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ABSTRACT

Reinforcement learning algorithms often suffer from poor sample efficiency, mak-
ing them challenging to apply in multi-task or continual learning settings. Ef-
ficiency can be improved by transferring knowledge from a previously trained
teacher policy to guide exploration in new but related tasks. However, if the new
task sufficiently differs from the teacher’s training task, the transferred guidance
may be sub-optimal and bias exploration toward low-reward behaviors. We pro-
pose an energy-based transfer learning method that uses out-of-distribution detec-
tion to selectively issue guidance, enabling the teacher to intervene only in states
within its training distribution. We theoretically show that energy scores reflect
the teacher’s state-visitation density and empirically demonstrate improved sam-
ple efficiency and performance across both single-task and multi-task settings.

1 INTRODUCTION

Reinforcement learning (RL) excels at sequential decision-making (Sutton et al., 1998), but credit
assignment, sparse rewards, and modeling errors makes it notoriously sample inefficient. This is
limiting in multi-task or continual learning settings, where agents must repeatedly learn to solve new
tasks, particularly when those tasks are related to ones they have seen before. A natural question
arises: can we transfer knowledge from previously solved tasks to accelerate learning in new ones?

One common approach is to reuse a pretrained teacher to guide a student, either directly by suggest-
ing actions (Uchendu et al., 2023) or indirectly by shaping rewards (Brys et al., 2015). This form
of transfer learning can be effective: early guidance steers the student toward high-reward behaviors
and reduces the need for random exploration. However, when tasks are sufficiently different this
approach can impair the student’s ability to learn; the teacher may issue sub-optimal guidance that
biases exploration towards low-reward regions of the state-action space (Taylor & Stone, 2009).

In this paper, we introduce an introspective transfer learning method that selectively guides
exploration only when the teacher’s knowledge is likely to be helpful. Our approach, energy-
based transfer learning (EBTL), is based on the insight that guidance should only be issued when
the student visits states that lie within the teacher’s training distribution. Leveraging concepts from
energy-based learning (LeCun et al., 2006) and out-of-distribution detection (Liu et al., 2020), the
teacher computes energy scores over states visited by the student during training, treating high-
energy states as in-distribution and therefore eligible for guidance. This mechanism enables the
teacher to act only when it is sufficiently “familiar” with the current context, making training more
efficient not by issuing more guidance but by issuing correct guidance.

Our contributions are as follows:

• We introduce an energy-based transfer learning method that selectively guides exploration
only when the student’s state lies within the teacher’s training distribution.

• We provide theoretical justification for our approach, showing that the energy score is pro-
portional to the state visitation density induced by the teacher policy.

• We empirically demonstrate that our method yields more sample efficient learning and
higher returns than standard reinforcement learning and transfer learning baselines, across
both single-task and multi-task settings.
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Figure 1: Overview of energy-based transfer learning. As the student interacts with the environ-
ment, the teacher: 1) checks if each state is in-distribution or out-of-distribution by comparing the
state’s energy score to a pre-defined energy threshold; 2) If the state exceeds the energy threshold,
then it is considered in-distribution for the teacher and an expert action is suggested to the student.

2 RELATED WORK

Reinforcement learning provides a general framework for sequential decision-making, where an
agent interacts with an environment to learn a policy that maximizes cumulative reward (Sutton
et al., 1998). However, RL methods typically require large amounts of experience, making them
sample-inefficient, especially in sparse-reward environments (Andrychowicz et al., 2017). To im-
prove sample efficiency, transfer learning reuses prior knowledge to speed up learning on new tasks
(Weiss et al., 2016). A key distinction is whether the teacher interacts with the target task during
transfer, yielding offline vs. online RL transfer.

Offline methods seek robustness by training teacher policies without interaction with the target task,
using only source data to learn representations (Bose et al., 2024) or task structure (Rosman & Ra-
mamoorthy, 2012), with the goal of transferring despite covariate shifts. In practice, the absence of
target feedback forces reliance either on broad generalization guarantees, which often yield conser-
vative or task-mismatched advice, or on prior assumptions about the target MDP to decide what to
transfer, which requires advance domain knowledge. Consequently, offline transfer remains brittle
under shift. Beyond fully offline transfer, related strategies reuse source knowledge during train-
ing on the target. Pretraining initializes policies, value functions, or representations before online
fine-tuning (Abel et al., 2018) and can misguide exploration when source biases are misaligned.
Hierarchical transfer employs a high-level controller with options learned in advance (Barreto et al.,
2019), but performance degrades when the option library does not cover the target.

