
Contextualized Hybrid Ensemble Q-learning:
Learning Fast with Control Priors

Emma Cramer∗, Bernd Frauenknecht∗, Ramil Sabirov∗, Sebastian Trimpe
Institute for Data Science in Mechanical Engineering

RWTH Aachen University
52068 Aachen, Germany

emma.cramer@dsme.rwth-aachen.de

Abstract

Combining Reinforcement Learning (RL) with a prior controller can yield the best
out of two worlds: RL can solve complex nonlinear problems, while the control
prior ensures safer exploration and speeds up training. Prior work largely blends
both components with a fixed weight, neglecting that the RL agent’s performance
varies with the training progress and across regions in the state space. Therefore,
we advocate for an adaptive strategy that dynamically adjusts the weighting based
on the RL agent’s current capabilities. We propose a new adaptive hybrid RL
algorithm, Contextualized Hybrid Ensemble Q-learning (CHEQ). CHEQ has three
key ingredients: (i) a time-invariant formulation of the adaptive hybrid RL problem
treating the adaptive weight as a context variable, (ii) a weight adaption mechanism
based on the parametric uncertainty of a critic ensemble, and (iii) ensemble-based
acceleration for data-efficient RL. Evaluating CHEQ on a car racing task reveals
substantially stronger data efficiency, exploration safety, and transferability to
unknown scenarios than state-of-the-art adaptive hybrid RL methods.

This paper has been reviewed and accepted at the Reinforcement Learning Confer-
ence (RLC), to be held in August 2024.

1 Introduction

Deep reinforcement learning (RL) methods have shown great success in challenging control prob-
lems such as gameplay (Mnih et al., 2015; Silver et al., 2018a; OpenAI et al., 2019) and robotic
manipulation (Gupta et al., 2021; Büchler et al., 2022). Despite the great potential of RL methods,
their data inefficiency, unstructured exploration behavior, and inability to generalize to unknown
scenarios represent a significant hurdle to their application to real-world problems.

A prime reason for limited real-world applications is the task-agnostic architecture of state-of-the-
art RL approaches (Schulman et al., 2017; Haarnoja et al., 2018) that does not incorporate prior
knowledge on how to solve the task at hand. In contrast, control theory provides a rich set of
methods for deriving near-optimal controllers in many applications. This motivates the drive for
hybrid RL methods (Silver et al., 2018b; Johannink et al., 2019) that blend control priors with deep
RL policies. Hybrid algorithms thus combine the prior controller’s generalization capabilities and
informed behavior with the power of deep RL for solving general nonlinear problems.

Notwithstanding the conceptual benefit of hybrid RL formulations, how to systematically combine the
control prior with the RL agent largely remains an open problem. The majority of prior work (Silver
et al., 2018b; Johannink et al., 2019; Schoettler et al., 2020; Ceola et al., 2024) proposes a fixed
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weighting between the control prior and the RL agent. A fixed blending, however, disregards the fact
that the capability of the RL agent depends on training time and state. In general, as more data is
observed, the RL agent improves its behavior, ultimately outperforming the control prior in large
portions of the domain. The core idea of our approach is to adapt the weighting between RL agent
and control prior based on the agent’s confidence. As the RL agent improves over time, this induces
a time-variant weighting mechanism. This time dependency leads to structural problems of prior
formulations in uncertainty-adapted hybrid RL (Cheng et al., 2019; Rana et al., 2023).

We provide a unified view on hybrid RL that allows us to classify prior work within a general
framework. Analyzing this framework highlights the necessity for a novel adaptive hybrid RL
formulation with descriptive, time-invariant dynamics. We define the contextualized hybrid Markov
decision process (MDP), introducing the adaptive weight as a context variable. Building upon this
formulation, we propose the Contextualized Hybrid Ensemble Q-learning (CHEQ) algorithm that
systematically adapts the weighting between RL agent and control prior based on an uncertainty
estimate of a critic ensemble. CHEQ combines the contextualized hybrid RL formulation with
uncertainty-based weight adaption and existing ensemble-based acceleration techniques for data-
efficient RL.

We evaluate our algorithm on a racing task (Schier et al., 2023), which requires operating a car close
to its stability limits in order to achieve maximum return. We find that compared to prior work in
adaptive hybrid RL, the CHEQ algorithm shows (i) reduced failures during training, (ii) increased
sample efficiency, and (iii) improved transfer behavior on unseen race tracks.

In summary, our main contributions are:

• A unified framework that allows us to classify existing approaches and reveal key limitations.
• A hybrid MDP formulation, introducing the adaptive weight as a context variable and thus

addressing structural problems of prior work in hybrid RL with adaptive weighting.
• A novel hybrid RL algorithm, CHEQ, that systematically adapts the weighting between RL

agent and control prior based on Q-ensemble disagreement.

2 Related Work

This section discusses relevant prior work combining RL and a control prior. We distinguish two
types; hybrid RL with fixed and adaptive weighting between the RL agent and controller.

Hybrid Reinforcement Learning with Fixed Weighting: Two concurrent works (Silver et al.,
2018b; Johannink et al., 2019) first combined RL and a control prior and introduced the term residual
RL. In residual RL, the control prior is assumed to be fixed, and the RL agent learns a residual on
top of this. In this work, we use the general term hybrid RL to include approaches that adapt the
controller’s weight. Silver et al. (2018a) and Johannink et al. (2019) show advantages of hybrid RL,
such as sample efficiency, improved sim-to-real transfer, and robustness towards uncertainties. Hybrid
RL with fixed weights has then successfully been applied to real robot insertion tasks (Schoettler
et al., 2020), peg insertion under uncertainty (Ranjbar et al., 2021), driving (Kerbel et al., 2022) and
to learn a residual RL policy on top of a pre-trained RL agent (Ceola et al., 2024). A fixed mixing,
however, does not allow one to consider the improving capabilities of the RL agent.

