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Summary
The average-reward formulation of reinforcement learning (RL) has drawn increased in-

terest in recent years for its ability to solve temporally-extended problems without relying
on discounting. Meanwhile, in the discounted setting, algorithms with entropy regulariza-
tion have been developed, leading to improvements over deterministic methods. Despite the
distinct benefits of these approaches, deep RL algorithms for the entropy-regularized average-
reward objective have not been developed. While policy-gradient based approaches have re-
cently been presented for the average-reward literature, the corresponding actor-critic frame-
work remains less explored. In this paper, we introduce an average-reward soft actor-critic
algorithm to address these gaps in the field. We validate our method by comparing with ex-
isting average-reward algorithms on standard RL benchmarks, achieving superior performance
for the average-reward criterion.

Contribution(s)
1. We generalize the soft actor-critic (SAC) algorithm from the discounted to the average-

reward setting.
Context: Haarnoja et al. (2018b) derived a MaxEnt RL algorithm, soft actor-critic, for the
discounted setting. We derive theoretical results and implement new algorithmic techniques
to adapt SAC to the average-reward setting.

2. We extend the policy improvement theorem to the entropy-regularized average-reward ob-
jective.
Context: Previous work demonstrated the policy improvement theorem separately in dis-
counted MaxEnt RL Haarnoja et al. (2018b) and average-reward (un-regularized) RL Zhang
& Tan (2024). We close this gap by analyzing the theoretical properties of policy improve-
ment in the entropy-regularized average-reward setting.

3. We experimentally demonstrate the advantage of our approach against available baselines
in standard control environments.
Context: We compare our algorithm with the state-of-the-art average-reward methods:
ARO-DDPG (Saxena et al., 2023), ATRPO (Zhang & Ross, 2021), and APO (Ma et al.,
2021).
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Abstract
The average-reward formulation of reinforcement learning (RL) has drawn increased in-1
terest in recent years for its ability to solve temporally-extended problems without rely-2
ing on discounting. Meanwhile, in the discounted setting, algorithms with entropy reg-3
ularization have been developed, leading to improvements over deterministic methods.4
Despite the distinct benefits of these approaches, deep RL algorithms for the entropy-5
regularized average-reward objective have not been developed. While policy-gradient6
based approaches have recently been presented for the average-reward literature, the7
corresponding actor-critic framework remains less explored. In this paper, we intro-8
duce an average-reward soft actor-critic algorithm to address these gaps in the field. We9
validate our method by comparing with existing average-reward algorithms on standard10
RL benchmarks, achieving superior performance for the average-reward criterion.11

1 Introduction12

A successful reinforcement learning (RL) agent learns from interacting with its surroundings to13
achieve desired behaviors, as encoded in a reward function. However, in “continuing” tasks, where14
the amount of interactions is potentially unlimited, the total sum of rewards received by the agent is15
unbounded. To avoid this divergence, a popular technique is to discount future rewards relative to16
current rewards. The framework of discounted RL enjoys convergence properties (Sutton & Barto,17
2018; Kakade, 2003; Bertsekas, 2012), practical benefits (Schulman et al., 2016; Andrychowicz18
et al., 2020), and a plethora of useful algorithms (Mnih et al., 2015; Schulman et al., 2015; 2017;19
Hessel et al., 2018; Haarnoja et al., 2018b) making the discounted objective an obvious choice for20
the RL practitioner. Despite these benefits, the use of discounting introduces a (typically unphysical)21
hyperparameter γ which must be tuned for optimal performance. The difficulty in properly tuning22
the discount factor γ is illustrated in our motivating example, Figure 1. Furthermore, agents solving23
the discounted RL problem will fail to optimize for long-term behaviors that operate on timescales24
longer than those dictated by the discount factor, (1 − γ)−1. Moreover, recent work has argued25
that the discounted objective is not even a well-defined optimization problem (Naik et al., 2019).26
Importantly, despite most state-of-the-art algorithms operating within this discounted framework,27
their metric for performance is most often the total or average reward over trajectories, as opposed28
to the discounted sum, which they are designed to optimize. In such cases, the discounted objective29
is used as a crutch for optimizing the true object of interest: long-term average performance.30

