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Abstract
In Continual learning (CL) balancing effective
adaptation while combating catastrophic forget-
ting is a central challenge. Many of the recent
best-performing methods utilize various forms of
prior task data, e.g. a replay buffer, to tackle the
catastrophic forgetting problem. Having access
to previous task data can be restrictive in many
real-world scenarios, for example when task data
is sensitive or proprietary. To overcome the neces-
sity of using previous tasks’ data, in this work, we
start with strong representation learning methods
that have been shown to be less prone to forgetting.
We propose a holistic approach to jointly learn the
representation and class prototypes while main-
taining the relevance of old class prototypes and
their embedded similarities. Specifically, sam-
ples are mapped to an embedding space where
the representations are learned using a supervised
contrastive loss. Class prototypes are evolved con-
tinually in the same latent space, enabling learn-
ing and prediction at any point. To continually
adapt the prototypes without keeping any prior
task data, we propose a novel distillation loss that
constrains class prototypes to maintain relative
similarities as compared to new task data. This
method yields state-of-the-art performance in the
task-incremental setting, outperforming methods
relying on large amounts of data, and provides
strong performance in the class-incremental set-
ting without using any stored data points.

1. Introduction
Continual Learning (CL) aims to continuously acquire
knowledge from an ever-changing stream of data. The goal
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Figure 1. Illustration of our Prototype-Sample Relation Distillation
(PRD). For each prior task prototype, we preserve the relative or-
dering of samples in the mini-batch. This allows the representation
to adapt to new tasks while maintaining relevant positions of past
prototypes. Illustrated for the prototype in orange 4 samples in
the minibatch are ranked 1 through 4 based on similarity. PRD
attempts to preserve this ranking while learning the new task.

of the learner is to continuously incorporate new information
from the data stream while retaining previously acquired
knowledge. Performance decay of the system on the older
samples due to the loss of previously acquired knowledge is
referred to as catastrophic forgetting (McCloskey & Cohen,
1989), which represents a great challenge in CL. Thus CL
algorithms are typically designed to control for catastrophic
forgetting while observing additional restrictions such as
memory and computation constraints.

Some of the early work in modern continual learning such as
LwF (Li & Hoiem, 2017) and EWC (Kirkpatrick et al., 2016)
propose solutions that do not require storage of past data.
However, in complex settings with long task sequences,
these techniques tend to under-perform by a wide margin
compared to the idealized joint training (Chaudhry et al.,
2019). Many recent high-performing approaches in this area
maintain existing samples in some form of buffer, allowing
them to be reused for distillation(Rebuffi et al., 2017), re-
play (Chaudhry et al., 2019; Caccia et al., 2020), or as part
of gradient alignment constraints (Lopez-Paz et al., 2017;
Chaudhry et al.). These approaches have been shown to be
more efficient and have become a predominant approach for
many state-of-the-art continual learning systems (Verwimp
et al., 2022). On the other hand in many cases when training
on a new task it may be prohibited to store prior data. For
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example, prior task data may be sensitive (e.g. medical data)
or it may consist of proprietary data that is not aimed for
release. Moreover, methods relying on prior task data tend
to grow the storage with the number of tasks (Chaudhry
et al.; Caccia et al., 2020), which can be prohibitive under
severe storage constraints. Thus developing methods that
can match or exceed the efficiency of data-storage-based
methods is of great importance.

Recently (Davari et al., 2022) observed that for many con-
tinual learning tasks, the representational power of deep
networks trained with naive fine-tuning can remain remark-
ably efficient for representing both new and old task data. In
particular, it was observed that when performing continual
learning with the Supervised Contrastive Loss (Khosla et al.,
2020) and no CL constraints, the efficiency of representa-
tions on old task data tends to match that of complex CL
data-storage methods. These observations relied on an ora-
cle measure of the deep representations and did not provide
a practical solution. In order to link the powerful represen-
tation learning to the effective prediction of prior class data
we can consider alternatives for making the final prediction.
An approach previously taken in the continual learning liter-
ature is to use the notion of class prototypes (De Lange &
Tuytelaars, 2021), vector representations whose similarity
to new sample representation can give predictions of the
target class. If we take the observation that representations
of old classes are already well separated (Davari et al., 2022)
then an efficient continual learner can be obtained by simply
maintaining correct estimates of past class prototypes.

In this work, we propose an effective mechanism to not
only maintain relevant class prototypes but also leverage the
knowledge embedded in these prototypes to further reduce
representation forgetting. We combine contrastive repre-
sentation learning with a prototype-based classifier. The
new class prototypes are learned such that no direct neg-
ative influence is incurred on previous prototypes. Then,
a novel loss formulation based on the relative similarity
of new task data to old class prototypes is deployed to
maintain the relevancy of old class prototypes while en-
couraging the learned representation to remain effective
for old tasks. Our approach is illustrated in Fig. 1. Our
proposed method, Prototype-Sample Relation Distillation
(PRD), maintains the relative relation of each prototype, by
minimizing changes in the softmax distribution over sam-
ples. This effectively allows representations to adapt to new
classes while keeping prototypes from old classes relevant.
We now summarize our overall contributions in this work:

• We propose a novel CL method, PRD, that does not
rely on prior data storage during training or inference.