Hybrid Reinforcement Learning with Adaptive Weighting: Daoudi et al. (2023) assume a given
controller confidence function, employing a controller in instances of high confidence and an RL
agent in other scenarios. Our work focuses on the RL agent’s confidence and proposes to estimate
the confidence based on a critic ensemble. Similar to our approach, Hoel et al. (2020a,b) train an
ensemble of bootstrapped Q-networks for a driving task with discrete actions. They evaluate the
uncertainty as the coefficient of variation of Q-estimates and resort to safe fallback actions in case
of high uncertainty. However, they do not combine controller and RL agent but switch between
both. In this work, we investigate a seamless blending approach for continuous control. Rana et al.
(2020b) estimate the policy uncertainty using Monte-Carlo dropout and based on this uncertainty
either sample from a residual policy or the controller alone. Rana et al. (2020a) directly fuse a prior
control distribution with an RL policy in a multiplicative fashion and anneal the influence of the
control prior over training time. Rana et al. (2023) use a policy ensemble to estimate how certain the
RL agent is in the current action. The combined action is then computed as the Bayesian posterior of
control prior and policy distribution. Cheng et al. (2019) use the TD-error as an uncertainty estimate
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and combine controller and RL agent based on this. Both Rana et al. (2023) and Cheng et al. (2019)
base their adaption mechanism on a form of policy uncertainty. Both approaches train based on the
combined action, which becomes brittle when facing large distributional shifts. We further discuss
this limitation in Section 5.

3 Background

The following introduces the key components and the general concept of hybrid RL.

Reinforcement Learning RL is a method for solving sequential decision problems based on the
interaction between an agent and an environment (Sutton & Barto, 2018). The environment is
modeled as a discounted Markov decision process defined by the tupleM = (S,A, p, r, ρ0, γ), with
state space S, action space A, and start state distribution ρ0. The commonly unknown transition
function p(st+1, rt+1 | st,aRL

t ) describes transitions between states st ∈ S and actions aRL
t ∈ A.

During transitions, rewards rt ∈ R are emitted according to a reward function rt+1 ∼ r(st,a
RL
t ).

The objective of the RL agent is to learn a policy πRL(aRL
t | st) that maximizes the expected

cumulative sum of rewards discounted by γ ∈ (0, 1). This results in the RL objective

J(πRL) = max
πRL

EπRL,M

[ ∞∑
t=0

γtrt+1

]
. (1)

The discounted sum of rewards is referred to as return and is accumulated along trajectories under the
policy πRL and the environment MDPM. State value functions condition expected return on a partic-
ular state V π

RL

(st) = EπRL,M
[∑∞

k=t γ
k−trk+1 | st

]
while, action value or Q-functions condition

expected return on specific state action pairs Qπ
RL

(st,a
RL
t ) = EπRL,M

[∑∞
k=t γ

k−trk+1 | st,aRL
t

]
.

Control Prior The prior policy πprior(apriort | st) represents prior knowledge for solving the RL
objective (1), while typically not providing the optimal policy over the whole domain S ×A. This
work focuses on control priors based on classic control theory. These can be derived with limited
effort in many applications and often provide a good baseline for interaction withM. We assume a
control prior that is time-invariant and without an internal state.

Hybrid Reinforcement Learning: Hybrid RL combines the control prior and the RL agent by
blending their actions via some mixing function amix

t = f(apriort ,aRL
t ,λt) depending on a weight

λt.

4 A Unified View on Hybrid Reinforcement Learning

Next, we develop a unified view on hybrid RL that allows classifying prior methods (cf. Section 2). In
the standard RL setup depicted in Figure 1a, the RL agent πRL interacts with the time-invariant MDP
M with dynamics p(st+1, rt+1 | st,aRL

t ) that represents the controlled system. Hybrid RL (see
Figure 1b) incorporates a control prior πprior which requires reformulating the standard framework.
Here, πRL and πprior apply a combined action amix

t to M. The mixing function f generates a
combined action by blending the individual actions based on a weighting vector λt provided by a
weight adaption function Λ. Within this generalized framework, prior work in hybrid RL can be
categorized based on the choice of f and Λ.

4.1 Mixing Function f

We consider mixing functions based on a weighted sum with a weighting vector λt = [λpriort , λRL
t ]⊤

amix
t = f(apriort ,aRL

t ,λt) = λpriort · apriort + λRL
t · aRL

t . (2)

This formulation allows to distinguish a residual and a regularized setting.

In the residual setting, λpriort is typically constant while λRL
t can be variable λt = [1, λRL

t ]⊤ (Silver
et al., 2018b; Johannink et al., 2019; Schoettler et al., 2020). Thus, the RL agent interacts with the
closed control loop between πprior andM and learns a residual action on top of apriort . Consequently,
λt modulates the RL agent’s impact on the closed loop dynamics. As the control prior is not scaled
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(a) (b) (c)

Figure 1: A standard RL setting (a), hybrid RL settings from prior work (b) and our contextualized
hybrid RL setting based on RL action aRL

t and weighting factor λRL
t (c).

down, it might interpret the RL agent as a disturbance and counteract it (Ranjbar et al., 2021), which
can limit the overall performance of residual formulations.

