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Abstract

Can a deep neural network be approximated by a small decision tree based on
simple features? This question and its variants are behind the growing demand
for machine learning models that are interpretable by humans. In this work we
study such questions by introducing interpretable approximations, a notion that
captures the idea of approximating a target concept c by a small aggregation of
concepts from some base class H. In particular, we consider the approximation of
a binary concept c by decision trees based on a simple class H (e.g., of bounded
VC dimension), and use the tree depth as a measure of complexity. Our primary
contribution is the following remarkable trichotomy. For any given pair of H and c,
exactly one of these cases holds: (i) c cannot be approximated by H with arbitrary
accuracy; (ii) c can be approximated by H with arbitrary accuracy, but there exists
no universal rate that bounds the complexity of the approximations as a function of
the accuracy; or (iii) there exists a constant κ that depends only on H and c such
that, for any data distribution and any desired accuracy level, c can be approximated
by H with a complexity not exceeding κ. This taxonomy stands in stark contrast
to the landscape of supervised classification, which offers a complex array of
distribution-free and universally learnable scenarios. We show that, in the case of
interpretable approximations, even a slightly nontrivial a-priori guarantee on the
complexity of approximations implies approximations with constant (distribution-
free and accuracy-free) complexity. We extend our trichotomy to classes H of
unbounded VC dimension and give characterizations of interpretability based on
the algebra generated by H.

1 Introduction

Many machine learning techniques, such as deep neural networks, produce large and complex models
whose inner workings are difficult to grasp. In sectors such as healthcare and law enforcement, where
the stakes of automated decisions are high, this is a serious problem: complex models make it hard to
explain the rationale behind an outcome, or why two similar inputs produce different outcomes. In
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those cases, interpretable models may become the preferred choice. Although there is an ongoing
debate around the notion of interpretability [Erasmus, Brunet, and Fisher, 2021], decision trees are
typically considered as the quintessential example of interpretable models [Molnar, 2022]: ones
that favor a transparent decision-making process, and that allow users to understand how individual
features influence predictions. A line of research in this area studies the extent to which small decision
trees can approximate some specific learning models, such as neural networks [Craven and Shavlik,
1995] and k-means classifiers [Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020]. Inspired by
these results, we develop a general theory of interpretability viewed as approximability via simple
decision trees. Our guiding principle can be summarized as follows.

Interpretable approximations = Small aggregations of simple hypotheses.

In analogy with PAC learning, we focus on binary classification tasks and view a classifier (e.g., a
neural network) as a concept c ⊆ X , where X is the data domain. Now let H ⊆ 2X be a family
of simple hypotheses, for instance decision stumps or halfspaces. Our goal is to understand how
well c can be approximated by aggregating a small set of elements in H. To formalize this goal in the
language of decision trees we introduce two notions. First, we say that c is approximable by H if,
under any given data distribution, there exists a finite decision tree using splitting functions from H
that approximates c arbitrarily well. Moreover, if the approximation can be always achieved using a
shallow tree, we say that c is interpretable by H. It is easy to see that, depending on c and H, one
may have interpretability, approximability but not interpretability, or even non-approximability. In
Section 4, we give explicit examples of pairs (c,H) for each one of the three above cases.

Note that in this initial study on the general structure of interpretable approximations we focus
on the fundamental question of what conditions ensure the existence of accurate approximations
and interpretations. Important topics, such as the informational or computational complexity of
obtaining accurate interpretations, are not addressed in this work. Note also that we do not make any
specific assumption on the data distribution P . Our approach is thus in line with standard notions
and theories in machine learning—e.g., universal Bayes consistency [Devroye, Györfi, and Lugosi,
2013], PAC learnability [Shalev-Shwartz and Ben-David, 2014], and universal learnability [Bousquet,
Hanneke, Moran, van Handel, and Yehudayoff, 2021]—as it encompasses both distribution-free and
distribution-dependent guarantees.

While our primary focus is not algorithmic, our work reveals profound connections within the
algorithmic framework of boosting. Indeed, there is a clear relationship between boosting, which
involves the aggregation of weak hypotheses to learn a target concept, and interpretable approximation,
which concerns the aggregation of simple hypotheses to approximate a target concept. However, our
work uncovers and exploits deeper links at a technical level. In particular, our general construction
that gives decision trees whose depth depends logarithmically on the accuracy is based on boosting
decision trees, and its analysis uses potential functions from this line of work. Our improved bound
for the VC classes, which provides approximating decision trees with constant (accuracy- and
distribution-free) depth, is somewhat more subtle; it is also based on a boosting perspective, this
time using majority-vote based algorithms and the minimax theorem. However, to eliminate the
dependency on the accuracy, we utilize tools from VC theory, particularly uniform convergence.

1.1 Contributions

Degrees of interpretability (Section 4). We introduce our learning-theoretic notions of approxima-
bility and interpretability. Informally speaking, we use the depth of the shallowest approximating
tree to measure the extent to which a certain concept c is interpretable by a given class H (e.g.,
hyperplanes or single features). Approximability is our weakest notion, as we do not constrain the
rate at which the rate of the shallowest approximating tree grows as a function of the desired accuracy.
Our strongest notion is instead interpretability with a tree depth that is constant with respect to both
accuracy and data distribution. In between these two extremes, a wide variety of behaviors is possible,
as the tree depth may grow at different rates that may be uniform, or depend on the data distribution
(similarly to the distinction between PAC learning and universal learning).

Collapse of the degrees (Section 5). We prove that the range of possible behaviors collapses
dramatically, and only three cases are actually possible: c is uniformly interpretable by H, c is
approximable but not interpretable by H, c is not approximable by H. If the class H of splits has
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bounded VC dimension, which conforms to our request that H be simple, we show that whenever c
is interpretable (possibly with a distribution-dependent rate) then it is uniformly interpretable by H
at constant depth. This means that, for every data distribution P and every accuracy ε > 0, there
exists an H-based decision tree that approximates c with accuracy ε and whose depth is bounded
by a constant depending only on c,H (but not on P, ε). Thus, whenever c is interpretable at some
arbitrary rate, it is in fact interpretable at a constant rate. We show a similar collapse for classes
H of unbounded VC dimension: in this case, we show that interpretability collapses to uniform
interpretability at logarithmic depth O

(
log 1

ε

)
.

Algebraic characterizations (Section 6). We prove that the trichotomy described above can be
characterized in terms of algebras and closures over H. For example, we show that if H has bounded
VC dimension, then c is interpretable at constant depth if and only if c is in the algebra generated
by the closure of H, i.e., the family of all the concepts that can be approximated arbitrarily well by
single hypotheses of H. We also present a simpler characterization when the domain X is countable.

Extension to other complexity measures (Appendix C). Finally, we exploit the equivalence between
H-based decision trees and Boolean formulae over H to show that the trichotomy above holds for
a large class of complexity measures, including not only tree-depth but also, for example, circuit
size. In particular, we show that for any complexity measure in our class, interpretability collapses to
uniform interpretability at constant complexity rate for VC classes and at polynomial complexity rate
for non-VC classes.

