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Abstract

The explosive growth in sequence length has intensified the demand for effective
and efficient long sequence modeling. Benefiting from intrinsic oscillatory mem-
brane dynamics, Resonate-and-Fire (RF) neurons can efficiently extract frequency
components from input signals and encode them into spatiotemporal spike trains,
making them well-suited for long sequence modeling. However, RF neurons ex-
hibit limited effective memory capacity and a trade-off between energy efficiency
and training speed on complex temporal tasks. Inspired by the dendritic structure
of biological neurons, we propose a Dendritic Resonate-and-Fire (D-RF) model,
which explicitly incorporates a multi-dendritic and soma architecture. Each den-
dritic branch encodes specific frequency bands by utilizing the intrinsic oscillatory
dynamics of RF neurons, thereby collectively achieving comprehensive frequency
representation. Furthermore, we introduce an adaptive threshold mechanism into
the soma structure. his mechanism adjusts the firing threshold according to histori-
cal spiking activity, thereby reducing redundant spikes while maintaining training
efficiency in long-sequence tasks. Extensive experiments demonstrate that our
method maintains competitive accuracy while substantially ensuring sparse spikes
without compromising computational efficiency during training. These results
underscore its potential as an effective and efficient solution for long sequence
modeling on edge platforms.

1 Introduction

Long sequence modeling efficiently captures complex temporal patterns and dynamic characteristics,
demonstrating exceptional application potential in edge computing scenarios such as speech recog-
nition [35] 164} 65]] and electroencephalogram (EEG) monitoring [5, 48l [67]]. However, mainstream
sequence modeling methods still primarily rely on Recurrent Neural Networks (RNNs) [49, [52],
Transformers [29}162]], and state-space models (SSMs) [18.120]. Although these approaches effectively
compress contextual information into finite states, they still involve extensive floating-point matrix
multiplications, resulting in high computational complexity, inference latency, and energy consump-
tion [51]. Therefore, designing long sequence models that simultaneously achieve high performance,
energy efficiency, and fast inference remains an essential and ongoing research challenge.

Inspired by the structure and function of neural circuits in the brain, Spiking Neural Networks (SNNs)
have emerged as a biologically plausible and computationally efficient model [37, [59]. Unlike
Artificial Neural Networks (ANNs), SNNs possess event-driven computational capabilities [6}[77 78]
and the potential to process dynamic temporal information [72| [70| [80]. These properties allow
information to be transmitted through binary spikes and enable the retention of historical context
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via membrane potentials. Several studies have applied SNNs for long sequence modeling based
on Leaky Integrate-and-Fire (LIF) neurons. Zhang et al. [/9] introduce a two-compartment LIF
neuron to better capture long-term temporal dependencies, while Fang et al. [[14] remove the reset
mechanism to maximize the utilization of information across all timesteps. However, due to their
serial charge-fire-reset dynamics, these methods fail to capture complex timescale variations and
long-range dependencies in long sequences [66, (72, [76]], limiting their performance in complex tasks.

As an efficient alternative to LIF neurons, Resonate-and-Fire (RF) neurons [27] employ complex-
valued state variables to more effectively retain historical information in long sequences modeling.
Higuchi et al. [21]] integrate a refractory mechanism into the reset dynamics of RF neurons, main-
taining frequency selectivity while significantly improving long sequence processing capacity and
promoting spike pattern sparsity. Huang et al. [24] remove the reset mechanism and propose that a
learnable time constant can capture the intrinsic reset behavior of RF neurons. This approach reduces
the computational complexity from O(£2) to O(L log L), thereby substantially improving compu-
tational efficiency. Despite these advancements, current methods still face two major challenges.
First, the limited bandwidth of RF neurons constrains their ability to extract diverse frequency-band
combinations from complex temporal signals, making them behave more like simplified resonators.
Second, RF neurons encounter a trade-off between energy efficiency and training speed: removing the
reset mechanism enables efficient training but leads to excessive spike activity, whereas incorporating
a reset suppresses spiking activity at the cost of increased training overhead.

Inspired by the dendritic structure of biological neurons [44, 161138}, 26], we propose a novel Dendritic
Resonate-and-fire (D-RF) neuron for effective and efficient long sequence modeling. It consists
of a multi-dendrite and soma structure. First, each dendritic branch captures specific frequency
responses from input signals through the oscillation characteristics of RF neurons, thereby achieving
comprehensive spectral decomposition across multiple timescales. Second, we incorporate an adaptive
threshold mechanism into the soma structure that dynamically adjusts thresholds based on historical
spiking patterns, achieving sparse spikes while maintaining training efficiency. Extensive experiments
on long sequence tasks confirm the high-performance and energy-efficient of the proposed neuron
model. The main contributions are summarized as follows:

* We conduct a detailed analysis of the limitations of existing RF neurons in long sequence
modeling, highlighting their restricted memory capacity and the inherent trade-off between
energy efficiency and training speed. First, the limited bandwidth response causes RF
neurons to behave like simplified resonators. Second, the presence or absence of a reset
mechanism leads to a conflict between sparse spiking and training efficiency.

* We propose the D-RF neuron, which comprises two components. First, dendritic branches
exploit RF dynamics to achieve specialized frequency selectivity, collectively enabling full
spectral coverage across multiple timescales. Second, an adaptive threshold mechanism
in the soma dynamically adjusts thresholds based on history spiking activity, balancing
computational cost and energy efficiency while preserving training effectiveness.

* Extensive experiments demonstrate that our method achieves competitive performance
across various long sequence tasks. Moreover, the method produces sparser spiking activity
while maintaining training efficiency. These results highlight our model’s dual advantages
in effectiveness and computational efficiency for long sequence modeling.