By contrast, online transfer learning adapts during the student’s training on the target task: a teacher
pretrained on a source task monitors rollouts and provides guidance as the student learns. Guidance
is delivered interactively, e.g., via action suggestions (Torrey & Taylor, 2013) or reward shaping
(Ng et al., 1999). Behavior-based approaches further encourage the student to align with the teacher:
policy distillation introduces an auxiliary divergence loss to promote imitation during training (Rusu
et al., 2015; Schmitt et al., 2018), while action advising lets the teacher intervene with actions during
exploration. Transfer learning may also be viewed from the student side (Ilhan et al., 2021), where
novelty is measured using an auxiliary target–predictor module. However, such methods do not
account for the teacher’s familiarity with a given state. A persistent challenge is deciding when
to advise, as poorly timed interventions can hinder learning (Torrey & Taylor, 2013). JumpStart
RL restricts advice to a fixed episode prefix (Uchendu et al., 2023), whereas introspective action
advising triggers interventions based on deviations in expected return (Campbell et al., 2023).

However, prior approaches, both offline and online, rely on heuristics, fixed hyperparameters, or
brittle fine-tuning, which limits generalization. We adopt an online transfer setting because it does
not require prior domain knowledge of the target and let the teacher decide state by state what
knowledge is beneficial to transfer. Our method builds on this principle by applying theoretically-
grounded OOD detection to estimate teacher familiarity and selectively issue guidance, improving
transfer under covariate shift.
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3 BACKGROUND

Reinforcement Learning. We study a Markov decision process (MDP), defined by the tuple
(S,A, P,R, γ): S is the state space; A the action space; P (· | s, a) the transition kernel on S;
R : S × A → R the reward; and γ ∈ [0, 1) the discount factor. At time t, the agent in st ∈ S
chooses at ∈ A, transitions to st+1 ∼ P (· | st, at), and receives rt = R(st, at). The goal is to learn
a policy π(a | s) maximizing the discounted return Eπ[

∑∞
t=0 γ

trt].

Energy-Based Out-of-Distribution Detection. In this work, we determine whether a state is in-
or out-of-distribution (OOD) for a given policy. A widely-used baseline for OOD detection uses the
maximum softmax probability assigned to a predicted label (Hendrycks & Gimpel, 2016). However,
softmax scores are not always reliable as neural networks can produce overconfident predictions for
OOD states (Nguyen et al., 2015). An alternative approach is to use the energy of a state, which is
computed from the raw logits of a network and has been shown to better separate in- and out-of-
distribution examples (Liu et al., 2020).

Formally, given x∈RD and network logits f(x)∈RK with components f1, . . . , fK , we define the
free energy; T > 0 is a temperature controlling logit sharpness:

E(x; f) = −T log

K∑
i=1

efi(x)/T . (1)

An input is considered to be OOD if E(x; f) > τ for an energy threshold τ and in-distribution (ID)
otherwise. The energy threshold is pre-computed over a set of in-distribution data.

4 ENERGY-BASED TRANSFER LEARNING

Our goal is to improve the sample efficiency of reinforcement learning, which is particularly impor-
tant in multi-task settings where the agent must learn to solve many (potentially related) tasks. One
way to improve sample efficiency is to leverage a teacher policy trained on a related source task to
guide the student in a new target task. However, naively accepting teacher guidance can degrade
sample efficiency if the student visits states outside the teacher’s training distribution, potentially
biasing exploration toward uninformative or low-reward regions of the state-action space.

To address this, we propose a transfer learning framework in which the teacher suggests actions to
the student only in states sufficiently close to the teacher’s training distribution. We formalize the
problem of when to issue guidance as out-of-distribution detection for reinforcement learning.

Problem Formulation. Let πT and πS denote the teacher and student policies, respectively. We
denote a trajectory as X = {xt}nt=1, where each transition xt = (st, at, st+1, rt) consists of the
state st, action at, next state st+1, and reward rt. We define a score function ϕ(s;π), where a state
s is considered ID with respect to a policy π if ϕ(s) ≥ τ , for some threshold τ ∈ R, and OOD
otherwise. The action selection rule is then defined as:

a =

{
aT ∼ πT (· | s), if ϕ(s;πT ) ≥ τ,

aS ∼ πS(· | s), if ϕ(s;πT ) < τ.
(2)

Equation 2 restricts teacher intervention to states sufficiently close to those it has seen during train-
ing, deferring to the student policy in all other cases.

Assumption (Teacher reliability). We assume the teacher policy πT has been trained to conver-
gence and is near–optimal on its own training distribution. Consequently, whenever a state s is
in-distribution for the teacher (i.e., was encountered during teacher training) or is sufficiently simi-
lar to such states in task-relevant features, the teacher knows how to solve it: guidance from πT is
correct, and samples aT ∼ πT (· | s) are optimal for that state.