• In a variety of challenging settings (task and class-
incremental), datasets (SplitMiniImagenet (Vinyals
et al., 2016), SplitCIFAR100 (Krizhevsky et al., 2009),

Imagenet-32 (Davari et al., 2022)), and task sequence
lengths (20 to 200), we demonstrate that PRD leads to
large improvements over both replay-based and replay-
free methods.

• Throughout several experiments, we demonstrate that
our method not only achieves strong control of for-
getting of previously observed tasks but also leads to
improved plasticity in learning new tasks.

In the following section, Sec. 2, we summarize the related
work and then describe the essence of our proposed solution,
Sec. 3. We demonstrate the effectiveness of our approach in
Sec. 4, and conclude our work in Sec. 5. 1

2. Related Work
The primary goal of many CL methods is to mitigate the
catastrophic forgetting phenomenon while optimizing the
forward and backward knowledge transfer between tasks is
seen as a secondary objective. One branch of algorithms
addresses the issue of catastrophic forgetting by modify-
ing and growing the model architecture as new tasks are
observed (Rusu et al., 2016; Aljundi et al., 2016; Li et al.,
2019; Rosenfeld & Tsotsos, 2018). Under the fixed archi-
tecture constraints, the algorithms can be divided into two
categories. The first and more popular branch is the re-
hearsal methods. These methods store and re-use samples
of the past tasks while observing the new ones (Lopez-Paz
et al., 2017; Chaudhry et al., 2019). The second family
of approaches is the regularization-based methods. These
methods preserve the previously learned information by im-
posing penalty terms on the objective of the new tasks,
including popular methods such as LwF (Li & Hoiem,
2017) and EWC (Kirkpatrick et al., 2016; Chaudhry et al.,
2018), where the former imposes a knowledge distillation
penalty (Hinton et al., 2015) on the objective of the newly
observed task and the latter a quadratic penalty based on
Fisher information matrix (Myung, 2003).

Recently, several works have considered the use of Sup-
Con loss (Khosla et al., 2020) in continual learning (Caccia
et al., 2022; Asadi et al., 2022; Cha et al., 2021). These
studies have been largely focused on the combination of
SupCon loss (Khosla et al., 2020) with replay buffers in
the online setting, and do not consider the notion of class
prototypes in the replay-free setting. (Davari et al., 2022)
demonstrated that the use of the SupCon loss in the of-
fline setting yields more effective “representation forgetting”
(forgetting as measured by an oracle training of a linear
probe). However, a direct application of this observation of
the SupCon loss was not proposed in this prior work.

1The code for our experiments is available at
https://github.com/naderAsadi/CLHive.
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(De Lange & Tuytelaars, 2020) proposed a prototype-based
evolution strategy that continually updated prototypes us-
ing a momentum update combined with taking the mean of
stored exemplars. Contrary to the present work this method
focused on the online setting and leveraging stored data.
Furthermore, it did not exploit the efficient and stable repre-
sentation properties of contrastive supervised learning.

Knowledge distillation (Hinton et al., 2015), where a stu-
dent network attempts to mimic the behavior of a teacher
network is a popular technique in deep representation learn-
ing(Hinton et al., 2015; Tian et al., 2019; Zhu et al., 2021b),
often used to reduce model size. Classical distillation tech-
niques have been applied in various contexts in CL. (Rebuffi
et al., 2017; Javed & Shafait, 2018) utilized a distillation
loss alongside replayed examples, constraining the current
model to give similar outputs. (Barletti et al., 2022) recently
proposed to use a triplet loss alongside a contrastive distil-
lation term. Here samples are constrained to have similar
distances under current and previous models. By contrast,
we apply a relation distillation that constrains the relative
distances of old class prototypes to samples to be preserved.

Another application of classical distillation techniques
closely related to our work (Wu et al., 2021) proposed a
method that does not require storage of prior task data. This
approach relies on constraining the distance between em-
beddings of the old and new models combined with a cross-
entropy term. The constraint here can be analogous to a
traditional distillation term, while our approach focuses on
relation distillation to prototypes. (Wu et al., 2021) also
utilizes a self-supervised learning objective based on the
rotation of images to enhance the representation learning
similar to (Zhu et al., 2021a).

Relation distillation has recently been used in teacher-
student methods (Park et al., 2019). Unlike conventional
knowledge distillation techniques that attempt to make stu-
dent network representations similar to teacher networks,
relation distillation maintains relative distances between a
set of points. In the present work, we apply a related idea
in the context of continual learning, maintaining relative
relationships between prototypes and current task samples.

3. Methodology
We consider a general continual learning setting where a
learner is faced with a possibly never-ending stream of data
divided into separate training sessions. At each session St,
a set of data Xt and their respective labels Yt are drawn
from a distribution Dt characterized by P (X,Y|T = t).
When learning new sessions, it is assumed that access to the
samples from previous sessions is restricted. This defini-
tion covers both task-incremental settings where (Xt,Yt)
represent a separate task, the class-incremental scenario

where changes in P (X) induces a shift on P (Y), and the
domain-incremental learning where changes in P (X) does
not affect P (Y). We consider a neural network composed of
an encoder f that maps an input sample x to its features rep-
resentation f(x) ∈ Rd and a projection head g that projects
the features onto another latent space g ◦ f(x) ∈ Rk where
k < d. Our goal is to minimize the objective loss Lt on the
new session data while not increasing the objective loss of
the previously learned sessions Li ∀i<t.