2 Related Work

2.1 Advanced Spiking Neurons for Long Sequence Modeling

Due to the dynamic characteristics of spiking neurons, it is believed that they have the ability to handle
long sequence modeling. However, the LIF model [17, 28] and its variants [4} 13} [72]] exhibit limited
memory capacity in temporal tasks, which is considered a critical factor for effective long sequence
modeling. To overcome this limitation, several studies [[7,[79] draw inspiration from more complex
neural dynamics. RF neurons [[27] have attracted considerable attention due to their intrinsic frequency
band preference. Orchard et al. [41]] leverage RF neurons to encode raw signals into sparse spike trains,
thereby significantly reducing output bandwidth. Furthermore, Higuchi et al. [21] introduce adaptive
decay factor mechanisms [50} [16] and refractory mechanisms [54]], improving the balance between
energy efficiency and performance of RF neurons in long-range sequence modeling. In addition,



RF-based models demonstrate competitive performance in sequence modeling tasks, including image
classification [22]], optical flow tracking [15], and audio processing [S3, [75]. Moreover, RF neurons
can be efficiently implemented on neuromorphic hardware like the Loihi [9}41]].

2.2 Training Strategies for Spiking Neural Networks

The mainstream training methods for deep SNNs can be categorized into ANN-to-SNN conversion [[12}
47,163]] and direct training [68,169]. ANN-to-SNN conversion methods use the similarity between
spike firing rates and ANN activation functions, but need many timesteps to reach high accuracy. In
contrast, direct training enables SNNs to achieve performance comparable to ANNs with the same
architecture within a limited number of timesteps. Specifically, direct training introduces surrogate
gradient functions [[11}40] to enable backpropagation, thereby addressing the non-differentiability
of spike firing functions. However, applying direct training to long sequence tasks presents greater
challenges [51]], as such tasks often require thousands of timesteps. Consequently, some research [23]
58, [76] tend to explore more efficient training strategies for SNNs. Yin et al. [73]] further explore
intrinsic challenges in SNNs training, especially the reset behavior of neurons. Therefore, Fang et
al. [14] change the dynamic process of spiking neurons into a learnable matrix, avoiding the reset
mechanism. Similarly, Shen et al. [51]] introduce the SDN block to simulate the reset process. These
methods greatly reduce the training cost of SNNs while keeping their asynchronous inference ability.

3 Preliminary

3.1 Resonate-and-Fire Neuron

Inspired by the damped and sustained subthreshold oscillations observed in the membrane potentials
of mammalian nervous systems [2, 34} 42} [46], RF neurons are proposed [27]. Given input signal
Z(t), the dynamics of the RF neuron at timestep ¢ can be described as follows:

%z(t) = (b+iw)z(t) + Z(¢), (1)
z = u+iv € Crepresents the complex state of RF neurons, where u represents a current-like variable
capturing voltage-gated and synaptic current dynamics, and the imaginary component v corresponds
to a voltage-like variable. w > 0 denotes the angular frequency of the neuron, indicating the number
of radians it oscillates per second, while the damping factor b < 0 regulates the exponential decay of
the oscillation. It can be discretized using the Euler method [3]]:

z[t] = exp {(b+iw)} - z[t — 1] + 6Z[t], 2)

d is the discrete timestep. When the real part of z[t] exceeds the threshold, the neuron fires a spike;
otherwise, it remains silent. Additionally, RF neuron exhibits a preference for specific frequency
bands. As shown in Fig.[I[a), we present the oscillatory behavior under spike inputs with different
frequencies. It is observed that both the membrane potential and the phase state accumulate rapidly.

3.2 Direct Training in Spiking Neural Networks

Due to the BPTT [68]] and Surrogate Gradient methods [40], training large-scale SNNs becomes
feasible. Specifically, the gradient of the weight w! at timestep T" can be represented as follows:

2 oL -1

where u!(t) and S!(t) denote the membrane potential and spike emission of the I-th layer at time ¢,
respectively. £ is the loss function. It can be calculated as follows:
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The non-differentiable term 3 o8’ . g t; can be substituted with a surrogate function. Bgls(f (t)l) nd agu(f 8:)1)

are the temporal gradients that need to be calculated. As shown in Eq. [ and Eq. [5] the gradient
at each timestep depends not only on the current states but also recursively on future states. This
recursive dependency across layers and timesteps results in a computational complexity of O(L£?).

4 Method

4.1 Problem Analysis

Limited Performance in Complex Tasks: Benefiting from the design of the decay kernel and
complex-valued states, RF neurons exhibit pronounced frequency selectivity. However, this property
also limits the model’s ability to discriminate diverse input patterns. As shown in Fig. [T(b), input
signals with distinct frequency components may elicit similar spiking responses, as components
misaligned with the neuron’s intrinsic frequency tend to be suppressed, thereby impairing the
network’s capacity to capture and distinguish diverse temporal features. To further verify this
limitation, we visualize the frequency response of a single RF neuron. The results show that the
neuron responds primarily within a narrow bandwidth and reaches its peak at the intrinsic frequency,
making it difficult to capture complex frequency compositions. This observation highlights an
inherent representational limitation of RF neurons in modeling complex temporal features.

(a) Vanilla Resonate and Fire Model (b) Limit Ability to Time Series (c) Energy Efficiency vs. Training Speed
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Figure 1: Problem Analysis: (a) Response of Different Spike Trains: Frequency-matched inputs
lead to rapid membrane potential accumulation, whereas mismatched inputs yield weaker responses.
(b) Limited Ability to Time Series: A single RF neuron struggles to respond to different frequency-
varying inputs due to its narrow band selectivity. (c) Energy Efficiency vs. Training Speed: The
time-variant method enables sparse spiking but has a high training cost of O(£?). The time-invariant
method allows faster training with complexity of O(L log £), but often leads to continuous fire.

Challenges in Balancing Energy Efficiency and Training Speed: In long sequence tasks, RF
neurons incur significant training costs and potentially excessive energy consumption. Existing
research focuses on two main strategies. First, as shown in Fig.[I{c).1, Higuchi et al. [21] propose
an adaptive decay factor that instantly raises the decay coefficient after each spike, suppressing
membrane potential oscillations and promoting sparse spikes. However, this approach requires
temporal unfolding during backpropagation, resulting in O(£?) complexity. Second, Huang et al. [24]
employ a learnable decay factor to the reset mechanism and use a Fourier transform reformulation
to reformulate the temporal dynamics into a parallel convolutional process between an oscillatory
kernel and the input signal, reducing computational complexity to O(L log £). Nevertheless, due to
the decay factor remains time-invariant, the model preserves its pre-spike amplitude. As shown in
Fig.[T[c).2, it results in sustained burst firing that undermines the low-power advantages of SNNs.