4.1 ENERGY SCORES AND STATE VISITATION

We draw inspiration from recent work on energy-based out-of-distribution detection (Liu et al.,
2020) and define our score function as the negative free energy of a state s under the teacher policy:

ϕ(s;πT ) = −E(s;πT ),

3
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where E(s;πT ) is the free energy computed from the teacher’s network. While our derivation
assumes discrete logits, continuous actions can be discretized into bins to compute energy from
categorical logits. This follows common practice in continuous-control models (Kim et al., 2024;
Zitkovich et al., 2023). We refer to ϕ(s;πT ) as the energy score, which serves as a proxy for how
likely the state is to belong to the teacher’s training distribution p(x). In on-policy reinforcement
learning, training data is generated by rolling out the teacher policy πT to collect experience. As a re-
sult, p(x) is implicitly defined by the state-visitation distribution dπ(s) of the teacher. Consequently,
the free energy E(s;πT ) is negatively related with the teacher’s familiarity with a state, assigning
lower values to frequently visited states and higher values to unfamiliar ones. Following convention
(Liu et al., 2020), we set the energy score ϕ to the negative free energy so that in-distribution states
yield higher scores than out-of-distribution states. In the on-policy setting, an update increases ϕ on
the visited support (Appendix A.1). Throughout, we assume the teacher policy has converged to a
fixed point, and we now relate ϕ to state visitation.
Proposition 4.1. Let on-policy training converge to θ⋆, yielding a unique stationary visitation den-
sity dπθ⋆

(s). If a realizable energy model pθ(s) is fit to optimality at convergence, then the log of
the visitation density is proportional to the score function ϕ(s) = −E(s):

log dπθ⋆
(s) ∝ ϕ(s).

Proof. Given an energy-based model f , the density of a state s is p(s; f) = e−E(s;f)/T

Z , where
Z =

∫
s
e−E(s;f)/T is the partition function and T is the temperature (LeCun et al., 2006). Ignoring

the normalizing constant Z and taking the logarithm of both sides we obtain:

log p(s) ∝ −E(s).

In on-policy RL, training data are collected by sampling trajectories under the current policy π.
At convergence, the policy is fixed (πθ⋆ ) and induces the stationary state distribution dπθ⋆

. Under
realizability, the minimum of KL(dπθ⋆

∥pθ) is zero, and under optimality the fitted parameter θ⋆
attains this minimum. Hence pθ⋆ = dπθ⋆

. Substituting this into the equation above, we obtain:

log dπθ⋆
(s) ∝ −E(s) = ϕ(s).

Algorithm 1 Energy-Based Transfer for Reinforcement Learning

Input: Teacher policy πT , student policy πS , energy threshold τ , decay function δ
while not done do

Initialize empty batch B ← ∅
for t = 1→ H do

Sample p ∼ U(0, 1) ▷ Sample probability of issuing guidance

at ←
{
πT (a | st) if − E(st;πT ) ≥ τ and p < δ(t) ▷ If st is in-distribution
πS(a | st) if − E(st;πT ) < τ ▷ If st is out-of-distribution

Take action at, observe rt, st+1

B ← B ∪ (st, at, st+1, rt)
end for
Update πS with batch B ▷ Any on-policy update

end while

4.2 ALGORITHM

Algorithm 1 summarizes EBTL. The student interacts with the environment, while selectively re-
ceiving guidance from a teacher policy. At each timestep, EBTL evaluates whether the current
state is familiar to the teacher using an energy-based OOD score. If the state is deemed ID and
a decaying probability schedule permits guidance, the action is sampled from the teacher pol-
icy; otherwise, the student policy acts. To decide when to issue guidance, we compute τ (see
Equation 2) as the empirical q-quantile of energy scores over teacher training states ST , i.e.,
τ = Quantileq ({ϕ(s) | s ∈ ST }). Following prior work (Schmitt et al., 2018; Uchendu et al., 2023;
Campbell et al., 2023), we apply a linear decay schedule δ(t) to control the probability of guidance.
This enables early reliance on the teacher while gradually promoting student autonomy. We also
incorporate importance-ratio correction, as teacher actions at ∼ πT (· | st) are off-policy for the
student (Campbell et al., 2023).
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Energy Regularization. As discussed in Section 4.1, the score function ϕ(s) is related to the
teacher’s state-visitation frequency: frequently visited states tend to receive higher scores. This
relation, however, provides no guarantee for states that lie outside the teacher’s experience. OOD
states may receive heterogeneous scores, some overlapping with in-distribution values, which under-
mines separability. Moreover, collapsing all out-of-distribution states to a uniform low score would
erase meaningful distinctions between states that are structurally compatible with the teacher’s sup-
port and those that are not. To address this, we incorporate an energy regularizer that enforces a
margin between in-distribution and truly out-of-distribution scores, thereby preserving the relative
ordering of familiar states while ensuring reliable separation.