A common approach to control the loss of the previously
encountered sessions is to use a buffer of stored samples
and reuse them upon encountering new sessions. In our
approach we do not require access to past data, instead,
we approximate the behavior of the previously seen classes
of objects via a set of prototypes. In our approach upon
visiting a new session, we employ a novel distillation term
to approximate the now-inaccessible loss of the previous
sessions and set to restrict this surrogate loss in order to
control the loss of the previously seen sessions. In the
following sections, we introduce the different parts of the
objective function used to optimize the model at each step.

Supervised Contrastive Learning Supervised Con-
trastive Learning (Khosla et al., 2020) is a powerful rep-
resentation learning method observed to be useful in many
downstream tasks. (Davari et al., 2022) employed Super-
vised Contrastive training for continual learning and showed
that the learned representations are less prone to forgetting
compared to that learned with Cross Entropy loss (CE). In
this work, we build on this observation and propose a so-
lution to jointly train the representation and classification
head in an incremental fashion. In order to optimize the rep-
resentation for the task being learned, we apply a supervised
contrastive loss on the incoming data.

LSC(X) = −
∑
xi∈X

1

|A(i)|
LSC(xi) (1)

Where each sample’s loss is given:

LSC(xi) =∑
xp∈A(i)

log
h(g ◦ f(xp), g ◦ f(xi))∑

xa∈X/xi
h(g ◦ f(xa), g ◦ f(xi))

(2)

Where h(a, b) = exp(sim(a, b)/τ) and sim(a, b) =
aT b

∥a∥∥b∥ . Here A(i) represents the set of samples that form
positive pairs with xi i.e. augmented views of xi and other
samples of the same class {xj |yj = yi}. Note that this loss
is composed of tightness terms between positive pairs and
contrast terms with negative pairs (Boudiaf et al., 2020).

Prototype Learning without Contrasts In order to easily
link the discriminative representations learned by optimizing
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LSC(X) to a final class level prediction we consider the
notion of class prototypes (Caccia et al., 2022; De Lange
& Tuytelaars, 2021), which allow us to score a sample’s
representation with respect to each class. A simple solution
for learning the class prototypes is to apply the Softmax in
combination with the Cross-Entropy loss, for a given sample
yielding

−sim(p, fθ(xi)) + log
( ∑

pk∈P

h(pk, fθ(xi))
)

(3)

However, it has been shown that in the class-incremental
setting, the softmax combined with cross-entropy produces
a large interference with previously learned classes due to
terms that suppress previous classes logits (Caccia et al.,
2022; Ahn et al., 2021). Here, we propose instead to learn
class prototypes that are representatives of each class sam-
ples’ using only the first term in this loss, referred to as
the “tightness” term (Boudiaf et al., 2020). For each class
c we initialize a random prototype pc ∈ Rd. We want to
optimize these prototypes to be representatives of current
classes’ samples without introducing any suppression to
prototypes of previous classes. To achieve this we use a loss
term considering only positive pairs of class samples and
their corresponding prototypes where we aim to maximize
the similarity of these pairs:

Lp(X) = − 1

|X|
∑

xi,yi∈X,Y

sim(pyi
,sg[fθ(xi)]) (4)

Here sg denotes the stop-gradient operations. The suggested
loss contains only a tightness term, i.e., contrast-free, which
doesn’t have a direct effect on previous classes prototypes.
From this loss term, we aim to only optimize the prototypes
and not to change the samples representations as this is
taken care of by (1). Note that contrary to (Caccia et al.,
2022) which also uses prototype-based learning, we do not
include any contrastive terms for the prototype learning, the
learning of class separations being left to LSC . Note that
we utilize the stop-gradient operation so that the learning
of the prototypes does not interfere with the representation
learning or previous prototypes.

Once prototypes are obtained we can now directly perform
predictions at test time by using the similarity of the sample
representation and the set of prototypes to decide on the
nearest class prototype.

Prototypes-Samples Similarity Distillation Our proto-
types are learned in isolation for each task. However, as we
update our feature extractor using the supervised contrastive
loss Eq. (1) prototypes of previous task classes will become
outdated leading to the forgetting of previously learned
classes. As shown in (Davari et al., 2022) this forgetting
may correspond simply to movement in the decision bound-
ary, despite classes still being well separated. To update old

prototypes as we update our representation, we propose a
similarity distillation term using new class data as a proxy
for old data. Before the start of a new training session, we
compute the prototypes’ similarities to each sample of new
classes. During the new training session, we propose to
minimize the KL divergence between the similarities distri-
bution of prototypes to minibatch samples, enforcing current
similarities to be similar to previous similarities.

Consider the current model and set of prototypes for previ-
ous classes fθt ,P

t
o along with their corresponding model

and prototype from the end of the previous task fθt−1 ,P
t−1
o .