In the regularized setting, both weights are adaptable such that λpriort + λRL
t = 1 (Cheng et al., 2019;

Rana et al., 2023). This results in a mixing function of the form

amix
t = f(apriort ,aRL

t , λRL
t ) = (1− λRL

t ) · apriort + λRL
t · aRL

t . (3)
with λRL

t ∈ [0, 1]. In the limit λRL
t = 0, the control prior interacts withM without the interference

of the RL agent, while the regularized setting reduces to the standard RL problem for λRL
t = 1. Thus,

λRL
t indicates not only the impact of aRL

t but also whether the RL agent interacts with the open loop
dynamics ofM or the closed loop dynamics as in the residual setting. Consequently, the control
prior can be interpreted as a regularization of the RL agent. Our proposed algorithm operates in the
regularized setting, allowing the agent to take over complete control when λRL

t = 1.

4.2 Weight Adaption Function Λ

Hybrid RL approaches can further be classified, based on the choice of the weight adaption function
Λ modulating the weighting vector λt of the mixing function f .

A large body of work, which we refer to as fixed-weight hybrid RL (Silver et al., 2018b; Johannink
et al., 2019; Schoettler et al., 2020; Ranjbar et al., 2021; Ceola et al., 2024) chooses λt fixed
throughout training. Neglecting the time- and state-dependent capabilities of the RL agent.

Approaches that adapt λt, which we refer to as adaptive hybrid RL methods, rely on different
mechanisms. Scheduling approaches (Rana et al., 2020a) change the weight explicitly with time, i.e.
λt = Λ(t), typically increasing the weight of the RL agent as training progresses. Domain-based
approaches (Kulkarni et al., 2022; Daoudi et al., 2023) adapt the weights based on the point of
operation within the domain S ×A, i.e. λt = Λ(st,at). Uncertainty-based approaches (Cheng et al.,
2019; Rana et al., 2023) adapt the weight based on the confidence of the RL agent, indicated by an
uncertainty estimate u(st,at, t), giving more weight to the RL agent when it has high confidence.
Thus, they aim to leverage the benefits of the RL agent whenever possible, while resorting to a
safe controller in situations where the RL agent has not seen enough data. The time dependency of
the uncertainty estimate, however, increases the complexity of the hybrid RL setting, requiring a
reformulation of the learning problem. In Section 5, we discuss the shortcomings of prior formulations
and propose our own.

5 Contextualized Hybrid Reinforcement Learning

In Section 5.1, we propose a novel contextualized formulation of the adaptive hybrid RL problem
and illustrate its benefits over prior approaches in Section 5.2. Based on that framework, we propose
the Contextualized Hybrid Ensemble Q-learning (CHEQ) algorithm in Section 5.3.

5.1 General Concept of Contextualized Hybrid Reinforcement Learning

Based on the unified view provided in Section 4, we propose a general formulation for the hybrid RL
problem we call contextualized hybrid RL.
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The environment in the hybrid setting not only consists of the controlled systemM but also comprises
the control prior, the mixing function, and the weight adaption function. We consider both the control
prior and the mixing function to be time-invariant. In contrast, the weight adaption function Λ
can have time-varying behavior, i.e. λt = Λ(t, . . . ), as discussed in Section 4.2. This leads to
time-varying dynamics of the hybrid environment, violating the assumption of time-invariance in the
MDP formulation (Bellemare et al., 2023). Instead, we exclude Λ from the definition of the hybrid
environment and introduce the adaptive weight vector λt as a context variable to the agent and the
environment (see Figure 1c). We model the hybrid environment introducing the contextualized hybrid
MDP M̂ = (S,A,W, p̂, r, ρ0, γ) with W the set of weighting vectors λt and the contextualized
dynamics function p̂(st+1, rt+1 | st,aRL

t ,λt).

The MDP formulation M̂ induces the contextualized hybrid RL objective

Ĵ(πRL) = max
πRL

EπRL,M̂

[
T∑
t=0

γtrt+1

]
, (4)

which enforces to learn a policy π̂RL(aRL
t | sRL

t ,λt) that maximizes expected return
in M̂. Introducing λt as a context variable further yields the contextualized hybrid
value functions V̂ π

RL

(st,λt) = EπRL,M̂
[∑∞

k=t γ
k−trk+1 | st,λt

]
and Q̂π

RL

(st,a
RL
t ,λt) =

EπRL,M̂
[∑∞

k=t γ
k−trk+1 | st,aRL

t ,λt
]
. Thus, we can optimize (4) using standard RL methods

by additionally conditioning on λt. The general mechanism of contextualized hybrid RL is illustrated
in Algorithm 1.

Algorithm 1 Contextualized Hybrid Reinforcement Learning

Require: RL policy π̂RL
ϕ (aRL

t | sRL
t ,λt), control prior πprior(apriort | s), mixing function

f(aRL
t ,apriort ,λt), weight adaption function Λ, replay buffer D ← ∅.

1: for each episode do
2: Sample initial state s0 ∼ ρ0, initialize λ0.
3: for each step do
4: Sample RL action aRL

t ∼ πRL
ϕ

(
aRL
t | st,λt

)
.

5: Sample control prior action apriort ∼ πprior
ϕ

(
aRL
t | st

)
.

6: Get combined action amix
t = f(aRL

t ,apriort ,λt).
7: Observe state transition st+1, rt+1 ∼ p

(
·, · | st, amix

t

)
.

8: Store
(
st,a

RL
t ,λt, st+1, rt+1

)
into replay buffer D.