To improve separability, we adopt the energy-based loss of (Liu et al., 2020), and augment teacher
training with a fixed set of representative OOD states. Let Dtrain

in denote the set of ID states collected
during teacher training and Dtrain

out a curated set of OOD states. Let sin ∼ Dtrain
in and sout ∼ Dtrain

out
denote samples from each. Using the energy score ϕ(s) = −E(s), the loss is defined as:

Lenergy = Esin

[
(max(0,min − ϕ(sin)))

2
]
+ Esout

[
(max(0, ϕ(sout)−mout))

2
]
,

where min ∈ R and mout ∈ R are margin thresholds for ID and OOD energy scores, respectively.
The loss penalizes ID energies < min and OOD energies > mout. Appendix E.1 shows separability
is insensitive to the choice of min and mout. The overall teacher loss is Ltotal = LRL + λ · Lenergy
where λ ∈ R+ controls the weight of the energy regularization. In EBTL, OOD samples are drawn
from random policy rollouts in the target environment. ID samples are drawn from the teacher’s own
training experience via random subsampling. When such data are not available, the ID distribution
can be obtained by rolling out the teacher, yielding similar transfer performance (Appendix E.2). We
also emphasize that adding the term of regularization of energy does not compromise the teacher’s
final performance; rather, it accelerates convergence. (Appendix E.3)

5 EXPERIMENTS

We evaluate our method in two settings: single-task transfer and multi-task transfer. The single-
task setting is a Minigrid-based (Chevalier-Boisvert et al., 2023) environment composed of naviga-
tion tasks, where the agent’s objective is simply to reach a goal location. In the multi-task setting,
we use Overcooked (Carroll et al., 2019), where the agent must learn to solve multiple task vari-
ants, such as how to cook different recipes. For each setting, we design scenarios with increasing
covariate shift between the teacher’s training distribution and the student’s target distribution to test
robustness under progressively harder transfer.

In each domain, we examine learning performance with the goal of understanding: (1) whether our
method leads to improved sample efficiency, and (2) when the teacher chooses to provide guidance
during the student’s learning process. We compare our approach against the following baselines:

• No Transfer: An agent trained from scratch with standard RL.
• Action Advising (AA): A teacher provides advice at every timestep. Advice issue rate

decays over time using a predefined schedule.
• Fine-Tuning: The student is initialized from a pretrained teacher policy. Convolutional

layers are frozen, and only the remaining parameters are updated during training.
• Kickstarting RL (KSRL) (Schmitt et al., 2018): A distillation method that applies a de-

caying cross-entropy loss between student and teacher policies to promote imitation.
• JumpStart RL (JSRL) (Uchendu et al., 2023): A time-based method where the teacher

advises only early in each episode, using a decaying timestep threshold.

All experiments use teacher and student policies trained with TorchRL’s proximal policy optimiza-
tion (Bou et al., 2023). Full hyperparameter are in Appendix C.

5.1 SINGLE-TASK SETTING: MINIGRID

Our Minigrid environment consists of four interconnected rooms and serves as a controlled single-
task setting. We design two transfer setups, as illustrated in Figure 2a:

5
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Figure 2: Environments used for empirical experiments. Refer to Section 5 for detailed descriptions.
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Figure 3: Alternating Goal (10 seeds). (a, Top) Relative transfer (%) by q and decay sched-
ule; (50% means the guidance probability reaches 0 at mid-training). q = −1 advise in all states
(AA Baseline). (a, Bottom) Fraction of correct vs. incorrect guidance (“correct” = issued on in-
distribution states). (b) Evaluation returns for EBTL vs. baselines. (c) Empirical energy score
distributions with respect to the teacher policy. The source task (blue) shows the teacher’s training
distribution. The target task (orange + purple), measured during transfer, is bimodal: one mode
overlaps with the source (shared sub-task, ID), the other does not (non-shared sub-task, OOD).

Alternating Goal Room. The source task always places the goal in a random location in Room 1
(upper-left), while the target task randomly places it in either Room 1 (upper-left) or Room 3 (lower-
right). The teacher should intervene only when the goal is in Room 1, where its prior experience
applies; when the goal is in Room 3, the student must act independently.

Locked Room. In the source task, the agent can freely move between rooms. In the target task,
a locked door blocks access to the lower area, and the agent must first retrieve a key (randomly
placed in the upper rooms) to open it. Because the teacher was never trained with keys, its guidance
is useful only after the key is collected, when the remaining navigation matches prior experience.
This door–key dependency alters both the encountered states and the path to the goal, creating a
significantly larger covariate shift between target and the source task.

The results for the Alternating Goal Room and Locked Room setups are illustrated in Figure 3 and
Figure 4, respectively. We make the following observations.

EBTL consistently outperforms all baselines and is robust to hyperparameters. In both transfer
setups, EBTL achieves the highest sample efficiency of all baselines. For q ≥ 0.1, EBTL rarely
issues guidance in unfamiliar states, leading to significant improvements in transfer performance.
As in Fig. 5b, the teacher assigns higher energy to states seen in training (goal in Room 1, upper-left)
than to unseen states (goal in Room 3, lower-right). EBTL has two parameters: the energy quantile
q and the decay schedule δ(t). Across varying decay schedules (Figures 3a and 4a), performance is
stable: increasing q initially improves transfer by filtering harmful OOD advice, whereas excessively

6
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Figure 4: Locked Room (10 seeds). See Figure 3 for caption details.
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Figure 5: (a) Transfer performance with (solid) vs. without (dashed) energy regularization. 10 seeds.
(b) Heatmaps of average energy quantiles under the teacher for Alternating Goal. Left: source (goal
in Room 1). Right: target (goal in Room 3). Higher quantiles indicate greater teacher familiarity.

large q suppresses useful ID guidance. While the optimum is near q ≈ 0.5, performance is nearly
identical for q ∈ [0.2, 0.8], indicating robustness to the hyperparameter choice.