For an incoming mini-batch X and a corresponding proto-
type we can consider the softmax output Pt(p

t
k,X), where

the ith entry is given:

Pt(p
t
k,X)i =

h(pt
k, fθt(xi))∑

xj∈X h(pt
k, fθt(xj))

(5)

Denoting for shorthand Pt(p
t
k,X) as Pt(k) we can now

construct a relation distillation term as the KL-divergence
between prototype-samples similarity distribution estimated
with the model at session t−1 and during the current session
t.

Ld(P) =
∑

pk∈Po

KL
(
Pt(k) || Pt−1(k)

)
(6)

Note that this is distinct from distillation approaches where
we compute the similarities for each sample over existing
classes. As illustrated in Fig.1 the relative positions of
samples to the prototypes are encouraged to remain the same
by our loss. This results in flexibility in the representations
in order to adapt to new classes while keeping the relative
distances of many samples to the prototype as similar as
possible. Our overall training objective is thus given as a
combination of these three terms:

L(X) = Lsc(X) + αLp(X, Pc) + βLd(X, Po)

4. Experiments
In this section, we evaluate our proposed method on a wide
range of challenging CL settings. In Sec. 4.1, we focus on
the task-incremental (multi-head) setting, where we com-
pare our method with other replay-free methods. Sec. 4.2 is
dedicated to class-incremental setting, where the shared out-
put layer poses an enormous challenge that drives most work
to employ a replay buffer, unlike our replay-free solution.
The evaluations are based on average observed accuracy.
Specifically, we measure observed accuracy, Aij , as the ac-
curacy of the model after step i on the test data of task j.
Similarly, the average observed accuracy at the end of the
sequence is 1

T

∑
t∈T AT,t as used in (Li & Hoiem, 2017).

Datasets In our experiments, we use Split-
CIFAR100 (Krizhevsky et al., 2009), Split-MiniImageNet,
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Figure 2. Task-incremental accuracy on 20-Task Split-CIFAR100(left) and Split-MiniImageNet(right). We observe that PRD widely
outperforms other baselines without storing any previous task data, and as well exceeds the performance of ER with a very large buffer.

and ImageNet32 (Chrabaszcz et al., 2017; Davari et al.,
2022) as the benchmarks for both multi-head and single-
head settings. Split-CIFAR100 (Krizhevsky et al., 2009)
comprises 20 tasks, each containing a disjoint set of 5 labels.
The classes splits are constructed as in (Chaudhry et al.,
2019). All CIFAR experiments process 32 × 32 images.
Split-MiniImageNet divides the MiniImagenet dataset into
20 disjoint tasks of 5 labels each. Images are 84 × 84.
ImageNet32 (Chrabaszcz et al., 2017) is a downsampled
(32 × 32 ) version of the entire ImageNet (Deng et al.,
2009) dataset split into 200 tasks of 5 classes each. We use
ImageNet32 in order to compare methods performance in
very long sequences scenario.

Baselines Although our proposed method does not use any
replay buffer, we consider in our evaluation both replay-free
and replay-based methods, as replay-based have been shown
to outperform other approaches in the continual learning
setting (Chaudhry et al., 2019; Aljundi et al., 2019; Ji et al.,
2020; Rebuffi et al., 2017). We consider the following
replay-free methods in our evaluations:

LwF (Li & Hoiem, 2017): knowledge distillation based on
current task data is used to limit forgetting.
EWC (Huszár, 2017): estimates an importance value for
each parameter in the network and penalizes changes on
parameters deemed important for previous tasks.
SPB(Wu et al., 2021): A recent method that also utilizes
contrastive learning and does not rely on replay data. We
were unable to effectively reproduce their results since the
code is not provided. However, we compare our approach
directly to the reported results in the setting studied in the
original work (Wu et al., 2021) in Sec. 4.2.
iid: The learner is trained on the whole data, in a single task
containing all the classes.

The incorporated replay-based baselines are as follows:

ER (Chaudhry et al., 2019): Experience Replay with a

buffer of a fixed size. In our experiments, we used buffer
sizes of 5, 20, and 50 samples per class based on the evalua-
tion setting. Note this is a very strong baseline that exceeds
most methods, particularly with large buffers (50 samples)
(Davari et al., 2022).
iCaRL (Rebuffi et al., 2017): A distillation loss alongside
binary cross-entropy loss is used during training. Samples
are classified based on the closest class prototypes.
ER-AML (Caccia et al., 2022): Utilizes SupCon loss, along-
side a replay buffer, to reduce the representation drift of
previously observed classes.
ER-ACE (Caccia et al., 2022): Similar to ER-AML, how-
ever, ER-ACE introduces a modified version of the standard
softmax-crossentropy.

Hyperparameter selection For each method, optimal hy-
perparameters were selected via a grid search performed
on the validation set. The selection process was done on a
per-dataset basis, that is we picked the configuration which
maximized the accuracy averaged over different settings.
We found that for our method, the same hyperparameter
configuration worked well across all settings and datasets.
All necessary details to reproduce our experiments can be
found in the supplementary materials.