To address these issues, another objective for solving continuing tasks has been defined and31
studied (Schwartz, 1993; Mahadevan, 1996): the average-reward objective. Although it is ar-32
guably a more natural choice, it has less obvious convergence properties since the associ-33
ated Bellman operators no longer possess the contraction property. Despite an ongoing line34
of work on the theoretical properties of the average-reward objective (Zhang et al., 2021;35
Wan, 2023), there remain a limited number of deep RL algorithms for this setting. Cur-36
rent algorithms beyond the tabular or linear settings focus on policy-gradient methods to de-37
velop deep actor-based models: (Zhang & Ross, 2021; Ma et al., 2021; Saxena et al., 2023).38
While these advancements represent a positive step toward solving the average-reward objec-39
tive, there remains a need for alternative approaches for the problem of average-reward deep RL.40
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Figure 1: The Swimmer-v5 environ-
ment, often not included in Mujoco
benchmarks (Franceschetti et al., 2022),
is notoriously difficult for discounted
methods to solve when the discount
factor is not tuned over and set to its
default value of γ = 0.99. Other
discount-sensitive examples of environ-
ments have been discussed by Tessler &
Mannor (2020). We find that after care-
fully tuning the discount factor, SAC
can solve the task, but the solution is
quite sensitive to the choice of γ. Each
curve corresponds to an average over 30
random seeds, with the standard error
indicated by the shaded region.

In both the discounted and average-reward scenarios, op-41
timal policies are known to be deterministic (Mahadevan,42
1996; Sutton & Barto, 2018). However, under various43
real-world circumstances (e.g. errors in the model, per-44
ception, and control loops), a deterministic policy can45
fail. In deployment, when RL agents face the sim-to-46
real gap, are transferred to other environments, or when47
perturbations arise (Haarnoja et al., 2017; 2018a; Eysen-48
bach & Levine, 2022), fully-trained deterministic agents49
may be rendered useless. To address these important use-50
cases, it would be useful to have a stochastic optimal pol-51
icy which is flexible and robust under uncertainty. Rather52
than using heuristics (e.g. ε-greedy, mixture of experts,53
Boltzmann) to generate a stochastic policy post-hoc, the54
original RL problem can be regularized with an entropy-55
based term that yields an optimal policy which is natu-56
rally stochastic. Implementing this entropy-regularized57
RL objective corresponds to additionally rewarding the58
agent (in proportion to a temperature parameter, β−1) for59
using a policy which has a lower relative entropy (Levine,60
2018), in the sense of Kullback-Leibler divergence. This61
formulation of entropy-regularized (often considered in62
the special case of maximum entropy or “MaxEnt”1) RL63
has led to significant developments in state-of-the-art off-64
policy algorithms (Haarnoja et al., 2017; 2018b;c).65

Despite the desirable features of both the average-reward66
and entropy-regularized objectives, an empirical study of67
the combination of these two formulations is limited, and68
no function-approximator algorithms exist yet for this setting. To address this, we propose a novel69
algorithm for average-reward RL with entropy regularization which is an extension of the discounted70
algorithm Soft Actor-Critic (SAC) (Haarnoja et al., 2018b;c).71

Notably, our implementation requires minimal changes to common codebases, making it accessible72
for researchers and allowing for future extensions by the community.73

2 Preliminaries74

In this section, we discuss the background material necessary for the subsequent discussion. Let75
∆(X ) denote the probability simplex over the space X . A Markov Decision Process (MDP) is76
modeled by a state space S, action space A, reward function r : S × A → R, transition dynamics77
p : S × A → ∆(S) and initial state distribution µ ∈ ∆(S). The state space describes the set of78
possible configurations in which the agent (and environment) may exist. (This can be juxtaposed79
with the “observation” which encodes only the state information accessible to the agent. We will80
consider fully observable MDPs where state and observation are synonymous.) The action space is81
the set of controls available to the agent. Enacting control, the agent may alter its state. This change82
is dictated by the (generally stochastic) transition dynamics, p. At each discrete timestep, an action83
is taken and the agent receives a reward r(s, a) ∈ R from the environment.84

We will make some of the usual assumptions for average-reward MDPs (Wan et al., 2021):85

Assumption 1. The Markov chain induced by any stationary policy π is communicating.86

Assumption 2. The reward function is bounded.87

1MaxEnt refers to using a uniform prior policy. In that case, “low relative entropy” (with respect to a uniform prior) is
equivalent to “high Shannon entropy”. In this work, we consider the case of more general priors.
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In solving an average-reward MDP, one seeks a control policy π which maximizes the expected88
reward-rate, denoted ρπ . In the average-reward framework, such an objective reads:89

ρπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)

]
, (1)

where the expectation is taken over trajectories generated by the dynamics p, control policy π, and90
initial state distribution µ.91

The remaining non-scalar (that is, state-action-dependent) contribution to the value of a policy is92
called the average-reward differential bias function. Because of its analogy to the Q-function in93
discounted RL, we follow recent work (Zhang & Ross, 2021) and similarly denote it as:94