Higher covariate shift makes OOD detection more challenging. In Alternating Goal Room, ID
and OOD are well separated (Fig. 3c). In Locked Room, the door–key novelty induces stronger
covariate shift, reducing separation (Fig. 4c). Despite this, the teacher still assigns lower energy
scores to pre-key states compared to post-key states, indicating meaningful ID/OOD discrimination.

Energy regularization significantly improves EBTL but has little effect on other methods. As
shown in Figure 5a, adding energy loss speeds up EBTL’s convergence, especially in the harder
Locked Room with greater covariate shift. In contrast, other baselines show little to no change
whether the teacher uses energy regularization. Notably, even without energy loss, EBTL still ex-
ceeds all baselines, highlighting the robustness of our approach.

EBTL improves monotonically as teacher proficiency increases. Although EBTL assumes a
reasonably trained teacher, we ablate robustness under suboptimality. We train teachers at multiple
proficiency levels of maximum returns (Table 1). As proficiency rises, advice quality improves
and EBTL’s transfer gains increase. In contrast, baselines that imitate indiscriminately often fail to
benefit from stronger teachers and can deteriorate, because source-task optimality misaligns with the
student’s environment; in unseen states, copying actions can perform as poorly as a random policy.
Energy gating limits advice to states within the teacher’s support, mitigating this mismatch.

5.2 MULTI-TASK SETTING: OVERCOOKED

We create a single-agent variant of the popular Overcooked (Carroll et al., 2019) environment de-
signed to evaluate multi-task learning. This environment is both long-horizon and high-dimensional.

Long-horizon. At each timestep, exactly one recipe (onion, tomato, or fish soup) is active. Produc-
ing a single soup requires the agent to fetch and place three matching ingredients into a pot, wait 20
steps for cooking, retrieve a dish, and deliver the soup to the serving station to obtain reward. After
each delivery (correct or not), a new recipe is sampled from the allowed set.
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Table 1: Robustness to suboptimal teachers. Relative transfer (%) vs. scratch (mean ± 95% CI, 10
seeds) for Alternating Goal. Guidance ends at mid-training.

Optimality EBTL (0.3) EBTL (0.5) EBTL (0.7) AA JSRL KSRL Fine-tuning

96% 41.2±4.9 46.1±4.5 40.3±4.7 6.1±5.6 −3.2±10.3 17.5±6.7 −32.2±12.9
70% 26.8±4.6 31.2±5.7 27.0±5.4 17.0±4.3 24.8±5.4 14.2±6.1 −104.3±8.6
45% 16.7±4.6 14.3±4.3 18.9±9.2 13.9±6.2 15.9±3.7 21.5±5.7 −80.6±3.0
15% 9.2±5.9 12.8±4.7 13.7±4.9 12.5±7.1 5.0±6.4 22.9±4.3 −110.5±4.4

Figure 6: Simple Room (5 seeds). (Top) Empirical energy score distributions with respect to the
teacher policy. The source task (blue) shows the teacher’s training distribution. The target task
(orange + purple), measured during transfer, is bimodal: one mode overlaps with the source (shared
sub-task, ID), while the other does not (non-shared sub-task, OOD). (Bottom) Evaluation returns
for EBTL and baselines. q = 0.5 for Recipe Shift and q = 0.2 for the Recipe + Layout Shift.

High-dimensional. The state space is combinatorial, due to randomized placement of ingredient
dispensers, pots, and serving stations; pot contents and cook-timer values; counter inventories; held
objects; agent orientations; and so on. Together these factors yield over 1012 states even in the
simplest layout, making explicit visitation counting infeasible. (Appendix B.2).

An overview of the setup is shown in Figure 2b. We evaluate on two rooms of increasing complexity:
a simple room and a ring-shaped room. In this cooking environment, observations encode the current
recipe, enabling the agent to differentiate between tasks. Consequently, covariate shift arises along
two axes: recipe changes modify what the agent is asked to produce, while layout changes alter the
dynamics and the routes available. For each room, we construct three Overcooked transfer setups
with increasing levels of covariate shift between the teacher and student environments:

Recipe Shift (2⇒ 3): Both the source and target environments include all three ingredients: onions,
tomatoes, and fish. The source task requires onion and tomato soup, while the target task requires
onion, tomato, and fish soup resulting in recipe shift.

Recipe Shift (1 ⇒ 3): Both environments again have all three ingredients. This time, the source
task requires only onion soup while the target task requires onion, tomato, and fish soup, introducing
a higher degree of recipe shift.