2 Related Work

According to Molnar [2022], there are different approaches to interpretability in learning. One
important distinction is between local explanation, where we explain the prediction of the model
on a single data point, and global interpretation, where we explain the model itself. In this work
we focus on the latter. A common approach to global interpretation is to use simpler “interpretable”
models (e.g., decision trees) to approximate more complex ones [Craven and Shavlik, 1995]. This is
known as post-hoc interpretability [Molnar, 2022]. For example, Zhang, Yang, Ma, and Wu [2019]
used decision trees to interpret convolutional neural networks. Formally, interpretability can be
modeled as a property of a classifier. For example, Dziugaite, Ben-David, and Roy [2020] define
a variant of empirical risk minimization (ERM), where each classifier in a given class H is either
interpretable or not, and the task is to learn an interpretable one even though the target concept is
not necessarily interpretable. We generalize this setup by assigning a complexity measure to each
classifier, e.g., the depth for decision trees. This allows to trade-off the desired accuracy ε and the
maximum depth of a decision tree one is willing to call interpretable. Learning-theoretic perspectives
on interpretability are rare and typically not covered in standard books and surveys. One important
line of work initiated by Dasgupta et al. [2020] deals with the problem of approximating a given
k-means or k-median clustering with decision trees. From this perspective, our setup can be seen as a
generalization from clusterings to arbitrary concepts. However, that line of work focuses on efficient
algorithms to compute decision trees with k leaves and approximation guarantees in terms of the
k-means or k-medians cost function, not in terms of classification error under a distribution as we do
here. Bastani, Kim, and Bastani [2017] discuss a related problem setup where a given classifier is
approximated using a decision tree. Under strong assumptions, the authors state convergence results
for the proposed decision tree. However, they do not state bounds on the required depth which is
assumed to be given as a hyperparameter. Some algorithmic analyses exist for specific cases of
hypothesis spaces and standard explainers. For example, Garreau and Luxburg [2020] analyse LIME
[Ribeiro, Singh, and Guestrin, 2016], one of the most used explanation techniques. Li, Nagarajan,
Plumb, and Talwalkar [2021] discuss generalization bounds for local explainers. Blanc, Lange, and
Tan [2021] introduce a local variant of our setup with the goal of explaining the classification f(x)
of a single instance x using a conjunction with small size (i.e., a small decision list). Their results
cannot be used for our goal of global interpretation as one would have to take the union of all the
local conjunctions for all (potentially infinite) instances x. Closer to our setup, Moshkovitz, Yang,
and Chaudhuri [2021] state bounds on the depth of a decision tree required to fit a linear classifier
with margin. Similarly to us, they also strongly rely on boosting arguments. Vidal and Schiffer [2020]
give upper bounds on the number of nodes of a single decision tree to approximate an ensemble of
trees. While mainly focusing on local explainability, Blanc et al. [2021] also state bounds on the
depth of a decision tree required to fit an arbitrary classifier f : {0, 1}d → {0, 1} under the uniform
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distribution on {0, 1}d. They do so by relying on classical bounds on the depth in terms of certificate
complexity [Smyth, 2002, Tardos, 1989]. As we focus instead on general hypothesis classes and
distributions, their results are not directly comparable to ours.

3 Preliminaries and Notation

Let X be any domain. We denote by P a distribution1 on X and by P(X) the set of all distributions
on X , by H ⊆ 2X a hypothesis class on X , and by VC(X,H) its VC dimension. We denote by
Alg(H) the algebra generated by H, i.e., the smallest set system A ⊆ 2X closed under complements
and finite unions such that H ⊆ A and ∅, X ∈ A. The σ-algebra σ(H) is the smallest algebra
containing H that is closed under countable unions. We denote by c ∈ 2X an arbitrary concept (not
necessarily in H). As usual we also view c as a binary classification function c : X → {0, 1}. Our
goal is to understand how well c can be approximated using aggregations of hypotheses in H. We let
N denote the naturals including 0, and N+ = N \ {0}.

A decision tree over X is a full finite binary tree T with nodes V(T ), where every leaf z ∈ L(T ) holds
a label ℓz ∈ {0, 1} and every internal node v ∈ V(T )\L(T ) holds a decision stump fv : X → {0, 1}.
The depth (or height) of T is denoted as depth(T ). We say T is H-based if fv ∈ H for all v ∈ V(T ),
and we denote by TH the set of all H-based decision trees. We also use T to denote the binary
classifier T : X → {0, 1} induced by T in the standard way. Note that TH ≡ Alg(H), as any
H-based tree T can be rewritten as a Boolean formula and vice versa. For every d ∈ N+ we let
Algd(H) = {T ∈ Alg(H) : depth(T ) ≤ d}. Given P ∈ P(X) and a concept c ∈ 2X , the
loss of T with respect to c under P is LP (T, c) = Px∼P (T (x) ̸= c(x)) = P

(
T−1(1)△c

)
, where

A△B = (A \B) ∪ (B \A) is the symmetric difference between A and B.

An ε-accurate H-approximation of c under P is an H-based decision tree T with LP (T, c) ≤ ε. The
set of all such trees is denoted as T c

H(ε | P ), which is also known as the ε-Rashomon set [Fisher,
Rudin, and Dominici, 2019], and their minimal depth is

depthcH(ε | P ) = inf
T∈T c

H(ε|P )
depth(T ) . (1)

4 Approximability and Interpretability

This section introduces the key definitions used in our results. We start with the definition of
approximability.

Definition 1 (Approximability). A concept c is approximable by H if T c
H(ε | P ) ̸= ∅ for every

distribution P ∈ P(X) and every ε > 0.

Approximability is our weakest notion, as it only requires that for any desired accuracy value a tree
approximating c exists under any distribution, without any constraint on its depth. In fact, there may
not even exist a function f such that depthcH(ε | P ) is bounded by f(ε) for all distributions P .

For example, for X = Rd let c be the unit d-dimensional Euclidean ball centered at the origin and H
be the family of affine halfspaces whose boundary is orthogonal to, say, the d-th dimension. Then,
any finite aggregation T of such halfspaces is unable to discern points that are aligned along the i-th
dimension for any i ̸= d and, thus, necessarily incurs a constant LP (T, c) for some distribution P . On
the other hand, if we extend H to be the family of all halfspaces in X = Rd, then it is possible to show
that we can approximate the unit ball c up to any accuracy under any distribution. Indeed, it is known
that a variant of the 1-nearest neighbour (1-NN) algorithm is universally strongly Bayes consistent in
essentially separable metric spaces [Hanneke, Kontorovich, Sabato, and Weiss, 2021], and any 1-NN
classifier corresponds to a finite Voronoi partition which can be represented as an H-based decision
tree. However, we expect the number of Voronoi cells, and thus the depth of the H-based decision
tree representing it, to grow larger as the distribution P concentrates around the decision boundary
(that is, the surface of the unit ball c). Consider, for instance, the family of distributions Pα with

1By default we assume a fixed but otherwise arbitrary σ-algebra on X and that all functions/sets discussed in
our theorems are measurable. We also borrow standard assumptions on the underlying σ-algebra which allow
us to use the VC Theorem [Vapnik and Chervonenkis, 1971]. See, e.g., Blumer, Ehrenfeucht, Haussler, and
Warmuth [1989].
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(a) Non-approximable (b) Approximable but not inter-
pretable

(c) Uniformly interpretable

Figure 1: Approximating a disk with halfspaces: the approximation error is the grey-shaded area,
while the pink area is the margin region. In (a), we show inapproximability with x-axis-aligned
halfspaces. In (b), we show the disk is approximable (but not interpretable) with arbitrary halfspaces,
via a Voronoi tessellation with one-sided error. In (c), we show the disk with margin is uniformly
interpretable with halfspaces.