9: Get next adaptive weight λt+1 = Λ.
10: Sample set of transitions (s, a, λ, s′, r) ∼ D.
11: Optimize ϕ with respect to (4) using RL with sampled transitions.
12: end for
13: end for

Prior work takes different approaches to formulating the hybrid learning problem. Approaches with
a time-invariant weight adaption function, such as fixed-weight hybrid methods, include Λ in the
definition of the environment MDP M̄ = (S,A, p̄, r, ρ0, γ) with dynamics p̄(st+1, rt+1 | st,aRL

t ).
This formulation is directly applicable to the standard RL objective (1), however, does not generalize
to time-varying adaption mechanisms such as uncertainty-adapted methods. Approaches with a
time-varying adaption mechanism (Cheng et al., 2019; Rana et al., 2023) typically formulate the
hybrid RL problem concerning the controlled system MDP and the combined action with dynamics
p(st+1, rt+1 | st,amix

t ). This likewise yields a formulation that is directly applicable to (1), however,
this can lead to problems as the agent is unaware of the downstream mixing process. Furthermore,
this introduces a distributional shift between trained policy and data-collecting behavior policy. The
distributional shift can lead to training instability and divergence (?Fujimoto et al., 2018).

5.2 Illustrative Example

We exemplify the strength of the contextualized hybrid RL formulation based on M̂ introduced in
Section 5.1 by comparing it to prior approaches on the cart pole system depicted in Figure 2a. The
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Figure 2: We illustrate different hybrid RL formulations on a cart pole system (a) with a biased
control prior, pushing to the left. Return of hybrid agents with fixed λRL

t (b) and variable λRL
t (c).

Only the contextualized hybrid RL agent observing dynamics p̂ can cope with both scenarios.

goal is to balance the pole upright while keeping the cart close to its initial position. The system is
controlled via continuous forces on the cart. We choose πprior to apply a constant force to the left,
which destabilizes formulations unconscious of the mixing process. We investigate a time-invariant
fixed weight setting as well as a time-varying schedule-based weight adaption setting to highlight
the capability of the respective formulations to deal with both scenarios. This simple example
illustrates that the contextualized hybrid MDP formulation can deal with destabilizing control priors
and time-varying weight adaption functions while prior formulations fail.

Fixed Weighting: First, we consider a residual setting with fixed weights λRL
t = λpriort = 0.5.

Figure 2b depicts the performance of RL agents trained under M̂, M̄, and M with respective
dynamics p̂(st+1, rt+1 | st,aRL

t ,λt), p̄(st+1, rt+1 | st,aRL
t ), and p(st+1, rt+1 | st,amix

t ). While
agents trained under M̂ and M̄ learn to stabilize the cart pole, the hybrid formulation concerning
M fails. When formulating the RL problem concerning amix

t the RL agent observes the combined
action in its data and therefore learns the combined action in its policy. This, however, neglects the
fact that the policy action is mixed with the controller action before being applied toM. Assuming
the cart pole is not moving, and the pole is upright, an agent trained underM provides the optimal
combined action, namely applying no force, while apriort pushes the pole to the left. This results in
amix
t pointing to the left, causing the pole to fall while giving the agent no mechanism to observe and

counteract this phenomenon. Instead, formulating the hybrid RL problem concerning aRL
t allows the

agent to observe the mixing mechanism and compensate for the destabilizing control prior.

Adaptive Weighting: Second, we consider an adaptive hybrid RL problem with time-varying Λ. We
choose a schedule-based approach with a regularizing mixing function (3) and λRL

t ∈ [0, 1] linearly
increasing over time. Figure 2c shows the performance of agents trained under formulations based on
M̂, M̄, andM. While agents trained under M̄ andM fail, the formulation based on M̂ succeeds.
In the beginning, when the RL agent is given only low weight, the formulation underM suffers
from a high distributional shift between the action of the behavior policy amix

t and the action of the
target policy aRL

t . The large distributional shift causes the agent to diverge (?Fujimoto et al., 2018).
Although the distributional shift decreases with increasing weight lambda, the agent does not manage
to recover. The formulation under M̄ fails due to the missing information about the time-variant
behavior of the mixing process. The proposed contextualized hybrid RL formulation solves these
issues by formulating the task concerning aRL

t and introducing the context variable λt.

5.3 Contextualized Hybrid Ensemble Q-learning (CHEQ)

Based on the contextualized hybrid RL formulation introduced in Section 5.1, we propose the Contex-
tualized Hybrid Ensemble Q-learning (CHEQ) algorithm. At the heart of CHEQ is a critic ensemble
that (i) provides an uncertainty estimate enabling an uncertainty-adapted hybrid RL mechanism, and
(ii) allows to incorporate ensemble-based acceleration techniques for data-efficient RL.

We base CHEQ on the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm and a regularizing
mixing function (3) with λt = [(1 − λRL

t ), λRL
t ]⊤. The weight adaption mechanism relies on a

critic ensemble comprising of E contextualized Q-functions with parameters θe, e ∈ {1, . . . , E}
and corresponding target Q-functions with parameters θ̄e, e ∈ {1, . . . , E}. We update the critics
with the mechanism of Randomized Ensemble Double Q-learning (REDQ) (Chen et al., 2021)
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and enforce sufficient independence between Q-estimates using Bernoulli masking of the training
data (Osband et al., 2016; Lee et al., 2021; Mai et al., 2022). Model ensembles estimate parametric
uncertainty, referred to as epistemic uncertainty, from disagreement between individual models
within the ensemble. If different critics disagree about the outcome of taking action aRL

t in st while
weighting with λt, this indicates a weak understanding of the task in the particular area of S×A×W .
Thus, the control prior should be prioritized over the RL agent in such situations. Therefore, epistemic
uncertainty represents a suitable quantity for adapting the weighting of control prior and RL agent.
We define epistemic uncertainty as the standard deviation of critic predictions

u(st,a
RL
t , λRL

t ) =

√√√√ 1

E

E∑
e=1

(
Q̂θe(st,a

RL
t , λRL

t )− µ(st,aRL
t , λRL

t )
)2

(5)

with µ(st,aRL
t , λRL

t ) = 1
E

∑E
e=1 Q̂θe(st,a

RL
t , λRL

t ). We aim to give low weight to the RL agent
in areas of high uncertainty and vice versa. Thus, the weight adaption function Λ(u(st,a