Qπρ (s,a) = E
τ∼p,π

[ ∞∑
t=0

r(st,at)− ρπ
∣∣∣∣∣s0 = s,a0 = a

]
. (2)

We will now introduce a variation of this MDP framework which includes an entropy regularization95
term. For notational convenience we refer to entropy-regularized average-reward MDPs as ERAR96
MDPs. The ERAR MDP constitutes the same ingredients as an average-reward MDP stated above,97
in addition to a pre-specified prior policy2 π0 : S → ∆(A) and “inverse temperature”, β. The mod-98
ified objective function for an ERAR MDP now includes a regularization term based on the relative99
entropy (Kullback-Leibler divergence), so that the agent now aims to optimize the expected entropy-100
regularized reward-rate, denoted θπ:101

θπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)−
1

β
log

π(at|st)
π0(at|st)

]
, (3)

102
π∗(a|s) = argmax

π
θπ. (4)

Assumption 1 implies the expression in Equation (3) is independent of the initial state-action and103
ensures the reward-rate is indeed a unique scalar. From hereon, we will simply write θ = θπ

∗
for104

the optimal entropy-regularized reward-rate for brevity. Comparing to Equation (1), this rate is seen105
to include an additional entropic contribution, the relative entropy between the control (π) and prior106
(π0) policies.107

Beyond a mathematical generalization from the MaxEnt formulation, the KL divergence term has108
also found use in behavior-regularized RL tasks, especially in the offline setting (Wu et al., 2019;109
Zhang & Tan, 2024) and has found growing interest in its application to large language models110
(LLMs) (Rafailov et al., 2024; Yan et al., 2024).111

The corresponding differential entropy-regularized action-value function is then given by:112

Qπθ (s,a) = r(st,at)−θπ+ E
τ∼p,π

[ ∞∑
t=1

(
r(st,at)−

1

β
log

π(at|st)
π0(at|st)

−θπ
)∣∣∣∣∣s0 = s,a0 = a

]
. (5)

We have used the subscripts of θ and ρ in this section to distinguish the two value functions.113
In the following, we drop the θ subscript as we focus solely on the entropy-regularized objec-114
tive. Similar to the notation for the average-reward rate, we make the notation compact, and write115
Q(s,a) = Qπ

∗

θ (s,a) as a shorthand.116

3 Prior Work117

Research on average-reward MDPs has a longstanding history, dating back to seminal contributions118
by Blackwell (1962) and later Mahadevan (1996), which laid the groundwork for future algorithmic119

2For convenience we assume that π0 has support across A, ensuring the Kullback-Leibler divergence is always finite.
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and theoretical investigations (Even-Dar et al., 2009; Abbasi-Yadkori et al., 2019; Abounadi et al.,120
2001; Neu et al., 2017; Wan et al., 2021). Due to their theoretical nature, these studies primarily121
focused on algorithms within tabular settings or under linear function approximation, possibly ex-122
plaining the limited work on the average-reward problem in the deep RL community. However,123
recent work has begun to address this challenge by tackling deep average-reward RL (Zhang &124
Ross, 2021; Ma et al., 2021; Saxena et al., 2023) with methods based on the policy gradient algo-125
rithm (Sutton et al., 1999). Especially when tested on long-term optimization tasks, these studies126
have demonstrated superior performance of average-reward algorithms in the continuous control127
Mujoco benchmark (Todorov et al., 2012), compared to their discounted counterparts.128

In the deep average-reward RL literature, research has primarily focused on extending known algo-129
rithms from the discounted to the average-reward setting. For example, Zhang & Ross (2021) first130
provided an extension of the on-policy trust region method TRPO (Schulman et al., 2015) to the131
average-reward domain. To extend the classical discounted policy improvement theorem to this132
domain, they introduced a novel (double-sided) policy improvement bound based on Kémeny’s con-133
stant (related to the Markov chain’s mixing time). Experimentally, they illustrated the success of134
ATRPO against TRPO, especially for long-horizon tasks in the Mujoco suite. Shortly thereafter, (Ma135
et al., 2021) introduced an analogue of PPO (Schulman et al., 2017) for average-reward tasks with an136
extension of generalized advantage estimation (GAE) and addressing the problem of “value drift”,137
again proving successful in experimental comparisons with PPO. Most recently, Saxena et al. (2023)138
continued this line of work by extending DDPG (Lillicrap et al., 2016) to the average-reward do-139
main with extensive supporting theory, including finite-time convergence analysis. The authors140
also demonstrate the improved performance of their algorithm, ARO-DDPG, against the previously141
discussed methods, thereby demonstrating a new state-of-the-art algorithm for the average-reward142
objective.143