α ∈ (0, 1), where each Pα has support corresponding to the spherical shell Bd(1 + α) \Bd(1− α)
with inner radius 1− α and outer radius 1 + α (here we denote by Bd(r) = {x ∈ Rd : ∥x∥2 ≤ r}
the origin-centered Euclidean ball of radius r > 0 in Rd). Then, we expect the number of Voronoi
cells defining the decision boundary of the 1-NN classifiers that guarantee loss at most 0 < ε ≤ 1 to
grow as α → 0+. Figures 1a and 1b illustrate these examples in R2.

Next, we define interpretability. Recall that we view an interpretation as an approximation via a tree
of small depth. We formalize “small” by requiring the existence of a function that bounds the depth
of the tree in terms of its accuracy.
Definition 2 (Interpretability). A concept c is interpretable by H if there is a function f : (0, 1] → N
such that, for every distribution P ∈ P(X), there exists εP > 0 for which

depthcH(ε | P ) ≤ f(ε) for all 0 < ε ≤ εP .

If this is the case, then we say that c is interpretable by H at depth rate f .
A concept c is uniformly interpretable by H if there is a function f ′ : (0, 1] → N such that

depthcH(ε | P ) ≤ f ′(ε) for all P ∈ P(X) and 0 < ε ≤ 1 .

If this is the case, then we say that c is uniformly interpretable by H at depth rate f ′.

Note that interpretability requires the bound on the depth to hold only for values of ε that are smaller
than a certain threshold εP which may depend on the distribution P . Uniform interpretability, instead,
requires the depth bound to hold for all ε irrespective of the distribution.

Recalling the above example with the Euclidean space X = Rd as domain and the family of
halfspaces as the hypothesis class H, if the concept c corresponds to the unit Euclidean ball with
margin µ > 0 then c is uniformly interpretable. More formally, such a concept c can be modeled as
a partial function c : X → {0, 1} with natural domain X̃ ⊂ X , where points in the margin belong
to X \ X̃ = Bd(1 + µ) \ Bd(1) and c−1(1) = Bd(1). Then, without loss of generality, the same
definitions and results apply as if the concept c was a total function by restricting the domain to
X̃ and, for every distribution P ∈ P(X), considering the distribution P̃ (·) = P (· | X̃) instead.
This follows from the fact that we incur no mistakes for any labeling of points that do not belong
to the domain of the “partial” concept c, and the loss of any H-approximation T of c is thus given
by LP̃ (T, c). By reusing geometric results on the approximation of convex bodies, there exists a
polytope Q such that Bd(1) ⊆ Q ⊆ Bd(1 + µ), whose (finite) number of vertices is bounded from
above by a function of d and µ [Naszódi, 2019]. The polytope Q thus separates the positively labeled
points Bd(1) from the negatively labeled ones—achieving loss 0 under any distribution with support
X̃—and it is equivalently representable as an H-based decision tree with depth bounded by a function
of d and µ only (i.e., the intersection of halfspaces associated to the facets of Q). See Figure 1c for
an illustration of this example in R2.

At first glance, our notions of interpretability may appear a little narrow. Suppose that, for every
distribution P , a concept c is interpretable by H at polynomial depth rate, but the degree can grow
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unbounded with P . In other words, for every d ∈ N+ there exists Pd such that c is interpretable
by H at polynomial depth rate with degree d, but not at polynomial depth rate with any smaller
degree d′ < d. Then c is not interpretable by H according to our definition, but we could still say
that c is interpretable at polynomial depth rate. More formally, we could consider the family F of
all polynomials, and require that for every P there is some f ∈ F that bounds depthcH(· | P ). By
varying F , we obtain a vast range of interpretability rates: logarithmic, sublinear, linear, polynomial,
exponential, and so on. Surprisingly, our results show that this hierarchy collapses: an approximable
concept c is either not interpretable at all, or is uniformly interpretable at logarithmic rate.

5 A Trichotomy for Interpretability

This section states our main result: as soon as a concept is interpretable at some rate, then it is
uniformly interpretable at a constant rate for VC classes, and at a logarithmic rate in general.
Theorem 3 (Interpretability trichotomy). Let X be any domain. For every concept c and every VC
hypothesis class H over X exactly one of the following cases holds:

(1) c is not approximable by H.
(2) c is approximable but not interpretable by H.
(3) c is uniformly interpretable by H at constant depth rate.

If VC(X,H) = ∞ then all claims above hold true, but with (3) replaced by:

(3′) c is uniformly interpretable by H at depth rate at most logarithmic.

Moreover, all cases are nonempty.

We emphasize again that Theorem 3 is in stark contrast with the behavior of excess risk in terms
of training set size observed in statistical learning, where, in the non-uniform (or universal) setting,
both exponential and linear rates are possible. It should also be noted that we do not know if case
(3′) collapses into case (3)—that is, if a constant depth rate holds also for non-VC classes—or if a
non-constant rate is in general unavoidable. This is one of the questions the present work leaves open.

We further observe that, while point (3) of Theorem 3 shows that c is uniformly interpretable by H
at a constant depth rate, this does not necessarily imply the existence of a single H-based decision
tree providing such a guarantee for all values of ε > 0. For example, consider a domain X = N, a
concept c = {0}, and a hypothesis class H = {{1, . . . , n} : n ∈ N+}. Now let P be the distribution
such that P (0) = 0.5 and P (x) = 2−(x+1) for all x ∈ N+. For any ε > 0 the depth-1 decision tree
with splitting criterion h = {1, . . . , ⌈log2(1/ε)⌉} is an ε-accurate approximation of c under P , but
no H-based tree is an ε-approximation of c for all ε simultaneously.

Our proof of Theorem 3 combines a variety of techniques from different contexts. The first step
involves identifying a criterion which can be thought of as a form of “weak interpretability” (items (a)
and (b) in the proof). The rest of the proof demonstrates that if a concept c fails to satisfy this
criterion, then it is not interpretable by H, and if it does, then it is uniformly interpretable by H.
The former impossibility result entails establishing a lower bound on the interpretation rate for an
arbitrarily small accuracy with respect to a fixed and carefully tailored distribution. This type of
lower bounds are more intricate than distribution-free lower bounds (such as those outlined in the
No-Free-Lunch Theorem in the PAC setting) and were studied, e.g., by Antos and Lugosi [1998],
Bousquet, Hanneke, Moran, Shafer, and Tolstikhin [2023]. In the complementary case, when c
satisfies the weak interpretability criterion with respect to H, we prove that c is in fact uniformly
interpretable by H with logarithmic depth, and if H has a finite VC dimension, then c is interpretable
with constant depth. The logarithmic construction and its analysis builds on ideas and techniques
originating from boosting algorithms for decision trees [Kearns and Mansour, 1999, Takimoto and
Maruoka, 2003]. The derivation of constant depth approximation when H is a VC class relies on
a uniform convergence argument [Vapnik and Chervonenkis, 1971] combined with the Minimax
Theorem [von Neumann, 1928]. This derivation is also linked to boosting theory and resembles the
boosting-based sample compression scheme by Moran and Yehudayoff [2016].