4.1. Evaluations on Task-Incremental Setting

We evaluate Split-CIFAR100, Split-MiniImagenet, and Ima-
geNet32 using the protocol from (Aljundi et al., 2019) with
100 training epochs training per task. We report the mean
and standard error over 3 runs.

Split-CIFAR100 and Split-MiniImageNet We consider
Split-CIFAR100 and Split-MiniImageNet with 20 tasks of
5 classes each. The results can be found in Figure 2, for
Split-CIFAR100 and Split-MiniImageNet, using different
buffer sizes for ER. In this setting, we can observe that our
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Figure 3. Task-incremental accuracy on 200-Task ImageNet32. On this long sequence, PRD matches a baseline with a large replay buffer.
Other methods degrade over time, but the average accuracy of PRD improves due to the cumulative effect of maintaining better plasticity.
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Figure 4. Class-incremental accuracy on 20-Task Split-CIFAR100(left) and Split-MiniImageNet(right). We observe that PRD outperforms
not only other replay-free baselines but also ER, M=5, and is on par with ER, M=20, without storing any data. We also observe that with
additional replay samples, PRD M=50 outperforms ER M=50 with the same number of replay samples.

proposed method consistently outperforms other methods
by a significant margin. Even though our method does not
utilize previous tasks’ data in any form, it still outperforms
ER with 50 replay samples per class, nearly closing the gap
with the oracle iid setting. From Figure 2, we can observe
that during the whole continual sequence of tasks, the aver-
age accuracy of our method on the observed classes remains
relatively similar and even increases at several points during
the sequence, e.g. 12th task, suggesting a good trade-off
between stability and plasticity of the model.

Although our method, in terms of average observed accu-
racy, outperforms other baselines with a considerable mar-
gin, a little higher forgetting rate can be observed compared
to the strong replay-based baseline, i.e. ER with 50 replay
samples. In Sec. 4.3, we show that our proposed method, in
terms of plasticity, i.e. ability to learn new tasks, is compa-
rable to naive fine-tuning, which is the upper bound among
existing CL methods due to the absence of constraints on
preserving previous tasks ( i.e., lacking stability). This

suggests that PRD is able to preserve previous tasks’ infor-
mation without losing the ability to learn new tasks.

ImageNet32 - Long Task Sequence We now consider a
longer sequence than typically studied which allows us to
observe whether the trends we have seen so far continue
to hold. Using Imagenet32 we construct 200 tasks of 5
classes each. Figure 3 shows the average observed accuracy
throughout the whole 200 tasks sequence. We see that in
a very long sequence of tasks, the previously established
observations about our method hold. Specifically, we see
that as the model reaches the later stages of the sequence,
our method outperforms the competitive baseline of ER
with 50 replay samples without utilizing previous tasks’
data in any form. Note that the number of stored data points
leveraged by ER increases as we proceed in the sequence.
Furthermore, we observe as in the previous section that
the average observed accuracy of our proposed method not
only stays relatively the same during the beginning but also
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Method Split-CIFAR100, K = 20
M = 0 M = 5 M = 20 M = 50

iid 65.3 65.3 65.3 65.3
Fine-tuning 4.6 4.6 4.6 4.6

ER (Chaudhry et al., 2019) - 15.2±0.7 29.6±0.8 38.3±0.9

iCaRL (Rebuffi et al., 2017) - 19.8±0.5 28.6±0.7 32.9±0.5

ER-AML (Caccia et al., 2022) - 21.4±0.8 35.3±0.6 42.4±0.8

ER-ACE (Caccia et al., 2022) - 22.8±0.5 35.7±0.2 43.3±0.2

PRD(Ours) 27.8±0.2 32.0±0.4 39.5±0.4 45.1±0.5

Split-MiniImageNet, K = 20
M = 0 M = 5 M = 20 M = 50

54.5 54.5 54.5 54.5
4.4 4.4 4.4 4.4

- 13.4±0.2 21.7±0.8 28.7±0.5

- 16.2±0.1 22.8±0.3 26.1±0.2

- 17.1±0.3 26.3±0.7 32.3±0.2

- 18.8±0.1 27.1±0.5 34.2±0.5

20.0±0.1 25.7±0.3 31.3±0.5 35.8±0.4

Table 1. Class-incremental results on 20-Task Split-CIFAR100 and Split-MiniImageNet datasets using different buffer sizes. We observe
that even with no replay samples (M=0) PRD outperforms all of the replay-based baselines with 5 replay samples. With a small number of
replay samples, e.g. M=5, PRD widely outperforms other replay-based methods, suggesting the ability of our method to utilize replay
samples while maintaining good performance with no access to prior data.

starts increasing as the model reaches the middle of the
sequence, i.e. the 90th task. This observation suggests that
our method is able to efficiently learn new tasks’ features
while preserving the previous tasks’ information.

4.2. Class-Incremental Setting

In addition to the experiments in the task-incremental set-
ting, to further verify the effectiveness of our method in
mitigating representation forgetting with no access to prior
task data, we also evaluate on the more challenging class-
incremental setting where we examine the ability to incre-
mentally learn a shared classifier. Here as well we report
the mean and standard error over 3 runs.