Recipe + Layout Shift (2⇒ 2): The source environment includes only onions and tomatoes and
requires onion and tomato soup, while the target environment includes only tomatoes and fish and
requires tomato and fish soup, resulting in both recipe and layout shift.

8
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Figure 7: Ring Room results (5 seeds). See Figure 6 for caption details.

The results for the Simple Room and Ring Room setups are shown in Figure 6 and Figure 7, respec-
tively. The relative difficulty of each transfer scenario is reflected by the increasing KL divergence
between the energy score distributions over source and target states.

EBTL maintains positive transfer under increasing covariate shift. EBTL consistently outper-
forms all baseline methods in both sample efficiency and final policy return across all scenarios. As
covariate shift between the source and target environments increases, transfer becomes more chal-
lenging. This is evident in the slower convergence from Recipe (2 ⇒ 3) to Recipe (1 ⇒ 3) in the
Ring Room (Figure 7), where the teacher is only familiar with 1 rather than 2 recipes (out of 3 total).
Despite this, EBTL yields positive transfer performance by restricting guidance to states associated
with recipes that the teacher has encountered during training.

Shared layouts simplify OOD detection. In scenarios where the source and target tasks share
spatial layouts, i.e. Recipe (2 ⇒ 3) and Recipe (1 ⇒ 3), the covariate shift is due entirely to the
recipe encoding in the observation. This results in a clearly bimodal energy distribution in the target
task (one mode for ID states and another for OOD) simplifying the OOD detection problem (refer
to the top row of Figure 6 and Figure 7). However, when the layout changes, as in Recipe + Layout
(2⇒ 2), there is a systematic decrease in ID energy scores, blurring the ID/OOD boundary. This is
because even states associated with familiar recipes appear slightly OOD due to the layout shift.

Robustness to layout complexity. EBTL achieves stable positive transfer across both Overcooked
environments, resulting in high returns and low variance. In contrast, baselines without selective
guidance, such as action advising (AA), degrade as layout complexity increases. As shown in Fig-
ure 7, AA performance becomes unstable over training, indicating that over-reliance on suboptimal
advice hinders learning. Fine-tuning likewise often stalls in local minima and fails to converge un-
der covariate shift: a misaligned initialization biases early exploration toward low-reward regions,
reinforcing bad value estimates and impeding recovery.

6 CONCLUSION AND FUTURE DIRECTIONS

We introduced energy-based transfer learning (EBTL), which improves sample efficiency in rein-
forcement learning through selective teacher guidance. EBTL employs the teacher’s energy as a
familiarity proxy, issuing advice only in likely in-distribution states and thereby avoiding additional
networks, mappings, or handcrafted OOD detectors. Empirically, EBTL outperforms baselines in
both single- and multi-task transfer. A natural extension is to handle multiple teachers in continual
learning, selecting at each state the teacher with highest estimated familiarity. A key limitation is
that our guarantees rely on the on-policy link between energy and visitation density; under off-policy
training this connection weakens, and the theory no longer directly applies.

9
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APPENDIX

A SUPPORTING PROOF

A.1 ON-POLICY UPDATES INCREASE THE ID SCORE

Proposition .1 (On-policy monotonicity of the energy score). Under on-policy training, an on-
policy step that maximizes a weighted log-likelihood pushes up the energy score ϕθ(s) on visited
states.

Proof. Let πθ(a | s) = softmax(fθ(s)/T )a with logits fθ(s) ∈ RK and temperature T > 0. An
on-policy step maximizes J(θ) = E(s,a)∼dπ

[w(s, a) log πθ(a | s)] with weights w(s, a) ≥ 0. For a
single sample (s, a) with weight w,

Lon(θ; s, a) = −w log πθ(a | s) = w

 1

T
Eθ(s, a) + log

K∑
j=1

e−Eθ(s,j)/T

 .

Differentiating,

∂Lon

∂θ
=

w

T

(1− πθ(a | s)
)∂Eθ(s, a)

∂θ
−
∑
j ̸=a

πθ(j | s)
∂Eθ(s, j)

∂θ

 .

Thus a descent step lowers Eθ(s, a) and raises Eθ(s, j) for j ̸= a. Write the free energy as

Eθ(s) := −T log

K∑
j=1

e fθ(s)j/T , so that
∂Eθ(s)

∂fθ(s)j
= −πθ(j | s).

The update increases fθ(s)a and decreases fθ(s)j for j ̸= a, hence Eθ(s) decreases and the score
ϕθ(s) = −Eθ(s) increases for this sample. Averaging over nonnegative on-policy weights yields
the claim on the visited support.