The proof of case (3′) of Theorem 3 uses the following result. Its proof can be found in Appendix D,
and is an adaptation of the results by Kearns and Mansour [1999] and Takimoto and Maruoka [2003]

6



on boosting decision trees. The main difference is that, via an adequate modification of the TopDown
algorithm [Kearns and Mansour, 1999], we bound the depth rather than the size of the boosted
decision tree.

Theorem 4. Let X be any domain. For any concept c and any hypothesis class H over X , if
there exist γ ∈ (0, 1

2 ) and d ∈ N such that depthcH
(
1
2 − γ | P

)
≤ d for all P ∈ P(X), then

depthcH(ε | P ) ≤ d
2γ2 log

1
2ε for all P ∈ P(X) and all ε > 0.

6 Algebraic Characterizations

In this section we show that the notions of approximability and interpretability admit set-theoretical
and measure-theoretical characterizations based on properties of H and the algebras it generates.

To begin with, we need a notion of closure of H. Loosely speaking, we want to include all concepts
that, under every distribution, can be approximated arbitrarily well by single elements of H. In other
words, these are the concepts that are approximable by H using decision trees of depth 1.

Definition 5. The closure of H ⊆ 2X is

clos(H) =
{
h ⊆ X

∣∣∀P ∈ P(X), ∃h1, h2, . . . ∈ H s.t. lim
n→∞

P (h△hn) = 0
}

. (2)

Observe that clos(H) ⊇ H by definition. To illustrate the closure let us discuss the hypothesis class
H of rational halfspaces in R2, i.e., sets of the form

{
{(x, y) | ax + by + d ≥ 0} : a, b, d ∈ Q

}
.

Every concept c : R2 → {0, 1} is approximable by H, as before, relying on the 1-NN algorithm.
Halfspaces with real coefficients such as {(x, y) | x+ y ≥

√
2} are not in H but are interpretable by

H with depth 1. In general, the closure is related to the concept of universally measurable sets.

We now state the algebraic characterization of the concepts that are approximable by a given hypothe-
sis class H on some domain X .

Theorem 6 (Algebraic characterization of approximability). Let X be any domain and H any
hypothesis class over X . A concept c ⊆ X is approximable by H if and only if c ∈ clos(σ(H)).

Furthermore, we manage to prove an algebraic characterization for the concepts that are uniformly
interpretable, given a VC class H on some domain X .

Theorem 7 (Characterization of uniform interpretability for VC classes). Let X be any domain and
let H be a VC hypothesis class over X . A concept c is uniformly interpretable (at a constant depth) if
and only if c ∈

⋃∞
d=1 clos(Algd(H)).

If the domain X is countable, then closure reduces to pointwise convergence and our algebraic
characterization becomes simpler. This is formalized in the next theorem, whose proof relies on
some technical lemmas and can be found below. Namely, we show that clos(σ(H)) = σ(H) and⋃∞

d=1 clos(Algd(H)) = Alg(clos(H)).

Theorem 8 (Characterization for VC classes and countable domains). Let X be any countable
domain, let c be any concept, and let H be a VC hypothesis class over X . Then:

1. c is approximable by H if and only if c ∈ σ(H).
2. c is approximable but not interpretable by H if and only if c ∈ σ(H) \Alg(clos(H)).
3. c is uniformly interpretable by H if and only if c ∈ Alg(clos(H)).

More details for the algebraic characterization can be found in Appendix B and a generalization to
representations beyond decision trees is in Appendix C.
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A Main Proof

Proof of Theorem 3. We start by proving the cases (1)-(3). Suppose (1) fails, so depthcH(ε | P ) < ∞
for all P ∈ P(X) and all ε > 0. This implies that, for any fixed γ ∈ (0, 1

2 ), exactly one of the
following two cases holds:

(a) for every d ∈ N there exists a distribution Pd such that depthcH
(
1
2 − γ | Pd

)
> d;

(b) there exists d ∈ N such that depthcH
(
1
2 − γ | P

)
≤ d for all distributions P .

Suppose (a) holds; we show this implies case (2) of the trichotomy. To this end, we prove that there is
no function r : (0, 1] → N such that c is interpretable by H at depth rate r. Choose indeed any such r.
For every n ∈ N+ let dn = r(2−n( 12 − γ)), and consider the following distribution over X:

P ∗ =
∑
n∈N+

2−n · Pdn
. (3)

Since Pdn appears in P ∗ with coefficient 2−n, this implies that, for εn = 2−n( 12 − γ), any εn-
accurate H-interpretation of c under P ∗ is ( 12 − γ)-accurate under Pdn

and so has depth larger than
dn = r(εn). Hence,

depthcH(εn | P ∗) ≥ depthcH

(
1

2
− γ | Pdn

)
> dn = r(εn) (4)

holds for all n ∈ N+. We conclude that c is not interpretable by H at depth rate r, as desired.

Now suppose (b) holds; we show this implies case (3) of the trichotomy. Let T be the set of all
binary classifiers that are represented by H-based decision trees of depth at most d, where d ∈ N
satisfies depthcH

(
1
2 − γ | P

)
≤ d for all P ∈ P(X). It is known that VC(X,H) < ∞ implies

VC(X, T ) < ∞ [Dudley, 1978].

We will first prove the claim by taking as domain an arbitrary but finite subset U ⊆ X . Later on
we will choose U appropriately as a function of the distribution P ∈ P(X), and this will prove the
theorem’s claim. Fix then any such U , and let P(U) be the family of all distributions over U . By
definition of d,

sup
P∈P(U)

inf
T∈T

LP (T, c) ≤
1

2
− γ . (5)

By von Neumann’s minimax theorem, recalling that the value of the game does not change if the
column player uses a pure strategy, we have that

sup
P∈P(U)

inf
T∈T

LP (T, c) = inf
D∈P(T )

sup
x∈U

ET∼DLδx(T, c) , (6)

where P(T ) is the set of all distributions over T , δx is the Dirac delta at x ∈ U , and ET∼DLδx(T, c)
is thus the expected loss on x of a tree T drawn from D. Hence, there exists D∗ ∈ P(T ) for which

ET∼D∗Lδx(T, c) ≤
1

2
− γ ∀x ∈ U , (7)

and therefore, since c(x), T (x) ∈ {0, 1} for all x and T ,∣∣c(x)− PT∼D∗(T (x) = 1)
∣∣ = PT∼D∗(T (x) ̸= c(x)) ≤ 1