RL
t , λRL

t ))
maps the critics epistemic uncertainty to the weighting factor λRL

t ∈ [λmin, λmax] ⊆ [0, 1] via the
piece-wise linear function

λRL
t+1 =


λmax if u(st,aRL

t , λRL
t ) < umin

u(st,a
RL
t ,λRL

t )−umax

umin−umax
(λmax − λmin) + λmin if u(st,aRL

t , λRL
t ) ∈ [umin, umax]

λmin if u(st,aRL
t , λRL

t ) > umax.

(6)

Besides providing an uncertainty estimate of the RL agent, the critic ensemble used in CHEQ has
proven effective in mitigating overestimation bias (Thrun & Schwartz, 1993) in Q-learning-based
approaches (Lan et al., 2021; Wang et al., 2021; Chen et al., 2021). The Update-To-Data (UTD)
ratio describes the number of gradient steps per environment interaction. Due to the reduction of the
overestimation bias, the critic ensemble allows for increasing the UTD ratio while maintaining stable
learning. This substantially improves the data efficiency of value-based actor-critic methods (Chen
et al., 2021). A detailed pseudocode algorithm of CHEQ is provided in Algorithm 2 of Appendix A.

6 Experiments

We evaluate CHEQ on a racing task and compare it to standard RL, fixed-weighting hybrid RL, and
state-of-the-art adaptive hybrid RL. In our experiments, CHEQ yields substantial improvements in (i)
data efficiency compared to other hybrid methods, as well as (ii) exploration safety, and (iii) zero-shot
transferability to unknown scenarios as compared to all competitor approaches.

6.1 Experimental Setup

We base our evaluation on a car racing setting adapted from (Schier et al., 2023). Achieving high
returns requires advanced trajectory planning and control while operating the vehicle close to stability
limits, including tire slip. The control prior is a trajectory-following task along the center line of
the track using a Stanley controller (Thrun et al., 2006) for lateral and a proportional controller for
longitudinal control. Further details are provided in Appendix B.

We compare CHEQ against the standard RL approaches SAC (Haarnoja et al., 2018) and REDQ (Chen
et al., 2021), fixed-weighting hybrid RL based on SAC, and the state-of-the-art adaptive hybrid RL
methods Controller Regularized RL (CORE) (Cheng et al., 2019) and Bayesian Controller Fusion
(BCF) (Rana et al., 2023). In all experiments, we provide results for CHEQ with a high UTD ratio
(CHEQ-UTD20) to demonstrate the capabilities of the approach and a low UTD ratio (CHEQ-UTD1)
for a fair comparison to SAC-based methods. All implementations2 are based on either the Clean RL
library (Huang et al., 2022) or the original paper implementation (Rana et al., 2023). We provide a
detailed description of the hyperparameter settings in Appendix A.1.

We train all our approaches on ten random seeds and one fixed race track. We report return and
cumulative training failures. Runs are considered a failure when the car leaves the track. For zero-shot
transfer, we evaluate ten trained models per algorithm on ten unseen racetracks. Return and failure
plots show the respective mean (solid lines) and 95% confidence interval (shaded areas).

2The code is available at github.com/Data-Science-in-Mechanical-Engineering/cheq .
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(a) (b) (c)

Figure 3: Performance of all trained RL approaches in terms of evaluation return and training failures
on the training track. Comparison of (a) CHEQ with fixed-weight hybrid RL and standard RL, (b)
increased UTD ratios and (c) prior work in adaptive hybrid RL.

6.2 Evaluation on the Car Racing Environment

We compare CHEQ to standard RL, fixed-weight hybrid RL, and adaptive hybrid RL concerning
learning performance (see Figure 3) and zero-shot transfer to unknown tracks (see Figure 4).

Comparison against Fixed-Weight Hybrid RL and Standard RL: Comparing the CHEQ algo-
rithm based on SAC (CHEQ-UTD1) to a standalone SAC agent and the control prior in Figure 3a
illustrates the general benefit of hybrid RL. While the control prior operates safely without failing,
it shows limited performance due to the conservative driving policy. SAC shows strong asymptotic
performance at the cost of frequent failures throughout training. CHEQ-UTD1 considerably outper-
forms SAC concerning data efficiency and exploration safety, learning faster with fewer failures while
yielding comparable asymptotic performance. The comparison of CHEQ to fixed-weight hybrid RL
methods further illustrates the advantage of an adaptive weighting scheme. The fixed-weight hybrid
RL approaches (0.5-SAC, 0.7-SAC) combine the control prior with a SAC agent using the mixing
function in (3) with λRL

t = 0.5 and λRL
t = 0.7, respectively. Here, the choice of λRL

t represents a
trade-off between exploration safety and asymptotic performance, where a higher λRL

t enables better
performance while reducing safety. A fixed weight of λRL

t = 0.5 arguably reduces failures compared
to CHEQ-UTD1, however, this comes at the cost of substantially lower performance.