B TRAINING DETAILS

B.1 GRIDWORLD

Reward Structure and Action Masking. In the MiniGrid experiments, agents are trained under
a sparse reward setting: a reward of 1 is given only when the agent successfully reaches the goal
location. No shaped or intermediate rewards are provided, making the task highly exploration-
dependent. To mitigate the resulting challenge and accelerate learning, we apply action masking to
dynamically restrict the agent’s action space based on its immediate environment. The action mask
disables irrelevant or invalid actions at each timestep: (1) the forward action is masked out if the
agent is facing a wall, preventing redundant collisions; (2) the pickup action is disabled unless the
agent is directly facing a key; (3) the toggle action is masked out unless the agent is facing a door;
(4) the drop action is always disabled, as object dropping is unnecessary in our tasks; and (5) the
done action is permanently disabled, since it is not used in our environments. This selective pruning
of the action space reduces the likelihood of unproductive behavior and enables the agent to focus
on learning goal-directed policies more effectively.

Teacher Training. In both experimental setups, we train two variants of the teacher policy using
standard Proximal Policy Optimization (PPO) in the source environment: one with the energy-based
loss and one without. For the teacher trained with energy loss, the min and mout are set to 10 and
15 respectively. These values are chosen arbitrarily, as the separation between energy distributions
is insensitive to the exact threshold choice (see Section E.1). The training follows a consistent set of
hyperparameters, as detailed in the next section. For the unlocked-to-locked environment, 800K-step
checkpoints are selected from both training variants. For the alternating-goal room environment,
200K-step checkpoints are used.
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Student Training. For each target task, we first train a student policy from scratch using standard
PPO without any transfer to establish baseline performance. In the unlocked-to-locked environment,
the total training horizon for transfer experiments is set to 1 million steps, while in the alternating-
goal room environment, it is set to 200,000 steps. All experiments in the MiniGrid setups are
conducted with 10 random seeds to ensure robustness. Within each domain, the student and teacher
policies share the same model architecture.

B.2 OVERCOOKED-AI

State Space Enumeration of Overcooked Consider the Simple Layout illustrated in Figure 2.
The grid has dimensions 4 × 5. The interior region contains 6 traversable tiles where the agent can
move. The exterior non-corner tiles are reserved for environment objects (ingredient dispensers, pot,
dish dispenser, serving counter), and their placements can be randomized.

We explicitly count states under the single-agent, lossless encoding generated by
lossless state encoding single agent() in OvercookedGridWorld: The
resulting state space is a combinator of the following factors.

• Kitchen-layout permutations. Among the 14 exterior tiles, 8 are eligible for random-
ization. We must place 6 distinct stations (onion, tomato, fish dispensers; server; pot; dish
stack), leaving the remaining 2 tiles as empty counters. The number of distinct assignments
is (

8

6

)
6! = 8P6 =

8!

2!
= 20,160.

• Agent position and orientation: The agent may occupy any of the 6 interior tiles and face
one of 4 directions (north, south, east, west), for a total of 6× 4 = 24 possibilities.

• Urgency flag: Binary indicator with 2 possibilities, set to 1 if the remaining horizon is less
than 40, and 0 otherwise.

• Active recipe: 3 possibilities, indicating the current recipe type (onion, tomato, or fish).
• Pot state (mode + contents/recipe/timer): Idle with k ∈ {0, 1, 2} ingredients (order ir-

relevant):
∑2

k=0

(
k+2
2

)
= 1 + 3 + 6 = 10. With 3 ingredients, the pot is cooking:

there are
(
5
3

)
= 10 recipe multisets, each with a remaining time in {1, . . . , 20}, giving

10 × 20 = 200 states. When cooking finishes, it is done with one of the same 10 recipes.
Total = 10 + 200 + 10 = 220.

• Agent hand: The agent may hold (i) nothing, (ii) an empty dish, (iii) a finished soup (all
3 slots filled with a combination of onion, tomato, and fish), or a single raw ingredient
(onion, tomato, or fish). The number of distinct soup types is

(
3+3−1

3

)
=

(
5
3

)
= 10. Hence

the total possibilities are

1 (nothing) + 1 (empty dish) + 10 (soup types) + 3 (single ingredient) = 15.

• Counter items (2 exterior counters): Each counter has 15 options (empty; three ingredi-
ents; empty dish; ten soup types), giving 152 overall.

Multiplying the independent factors above gives:

|S| = 20,160︸ ︷︷ ︸
layout

× 24︸︷︷︸
agent pos/orient

× 2︸︷︷︸
urgency

× 3︸︷︷︸
active recipe

× 220︸︷︷︸
pot state

× 15︸︷︷︸
agent hand

× 152︸︷︷︸
two counters

= 2,155,507,200,000 ≈ 2.16× 1012.

This already conservative count highlights why explicit state-visitation is infeasible for the teacher
model; more complex layouts such as the Ring further enlarge the state space.