In parallel, the discounted objective has included an entropy-regularization term, discussed in works144
such as (Todorov, 2006; 2009; Ziebart, 2010; Rawlik, 2013; Haarnoja et al., 2017; Geist et al.,145
2019) which to our knowledge has not yet been introduced in a deep average-reward algorithm. The146
included “entropy bonus” term in these methods has found considerable use in the development of147
both theory and algorithms in distinct branches of RL research (Haarnoja et al., 2018a; Eysenbach148
& Levine, 2022; Park et al., 2023). This innovation yields optimal policies naturally exhibiting149
stochasticity in continuous action spaces, which has led SAC (Haarnoja et al., 2018c) and its variants150
to become state-of-the-art solution methods for addressing the discounted objective.151

However, there is limited work on the combination of average-reward and entropy-regularized meth-152
ods, especially for deep RL. Recent work by Rawlik (2013); Neu et al. (2017); Rose et al. (2021);153
Li et al. (2022); Arriojas et al. (2023); Wu et al. (2024) set the groundwork for combining the154
entropy-regularized and average-reward formulations by providing supporting theory and validat-155
ing experiments. We will leverage their results to address the problem of deep average-reward RL156
with entropy regularization, while introducing some new theoretical results. In the next section, we157
present our average-reward extension of soft actor-critic.158

4 Proposed Algorithm159

We begin with a brief discussion of soft actor-critic (SAC), for which we derive new theoretical160
results and provide an algorithm in the average-reward setting. SAC (Haarnoja et al., 2018b) re-161
lies on iteratively calculating a value (critic) of a policy (actor) and improving the actor through162
soft policy improvement (PI). In the discounted problem formulation, soft PI states that a new163
policy (denoted π′) can be derived from the value function of a previous policy (π) with π′ ∝164
expβQπ(s,a), which is guaranteed to outperform the previous policy in the sense of (soft) Q-165
values: Qπ

′
(s,a) > Qπ(s,a) for all s,a (cf. Lemma 2 of (Haarnoja et al., 2018b) for details). We166

will first show that an analogous result for policy improvement holds in the ERAR setting. Note167
that in the case of large state-action spaces, experimentally verifying such inequalities becomes in-168
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tractable (Naik, 2024) and can be alleviated by instead comparing reward rates: scalar quantities169
which can (in principle) be efficiently evaluated with rollouts.170

Since the value of a policy is now encoded in the entropy-regularized average reward rate θπ and171
not in the differential value, the analogue to policy improvement (Qπ

′
> Qπ) is to establish the172

bound θπ
′
> θπ for some construction of π′ from π. Indeed, as we show, the same Boltzmann form173

over the differential value leads to soft PI in the ERAR objective. We later give some intuition on174
how this result can be understood as the limit γ → 1 of SAC. After establishing PI and the related175
theory in this setting we will present our algorithm, denoted “ASAC” (for average-reward SAC, and176
following the naming convention of APO (Ma et al., 2021) and ATRPO (Zhang & Ross, 2021)).177

4.1 Theory178

As in the discounted case, it can be shown that theQ function for a fixed policy π satisfies a recursive179
Bellman backup equation3. This proposition was also derived in the concurrent work of Wu et al.180
(2024) which analyzed the ERAR problem in the inverse RL framework:181

Proposition 1. Let an ERAR MDP with reward function r(s,a), policy π and prior policy π0 be182
given. Then the differential value of π, denoted Qπ(st,at), satisfies183

Qπ(st,at) = r(st,at)− θπ + E
st+1∼p

V π(st+1), (6)

with the entropy-regularized definition of state-value function184

V π(st) = E
at∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (7)

185

For completeness, we give a proof of this result (and all others) in the Appendix. As in the discounted186
case, the proof exploits the recursive structure of Eq. (5).187

As mentioned above, in the average reward formulation, the metric of interest is the reward-rate.188
Our policy improvement result thus focuses on increases in θπ , generalizing the recent work of189
Zhang & Ross (2021) to the entropy-regularized setting. We find that the gap between any two190
entropy-regularized reward-rates can be expressed in the following manner:191

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0.
Then the gap between their corresponding entropy-regularized reward-rates is:

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (8)

where Aπ(st,at) = Qπ(st,at) − V π(st) is the advantage function of policy π and dπ′ is
the steady-state distribution induced by π′.