4.2 Dendritic Resonate-and-Fire Neuron

To better capture features across different frequency bands, we propose the D-RF neuron model.
Unlike the vanilla RF model [27], D-RF model comprises a soma and multiple dendritic branches.
Each dendritic branch extracts state responses corresponding to specific frequency preferences in the
input signal Z[t]. When Z[t] contains frequency components aligned with a branch’s preference, the



membrane potential of that branch accumulates rapidly. The soma integrates input currents from all
dendritic branches and generates a spike once its membrane potential exceeds a predefined threshold.
Specifically, the membrane potential dynamics of the ¢-th dendritic branch is defined as follows:

B0 {1t i) - 2(0) + 0, ©
where 7; and w; represent the decay factor and membrane potential oscillation coefficient associated
with the i-th dendritic branch, respectively. Z(¢) denotes the presynaptic input at time ¢, and ~;
represents the membrane capacitance of the i-th dendritic branch. This modeling framework allows
different dendritic branches to selectively respond to specific frequency components. To enable
efficient inference, the Zero-Order Hold (ZOH) method [10] is employed for discretization. The
membrane potential dynamics of all dendrites are given by:

— = +iw 0 . 0
0 —2 tiwy - 0
Z[t] = exp ' ' ' ' 59 Z[t— 1]+ T (D
0 0 e — - Fiwy
Here, § denotes the discrete timestep, and Z = [z1, 22, - , Zn]T represents the states of individual
dendritic branches, with ' = [y1,72, -+ ,V,]? denoting their respective time constants. To further

enhance the frequency characteristics across dendritic branches, each branch is assigned an individual
importance weight. The dynamics of soma are defined as follows:

Hlt] =CR{Z(t)},  S[t] = O (H[t] - Vinlt]), ®

C € R™*! denotes the importance weights assigned to each dendritic branch. ©(-) represents the
Heaviside function. When the presynaptic membrane potential of the soma H [t] exceeds the threshold
Vi, a spike S|t] is generated.

We further analyze the effectiveness of the dendrite design by examining its frequency band responses.
For time-invariant RF neuron with decay kernel b + iw, it can be modeled as a time-invariant
convolutional process with kernel h(n), defined as h(n) = exp{d(b + iw)}". Detailed proof is
provided in the Appendix. [A] Its frequency response is described as follows:

1
| |- o

1H (et = 1 — exp{0b + i(ow — )}

Z h(n) exp{—iQn}
n=0

Therefore, a single RF neuron can be regarded as a first-order band-pass filter with a resonance peak
at Q) &~ w, and a narrow frequency band determined by the damping factor 6b (as shown in Fig. [[[(b)).
In contrast, the frequency response of our D-RF model is defined as follows:

| Hpre(exp{iQ)]| = Y ¢ - [ H(expfi@Dl,  Bar~ > 8[| %], (10)
i=1

=1

7
4]

B denotes the total frequency response of the D-RF neuron, while 3; € [0, 1) quantifies the inde-
pendent contribution of the ¢-th branch to the overall frequency coverage. Consequently, compared to
its single-branch counterpart, the D-RF neuron provides a significantly broader frequency sensitivity.

4.3 Adaptive Threshold for Accelerated and Efficient Learning

To balance training speed and energy efficiency, we propose an adaptive thresholding strategy that
dynamically adjusts the threshold based on the spiking activity from previous timesteps. Specifically,
the threshold at timestep ¢ is defined as:

Valt] =Y ak®OR{Z[t =k —1,...;t — 1]} = Vire) + Vire, (11)

k=1

where V. denotes the origin threshold (set to 1), and o, € (0, 1) represents the importance of
preceding spikes. As shown in Fig.[2(b), oy, is the shared parameter during the adaptive threshold



(a) Dendrite Resonate-and-Fire Neuron (b) Adaptive Threshold (c) Parallel Computation
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Figure 2: The Structure of D-RF model: (a) Dendrite Resonate-and-Fire Neuron: D-RF model
consists of multiple dendritic branches, each encoding frequency-specific dynamics. The soma
integrates membrane potentials from all branches through an adaptive threshold mechanism to enable
sparse spikes. (b) Adaptive Threshold: The threshold at time t is dynamically determined based on
the historical spiking activity. (c) Parallel Computation: Different convolution kernels on each branch
and a causal convolution for the adaptive threshold allow parallel processing of the input over time.

computation. This process can be interpreted as a one-dimensional causal convolution with kernel

size n, where the kernel is defined as A = [, . . ., a,]. The spiking process can be reformulated as:
S[t] = 0{ C'R{Z} — (Conv1d(O(C'R{Z} — Vire) + Vire) } 1. (12)
——
Dendritic Input Adaptive Threshold

Conv1d(-) present causal convolution along the temporal domain, enabling sparser spike activity
while preserving the parallelizable nature of training. We demonstrate the effectiveness of this strategy
by analyzing both the forward and backward propagation processes.

In the forward propagation, the computational complexity of the D-RF neuron is determined by
multi-dendritic input and an adaptive threshold mechanism. Without the need for temporal unfolding,
the D-RF neuron can be formulated in a parallelized manner. For the component of dendritic input,
each dendritic branch functions independently and is decoupled in time. Therefore, the membrane
potentials of all branches at time t are defined as follows:

2t =3 o Thexp {k - 0D} - Tt — k], (13)
D characterizes the oscillatory resonators of individual dendritic branches and is defined as a diagonal
matrix: D = Diag{—1/m + w1, —1/72 +wa, -+, =1/7, + wyp}. Since D is time-invariant,

Eq.[I3|can be reformulated as a convolution between the input signal Z and the kernel K:
Ztl=(K*«D[t) = F{F{K}- F{Z}} [t], K=[6D', oD% ..., 6D"], (14

F(+) and F~1(-) denote the forward and inverse Fourier transform operations. Consequently, the
charging process ensures a computational complexity of O(L log £) without introducing additional
training overhead. For the adaptive threshold mechanism, its implementation via convolution opera-
tions is well-suited for GPU acceleration. Additionally, since o, > 0, a greater number of spikes in
the previous timestep increases the threshold at time t, thereby promoting sparser spikes.