2
− γ ∀x ∈ U . (8)

Let (T , U) be the dual set system of (U, T ). Note that VC(T , U) ≤ VC(T , X) < 2VC(X,T )+1 < ∞,
where the second inequality shows a known relation [Assouad, 1983] between the primal VC
dimension VC(X, T ) of (X, T ) and its dual VC dimension VC(T , X). By the classic uniform
convergence result of Vapnik and Chervonenkis [1971], there exists a multiset R ⊆ T with |R| ≤
r := r(VC(X, T ), γ, d) such that, for every x ∈ U ,∣∣∣∣ |{T ∈ R : T (x) = 1}|

|R|
− PT∼D∗(T (x) = 1)

∣∣∣∣ < γ

2
. (9)
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Together with (8) and (9) this yields∣∣∣∣ |{T ∈ R : T (x) = 1}|
|R|

− c(x)

∣∣∣∣ < 1

2
− γ

2
(10)

by the triangle inequality.2 We now build a H-based decision tree T ∗
U that computes the majority vote

over all T ∈ R. This tree can be constructed as follows. Let T1, . . . , T|R| be the trees in R. Replace
each leaf of T1 with a copy of T2; in the resulting tree replace every leaf with a copy of T3, and so on
until obtaining T ∗

U . For each leaf z ∈ L(T ∗
U ) of T ∗

U , define its label ℓz as the majority vote given by
leaves of (the copies of) T1, . . . , T|R| that are encountered on the path from the root of T ∗

U to z. Note
that T ∗

U has depth bounded by rd and, by (10), computes c(x) for all x ∈ U . Thus, LU (T
∗
U , c) = 0

where LU is the expected loss over the uniform distribution over U .

We now choose the set U appropriately. Let T ∗ be the family of all H-based decision trees whose
depth is at most rd. Because, once again, VC(X, T ∗) < ∞, by uniform convergence there is a
finite multiset U ⊆ X such that, for all T ∈ T ∗, |LP (T, c)− LU (T, c)| ≤ ε. Since T ∗

U ∈ T ∗ and
LU (T

∗
U , c) = 0, it follows that LP (T

∗
U , c) ≤ ε. This completes the proof of case (3). Case (3′)

follows from Theorem 4 below, assuming (b) holds.

It remains to prove that all cases are nonempty. For (1) let X = {a, b}, H = {X}, c = {a}, and
note that under the uniform distribution no H-interpretation of c is ε-accurate for ε < 1

2 . For (3)
consider any X,H with H ̸= ∅ and choose any c ∈ H; this holds for (3′) too if H is not a VC class.
For (2) we show c,H that satisfy case (a) above. Let X = N, c = N+, and H = {{i} : i ∈ N+}. For
every n ∈ N+ consider the distribution Pn with support {0, . . . , n} such that Pn(0) =

1
2 and that

Pn(i) =
1
2n for every i ∈ {1, . . . , n}. To conclude note that depthcH

(
1
2 − γ | Pn

)
is unbounded as a

function of n for any constant γ ∈ (0, 1
2 ).

B Algebraic Characterizations

In this section we show that the notions of approximability and interpretability admit set-theoretical
and measure-theoretical characterizations based on properties of H and the algebras it generates.

To begin with, we need a notion of closure of H. Loosely speaking, we want to include all concepts
that, under every distribution, can be approximated arbitrarily well by single elements of H. In other
words, these are the concepts that are approximable by H using decision trees of depth 1.
Definition 9. The closure of H ⊆ 2X is

clos(H) =
{
h ⊆ X

∣∣∀P ∈ P(X), ∃h1, h2, . . . ∈ H s.t. lim
n→∞

P (h△hn) = 0
}

. (11)

Observe that clos(H) ⊇ H by definition. To illustrate the closure let us discuss the hypothesis class
H of rational halfspaces in R2, i.e., sets of the form

{
{(x, y) | ax + by + d ≥ 0} : a, b, d ∈ Q

}
.

Every concept c : R2 → {0, 1} is approximable by H, as before, relying on the 1-NN algorithm.
Halfspaces with real coefficients such as {(x, y) | x+ y ≥

√
2} are not in H but are interpretable by

H with depth 1. In general, the closure is related to the concept of universally measurable sets.

We start with the following lemma, which is derived from well-known results in measure theory.
Lemma 10. Let X be any domain and H ⊆ 2X . Then, clos(σ(H)) = clos(Alg(H)).

Proof. We begin with the proof of the first identity in the statement. The inclusion clos(Alg(H)) ⊆
clos(σ(H)) immediately follows by definition of closure. We now show that the converse is also
true. Let T ∈ clos(σ(H)). Fix a distribution P ∈ P(X) and ε > 0. By definition of closure,
there exists a sequence A1, A2, . . . ∈ σ(H) such that limi→∞ P (Ai△T ) = 0. Consequently, for
every ε > 0 there exists some i ∈ N+ such that P (Ai△T ) ≤ ε. Thus, we can assume without
loss of generality that the sequence (Ai)i∈N+ satisfies P (Ai△T ) ≤ εi for the choice εi = 2−i,
for each i ∈ N+ (as we can select such a subsequence). Denote the restriction of P to σ(H) as
P
∣∣
σ(H)

, that is P
∣∣
σ(H)

: σ(H) → R≥0 and P
∣∣
σ(H)

(A) = P (A) for all A ∈ σ(H). It is well

2Note that, if no D∗ achieves the infimum of the r.h.s. of eq. (6), the same result holds with, say, (1−γ)/2 as
the r.h.s. of eq. (7) because it suffices to show that the l.h.s. of eq. (10) is strictly less than 1/2 for our purposes.
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known that, for each i, we can select an element Bi ∈ Alg(H) with P
∣∣
σ(H)

(Bi△Ai) ≤ εi (see,
e.g., Halmos [2013, Theorem D, Section 13]); hence, P (Bi△Ai) ≤ εi. By the triangle inequality
P (T△Bi) ≤ 2εi = 2−i+1 for any i, which also implies that limi→∞ P (T△Bi) = 0 for the
sequence (Bj)j∈N+ in Alg(H). Therefore, T ∈ clos(Alg(H)).

We now state the algebraic characterization of the concepts that are approximable by a given hypothe-
sis class H on some domain X .

Theorem 6 (Algebraic characterization of approximability). Let X be any domain and H any
hypothesis class over X . A concept c ⊆ X is approximable by H if and only if c ∈ clos(σ(H)).

Proof. Suppose c is universally approximable by H. Let P ∈ P(X) be any distribution. Then, for
every ε > 0 there exists an ε-accurate H-approximation T ∈ Alg(H) of c under P . Then P (T△c) =
LP (T, c) ≤ ε. Consider now the sequence T1, T2, . . . ∈ Alg(H) such that, for each n ∈ N+, Tn is
an εn-accurate H-approximation of c under P with the choice εn = 2−n. The sequence (Tn)n∈N+

is such that limn→∞ P (Tn△c) ≤ limn→∞ 2−n = 0, and thus c ∈ clos(Alg(H)) = clos(σ(H)),
where the latter equality follows by Lemma 10.