192

As a consequence of this result, we find that with the proper choice of the updated policy π′, the193
right-hand side of Equation (8) is guaranteed to be positive, implying that soft PI holds. Using the194
Boltzmann form of a policy (Haarnoja et al., 2018b) with the differential Q-values as the energy195
function and the appropriate prior distribution (π0), gives the desired result:196

3Equation (7) is an extension of V π
soft in (Haarnoja et al., 2017) to the case of non-uniform prior policy.
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Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0
and its corresponding differential value Qπ(st,at) be given. Then, the policy

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(9)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at

convergence, when π′ = π = π∗.
197

Upon convergence, Equation (8) is identically zero, with the optimal policy satisfying198
π∗ ∝ expβA∗(st,at) as expected from the analogous discounted result. We note that the corre-199
sponding result in Lemma 2 of Haarnoja et al. (2018b) for SAC (which uses a uniform prior pol-200
icy), involves the total value function. On the other hand, under the average-reward objective, the201
improved policy is calculated with the differential value function. Intuitively, this result can be un-202
derstood as the γ → 1 limit of PI for SAC. Numerically, this can be seen as setting γ = 1 and203
continuously subtracting the “extensive” contribution to the total value function throughout. This204
bulk contribution scales with the number of timesteps in an episode and is the result of accruing205
a per-timestep reward θπ . Since the same term accrues in the state- and action-value functions, it206
cancels in the numerator and denominator of Equation (9). In the case of SAC, the bulk contri-207
bution (essentially Nθπ , for N ≫ 1) is included in the value function and so a discount factor208
γ < 1 is required to ensure that the total value function is bounded in the limit of large N (in the209
sense of Equation (3)). In contrast, for the case of ASAC, the bulk contribution is automatically ex-210
cluded from the corresponding evaluation (by definition), and the differential value function remains211
bounded in the limit of large N , obviating the need to introduce a discount factor. This intuition can212
be formalized through a Laurent series expansion; cf. Mahadevan (1996).213

To complete the discussion of convergence for ASAC, the policy evaluation (PE) step must also214
converge. To formulate this, we rely on the work of Wan et al. (2021) who give convergence proofs215
for average-reward policy evaluation.216

Lemma 2 (ERAR Policy Evaluation). Consider a fixed policy π, for which θπ of Equation (1) has217
been calculated (e.g. with direct rollouts). The iteration of Equations (2) and (7) converges to the218
entropy-regularized differential value of π: Qπ(st,at).219

Proof. The proof follows from the convergence results established in the un-regularized case, e.g.220
Wan et al. (2021). Since the policy π is fixed (and π ≪ π0), the entropic cost −β−1KL (π||π0) is221
finite and can be absorbed into the reward function’s definition: r ←− r − β−1KL (π||π0), and the222
standard proof techniques apply.223

4.2 Implementation224

As in SAC (Haarnoja et al., 2018b), we propose to interleave steps of policy evaluation (PE) and225
policy improvement (PI) using stochastic approximation to train the critic and actor networks, re-226
spectively. We use a deep neural net with parameters ψ, and denote Qψ as the “online” critic net-227
work (with trainable parameters), and denote Qψ̄ as the “target” critic, updated periodically through228
Polyak averaging of the parameters. To implement a PI step, we use the KL divergence loss to update229
the parameters ϕ of an actor network πϕ based on the policy improvement theorem (Equation (9)):230

Lϕ =
∑
st∈B

KL
(
πϕ(·|st)

∣∣∣∣∣∣∣∣π0(·|st)eβQψ(st,·)Z(st)

)
. (10)

6



Average-Reward Soft Actor-Critic

Figure 2: Training curves on continuous control benchmarks. We compare our algorithm, average-
reward soft actor-critic (ASAC), with the following baselines: average-reward off-policy deep deter-
ministic policy gradient (ARO-DDPG), average-reward trust-region policy optimization (ATRPO),
and average-reward policy optimization (APO). ASAC learns the fastest with the best asymptotic
performance. Each curve corresponds to an average over 20 random seeds, with standard errors
indicated by the shaded region.

Similar to SAC, the independence of parameters on the partition function Z allows us to simplify231
this loss expression to the more tractable form:232

Lϕ =
∑
st∈B

E
at∼πϕ

(
log

πϕ(at|st)
π0(at|st)

− β−1Qψ(st,at)

)
. (11)

In practice, we also use the re-parameterization trick to efficiently propagate gradients through the233
actor model. After updating the actor via soft policy improvement, we update the critic (differential234
value) by performing a policy evaluation step with actions sampled from the current actor network.235
The mean squared error loss is calculated by comparing the expected Q-value to the right-hand side236
of Equation (6):237

Lψ =
∑

(st,at,r,st+1)∼B

∣∣∣∣Qψ(st,at)− ŷ(r, θ; ψ̄, ϕ)∣∣∣∣2, (12)

where ŷ is the target value, defined as:238

ŷ(r, θ; ψ̄, ϕ) = r − θ + E
at+1∼πϕ(·|st+1)

[
Qψ̄(st+1,at+1)−

1

β
log

πϕ(at+1|st+1)

π0(at+1|st+1)

]
.