Update-To-Data Ratio: As discussed in Section 5.3, the critic ensemble of CHEQ allows the use of
acceleration techniques originally proposed in the REDQ algorithm. Increasing the UTD ratio to 20
notably improves data efficiency as compared to SAC, both as a standalone RL algorithm (REDQ)
and as an adaptive hybrid RL algorithm (CHEQ-UTD20). The speed-up in training helps to reduce
training failures as REDQ reports a drastically reduced number of failures compared to SAC. The
benefit is further amplified in the adaptive hybrid formulation of CHEQ-UTD20 as indicated by its
strong initial performance and the ability to reduce the mean cumulative fails to less than 20.

Comparison against state-of-the-art Adaptive Hybrid RL: Finally, Figure 3c compares CHEQ
to the most relevant adaptive hybrid RL methods. CHEQ-UTD1 shows similar data efficiency and
performance compared to CORE and BCF while considerably reducing accumulated fails. CHEQ-
UTD20 substantially outperforms all competitor approaches in all performance metrics. A more
detailed hyperparameter analysis of the prior approaches, as well as results for reformulations of
CORE and BCF as contextualized hybrid RL methods are provided in in Appendix C.

Zero-shot Transfer: Next, we perform a zero-shot transfer of the trained agents. Returns are
depicted in Figure 4a while Figure 4b shows the success rate of the respective methods. CHEQ-
UTD1, CHEQ-UTD20 and the control prior achieve a success rate of 97%, 95%, and 100%,
respectively. The other standard and hybrid RL methods frequently fail in unseen scenarios. While
the CHEQ variants fail slightly more often than the controller, they drive notably faster, i.e., they
achieve higher returns. Figure 4c illustrates the adaption mechanism of CHEQ on one example track.
In challenging and unseen curves, the agent gradually hands over to the control prior as can be seen
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Figure 4: Comparison of return (a) and failures (b) of ten trained models per algorithm on ten transfer
tracks. Development of λRL of the UTD-20 agent for an exemplary transfer track (c).
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Figure 5: Final return over number of fails during training (a) and zero-shot transfer (b).

in Figure 4c. We find that in the few failure cases (3 out of 100 for CHEQ-UTD1 and 5 out of 100 for
CHEQ-UT20), the agent correctly identifies its uncertainty, and hands over to the controller, but the
controller is unable to navigate the situation safely. We provide an illustration of all transfer tracks, as
well as the weight adaption of CHEQ-UTD20 on these tracks in Appendix C.2. In summary, CHEQ
shows strong zero-shot transfer behavior, driving faster than the controller with only a few failures.

Summary: We summarize the trade-off between failures and asymptotic performance in Figure
5. Figure 5a illustrates the training results of the respective approaches while Figure 5b depicts the
transfer results. Fixed weight hybrid RL effectively reduces failures as compared to standard SAC.
This, however, comes at the cost of asymptotic performance. Our adaptive CHEQ algorithm avoids
this trade-off, achieving high return with only a few failures. In zero-shot transfer, the CHEQ agent
again performs best due to its ability to detect unforeseen situations reliably and then fall back to the
safe control prior.

7 Conclusion

This work addresses how to systematically combine an RL agent with a control prior. We propose
a novel formulation of the adaptive hybrid RL problem which introduces the adaptive weighting
parameter as a context variable of the MDP, and based on this, propose the Contextualized Hybrid
Ensemble Q-learning (CHEQ) algorithm. CHEQ combines a reliable critic uncertainty-based weight
adaption mechanism with the data efficiency of critic ensemble methods, yielding substantially
stronger results than state-of-the-art adaptive hybrid RL methods on a racing task concerning data
efficiency, exploration safety, and transferability.
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A Algorithmic Details

Algorithm 2 shows the pseudocode of the Contextualized Hybrid Ensemble Q-learning algorithm.

Algorithm 2 CHEQ

Initialize control prior πprior(apriort | st), contextualized RL policy π̂RL
ϕ (aRL

t | st, λRL
t ), contextu-

alized critic ensemble Q̂θe(st,a
RL
t , λRL

t ), e ∈ {1, . . . , E}, contextualized target critic ensemble
Q̂θ̄e(st,a

RL
t , λRL

t ), e ∈ {1, . . . , E}, replay buffer D ← ∅, weighting interval [λmin, λmax], uncer-
tainty limits [umin, umax], UTD ratio G, Bernoulli masking rate κ, minimization targets F , Polyak
averaging factor τ
for each epoch do

s0 ∼ ρ0, λRL
0 = λmin

for each epoch step do
aRL
t ∼ π̂RL

ϕ (· | st, λRL
t )

apriort ∼ πprior(· | st)
amix
t = (1− λRL

t )apriort + λRL
t aRL

t
u(st,a

RL
t , λRL

t ) according to (5)
λt+1 = Λ(u(st,a

RL
t , λRL

t )) according to (6)
st+1, rt+1 ∼ p̂(·, · | st,aRL

t , λRL
t )

for e = 1, . . . , E do
Sample Bernoulli Mask me

t ∼ Ber(κ)
end for
D ← D ∪ {(st,aRL

t , λRL
t , st+1, rt+1),m

1
t , . . . ,m

E
t }

for G updates do
Sample mini-batch B = {(s,aRL, λRL, s′, r} from D
Sample a set F with |F| = F uniform at random from {1, . . . , E}
ã′RL ∼ π̂RL

ϕ (· | s′, λRL)

y = r + γ
(
mine∈F Q̂θ̄e(s

′, ã′RL, λRL)− α log π̂RL
ϕ (ã′RL | s′, λRL)

)
for e = 1, . . . , E do

Update θe with gradient descent using

1me∇θe 1
|B|
∑

(s,aRL,λRL,r,s′)∈B

(
Q̂θe(s,a, λ

RL)− y
)2

θ̄e ← τ θ̄e + (1− τ)θe
end for

end for
update ϕ with gradient ascent using
ãRL ∼ π̂RL

ϕ (· | s, λRL))

∇ϕ 1
|B|
∑

s∈B

(
1
E

∑E
e=1 Q̂θe(s, ãRL, λ

RL)− α log π̂RL
ϕ (ãRL | s, λRL))

)
end for

end for

A.1 Hyperparameters Settings

We build our SAC implementation based on CleanRL (Huang et al., 2022). We keep the SAC-specific
hyperparameters consistent between all approaches and report them in Table 1.