In the backward propagation stage, the adaptive threshold removes temporal dependencies between
the gradient, enabling highly parallelizable training. Given Z[t] = w'S'~![t], the gradient of the loss
with respect to the weight w can be expressed as:

T
aﬁ 88!t 92'[1] oL oSt -
Vil = Z oSt 921t owl  \ 9SI[t] 021[¢]’ (KxS7H ), 15)
Sequential Training Parallel Training

S'[t]
3211

can be further defined as follows:

OR{Z[t]}
9Z[t]

(-,-) is the inner product. The derivative 2

2o = ClG (C'R{Z[t]} — Vanlt]) (16)



G(-) denotes the surrogate gradient function. In this work, it is implemented as a double Gaussian
function [72]. As shown in Eq. and Eq. the gradient during backpropagation depends
only on the current timestep. Consequently, the incorporation of the adaptive threshold introduces
no additional training complexity, while encouraging sparse spike activity and preserving low
computational cost. Detailed proof is provided in the Appendix. [B]

S Experiment

5.1 Compare with the SOTA methods

To validate the effectiveness of our proposed method, we conduct experiments on multiple time-series
datasets. All experiments are conducted at least five times. First, we compare the performance of
D-RF with other SOTA models on commonly datasets, including Spiking Heidelberg Digits (SHD) [8]
with 250 timesteps, Sequential MNIST, Permuted Sequential MNIST (S/PS-MNIST) [31]] with 784
timesteps, and the more challenging Sequential CIFAR10 (S-CIFAR10) [7] with 1024 timesteps. As
presented in Table[I] D-RF achieves SOTA performance while using fewer or comparable parameters.

Table 1: Performance Comparison of Various Models.

Dataset Method Model Size Type Parallel Dendritic Ace.
LIF [79] 85.1K FF X X 72.06 / 10.00
ALIF [72] 156.3K Rec X X 98.70 / 94.30
BRF [21] 68.9K Rec X X 99.10/95.20
S/PS-MNIST PSN [14] 2.5M FF X v 97.90/97.80
(784 Timesteps)
TC-LIF [[79] 155.1K Rec X v 99.20/95.36
DH-LIF [80] 0.8M Rec X v 98.9/94.52
PMSN [7] 156.4K FF v v 99.50 / 97.80
Ours 155.1K FF v v 99.50 / 98.20
LIF [[74] 249.0K Rec X X 84.00
ALIF [72] 141.3K Rec X X 84.40
BRF [21] 108.8K Rec X X 92.50
SHD PSN [14] 232.5K FF v X 89.75
(250 Timesteps)
TC-LIF [79] 141.8K Rec X v 88.91
DH-LIF [80] 0.5M Rec X v 91.34
PMSN [7] 199.3K FF v v 95.10
Ours 155.1K FF v v 96.20
LIF [74] 0.18M FF X X 45.07
S-CIFARLO PSN [14] 6.47M FF v v 55.24
(1024 Timesteps)  SPSN [14] 0.18M FF v v 70.23
PMSN [7] 0.21M FF v v 82.14
Ours 0.21M FF v v 84.30

Additionally, experimental results demonstrate that the RF-based model consistently outperforms the
similarly sized LIF model across all datasets. It further confirms the temporal modeling capabilities
of RF neurons in long sequence tasks. Moreover, our model also demonstrates superior recognition
performance compared to other dendritic models. Compared to the DH-LIF model [80]], our approach
enables parallel computation, effectively lowering the training speed associated with dendritic neurons.
Compared to the PMSN model [[7], our threshold resetting strategy prevents frequent spike generation
and more effectively captures temporal dependencies. On the more challenging Sequential CIFAR10
dataset, our method achieves a recognition accuracy of 84.20%, representing a 2.16% improvement.

We also evaluate our approach on the more challenging LRA benchmark [60]. As shown in Table 2]
our model achieves significantly higher recognition accuracy than other neural models. Notably, it



achieves 60.02% accuracy on the ListOps task. It also demonstrates strong performance on tasks with
longer timesteps, reaching 86.52% precision on the Text task (4096 timesteps) and 90.02% precision
on the Retrieval task (4000 timesteps). For the Image Task, D-RF attains 85.32% accuracy which
underperforming SpikingSSM [51]]. This gap stems from the use of LayerNorm in SpikingSSMs,
which reduces temporal variance. Furthermore, the performance gap between our model and ANN-
based approaches like S4 [19] is no greater than 3%. Specifically, our model’s accuracy is 0.42%
higher for ListOps tasks. These findings highlight the strong temporal modeling ability of our method.

Table 2: Comparison of Model Accuracy on LRA Benchmark.

Model SNN ListOps  Text  Retrieval Image Pathfinder A
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) Ve
Random 10.00 50.00 50.00 10.00 50.00 34.00

Transformer [62] X 36.37 64.27 57.46 42.44 71.40 54.39
S4 (Bidirectional) [19] X 59.60 86.82 90.90 88.65 94.20 84.03
Binary S4D [57] v 54.80 82.50 85.03 82.00 79.79 77.39
— + GSU & GeLU v 59.60 86.50 90.22 85.00 91.30 82.52
SpikingSSMs [51] v 60.23 80.41 88.77 88.21 93.51 82.23
Spiking LMU [33] v 37.30 65.80 79.76 55.65 72.68 62.23
ELM Neuron [56] v 44.55 75.40 84.93 49.62 71.15 69.25
SD-TCM [24] v 59.20 86.33 89.88 84.77 91.76 82.39
Ours v 60.02 86.52 90.02 85.32 92.36 82.88

5.2 Sparser Spike with Accelerated Training

To evaluate the sparsity of the D-RF method, we compare the spike firing rates and theoretical energy
consumption [45]] with those of similar approaches on the LRA dataset [60]]. As shown in Table E],
our model demonstrates a significant advantage. Specifically, on the ListOps task [39], it achieves a
Spiking Rate of 9.8% and an energy consumption of 62.48mJ. Moreover, on the Image tasks [30]], the
spike firing rate is reduced by 49.7% compared to the SD-TCM method. These results highlight the
effectiveness of the adaptive threshold mechanism in enhancing energy efficiency.