To update the ERAR rate θπ , we again bootstrap from Eq. (6). Specifically, we treat θ as a trainable239
parameter (using an Adam optimizer) and train it to minimize the residual error over a batch (using240
the same mini-batch as above) sampled from the replay buffer.241

We adopt the double Q-learning paradigm (Fujimoto et al., 2018; Haarnoja et al., 2018b; Saxena242
et al., 2023) used in previous literature for reducing estimation bias: two critics are maintained, and243
the minimumQ-value is used at each state-action pair. Although the corresponding theory (Fujimoto244
et al., 2018) for the average-reward case has not been studied in detail, we found this to improve245
experimental performance Understanding the effect of estimation bias is an interesting line of study246
for future work.247

7



Under review for RLC 2025, to be published in RLJ 2025

Unique to the average-reward objective is the family of solutions to the Bellman equation. Rather248
than a unique solution, the average-reward Bellman equation gives the differential value function249
an additional degree of freedom: If Q(s,a) satisfies Eq. (5) then Q(s,a) + c is also a solution for250
all c ∈ R. Section 4.1 of (Ma et al., 2021) provides an interesting discussion on the learning of251
value functions with an additive bias and a related downstream “value drifting problem”, which they252
correct with value-based regularization. Section 6 of (Wan et al., 2021) provides a discussion on253
learning centered value functions via an additionally learned corrective “value function” F . To cor-254
rect for this additional degree of freedom in an off-policy way, we introduce a baseline for centering255
the value function. Since an entire family of value functions can solve the Bellman equation, to pin256
the value, we choose the solution which passes through the origin, by always subtracting the value257
Q(s = 0, a = 0). This choice is arbitrary, but works well in practice. Compared to the proposed258
regularization, it does not require any additional hyperparameters. Since it is not centering the value259
function in the traditional sense, it does not require on-policy data, but in principle the constant shift260
can be recovered upon convergence via rollouts of the optimal policy.261

Finally, in average-reward tasks with terminating states, previous work (Zhang & Ross, 2021) has262
introduced a “reset cost”, giving a penalty to the agent for resetting the environment and treating263
the reset state s ∼ µ(·) as the next state to emulate a continuing task. Prior work has chosen a264
fixed reset cost (−100) which was found to work for the environments tested. However, it is not265
reasonable to expect such penalties to be effective for tasks with different reward scales or dynamics266
(cf. Humanoid results in Appendix D of (Zhang & Ross, 2021)). As such, we introduce a novel267
adaptive reset cost: To ensure the penalty for resetting is commensurate with the accrued rewards,268
we simply take the mean of all rewards in the current batch that do not correspond to termination.269
We use a rolling average (with the same learning rate as used for θ) to slowly adapt the penalty to the270
agent’s policy. We note that learning (and even defining) an “optimal” reset cost is an open question,271
which calls for further study.272

5 Experiments273

To evaluate our new algorithm, we test ASAC on a set of locomotion environments of increasing274
complexity including HalfCheetah, Ant, Swimmer, Hopper, Walker2d, and Humanoid (all version275
5) from the Gymnasium Mujoco suite (Todorov et al., 2012; Towers et al., 2024). We compare276
the performance (average evaluation return across 10 episodes) against the existing average-reward277
algorithms discussed in Section 3: APO, ATRPO, and ARO-DDPG. While the focus of this paper278
is on a comparison of algorithms for the average-reward criterion, we also provide a comparison279
to the discounted algorithm SAC in the Appendix. To alleviate the cost of hyperparameter tuning,280
we simply use the default values inherited from SAC. Further details on the implementation and281
hyperparameter selection can be found in Appendix 9. ASAC performs well compared to both off-282
policy (ARO-DDPG) and on-policy algorithms (ATRPO, APO). To maximize performance of the283
ARO-DDPG baseline, we found it beneficial to use a replay buffer of maximum length (equal to284
number of environment interactions). Compared to ASAC, the baselines fail to solve the task in285
a meaningful way on some environments (Walker, Ant, Humanoid), highlighting the importance286
of maximum-entropy approaches for high-dimensional locomotion tasks, especially in the average-287
reward setting. The results of these experiments are shown in Figure 2. Our experiments suggest288
that ASAC represents a new state-of-the-art algorithm for the average-reward setting.289