Split-CIFAR100 and Split-MiniImageNet Figure 4
shows the average observed class-incremental accuracy of
the model over the 20 task sequence of Split-CIFAR100 and
Split-MiniImageNet. Note that the replay-based methods
are plotted in dashed lines. We can see that our method,
with no access to previous tasks data, not only outperforms
other replay-free methods but also beats ER with 5 replay
samples and is on par with ER with 20 replay samples per
class. From Figure 4, we can observe that the average accu-
racy of our method drops initially, probably due to the drift
of the old tasks’ prototypical features, but stays relatively
the same from the middle of the sequence. This observation
also suggests that in longer tasks sequences the learned pro-
totypical features of old classes remain useful, even in the
absence of any replay data.
In the following section, Sec. 4.2, we perform a thorough
experiment on the effect of different replay buffer sizes,
showing that our method beats the state-of-the-art replay-
based methods with fewer stored samples.

Leveraging stored samples Our method targets incre-
mental learning in scenarios where no stored samples are
allowed. However, here, we investigate if our method can
benefit from the availability of few stored samples.
When utilizing replay data we follow the standard approach

Method Split-CIFAR100 ImageNet-Sub
K=6 K=11 K=6 K=11

iid 73.4 73.2 82.0 82.7
Fine-tuning 22.3 12.6 23.6 13.2

LwF-E (Yu et al., 2020) 57.0 56.8 65.5 65.6
EWC-E (Yu et al., 2020) 56.3 55.4 65.2 64.1
MAS-E (Yu et al., 2020) 56.9 56.6 65.8 65.8
SDC (Yu et al., 2020) 57.1 56.8 65.6 65.7

SPB (Wu et al., 2021) 60.9 60.4 68.7 67.2
PRD (Ours) 64.3 63.7 71.8 70.3

Table 2. Pre-trained Initialization. We report average cumulative
incremental accuracies over all tasks. PRD exceeds recent propos-
als in this challenging setting.

of ER-based methods, sampling half the training data of
the mini-batch from the previous data. The subsequent op-
timization problem is kept the same. Note that now the
relation distillation will also see data from past tasks that
directly correspond to the prototypes. Tab. 1 compares our
method with different buffer sizes to other replay-based
methods. It can be seen that our method can successfully
leverage the available data and further improve the perfor-
mance achieving high gains over state of art in low buffer
regime. This suggests our method is highly effective in both
limited and no replay data settings.

Pre-trained Initialization To further measure the class-
incremental performance of our method and allow direct
comparison to (Wu et al., 2021), we also evaluate our
method on Split-CIFAR100 (Krizhevsky et al., 2009) and
ImageNet-Subset (Rebuffi et al., 2017; Krizhevsky et al.,
2012) using the protocol and constraints from (Wu et al.,
2021). In these settings half the classes are used for an
initial pre-training phase. ImageNet-Subset contains 100
classes randomly sampled from ImageNet. Following (Wu
et al., 2021), we randomly select the first 50 classes as the
1-st phase and evenly split the remaining 50 classes for K-1
phases. Similar to (Wu et al., 2021), for this experiment,
we evaluate our models with K=6 and 11 phases on both
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Figure 5. Task 1 LP accuracy over 200-Task ImageNet32. We compare Linear probe accuracy for Tasks 1 data over the whole sequence.
We can observe that during a long sequence, the performance of our method, i.e. PRD, not only stays relatively flat, but also increases at
some points in the later stages of the sequence, suggesting its ability to preserve the information of observed tasks.
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Figure 6. Task-incremental Split-CIFAR100. Accuracy on the cur-
rent task(left) and average accuracy on previous tasks(right). PRD
performs well on the current task while having low forgetting.

Split-CIFAR100 and ImageNet-Subset datasets, i.e., after
the 1st phase, we incrementally add 5 or 10 new classes
at each phase. Following (Wu et al., 2021), we report the
average cumulative incremental accuracy over all phases.
All results are averaged over three runs.

Tab. 2 shows average cumulative incremental accuracies (as
used in (Wu et al., 2021)) over all phases on Split-CIFAR100
and ImageNet-Subset. We observe that our method exceeds
the recent proposal of (Wu et al., 2021) in this setting as
well as beating strong baselines such as SDC. Note that
(Wu et al., 2021) also applied a self-supervised objective
which we do not include as we were unable to obtain source
code for these experiments, and this was a complementary
approach that can enhance our method as well.

4.3. Analysis and Ablations

PRD Balances Plasticity and Stability A continual
learner should be able to easily integrate new knowledge
from new tasks (plasticity) while benefiting from prior
knowledge to improve performance on the current task

(forward transfer). Continual learning methods are often
characterized by a trade-off in plasticity and stability. Sta-
bility refers to the ability to retain the knowledge of prior
tasks(Mermillod et al., 2013), often measured by the forget-
ting metric. We have thus far shown that PRD has relatively
low forgetting, for example in Fig. 2, for CIFAR-100 it has
the lowest forgetting, only slightly improved on by the ER-
M50 a baseline with large replay buffer. Both ER-M50 and
PRD have good stability, but their plasticity can be difficult
to gauge in long task sequences directly from observed accu-
racy. For example, a task can be very poorly learned during
a session but learned later on thanks to the replay buffer. We
thus directly compare the current task performance sepa-
rately from the old task performance corresponding to PRD,
ER M=50, and EWC on task-incremental CIFAR100, corre-
sponding to the results in Fig. 2. The results are shown for
tasks 5,10, and 15 in Fig. 6.