(a) SD-TCM Method (b) Our Method
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Figure 3: Comparison of Spiking Behavior Across Different Methods: (a) The SD-TCM method
exhibits continuous spiking activity, as reflected in its membrane potential and spike output. (b) The
D-RF method shows sparser spike generation, indicating more efficient spiking behavior.

Additionally, we visualize the spiking behaviors of different reset methods to further the sparsity
of our method. The SD-TCM model [24] assumes that a learnable decay constant can effectively
approximate the reset process, with a static threshold. In contrast, our method dynamically adjusts
the threshold based on previous timesteps. As shown in Fig.[3] the proposed method significantly
increases spike sparsity, indicating greater potential for energy efficiency.

Our method also ensures high training efficiency. We compare the per-epoch training cost across
different sequence lengths. As shown in Fig. [da), we visualize the average epoch time under a batch
size of 128. The results indicate that the proposed method achieves higher execution efficiency as the
sequence length increases. At a sequence length of 32768, our method achieves a 581 x speedup over
BPTT [68]. Furthermore, compared to the SDN method [51]], our method also shows competitive
performance, achieving 4.2 x acceleration. We further validate the strategy on Text tasks (4096). As



Table 3: Comparison of Metrics across the LRA Benchmark.

Metric | Method | ListOps Text Retreival Image Pathfinder | Avg.
SpikingSSM [51] 13.2 10.1 6.9 22.1 7.4 11.9
Spiking Rate (%) SD-TCM [24]" 11.2 7.9 5.7 15.7 5.8 9.3
Ours 9.8 6.3 33 7.9 3.2 6.1
SpikingSSM [51] 84.2 355.2 237.0 708.9 65.1 290.1
Energy Cost (mJ) SD-TCM [24]" 71.4 277.8 195.7 503.6 51.0 220.6
Ours 62.5 221.5 1133 253.4 28.1 135.8

T Results reproduced by ourselves, as the original code is not publicly available.

shown in Fig. @{b), benefiting from highly parallelized membrane potential accumulation and spike
generation processes, D-RF achieves faster simulation on GPU, yielding a 1.1 x speedup. Moreover,
the adaptive threshold mechanism enables the transformation of the serial accumulation-decay-firing
process into a parallelizable form, resulting in up to 147X training acceleration. These results confirm
that D-RF effectively addresses the high training cost.
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Figure 4: Train Speed and Frequency Analysis of D-RF: (a) Comparison of Training Runtime.
(b) Sequential vs. Parallel Training Cost: Our method accelerates both forward and backward
propagation. (c) Frequency Responses of D-RF: D-RF exhibits a broader frequency response.

5.3 Ablation Experiment

To assess the impact of the dendritic

Table 4: Ablation Experiment

Number of Dendrites

structure and the adaptive threshold Dataset Method

- . n=l1 n=4 n=8 n=16
mechanism, we conduct ablation exper-
iments on the S-CIFAR10 and ListOps S-CIFAR10 adaptive 80.3 843 84.6 85.1
datasets. We compare the performance w/o 792 839 84.1 849
in different numbers of dendrites (n =1, adaptive 552 59.1 602 603
4, 8, 16). As shown in TableE[, the model ListOps wlo 547 589 592 596

performance improves with an increas-
ing number of dendrites. Considering the
trade-off between complexity and performance, we set the number of dendrites to n = 4 for the
S-CIFAR10 dataset and n = 8 for the LRA dataset. As shown in Fig. Ekc), we visualize the fre-
quency responses of individual dendritic branches. The results indicate that the proposed D-RF
neuron captures nearly the entire frequency spectrum, further confirming the effectiveness of the
dendritic structure. In addition, we evaluate the effectiveness of the adaptive threshold mechanism.
Experimental results demonstrate that the adaptive threshold improves model performance, primarily
by effectively suppressing the adverse impact of redundant feature information on the results.

6 Conclusion

Inspired by the dendritic structure of biological neurons, this study proposes the D-RF model to
further enhance the performance of SNNs on time-series signals. It consists of a multi-dendritic
and soma structure. The multi-dendritic structure consists of branches with distinct decay factors,
enabling the neuron to effectively extract multi-frequency information from the input signal. The
soma with an adaptive threshold that ensures sparse spiking while enabling parallelizable computation.
Extensive experiments demonstrate that our model achieves competitive results while maintaining
sparse spiking activity for efficient training. These results highlight the strong potential of D-RF
method to enable effective and efficient long sequence modeling on edge-computing platforms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and introduction clearly describe our contribution and the scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned our limitation in Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We mentioned our Theory Assumptions and Proofs in Section #.2]and §.3]
and Appendix.[A]and [B]respectively.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Appendix [C.I] we provide a detailed description of our model ar-
chitecture and present all the training details, including dataset processing methods and
hyperparameter settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We mentioned our data in the Appendix. [C.T|and code in supplemental material,
respectively.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the full details in Appendix.[C.T]and [C.2}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We mentioned using random seeds to repeat at least 5 times to calculate the
average in Table.[T|and

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mentioned in the Appendix[C.T]and .[C.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper strictly adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational research and not tied to particular applications.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, the paper properly credits the creators or original owners of assets

(e.g.,code, data, models) and explicitly mentions and respects the relevant licenses and terms
of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assets are introduced in this article.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The LLMs are only used for writing, editing, and formatting purposes. They
did not contribute to the core methodology, scientific rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detail of Resonate-and-Fire Neuron

A.1 Dynamics of Resonate-and-Fire Neuron

The RF neuron process can be modeled as a first-order linear oscillatory system:

%z(t) = (b+iw)z(t) + Z(¢), (1)
where z(t) = u(t) + iv(t) € C represents the complex state of the neuron. b < 0 is the damping
factor, w > 0 is the angular frequency, and Z(t) is the external input signal to the neuron.