6 Discussion290

The motivation for developing novel algorithms for average-reward RL arises from the problems291
generally associated with discounting. When the RL problem is posed in the discounted framework,292
a discount factor γ ∈ [0, 1) is a required input parameter. However, there is often no principled293
approach for choosing the value of γ corresponding to the specific problem being addressed. Thus,294
the experimenter must treat γ as a hyperparameter. This reduces the choice of γ to a trade-off be-295
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tween large values to capture long-term rewards and small values to capture computational efficiency296
which typically scales polynomially with the horizon, H = (1− γ)−1 (Kakade, 2003).297

It is important to note that the horizon H introduces a natural timescale to the problem, but this298
timescale may not be well-aligned with another timescale corresponding to the optimal policy: the299
mixing time of the induced Markov chain. For the discounted solution to accurately approximate the300
average-reward optimal policy, the discounting timescale (horizon) must be larger than the mixing301
time. Unfortunately, the estimation of the mixing time for the optimal dynamics can be challenging302
to obtain in the general case, even when the transition dynamics are known, making a principled use303
of discounting computationally expensive. Therefore, an arbitrary “sufficiently large” choice of γ is304
often made (sometimes dynamically (Wei et al., 2021; Koprulu et al., 2024)) without knowledge of305
the relevant problem-dependent timescale. This can be problematic from a computational standpoint306
as evidenced by recent work (Jiang et al., 2015; Schulman et al., 2017; Andrychowicz et al., 2020).307
These points are illustrated in Figure 1 which showed the performance of SAC for the Swimmer308
environment with different choices of γ. For the widely used choice γ = 0.99 the evaluation309
rewards are low relative to the optimal case, whereas the average rewards algorithms perform well310
(Fig. 2), highlighting the benefits of using the average-reward criterion.311

In this work, we have developed a framework for combining the benefits of the average-reward ap-312
proach with entropy regularization. In particular, we have focused on extensions of the discounted313
algorithm SAC to the average-reward domain. By leveraging the connection of the ERAR objective314
to the soft discounted framework, we have presented the first solution to ERAR MDPs in continuous315
state and action spaces by use of function approximation. Our experiments suggest that ASAC com-316
pares favorably in several respects to their discounted counterparts: stability, convergence speed, and317
asymptotic performance. Our algorithm leverages existing codebases allowing for a straightforward318
and easily extendable implementation for solving the ERAR objective.319

7 Future Work320

The current work suggests multiple extensions for future exploration. Beginning with the average-321
reward extension of SAC (Haarnoja et al., 2018b), further developments have been made (Haarnoja322
et al., 2018c) including automated temperature adjustment, which we foresee as a straightforward323
extension for future work. As a value-based technique, other ideas from the literature such as TD(n),324
REDQ (Chen et al., 2021), DrQ (Kostrikov et al., 2020), combating estimation bias (Hussing et al.,325
2024), or dueling architectures (Wang et al., 2016) may be included. From the perspective of sam-326
pling, the calculation of θ can likely benefit from more complex replay sampling, e.g. PER (Schaul327
et al., 2015). An important contribution for future work is studying the sample complexity and con-328
vergence properties of the proposed algorithm. We believe that the average-reward objective with329
entropy regularization is a fruitful direction for further research and real-world application, with this330
work addressing a gap in the existing literature.331
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8 Proofs498

Lemma 1 (ERAR Backup Equation). Let an ERAR MDP be given with reward function r(s,a),499
fixed evaluation policy π and prior policy π0. Then the differential value of π, Qπ(st,at), satisfies500

Qπ(st,at) = r(st,at)− θπ + Est+1∼pV
π(st+1), (13)

with the entropy-regularized definition4 of state-value function501

V π(st) = Eat∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (14)

Proof. We begin with the definitions for the current state-action and for the next state-action value502
functions, respectively:503

Qπ(st,at) = r(st,at)− θπ + E
p,π

[ ∞∑
k=1

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st+1,at+1) = r(st+1,at+1)− θπ + E
p,π

[ ∞∑
k=2

(
(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

.

Re-writing Qπ(st,at) by writing out the first term in the infinite sum and highlighting the terms of504
Qπ(st+1,at+1) in blue,505

Qπ(st,at) = r(st,at)− θπ+ E
p,π

[
r(st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)
− θπ+

∞∑
k=2

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st,at) = r(st,at)− θπ+ E
st+1∼p,at+1∼π

[
Qπθ (st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)

]
.