We first observe that all methods progressively degrade in
current task accuracy. Since tasks are sampled uniformly
from the set of possible tasks we can assume this corre-
sponds to a gradual reduction in plasticity. This is consistent
with many previous observations of continual learning sys-
tems(Dohare et al., 2021; Mermillod et al., 2013). On the
other hand, we observe that compared to other strong base-
lines like EWC and ER, M=50, the current task accuracy of
PRD is substantially higher, while the old task accuracy is as
well, being largely maintained as training progresses. Thus
PRD provides a strong tradeoff in plasticity and stability.
If we observe the behavior of ER, M=50, we see that its
old task accuracy is sometimes increasing (for example at
task 10). Overall, we can state that models trained by our
method, PRD, exhibit a plasticity close to the constraint free
fine-tuning while showing the best stability.

Representation Forgetting Following (Davari et al.,
2022), we evaluate the representation forgetting of our
method against other baselines with a Linear Probe, de-
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noted as LP. Similar to the definition of observed accuracy
in Sec. 4, we can measure the LP accuracy for each step i
and task j as well as the average LP accuracy.

Similar to (Davari et al., 2022), we construct 200 tasks of
5 classes using ImageNet32 dataset in the task-incremental
setting. Figure 5 shows the performance of the model on
the first task throughout the whole continual sequence. We
observe that although the naive SupCon exceeds replay with
M=5 in terms of representation forgetting on the first task,
PRD provides a very substantial improvement. This sug-
gests that we not only benefit from stabilizing the proto-
types but the representation itself greatly benefits from PRD,
avoiding forgetting at the representation level.

5. Conclusion
We proposed a novel approach for Replay-Free Continual
learning that effectively leverages relationship distillation
alongside supervised contrastive learning. On a wide array
of evaluations, our method is shown to provide good trade-
offs in stability and plasticity, leading to large improvements
over replay-free baselines and allows us to exceed perfor-
mance of replay-based methods. Moreover, we showed that
our method can effectively utilize additional replay samples,
outperforming the state-of-the-art replay-based methods in
the class-incremental setting. These observations open up
potential new directions for approaches in replay-free con-
tinual learning.
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APPENDIX

A. Experimental Setup
In this section, we provide additional details regarding the baselines and hyperparameters. In all experiments, we leave the
batch size and the number of epochs fixed at 128 and 100. The model architecture (θ) is also kept constant, which is a
regular ResNet-18 model, where the dimensions of the last linear layer change depending on the input height and width.

The augmentation pipeline is consistent across all experiments, consisting of random crop, random horizontal flip, color
jitter of 0.4, and random grayscale.

Hyperparameter Selection All results in the paper have been either implemented by us or adapted from (Caccia et al.,
2022), with the exception of SPB (Wu et al., 2021), where results were taken from the original paper since there was no
public codebase for that baseline at the time of submission. For each method, a grid search was run on the possible hparams,
which we detail below. In the following, we list the hyperparameters that we included in our grid search. The best values for
each parameter are underlined.

PRD(ours)

• LR: [0.01, 0.005, 0.001]

• SupCon Temperature: [0.1, 0.2, 0.3]

• Relation Distillation Coefficient(β): [1., 2., 4., 8., 16.]

• Prototypes Coefficient(α): [1., 2., 4.]

EWC (Huszár, 2017):

• LR: [0.01, 0.005, 0.001]

• Lambda Coefficient: [20, 50, 100, 200, 500, 1000]

LwF (Li & Hoiem, 2017), ER (Chaudhry et al., 2019), and iCaRL (Rebuffi et al., 2017):

• LR: [0.01, 0.005, 0.001]

Similar to (Caccia et al., 2022), for ER, rehearsal begins as soon as the buffer is not empty. Also when samples are being
fetched from the buffer, we do not exclude classes from the current task.

ER-ACE (Caccia et al., 2022):

• LR: [0.01, 0.005, 0.001]

Following (Caccia et al., 2022) implementation, for the masking loss, we simply use logits.maskedfill(mask,
-1e9) to filter out classes which should not receive gradient.

ER-AML (Caccia et al., 2022):

• LR: [0.01, 0.005, 0.001]

• SupCon Temperature: [0.1, 0.2, 0.3]

B. Ablation on Prototypes-Samples Similarity Distillation
As discussed in Sec. 4.3, continual learning methods are characterized by a trade-off in plasticity and stability. Stability
refers to the ability to retain the knowledge of prior tasks(Mermillod et al., 2013), often measured by the forgetting metric.
According to our observations from Sec. 4.3, one can observe the PRD has relatively low forgetting while maintaining high

12



Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning

plasticity in learning new tasks. PRD controls the stability-plasticity trade-off mostly using the coefficient for prototype-
sample relation distillation loss. Here we do an ablation on the effect of our prototype-sample relation distillation loss in
three datasets, Split-CIFAR100, Split-MiniImageNet, and ImageNet32. Tab. 3 presents the performance of our method with
different coefficient values(β) for our prototype-sample relation distillation loss.