A.2 Discretization via Exponential Euler Method

We use the exponential Euler method to discretize the continuous differential equation as follows:
t+8
2(t+0) = exp {(b+iw)d} 2(t) +/ exp{(b+iw)(t + 0 — s)}Z(s)ds, )
t

where ¢ is discrete the timesteps. Assuming that the input Z(s) remains approximately constant over
the small interval [¢, ¢ 4 6]. This discretization can be derived as follows:

t+5
z2(t +9) = exp{(b+iw)d}2(t) + /t exp{(b+iw)(t +J — s)}Z(s)ds

t+8
~ exp{(b+iw)d}z(t) + Z(t) / exp{(b+iw)(t + 3 — s)}ds
t
b+ iw
-1 —
= i T 0_
exp{ (b + iw)d}2(1) + (t)<b+iwe T
1 —exp{(b+iw)d}
b+ iw ’
When § — 0, the second term can be represented using Taylor expansion as:
1 —exp{(b+ iw)d}

exp{(b+iw)(t + 0 — 5)}] B ©)

s=t

= exp{(b+ iw)d}2(t) + Z(¢) {

exp{(b+ iw)d})

= exp{(b+iw)d}z(t) + Z(t)

~ 2
Z(t) —— ~ OL(t) + O(6?). (4)

Therefore, the discretized form of Eq.1 can be expressed as:
z[t] = exp{(b + iw)d}z[t — 1] + OZ[t]. 3)

z[t] represents the complex state at discrete timestep ¢, J is the time interval, and Z[¢] is the external
input at timestep ¢.

A.3 Frequency Band Preference Characteristics

To examine the RF neuron’s response to the periodic input, we seek a particular solution to Eq. 5
with the same frequency as Z(t):
Z[t] = Ty exp{i2td}, z[t] = H exp{iQdno}, (6)

where H is a complex constant that determines both amplitude and the phase of the response. It can
be rewritten as follows:

H exp{ind} = exp{d(b+iw)} + JA. 7
Therefore, the H can be defined as follows:
_ 0A _ 0A @)
exp{iQ} —exp{(b+iw)d}  exp{i} (1 — exp{(b+ iw)d} exp{—iQ2d})’
The magnitude of the transfer function is:
et - | ) | ©

1 —exp{ob +i(éw —Q)}
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Therefore, a single RF neuron can be regarded as a first-order band-pass filter with a resonance peak
at Q) &~ w, and a narrow frequency band determined by the damping factor §b.

For the phase diagram of RF neuron, the phase shift between input and response provides additional
information about resonance properties:

#(Q) = arg(H{iQ}) = —tan~! (Q ; w) . (10)

At resonance {2 = w, the phase shift is -90°. Therefore, when resonance occurs, the phase of RF
neurons will accumulate rapidly.

A.4 Reset Mechanism in Resonate-and-Fire Neuron

A.4.1 Traditional Soft and Hard Reset

The traditional soft and hard reset mechanisms for the RF neuron can be defined as follows:

Sz[t] = {0’ if 3{z[t]} > Vip, hard reset

z[t]} — Vin, if S{z[t]} > Vin, soft reset, an

As shown in Eq. 11, when the imaginary part of the RF neuron’s state exceeds the threshold, a spike
is generated. For the hard reset process, the imaginary part of the RF neuron will be reset to 0. For
the soft reset process, the imaginary part of the RF neuron will be subtracted from the threshold. Both
of them disrupt the original oscillatory dynamics of the RF neuron.

Under reset conditions, the system becomes nonlinear, preventing direct application of the Z-transform.
However, we can model the reset mechanism as a nonlinear perturbation term:

zrlt] = exp{(b+iw)} - zgr[t — 1] + Z[t] + d]t], (12)
where d[t] represents the perturbation introduced by the reset operation:
dlt] = (zrlts] — 2[t]) - 5[t — ta], (13)
k

with d[t — t;] being the unit impulse at time ¢5. We applying the Z-transform yields:
Z{t} + Z{d[t]}

Z{zp[t]} = . 14
{zrlt]} = exp{(b+ w)}z 1 (14)

For periodic reset patterns, the frequency response contains a series of harmonic components:
HrW') =HW)+ Z e O(W —w— nw,), (15)

where H(w') = W represents the frequency response of the original system, ¢, are
the Fourier coefficients, and w, is the reset frequency. This demonstrates that the reset mechanism
introduces sideband components in the frequency domain, thereby weakening the frequency selectivity
of RF neurons. Therefore, conventional reset mechanisms inevitably compromise the band-selectivity
property of RF neurons to some extent.

A.4.2 No Reset Mechanism

In the absence of a reset mechanism, the band-selectivity of RF neurons can be effectively preserved;
however, it will lead to frequent spike emissions.

Consider a sinusoidal input at the resonant frequency: Z[t] = Z, exp{iwt}. The solution to the
difference equation can be obtained by recursive expansion:
t—1
2[t] = exp {(b+iw)t} - 2[0] + Iy Z exp {(b+iw)(t —k —1)} - exp {iwk}
k=0 (16)

= exp {(b+iw)t} - 2[0] + Zo - exp {iwt} - 11_‘:5;{;25}}'
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When b < 0 and £ >> 0, the first term vanishes, yielding:

A~ TR el )

Therefore, in long sequence tasks, RF neurons are more likely to exhibit frequent spike emissions.
The duration of each spike is given by:

Atspike = é <7T — 2511171 (‘/th(l_]_:xp{b})>) . (18)

where V;y, is the threshold. The maximum spike duration corresponds to half of the oscillation cycle.
However, in the absence of a reset mechanism, the time-invariant parameter design allows the RF
neuron to be interpreted as a convolution between a fixed kernel K and the input Z[¢]. This structure
offers a clear advantage during training, as it requires only O(L£) computational complexity.