Identifying the entropy-regularized state value function (as in the discounted setting)506

V (st) = Eat∼π

[
Qπ(st,at)− 1

β log π(at|st)
π0(at|st)

]
completes the proof.507

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0. Then the508
gap between their corresponding entropy-regularized reward-rates is:509

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (15)

whereAπ(st,at) = Qπ(st,at)−V π(st) is the advantage function of policy π and dπ′ is the steady-510
state distribution induced by π′.511

4Equation (14) is an extension of V π
soft in Haarnoja et al. (2017) to the case of a non-uniform prior policy.
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Proof. Working from the right-hand side of the equation,512

E
st∼dπ′ ,at∼π′

(
Aπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
Qπ(st,at)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
r(st,at)− θπ + E

st+1∼p
V π(st+1)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= θπ

′
− θπ + E

st∼dπ′ ,at∼π′

(
E

st+1∼p(·|st,at)
V π(st+1)− V π(st)

)
= θπ

′
− θπ.

where we have used the definition513

θπ
′
= E

st∼dπ′ ,at∼π′

(
r(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (16)

and514

E
st∼dπ′

E
at∼π′

E
st+1∼p

V π(st+1) = E
st∼dπ′

V π(st), (17)

which follows given that dπ′ is the stationary distribution. In other words, dπ′ is an eigenvector of515
the transition operator p(st+1|st,at) · π′(at+1|st+1).516

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0 and its517
corresponding differential value Qπ(st,at) be given. Then, the policy518

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(18)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at conver-519

gence, when π′ = π = π∗.520

Proof. Let π′ be defined as above. Then521

1

β
log

π′(at|st)
π0(at|st)

= Qπ(st,at)−
1

β
log E

a∼π0

eβQ
π(st,at). (19)

Using Lemma 1,522

θπ
′
− θπ = E

s∼dπ′ ,a∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
Qπ(st,at)− V π(s)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
1

β
log E

a∼π0

eβQ
π(st,at) − V π(s)

)
≥ 0 ,

where the last line follows from the variational formula Mitter & Newton (2000); Theodorou &523
Todorov (2012),524

1

β
log E

a∼π0

eβQ
π(st,at) = sup

π
E
a∼π

(
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
. (20)

525
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Figure 3: Comparison to SAC shows that our average-reward extension outperforms the original
discounted SAC on the environments tested. We note that the reward values are different than in
earlier environment versions (as used in e.g. Haarnoja et al. (2018b)), as the result of an updated
reward function and bug fixes (including changes to contact forces, control costs), described in
detail here: https://farama.org/Gymnasium-MuJoCo-v5_Environments.

9 Implementation Details526

For all SAC runs, we used Raffin et al. (2021) implementation of SAC with hyperparameters (beyond527
the default values) shown below in Section 9.1. The finetuned runs here took ∼ 3000 GPU hours528
for all environments, ran on a variety of RTX series and A100 GPUs. Each run requires roughly529
∼ 1− 10 GB of RAM.530

9.1 Hyperparameters531

In addition to the methods discussed in the main text, we also use gradient clipping (on critic network532
only), with the maximum gradient norm of 10 for all experiments.533

For all ASAC experiments, we use the same hyperparameters as Haarnoja et al. (2018b): batch size534
of 256, replay buffer size of 1 000 000, hidden dimension of 256 for each of 2 hidden layers (actor535
and critic networks), Polyak averaging with coefficient 0.005, train frequency and gradient steps536
of 1 (train for one gradient step at each environment step). We use the Adam optimizer for actor,537
critic, and reward-rate with learning rates 10−4, 5 × 10−4, 5 × 10−3. We clip the critic network538
gradients with a maximum norm of 10. In all environments (for SAC and ASAC) we use β = 5,539
except for Swimmer and Humanoid, for which we use β = 20. Note that this is in line with the “re-540
ward scale” used in (Haarnoja et al., 2018b). We found that hyperparameter sweeps can give better541
performance for individual environments, but these choices gave a strong performance universally.542
We found the replay buffer size to be a sensitive hyperparameter for ARO-DDPG, in particular for543
maintaining its asymptotic performance. We chose the largest replay buffer for ARO-DDPG (equiv-544
alent to total environment interactions), but further tuning is left to future work as it is an expensive545
environment-dependent operation. We also note that beyond the default hyperparameters for ASAC546
described above, we did not perform any tuning, showcasing ASAC’s robustness to hyperparame-547
ter choice. Future work may entail an extensive hyperparameter sweep and sensitivity analysis to548
further understand the robustness and maximize performance across various environments.549
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