We can observe that using a coefficient value of 0 (β = 0), i.e. having no relation distillation loss, Eq. (3), results in very
low average accuracy for all of the three datasets. This observation shows the importance of relation distillation loss in
remembering old tasks’ information. Further, we can observe using different values of β, with shorter task sequences like 20
task Split-CIFAR100, does not affect the overall average performance of the model across all tasks. On the other hand, with
long task sequences, e.g. 200 task ImageNet32, a higher coefficient value for the distillation loss results in less forgetting
and better overall average accuracy.

Dataset
Distillation Split-CIFAR100 Split-MiniImageNet ImageNet32
Coefficient(β) (K=20) (K=20) (K=200)

β = 0. 39.4±1.5 31.2±0.9 21.3±0.8

β = 1. 80.0±0.5 59.3±0.3 55.4±0.4

β = 2. 82.1±0.3 63.7±0.3 59.2±0.4

β = 4. 83.5±0.4 68.3±0.4 62.7±0.2

β = 8. 83.1±0.4 70.9±0.5 65.1±0.3

β = 16. 82.7±0.2 67.2±0.5 67.5±0.2

Table 3. Ablation study on the effect of relation distillation coefficient, β in Eq. (3). The reported numbers are Task-incremental average
observed accuracy. We can observe that β = 0, having no distillation, results in very low average accuracy over all tasks. On the other
hand, when the sequence is very long, e.g. 200 task ImageNet32, a higher coefficient value for the distillation loss results in better overall
average accuracy.

C. Ablation on Prototype Learning without Contrasts
PRD uses class prototypes to score a sample’s representation with respect to each class. Tab. 4 presents the performance
of our method with different coefficient values(α) for prototypes learning loss (Lp). When the corresponding coefficient
value is set to 0 (α = 0), which means no optimization for class prototypes in Eq. (3), the average accuracy across all
three datasets is basically random. When different values of α are used, there is no significant effect on the overall average
performance of the model for both shorter and longer task sequences.

Dataset
Prototypes Split-CIFAR100 Split-MiniImageNet
Coefficient(α) (K=20) (K=20)

α = 0. 20.6±0.2 20.2±0.2

α = 1. 81.8±0.5 68.0±0.4

α = 2. 82.2±0.4 69.8±0.3

α = 4. 83.5±0.4 68.3±0.5

α = 8. 82.7±0.5 67.9±0.3

α = 16. 82.3±0.5 67.4±0.4

Table 4. Ablation study on the effect of prototype learning coefficient, α in Eq. (3). The reported numbers are Task-incremental average
observed accuracy.

D. Domain-Incremental Experiment
We evaluate our approach using the CLAD-C dataset (Verwimp et al., 2022), under the conditions laid out in (Verwimp
et al., 2022). The dataset contains images recorded via dashcams over 3 days. The shift between night and day constitutes
the task boundaries, hence overall we have 6 tasks. The objective of each task is to correctly classify an image into one of
6 possible classes of objects: 1. pedestrian 2. cyclist 3. car 4. truck 5. bus 6. tricycle. The dataset reflects the real-world
distribution of these objects. Hence, certain classes are rarely observed (e.g. the tricycle class) and others are seen more
frequently (e.g. the car class). As the night and day changes in the data stream and we are introduced to new tasks, the
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image distribution changes, sometimes so drastic that leads to the absence of a few classes. This fact, along with the in-task
class imbalance of the data makes the CLAD-C dataset (Verwimp et al., 2022) a challenging, yet realistic, benchmark.

The training data contains overall 22,249 objects distributed over 6 tasks. We report our results using the final Average Mean
Class Accuracy (AMCA) on the test data which contains 69,881 objects spanning both day and night. The AMCA for T
tasks each containing C classes is given by:

AMCA =
1

|T ||C|
∑
t∈T

∑
c∈C

At
c (7)

where At
c is the accuracy of the class c for the task t. The results are given in Table 5. All methods in Table 5 use a

ResNet-50 (He et al., 2016) architecture, pretrained on ImageNet (Deng et al., 2009), and use a batch size of 32. Our results
highlight the versatility of our method and its applicability to real-life continual learning scenarios. Moreover, it suggests
that our method is cable of performing under severe class imbalance and drastic distribution shifts, without having access to
past data.

Finetune EWC (Kirkpatrick et al., 2016) LwF (Li & Hoiem, 2017) PRD (ours)

AMCA 40.5 62.5 63.7 65.1

Table 5. Domain-incremental setting using the CLAD-C dataset (Verwimp et al., 2022). All methods use a ResNet-50 (He et al., 2016)
architecture, pre-trained on ImageNet (Deng et al., 2009), and use a batch size of 32. Our results highlight the versatility of our method
and its applicability to real-life continual learning scenarios. Moreover, it suggests that our method is cable of performing under severe
class imbalance and drastic distribution shifts, without having access to past data.
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