17)

A.4.3 Adaptive Decay Factor for RF Neuron

To balance the frequency band selectivity of RF neurons and reduce their firing rates, Higuchi et
al. [21]] introduce a refractory mechanism into RF neurons, effectively suppressing excessive spike
emissions. This mechanism consists of two main components:

‘/th(t) =0.+ Q(t)’ b(t) =b. — Q(t)7 (19)

where 6, is constant threshold and b, is the decay factor. ¢(t) is the refractory period, which decays
exponentially with time:

q(t) = vq(t —1) +sft — 1]. (20)
Here, v = 0.9 is the default period constant. We further analyze the impact of the time-varying
design of b(¢) in conjunction with the frequency response, showing that it does not compromise the
frequency band selectivity of RF neurons. As shown in Eq. 6-9, the frequency response of the BRF
neuron at time t can be defined as:

1
H(t,w') = . - , 21
(t,) 1 —exp{(b(t) +iw —iw')} @
This represents the system’s response strength at time t to an input signal with frequency w’. We can
verify that the expression attains its maximum at w’ = w by computing the derivative of this part. By
taking the derivative of w, we can solve the extreme point situation of Eq. 21:

O|H(t,w')| 12 i o NN Y . 213
= k* - 5 [(1 exp{b(t)} cos(w — w))* + (exp{b(t)} sin(w — w')) ] . (22)
where k = |H (t,w’)|. For the latter term, we can further simplify.
I|H(t,w')| _1 3_i _ (o)) 2 . N2
o = 2/45 o, [(1 — exp{b(t)} cos(w — w))? + (exp{b(t)} sin(w — w’))?]
= —%kg’ - (“)i’ [1 — 2exp{b(t)} cos(w — w') + exp{2b(t)}] - (23)
= —%ks - [2exp{b(t)} sin(w — w')]

Therefore, for any b, the first-order derivative of |H (t,w’)| at w’ = w is zero, which is a stationary
point. Therefore, we need to further derive it and find that the derivative value of the second-order
derivative is:
O*|H(t,w")]
Ow’2

Therefore, w is the maximum point. When w’ = w, the band response is at its maximum value.
Additionally, when a spike is emitted, the value of b(t) will decrease, resulting in a faster decay rate.

= —|H(t,w)]? - *® < 0. (24)

w'=w

For RF neurons, the absence of a reset mechanism leads to frequent spike emissions, while simply
subtracting the threshold compromises their frequency-selective properties. Although Huchigu et
al. [21] preserve both energy efficiency and frequency selectivity in RF neurons, their time-invariant
factor significantly hinders model training. Therefore, designing an effective and principled reset
mechanism is crucial for fully exploiting the potential of RF neurons.
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B Computational Complexity of Backpropagation in the D-RF Model

B.1 Gradient Calculation for Backpropagation

To make the backpropagation process clearer, we begin with the gradient of the loss function with
respect to the weight w', expressed as:

T

a,c aS'[t] 9Z[t]
Vil = Za 07Nt ow' (25)

Since S'[t] is derived from the membrane potential Z'[t] through a nonlinear activation function, we
need to compute the derivative of the spike signal with respect to the membrane potential. In this
work, it is implemented as a double Gaussian function [[72]]. Therefore, this derivative is given by:

aS![1] OR{Z[1]}

OZt] oz[t] (26)

= C'G (C'R{Z[t]} — Vinlt])

where G(+) is the surrogate gradient function, C! is the coefficient for the current layer, and Vi [t] is
the adaptive threshold. The membrane potential Z![t] is the weighted sum of the previous layer’s
spike signals S'~![t]. Therefore, the derivative of the membrane potential with the weight w! is:

t

1
0714 Zflexp{k SDY- St — K, @27)

owh

where S;_1[t — k] represents the spike signal from the previous layer, I'; is a constant, and § D is a
parameter associated with dendritic branches. Substituting the above expressions into the gradient
formula, we can obtain the following:

V£ = Za C'G (C'R{Z[1]} — Vinlt] (ZFleXp{k 6D} - S 1[t—k]>. (28)

k=0

For faster training, we transform the gradient computation into a parallel computation format using
convolution. Thus, the final expression becomes:

oL 9S8!
Vurt = (o S (s ) 9)

where (-, -) represents the inner product, and (K % S'~1)[t] represents the convolution operation. The
final gradient expression can be summarized as:

oL os8'[) 9z'l _/ oL  9S'[Y L
Ytk = Za AR _<asl[t]'azz[t]v(K*5 )[t]>. (30)

This process demonstrates how the gradient calculation proceeds from the error term to the final
weight update rule, incorporating both sequential and parallel training strategies for efficiency.

B.2 Analysis of Computational Complexity

As shown in Eq. 30, our method converts gradient computation into convolution operations, effec-
tively leveraging the efficiency of the Fast Fourier Transform (FFT). This results in a convolution
computation time of O(Llog L). Since the FFT of length £ can be computed in O(L log £), and
convolution is equivalent to multiplication in the frequency domain, the complexity of convolution
reduces from O(L£?) in sequential training to O(L log £) in parallel training. Therefore, using the
convolution-based parallel training approach ensures that the overall computational complexity of the
backpropagation process is reduced to O(L log £), making it significantly more efficient.

This analysis demonstrates that by utilizing parallel computation and FFT-based convolution, we
can significantly reduce training costs, lowering the complexity from O(£?) to O(L log L), which is
critical for long sequence modeling tasks.
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C Experiment Detail

C.1 Dataset Description

We provide more context and details for (P)S-MNIST and the tasks of the LRA [60]]. The following
descriptions primarily reference [55].

* Sequential MNIST (S-MNIST) [31]]: Each 28 x 28 grayscale MNIST image is reshaped
into a one-dimensional sequence of 784 scalar values. The model must assign one of ten
digit labels (0-9) based solely on this temporal input.

* Permuted Sequential MNIST (PS-MNIST) [31]]: Follows the same flattening procedure as
SMNIST to produce a 784-length sequence, which is then reordered by a fixed permutation
before classification into digits 0-9.

 Spiking Heidelberg Digits (SHD) [8]]: Consists of 10 000 spike-encoded patterns represent-
ing handwritten digits (0-9) from the Heidelberg Digits dataset. Each sample is provided as
either binary or continuous spike trains for classification.