Now suppose c ∈ clos(σ(H)) = clos(Alg(H)). Fix a distribution P ∈ P(X) and ε > 0. By
definition of closure, and because Alg(H) ≡ TH, there exists a sequence T1, T2, . . . ∈ Alg(H) of
trees such that limn→∞ P (Tn△c) = 0, and thus there exists some i ∈ N+ such that P (Ti△c) ≤ ε.
This implies that Ti is an ε-accurate H-approximation of c under P with finite depth. As this holds
for every P and every ε > 0, it follows that c is universally approximable by H.

Furthermore, we manage to prove an algebraic characterization for the concepts that are uniformly
interpretable, given a VC class H on some domain X .

Theorem 7 (Characterization of uniform interpretability for VC classes). Let X be any domain and
let H be a VC hypothesis class over X . A concept c is uniformly interpretable (at a constant depth) if
and only if c ∈

⋃∞
d=1 clos(Algd(H)).

Proof. Since VC(X,H) < ∞, item (3) of Theorem 3 implies that there exists d ∈ N such that, for
all P ∈ P(X) and all ε > 0, depthcH(ε | P ) ≤ d. Using an argument similar to the one used in the
proof of Theorem 6, we then conclude that c ∈ clos(Algd(H)). Hence, the set of concepts that are
uniformly interpretable by H is precisely

⋃∞
d=1 clos(Algd(H)).

If the domain X is countable, then closure reduces to pointwise convergence and our algebraic
characterization becomes simpler. This is formalized in the next theorem, whose proof relies on
some technical lemmas and can be found below. Namely, we show that clos(σ(H)) = σ(H) and⋃∞

d=1 clos(Algd(H)) = Alg(clos(H)).

Theorem 8 (Characterization for VC classes and countable domains). Let X be any countable
domain, let c be any concept, and let H be a VC hypothesis class over X . Then:

1. c is approximable by H if and only if c ∈ σ(H).
2. c is approximable but not interpretable by H if and only if c ∈ σ(H) \Alg(clos(H)).
3. c is uniformly interpretable by H if and only if c ∈ Alg(clos(H)).

Proof. Item 1 follows from Lemma 11 Theorems 6 and 7, and items 2 and 3 from Lemma 15.

Lemma 11. Let X be any countable domain and H be any hypothesis class over X . Then,
clos(Alg(H)) = σ(H).

Proof. Clearly σ(H) ⊆ clos(σ(H)) = clos(Alg(H)) by Lemma 10. Now we prove the converse.
Let A ∈ clos(σ(H)) and let P ∈ P(X) such that P (x) > 0 for all x ∈ X; note that P exists as X is
countable and it also means that supp(P ) = X . By definition of clos(σ(H)), there exists a sequence
(Ai)i∈N+ in σ(H) such that

lim
i→∞

P (A△Ai) = 0 . (12)
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By selecting an appropriate subsequence, we can assume P (A△Ai) ≤ 2−i for all i ∈ N+ without
loss of generality. Define

Bi =
⋂
j≥i

Aj ∀i ∈ N+ (13)

and observe that Bi ∈ σ(H) for each i ∈ N+. Note that

P (A△Bi) = P

(
A△

⋂
j≥i

Aj

)
≤
∑
j≥i

P (A△Aj) ≤ 2−i+1 . (14)

Note also that Bi ⊆ A for all i ∈ N+. Suppose indeed this was not the case, then Bi \A ̸= ∅. Hence,
by definition of Bi, there exists some x ∈ Aj \A for all j ≥ i. Since P (x) > 0 by the choice of P ,
we have the contradiction

lim
i→∞

P (A△Ai) ≥ P (x) > 0 . (15)

Now consider the set

B =
⋃

i∈N+

Bi = lim
i→∞

Bi . (16)

Note that by construction B ∈ σ(H).3 Moreover, since Bi ⊆ Bi+1 and Bi ⊆ A for all i ∈ N+, we
have that the sequence (A△Bi)i∈N+ is downward monotone and thus

P (A△B) = P

( ⋂
i∈N+

A△Bi

)
= lim

i→∞
P (A△Bi) = 0 . (17)

Given that P has full support, this implies A = B.

Definition 12. Let X be any set. A sequence (hi)i∈N in 2X is pointwise convergent to h ∈ 2X if

∀x ∈ X ∃ix ∈ N : ∀i ≥ ix x ∈ hi ⇐⇒ x ∈ h . (18)

Proposition 13. If X is countable then every infinite sequence (hi)i∈N in 2X contains an infinite
subsequence that is pointwise convergent.

Let H ⊆ 2X and let clospw(H) be the family of all subsets of X that are the pointwise limit of some
sequence in H. Clearly H ⊆ clospw(H) ⊆ 2X .
Lemma 14. If X is countable then clospw(H) = clos(H).

Proof. To see that clospw(H) ⊆ clos(H), recall the definition of pointwise convergence, and note
how it implies that if a sequence (hi)i∈N converges pointwise to h then limi→∞ P (hi△h) = 0 for
every P ∈ P(X). To see that clospw(H) ⊇ clos(H), choose any sequence (hi)i∈N that converges
to some h ∈ clos(H) under an appropriate distribution P ∈ P(X) such that supp(P ) = X (which
exists as X is countable); observe that this implies the pointwise convergence of (hi)i∈N to h.

Lemma 15. If X is countable and H is a VC class over X , then clos(Algd(H)) ⊆ Alg(clos(H))
for every d ∈ N.

Proof. Let d ∈ N and c ∈ clos(Algd(H)). By Lemma 14, c ∈ clospw(Algd(H)), so there exists an
infinite sequence of trees (Ti)i∈N in Algd(H) that converge pointwise to c. Without loss of generality,
we may assume that every Ti is a complete tree of depth d.4 Now consider the sequence (h1

i )i∈N
of decision rules used by the first node (say, the root) of those trees. By Proposition 13 there is
an infinite subsequence (h1

ij
)j∈N that is pointwise convergent to some h1 ∈ H. Now consider the

infinite sequence of trees (Tij )j∈N, and repeat the argument for the second node (say, a child of the
root corresponding to a specific output of the decision stump at the root). By repeating the argument
2d − 1 times (one for every internal node of the trees) we obtain an infinite sequence (T ∗

i )i∈N of trees
in Algd(H) that converge pointwise to c and such that at every node v the decision rules converge

3In particular, B = lim infi→∞ Ai.
4One can always complete Ti using internal nodes that hold, e.g., the decision rule of the root.
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pointwise to some hv. Now let T ∗ be the decision tree obtained by using hv as decision rule at v.
We observe that T ∗ = c. Let x ∈ X . By Definition 12, for each node v there exists ivx such that
x ∈ hv

i iff x ∈ hv for every i ≥ ivx, where hv
i is the stump used at v by T ∗

i . By letting ix = maxv i
v
x

it follows that x ∈ hv
i iff x ∈ hv for every i ≥ ix and all nodes v simultaneously. Therefore all trees

T ∗
i with i ≥ ix send x to the same leaf, and moreover that leaf remains the same if we use hv at v.

