazol-5-
ylmethylamino)ethyl]urea from the interme-
diates N’-(1H-pyrazol-5-ylmethyl)ethane-1,2-
diamine include the formation of a urea linkage
and the addition of a methyl group. These
transitions involve structural rearrangements and
energy barriers that facilitate the conversion of
the intermediates into the desired product.

The key transition states involved in the
synthesis of 1-methyl-3-[2-(1H-pyrazol-5-
ylmethylamino)ethyl]urea from N’-(1H-pyrazol-
5-ylmethyl)ethane-1,2-diamine include the
formation of an isourea intermediate followed
by a rearrangement to the final urea product,
each with associated energy barriers due to the
breaking and forming of bonds and the structural
changes from a linear to a more complex, cyclic
arrangement.

The mechanisms
and transformations
described in both are
similar, involving the
formation of the urea
bond and methylation.

Table 9: Comparison of textual descriptions generated by ChatGPT-3.5 and ChatGPT-4

C.3 COMPARISON OF OUTPUTS BETWEEN GPT-3.5 AND GPT-4

We employed GPT-4 for text generation, and a comparison between the outputs generated by GPT-4
and GPT-3.5 revealed a high degree of similarity in both content and the structural transformations
described, as illustrated by the examples provided in Table. 9. Specifically, both models effectively
characterized key transition states for the target molecules, including nucleophilic substitutions, tau-
tomeric shifts, and the associated energy barriers for bond-breaking and bond-forming processes.
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However, GPT-4 presented certain practical challenges, particularly with frequent API key limi-
tations, which disrupted the workflow and diminished its reliability for consistent use. In contrast,
GPT-3.5 exhibited stable performance without such restrictions, making it a more dependable choice
for our framework. Given the negligible differences in performance and the operational constraints
of GPT-4, GPT-3.5 was selected as the primary text generator for the experiments.

C.4 ABLATION STUDY

To test the role of each part in the framework, we perform the ablation study on RetroInText. First,
we used the no fine-tuning MolT5 model as the single-step model and observed that the generated
SMILES strings for the corresponding molecules were invalid, resulting in scores of 0 across all
cases. This indicates that the original MolT5 model is not suitable for our task, and fine-tuning is
necessary. We also conducted the experiment only using the combination of SMILES and text to
train the model, however, this combination is inferior to those of a multimodal approach. Next, we
used the fine-tuned MolT5 as the single-step model, without incorporating the molecular represen-
tation model or textual information, and only relied on molecule fingerprints for scoring. Finally,
we introduced textual information into the training process and used 3DInfomax as the molecular
representation model, while excluding textual information during testing. The results demonstrate a
significant improvement in multi-step accuracy when textual context information is included, indi-
cating that using textual information in multi-step processes is highly effective. The case of depth3
(Figure. 4) shows text can make accurate predictions compared to not using text.

Figure 4: Comparison of retrosynthesis prediction with text (A) and without text (B)
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