CHEQ (UTD1 and UTD20) uses an ensemble of E = 5 critics. For CHEQ (UTD1 and UTD20)
we set the upper bound of the uncertainty as umax = 0.15 and the lower bound as umin = 0.03.
Further we set λmax = 1.0 and λmin = 0.2. We use a Bernoulli masking rate of κ = 0.8 and F = 2
minimization targets.

BCF trains an ensemble of policy networks. We maintain the original ensemble size from (Rana et al.,
2023) which uses ten policy networks. We set the standard deviation of the control prior in BCF as
σprior = 6.0.
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Table 1: Shared Hyperparameters.
Hyperparameter Value
number of steps 1.5× 106

batch size 256
learning rate actor 3× 10−4

learning rate critic 3× 10−4

target entropy Ht −3
replay buffer size 1× 106

discount factor γ 0.99
gradient update start 1× 103 steps
Polyak averaging factor τ 0.005

For the uncertainty estimate in CORE we set A = 7, C = 0.02. Note that in the original paper A is
denoted as λmax, which we change to avoid ambiguous notation. SAC uses a UTD ratio of 1. REDQ
implementation both use an ensemble size of 5 and a UTD ratio of 20.

For all algorithms, we include a random sampling phase for the first 1× 103 steps where we sample
the RL action uniformly random and do not update our agent. In this setting, we keep λRL

t small for
the hybrid agents. For CHEQ we vary λRL between [0.2, 0.3]. As CORE and BCF are unable to
observe changes in λRL we use a fixed λRL = 0.2 which has shown to favourable in our experiments.
After the random sampling phase, agent training starts, but λRL is kept small for another 4 × 103

steps and afterward λ adaption starts.

For performance evaluation, we conduct a greedy evaluation run every 20 episodes. Evaluation
happens in an adapted setting, together with the controller where the weight is calculated as in the
training procedure.

B Environment Details

B.1 Racing Environment

We test our agent on the simulated racing task adapted from Schier et al. (2023). Figure 6 shows an
example of the environment.

(a) (b)

Figure 6: Racing task and the training track.

The vehicle uses a dynamic single-track model with a coupled Dugoff tire model. The throttle, brake,
and steering are continuous actions. The vehicle is a front-wheel drive. The RL agent may learn
to control brake balance by applying throttle and brake individually. We define the state of the RL
agent as st = (vx, vy, ω, β, otrack), with the ego vehicle’s velocity vector vego = (vx, vy) in vehicle
reference frame, steering angle β, and yaw rate ω. The observation of the track otrack = (x,y)T

is given as a vector of 20 cartesian distances (xi, yi) to the centerline of the track. The points are
sampled equidistantly from the 60m track segment ahead.
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We use the original reward formulation from Schier et al. (2023) where the RL agent receives a
penalty rcollision whenever it collides with the track boundary and a penalty rfail for leaving the
track with the center of mass. The latter case also terminates the episode. The RL agent receives a
positive reward for driving fast: the scalar projection of its velocity vector vego onto the forward track
direction ntrack. The complete reward is then given by

r(s, a) = −rfail − 0.2 · rcollision + 0.01 · ntrack · vego. (7)

B.2 Control Prior

For the racing task, we design a simple path-following controller with adaptive speeds. For the lateral
control, we use a Stanley Controller (Thrun et al., 2006) following the steering control law

δ(t) = ψ(t) +
kcross · e(t)
v(t) + ksoft

,

where ψ(t) denotes the heading error, e(t) denotes the crosstrack error of the front axle and v(t)
describes the velocity of the vehicle.

For the longitudinal control, we design two symmetric P-controllers; one for the brake and one for
the throttle. First, we compute the target velocity dependent on the curve radius R(t) of the track
directly in front of the vehicle as

vtarget(t) = min{kr ·R(t), vmax},

where vmax is the maximum desired velocity. Then, we design the throttle control as

throt(t) =

{
kv(t) ∗ (vtarget(t)− v(t)), vtarget(t)− v(t) ≥ 0

0, else

and the brake control as

br(t) =

{
kv(t) ∗ (v(t)− vtarget(t)), vtarget(t)− v(t) ≤ 0

0, else,

with shared gain kv. Following this control law, the control prior accelerates if it is going too slow
and brakes if it is going too fast. It never uses the brake and the throttle at the same time.

To avoid aggressive braking behavior when the RL agent hands over to the controller in risky situations
(high velocity around curves), we additionally introduce a simple clipped linear gain schedule on kv
attenuating the braking control for higher velocities as

kv(t) = clip

(
kmax
v − kmin

v

vlow − vhigh
(v(t)− vlow) + kmax

v ; kmax
v , kmin

v

)
.

We tuned the controller gains and coefficients to kcross = 0.5[1/s], ksoft = 1[m s−1], kr = 0.4[1/s],
vmax = 8[m s−1], kmax

v = 0.25[sm−1], kmin
v = 0.05[sm−1], vlow = 8[m s−1] and vhigh =

28[m s−1].