Note also that, since (T ∗
i )i∈N is infinite, then we can assume that every leaf predicts the same label

in all T ∗
i (since there is certainly an infinite subsequence that satisfies such a constraint). It follows

that (T ∗
i )i∈N converges pointwise the tree T ∗ that uses the limit stump hv at v. But the labeling of

(T ∗
i )i∈N converges pointwise to c, too. We conclude that T = T ∗. Finally, note that by construction

hv ∈ clospw(H), and thus by Lemma 14 hv ∈ clos(H), for all v, hence T ∗ ∈ Alg(clos(H)). It
follows that c ∈ Alg(clos(H)).

C General Representations

Although shallow decision trees are the blueprint of interpretable models, our theory naturally extends
to ways of measuring the complexity of elements in Alg(H) different from the tree depth. Next, we
define a set of minimal conditions (satisfied, e.g., by tree depth) that a function must satisfy to be
used as a complexity measure for Alg(H).

Definition 16. Let X be any domain and H a hypothesis class over X . A function Γ: Alg(H) → N
is a graded complexity measure if:

1. Γ(f) = 0 for all f ∈ H,
2. Γ(f1 ∪ f2) ≤ 1 + Γ(f1) + Γ(f2) for all f1, f2 ∈ Alg(H),
3. Γ(f1 ∩ f2) ≤ 1 + Γ(f1) + Γ(f2) for all f1, f2 ∈ Alg(H), and
4. Γ(X \ f) ≤ 1 + Γ(f) for all f ∈ Alg(H).

The minimal complexity of an ε-accurate H-interpretation of c under P is

Γc
H(ε | P ) = inf

T∈Alg(H):LP (T,c)≤ε
Γ(T ) . (19)

The definitions of approximability, interpretability, and uniform interpretability are readily generalized
to an arbitrary graded complexity measure, by simply replacing depth(·) with Γ(·). We can then
prove the following extension of Theorem 3.

Theorem 17 (Interpretability trichotomy for general representations). Let X be any domain and let
Γ be any graded complexity measure. Then, for every concept c and every VC hypothesis class H
over X exactly one of the following cases holds:

(1) c is not approximable by H.
(2) c is approximable by H but not interpretable by H.
(3) c is uniformly interpretable by H at constant Γ-complexity rate.

If VC(X,H) = ∞ then all claims above hold true, but with (3) replaced by:

(3′) c is uniformly interpretable by H at a Γ-complexity rate O
(

1
εd

)
for some d ∈ N .

Unlike Theorem 3, cases (2) and (3) might collapse for certain choices of Γ even when H is not a VC
class. Indeed, according to our definition, Γ is not forced to grow at any specific rate, and thus Γ(f)
might be bounded by some constant uniformly over Alg(H). In an extreme case one might in fact set
Γ ≡ 0, although clearly this would not yield any interesting result.

Proof of Theorem 17. The proof is similar to the proof of Theorem 3. Suppose (1) fails, so
Γc
H(ε | P ) < ∞ for all ε > 0 and all distributions P . This implies that, for any fixed γ ∈ (0, 1

2 ),
exactly one of the following two cases holds:

(a) for every k ∈ N there exists a distribution Pk such that Γc
H
(
1
2 − γ | Pk

)
> k;

(b) there exists k ∈ N such that Γc
H
(
1
2 − γ | P

)
≤ k for all distributions P . 5
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Suppose (a) holds; we show this implies case (2) of the trichotomy. Choose any function r : (0, 1] →
N. For every n ∈ N+ let dn = r(2−n( 12 − γ)), and consider the following distribution over X:

P ∗ =
∑
n∈N+

2−n · Pdn
. (20)

Since Pdn
appears in P ∗ with coefficient 2−n, this implies that, for εn = 2−n( 12−γ), any εn-accurate

interpretation of c under P ∗ is ( 12 − γ)-accurate under Pdn , and thus

Γc
H(εn | P ∗) ≥ Γc

H

(
1

2
− γ | Pdn

)
> dn = r(εn) . (21)

Hence, Γc
H(εn | P ∗) > r(εn) for all n ∈ N+.

Suppose now (b) holds; we show this implies case (3) of the trichotomy. Define the family Ak ={
A ∈ Alg(H) : Γ(A) ≤ k

}
. Fix any P ∈ P(X) and ε > 0. Following the same argument as in the

proof of case (3) in Theorem 3, there exists an Ak-based decision tree T such that LP (T, c) ≤ ε and
depth(T ) ≤ d for some d ∈ N independent of P and ε. Now we rewrite T as an element of Alg(H).
Let Av ∈ Ak be the decision stump T used at v ∈ V(T ) and, denoting by L(T ) the set of leaves of
T , let ℓz ∈ {0, 1} be the label of the leaf z ∈ L(T ) in T . For every v ∈ V(T ), define

AT
v =

 X v ∈ L(T ), ℓv = 1
∅ v ∈ L(T ), ℓv = 0
(Av ∩AT

u ) ∪ (Av ∩AT
w) v /∈ L(T )

(22)

where u and w are, respectively, the left and right child of v when v /∈ L(T ). Let A = AT
r

where r is the root of T . Observe that A is equivalent to T , and that A ∈ Alg(H). Moreover,
Γ(AT

v ) ≤ 4 + 2Γ(Av) + Γ(AT
u ) + Γ(AT

w) by the properties of Γ (see Definition 16). Therefore,

Γ(A) = O

( ∑
v∈V(T )

(Γ(Av) + 1)

)
= (k + 1)×O(|V(T )|) = O(|V(T )|) , (23)

where we used the fact that Γ(Av) ≤ k because Av ∈ Ak. To conclude the proof, note that the above
bound on depth(T ) implies O(|V(T )|) = O(2depth(T )) = O(2d), where both d and the constants
in the O(·) notation depend neither on P nor on ε.

As for case (3′), assume again (b) holds. Then, Theorem 4 applied to the class Ak implies the
existence of an Ak-based decision tree T such that LP (T, c) ≤ ε and depth(T ) ≤ d log 1

2ε for all P
and ε > 0, where d = 1

2γ2 . Constructing again A ∈ Alg(H) equivalent to T as above and using the
bound on depth(T ), we have Γ(A) = O(|V(T )|) = O(2depth(T )) = O

(
1
εd

)
where both d and the

constants in the O(·) notation are independent of P and ε.

D Boosting Decision Trees with Bounded Depth

Theorem 4. Let X be any domain. For any concept c and any hypothesis class H over X , if
there exist γ ∈ (0, 1

2 ) and d ∈ N such that depthcH
(
1
2 − γ | P

)
≤ d for all P ∈ P(X), then

depthcH(ε | P ) ≤ d
2γ2 log

1
2ε for all P ∈ P(X) and all ε > 0.