* Sequential CIFAR-10 (S-CIFAR10) [7, [14]]: Converts each 32 x 32 color image into a
sequence of 1 024 RGB triplets. The task is to classify the image into one of ten categories
based on this sequential representation.

* ListOps [39]: A dataset for evaluating sequence-based models. It contains mathematical
operations (e.g., min, max) and integer operands ranging from 0-9, represented using prefix
notation and brackets. The task is to compute the result of a mathematical expression (e.g.,
[max 2 6 [min 9 7] 0] — 7). The characters are encoded as one-hot vectors and the sequences
are padded to a maximum length of 2,000. There are 10 classes representing the results of
the expression.

* Text [36]: A sentiment classification dataset based on the iMDB movie review dataset. The
task is to classify a given movie review as positive or negative. The characters are encoded
as integer tokens and the sequences are padded to a maximum length of 4,096. There are two
classes representing positive and negative sentiment. The dataset includes 25,000 training
samples and 25,000 test samples.

* Retrieval [43]: A dataset based on the ACL Anthology Network corpus. The task is to
classify whether two text citations are equal or not. Each citation is encoded as a sequence of
integer tokens. References is compressed separately and then passed to the final classification
layer. This dataset evaluates the model’s ability to represent and retrieve textual relations.

» Image [30]: An image classification dataset based on the CIFAR-10 dataset. It contains
32x32 grayscale images that are flattened into a sequence of length 1,024. The task is to
classify each image into one of ten categories. The dataset contains 45,000 training samples,
5,000 validation samples, and 10,000 test samples.

» Pathfinder [32] A dataset for path finding tasks. It contains 32x32 grayscale images,
each showing a start and end point represented as small circles. The task is to classify
whether there is a dashed line (or path) connecting the start and end points. The sequences
are padded to a length of 1,024. The dataset includes 160,000 training samples, 20,000
validation samples, and 20,000 test samples. The data were normalized to the range [—1, 1].

C.2 Model Architecture and Hyperparameter Setting

In this task, we utilize a network architecture composed of stacked residual blocks (RB) between
membrane potentials. Each RB block comprises a residual connection and a sequence of "D-RF
Model — 1x1 convolution — Spiking Neuron model — 1x1 convolution". Except for the possible
floating-point multiplications involved in the neuron dynamics, all other operations are spike-driven,
which is more favorable for deployment on resource-constrained edge devices. All experiments are
conducted on Ubuntu server equipped with NVIDIA GeForce RTX 4090 (24G Memory), Intel(R)
Xeon(R) Platinum 8370C CPU@2.80GHz. PyTorch 2.1.0, and CUDA 11.8.

Furthermore, we conducted a parameter count comparison between our model and baseline methods
on the LRA dataset, further underscoring the efficiency of our approach. The learning rate for
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Table 5: Hyperparameters for LRA Task

Task Depth Norm Channels Pre-norm Dropout B Epochs Weight Decay
ListOps 8 BatchNorm 128 False 0 50 40 0.05
Text 6 BatchNorm 256 True 0 16 32 0.05
Retrieval 6 BatchNorm 256 True 0 32 20 0.05
Image 6 BatchNorm 512 False 0.1 50 200 0.05
Pathfinder 6 BatchNorm 256 True 0.05 64 200 0.03

neuron-specific parameters is set to 0.001, while a global learning rate of 0.005 is applied to the entire
network. Detailed hyperparameter settings are summarized in Table [3]

As shown in Table [6] we report the model sizes across various LRA tasks, demonstrating that our
approach maintains parameter efficiency comparable to other baselines. When combined with the
performance metrics in Table[2]and the energy consumption results in Table 3] it becomes evident
that our model not only achieves competitive accuracy but also induces significantly sparser spiking
activity. These results underscore its potential as an effective and efficient solution for long sequence
modeling on edge platforms.

Table 6: Comparison of Model Size between Competing Networks across Tasks.

Metric Method S-CIFAR10 ListOps Text Retreival Image Pathfinder
S4 [19] 308K 815K 843K 3.6M 3.6M 1.3M
Parm.  SpikingSSM [51] 308K 815K 843K 3.6M 3.6M 1.3M
SD-TCM [24]Jr - 272K 830K 1.1M 4.1M 1.3M
Ours 216K 297K 841K 1.1IM 3.2M 1.3M

T Results reproduced by ourselves, as the original code is not publicly available.

Additionally, we further report the model parameter configurations corresponding to different dendritic
branches in the ablation study. While increasing the number of dendrites. leads to a larger model and
generally improves recognition performance, the gains tend to saturate. Specifically, on the image
classification task, the model achieves an accuracy of 86.2% with 4 dendrites, and only a marginal
increase to 86.7% when the number is doubled to 8. Given the limited performance gain relative to
the parameter overhead, we select n = 4 as the default configuration for the S-CIFAR10 task.

Table 7: Ablation Experiment

Number of Dendrites
n=1 n=2 n=4 n=6 n=8 n=16

Accuracy (%) 1024 80.3  82.1 843 844 846 85.1
Parameter (M) 1024 209K 213K 216K 219K 222K 234K

Dataset Metric Length

S-CIFAR10

D Further Discussion & Limitation

Further Discussion: Similar to Transformer architectures, D-RF neurons can also function as
stackable computational components. They have demonstrated strong performance across various
sequential benchmarks, such as LRA benchmark and S-CIFAR10 dataset. However, the sequence
lengths of these datasets remain relatively limited compared with those used in current large language
models (LLMs). Recent ANN-based LLMs can process input sequences ranging from 16K to 1M
tokens [} 25 [71]], but such capabilities typically rely on complex architectural designs and large
parameter scales, leading to substantial computational overhead. In this paper, we adapt a neural
dynamics perspective, aiming to enhance memory capacity and temporal information processing.

Limitation: This study has two limitations. First, DRF neurons improve model performance on long
sequence tasks through efficient computation. However, the additional MAC operations they introduce
and their reliance on complex-valued operations may restrict their deployment on neuromorphic
chips. Second, the study is primarily focused on classification tasks and does not address regression
tasks, such as text generation and long sequence prediction. Therefore, future work will extend to
text generation tasks and further explore implementation strategies on neuromorphic chips.
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