C Additional Results and Ablation Study

In this section, we formulate contextualized hybrid variants of CORE and BCF, C-CORE and C-BCF.
Further, we present additional results on hyperparameter sensitivity and the distribution of λRL for
CHEQ-UTD1, CORE, and BCF. For a reasonable comparison, we focus only on CHEQ-UTD1 using
a UTD ratio of 1.

C.1 Contextualized Hybrid Variants of Prior Work

To further substantiate our claim that the contextualized hybrid RL formulation aids the training
progress, we developed contextualized variants of the CORE and BCF algorithm, which we call
C-CORE and C-BCF. In order to use the adaptive weight as a context variable, a weighting parameter
λRL
t needs to be determined.
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The CORE algorithm comes with a direct weight estimate(Cheng et al., 2019), which can be written
as

λRL
t =

1

1 + λCORE
t

where λCORE
t = A(1− e−Cδt−1) with the TD-error δt−1 and C, A being tuning parameters3.

For C-BCF, we derive a pseudo-weight, as the BCF algorithm (Rana et al., 2023) does not
have a straightforward weighting factor λRL. In BCF, at timestep t − 1, the fusion of the prior
Nψ,t−1(µψ,t−1, σψ,t−1) and the SAC-ensemble Nπ,t−1(µπ,t−1, σπ,t−1) results in a Gaussian distri-
bution with mean

µfuse,t−1 =
σ2
ψ,t−1

σ2
ψ,t−1 + σ2

π,t−1

· µπ,t−1 +
σ2
π,t−1

σ2
ψ,t−1 + σ2

π,t−1

· µψ,t−1.

Thus, in BCF the weight has the dimension of the action space, whereas the contextualized mechanism
requires a scalar weight λRL

t . For C-BCF, we compute a scalar weight

λRL
t =

1

N

N∑
i=1

(
σ2
ψ,t−1

σ2
ψ,t−1 + σ2

π,t−1

)
i

.

The next action amix
t is computed according to Equation 3 where aRL

t ∼ Nπ,t and apriort = µψ,t.

For C-BCF and C-CORE we use the same warm-up phase as for our CHEQ agent.

C.2 Additional Results on CHEQ
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Figure 7: Comparison of CHEQ-UTD1 with different umax thresholds. Plotting return (a) and number
of fails (b) for the racing environment.

Our algorithm has only two important hyperparameters, upper and lower bounds of the uncertainty
umax and umin. We chose these hyperparameters by conducting one training run and investigating
the uncertainty range within this run. CHEQ is generally robust against changes in these thresholds.

3CORE (Cheng et al., 2019) uses the term λmax instead of A. As we use λmax in a different context, we
stick to A here.
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Figure 8: Distributions of λRL over training steps shown for all hybrid agents.
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Figure 9: The 10 transfer tracks and the corresponding zero-shot transfer of one seed of CHEQ-
UTD20.

We observe slightly lower final return and fewer fails for lower upper bounds umax. This is to
be expected as frequent hand-over to the control prior results in lower velocities and thus lower
return. Figure 7 shows the return and the number of fails during training for our CHEQ-UTD1
variants. For CHEQ-UTD20 we were able to use the same upper and lower uncertainty bounds as for
CHEQ-UTD1.

Figure 8 shows the distribution of the weight λRL over the training progress. We find that for
CHEQ-UTD1 the agent starts with an almost uniform distribution of the weight and slowly moves
towards a λRL = 1 regime. Even in later training stages the agent hands over to the controller from
time to time.

Lastly, we investigated the transfer behavior of the CHEQ-UTD20 agent further. Figure 9 shows the
ten transfer tracks. We plot λRL over the track for one evaluated model. Here, we find that the agent
frequently becomes uncertain and hands over to the controller, especially in unknown curves. In plot
C we see one of the two failure cases (out of 100 runs) that we experience during transfer. We find
that the agent becomes uncertain and hands over to the controller. In this specific scenario however,
the controller is not able to safely navigate the situation and leaves the track.

C.3 Additional Results on CORE and C-CORE
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Figure 10: Comparison of return (a) and number of fails (b) CORE and C-CORE runs with different
C parameters.

In Figure 10 we compared different parameters C. We find stable training progress and high return for
C = 0.02 but since this uses high λRL values, this setting results in many failures. Figure 8 illustrates
the high λ regime of the C = 0.02 agent. C-CORE using our contextualized hybrid framework,
notably outperforms CORE in terms of asymptotic return, training stability and the number of training
failures. Using the contextualized formulation, C-CORE is able to use a much wider λRL distribution
(see Figure 8).
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C.4 Additional Results on BCF and C-BCF

The BCF algorithm is sensitive to the parameters of the uncertainty threshold, which in this case is
the variance of the control prior σprior. Higher variances, lead to less weight on the control prior and
thus high λRL regimes. In Figure 11 we compared different parameters σprior. We find stable training
progress and high return for σprior = 6. However, this setting, as expected, uses a λRL regime close
to one and thus results in a high number of failures. Figure 8 illustrates this regime.

Our C-BCF variant is able to resolve this problem only partially. Due to its construction, the BCF
algorithm has a separate weighting factor for each action of which we take the mean. In addition, our
pseudo λRL factor is only a rough estimate of the actual mixing as BCF samples from the posterior
distribution. Both factors result in information loss and make the weight λRL only a rough estimate.
We find that C-BCF-2.0 and BCF-6.0 achieve similar asymptotic performance, while C-BCF-2.0
leads to fewer failures.
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Figure 11: Comparison of return (a) and number of fails (b) of BCF and C-BCF runs with different
σprior parameters.
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