We use a surrogate loss G(q) =
√
q(1− q), where 0 ≤ q ≤ 1. Since min{q, 1 − q} ≤ G(q), the

surrogate loss bounds from above the classification error of the majority vote. For a distribution
P ∈ P(X), let GP (c) = G

(
P (c = 1)

)
. Let the conditional surrogate loss of f : X → {0, 1} be

GP (c | f) = P (f = 0)G
(
P (c = 1 | f = 0)

)
+ P (f = 1)G

(
P (c = 1 | f = 1)

)
. (24)

Finally, given a decision tree T with leaves L(T ), define the conditional surrogate loss of T as

HP (c | T ) =
∑

z∈L(T )

P (z)G(pc|z) , (25)

where P (z) is the probability that x ∼ P is mapped to leaf z in the tree T and pc|z = P (c = 1 | z).
Our goal is to construct an H-based decision tree T such that HP (c | T ) ≤ ε, implying that
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LP (T, c) ≤ ε because G
(
pc|z
)

bounds from above the probability that T (x) ̸= c(x) conditioned on
x being mapped to z in T .

Our variant of TopDown, called TopDownLBL (TopDown Level-By-Level), starts from a single-leaf
tree T with a majority-vote label and works in phases. In each phase, we replace each leaf z ∈ L(T )
of the current tree T with a suitably chosen H-based d-depth tree Tz using the same criterion as
TopDown. The main difference is that the weak learners adopted by TopDownLBL consist of H-based
trees of depth bounded by d, which generalize from the individual decision stumps of H as in
TopDown (corresponding to the case d = 1). Hence, at the end of each phase, the depth of T increases
by at most d. The algorithm stops if and when HP (c | T ) ≤ ε.

We use the two following lemmas.

Lemma 18 (Takimoto and Maruoka [2003, Lemma A.1]). Let P be a balanced distribution, i.e.,
P (c = 1) = P (c = 0) = 1

2 . Let f : X → {0, 1} be such that LP (f, c) ≤ 1
2 − γ for some γ ∈ (0, 1

2 ).
Then, GP (c | f) ≤ (1− 2γ2)GP (c).

Lemma 19 (Takimoto and Maruoka [2003, Proposition 5]). Let P be a distribution and P ′ its
balanced version. If GP ′(c | h) ≤ (1− β)GP ′(c) for some β > 0 then GP (c | h) ≤ (1− β)GP (c).

Proof of Theorem 4. Our algorithm TopDownLBL can be equivalently viewed as building a H′-based
tree T ′, where H′ is the class of H-based d-depth trees. Any H′-based tree T ′ can be transformed
into a H-based tree T in a top-down fashion simply by listing the nodes at each level of T ′ starting
from the root, and iteratively replacing every decision stump h′ ∈ H′ with the corresponding H-based
tree Th′ . Then, each leaf z ∈ L(Th′) of Th′ is replaced by copies of the left or right subtree of the
decision stump h′ in T ′ based on the values (0 or 1) of the label ℓz of z. Clearly, the depth of T is at
most d times the depth of T ′.

We now bound the drop in HP (c | T ′) when a leaf z in the H′-based tree T ′ is replaced by a
decision stump in H′. Let P the distribution over X conditioned on x being mapped to z and let
P ′ its “balanced” version satisfying P ′(c = 1) = P ′(c = 0) = 1

2 . Because of our weak learning
assumption, we know there exists h′

z ∈ H′ with error at most 1/2 − γ on P ′. By Lemma 18,
GP ′(c | h′

z) ≤ (1− 2γ2)GP ′(p′c|z), where p′c|z = 1
2 because of the balanced property of P ′. Hence,

by Lemma 19,
GP (c | h′

z) ≤ (1− 2γ2)GP (pc|z) . (26)

Let T ′
z be the tree T ′ in which we replaced a leaf z ∈ L(T ′) with the decision stump h′

z ∈ H′. Using
Equation (26),

HP (c | T ′)−HP (c | T ′
z) =

(
GP (pc|z)−GP (c | h′

z)
)
P (z) ≥ 2γ2GP (pc|z)P (z) . (27)

Now let T ′
i be the tree after the algorithm has run for i phases. Using the above inequality for each

z ∈ L(T ′
i ), we obtain

HP (c | T ′
i )−HP (c | T ′

i+1) ≥
∑

z∈L(T ′
i )

2γ2GP (pc|z)P (z) = 2γ2HP (c | T ′
i ) . (28)

Hence, after m phases,

LP (T
′
m, c) ≤ HP (c | T ′

m) ≤
(
1− 2γ2

)m
HP (c | T ′

0) ≤
1

2
e−2mγ2

, (29)

where T ′
0 is the initial tree consisting of a single leaf z and, in the last inequality, we used the fact that

HP (c | T ′
0) = GP (pc|z) ≤ 1

2 and the inequality 1− x ≤ e−x. The proof is concluded by noting that
1
2e

−2mγ2 ≤ ε for m ≥ 1
2γ2 log

1
2ε .

We remark that we recover the standard setting of boosting decision trees when d = 1. In this special
case, our result matches the depth lower bound mentioned by Kearns and Mansour [1999], while
guaranteeing a O

(
2depth

c
H(ε|P )

)
= O

(
(1/ε)1/(2γ

2)
)

tree-size upper bound that is analogous to the
ones by Kearns and Mansour [1999] and Takimoto and Maruoka [2003].

16



E Remarks on the Graded Complexity Measure Results

In Section C we demonstrated more general guarantees for any graded complexity measure Γ, given
any domain X and any hypothesis class H over X . Observe that, when H is a non-VC class, item
(3′) of Theorem 17 states an upper bound on the Γ-complexity rate of order O

(
1
εd

)
for a constant

d ∈ N. This bound is indeed larger compared to the previous guarantee of O(log(1/ε)) on the depth
of H-based decision trees (Theorem 3) and it has to do with the generality of the definition of graded
complexity measure.

Keeping this in mind, we remark that it is possible to recover the O(log(1/ε)) Γ-complexity rate
bound under a stronger assumption on the graded complexity measure Γ. In particular, it is sufficient
for Γ to satisfy

Γ(f1 ∪ f2) ≤ 1 + max{Γ(f1),Γ(f2)} ∀f1, f2 ∈ Alg(H) . (30)

Note that this condition is satisfied when Γ corresponds to the depth of H-based decision trees.
For example, consider a similar representation of trees as in Equation (22) using directly H for the
decision rules of the internal nodes.

Thus, we can follow the same steps as in the proof of Theorem 17 with a particular focus on
the construction of A from the decision tree T in Equation (22). It immediately follows that
Γ(AT

v ) ≤ 3 + Γ(Av) + max
{
Γ(AT

u ),Γ(A
T
w)
}

for any internal node v /∈ L(T ), where u and w are,
respectively, the left and right child of v. Now, let ρ(z) ⊆ V(T ) be the nodes along the path from the
root of T to the leaf z ∈ L(T ). We can thus show that

Γ(A) = O

(
max

z∈L(T )

∑
v∈ρ(z)

(Γ(Av) + 1)

)
= O

(
(k + 1) · depth(T )

)
= O

(
log

1

ε

)
, (31)

where we used the fact that T has depth(T ) ≤ 1
2γ2 log

1
2ε and that Γ(Av) ≤ k for any internal node

v of T .
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