Reward Structure. In all Overcooked setups, no action masking is applied. Instead, shaped re-
wards are introduced to facilitate the training process. A shaped reward of 3 is given when the
correct ingredient is added to a pot. An additional reward of 3 is awarded when a dish is picked
up—provided there are no dishes already on the counter and the soup is either cooking or com-
pleted. A reward of 5 is granted when the soup is picked up. Furthermore, a shaped reward of 3

13
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is given upon delivering the soup, regardless of whether it matches the currently active recipe. All
shaped rewards follow a predefined linear decay schedule. In contrast, a sparse reward of 20 is
awarded when the delivered soup matches the active recipe; this reward does not decay over time.

Teacher Training. In all Overcooked setups, teacher policies are trained in the source environ-
ment using standard Proximal Policy Optimization (PPO) with hyperparameters described in the
following section. For each setup and source-target configuration, a specific checkpoint is selected
to serve as the teacher for transfer. The table below lists the selected training step (in environment
steps) corresponding to each teacher checkpoint.

Table 2: Selected teacher checkpoints (in environment steps) for each Overcooked setup and source-
target configuration.

Setup Recipe (2→ 3) Recipe (1→ 3) Recipe + Layout (2→ 2)
Simple Room 19,008,000 9,004,800 12,000,000
Ring Room 2,400,000 10,003,200 18,000,000

Student Training. In all Overcooked setups, student policies are trained in the target environment
using PPO under a fixed transfer horizon. For the teacher trained with energy loss, the min and mout

are set to 12 and 14 respectively. The training is conducted using consistent hyperparameters, as
detailed in the next section. All experiments are repeated with 3 random seeds to ensure stability and
reproducibility. The transfer horizon varies depending on the setup and source-target configuration.
The table below summarizes the number of environment steps used during student training for each
case:

Table 3: Transfer horizons (in millions of environment steps) used for student training in each
Overcooked setup and configuration. Each experiment is run with 3 random seeds.

Setup Recipe (2→ 3) Recipe (1→ 3) Recipe + Layout (2→ 2)
Simple Room 20M 20M 12M
Ring Room 35M 35M 20M

C HYPERPARAMETERS

C.1 GRIDWORLD

All experimental setups in GridWorld are trained using a fixed set of PPO hyperparameters, summa-
rized in Table 4. These settings remain consistent across all teacher and student training runs within
the domain.

C.2 OVERCOOKED-AI

All Overcooked experiments use a shared set of core PPO hyperparameters, listed in Table 5. These
settings are consistent across teacher and student training. However, the learning rate and reward
shaping horizon vary depending on the layout and recipe configuration, summarized in Table 6. We
use the following notation: O = Onion, T = Tomato, F = Fish, OT = Onion + Tomato, TF = Tomato
+ Fish, OTF = Onion + Tomato + Fish.

D MODEL ARCHITECTURE

All MiniGrid experiments share the same model architecture shown in Fig. 8a. Similarly, all Over-
cooked experiments use the architecture in Fig. 8b. Due to layout size differences in Overcooked,
the dense layer input size is set to 182 for Simple layouts and 257 for Ring layouts.
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Table 4: Hyperparameters used for all GridWorld experiments.

Hyperparameter Value
Learning rate 0.0005
Discount factor (γ) 0.9
GAE lambda (λ) 0.8
Policy clip parameter 0.2
Value function clip parameter 10.0
Value loss coefficient 0.5
Entropy coefficient 0.01
Train batch size 256
SGD minibatch size 128
Number of SGD iterations 4
Number of parallel environments 8
Normalize advantage False

Table 5: Shared PPO hyperparameters across all
Overcooked experiments.

Hyperparameter Value
Discount factor (γ) 0.99
GAE lambda (λ) 0.6
KL coeff 0.0
Reward clipping False
Clip parameter 0.2
VF clip parameter 10.0
VF loss coeff 0.5
Entropy coeff 0.1
Train batch size 9600
SGD minibatch size 1600
SGD iterations 8
Parallel envs 24
Normalize advantage False

Table 6: Setup-specific learning rates and re-
ward shaping horizons.

Layout Config LR Horizon

Simple

Recipe (O) 0.001 8M
Recipe (OT) 0.001 15M
Recipe (OTF) 0.001 25M
Recipe + Layout (OT) 0.001 10M
Recipe + Layout(TF) 0.001 10M

Ring

Recipe (O) 0.0006 10M
Recipe (OT) 0.0006 20M
Recipe (OTF) 0.0006 30M
Recipe + Layout (OT) 0.0006 15M
Recipe + Layout (TF) 0.0006 15M

E ENERGY-BASED LOSS

E.1 EFFECT OF MARGIN HYPERPARAMETERS ON SEPARATION

We evaluate whether varying the energy thresholds min and mout affects the teacher’s ability to
distinguish between false and true out-of-distribution (OOD) states. The energy loss used during
training is defined over the energy score ϕ(s) = −E(s) as:

Lenergy = Esin∼Dtrain
in

[
(max (0,min − ϕ(sin)))

2
]
+ Esout∼Dtrain

out

[
(max (0, ϕ(sout)−mout))

2
]
.

Experimental Setup Experiments are conducted in the GridWorld (unlocked-to-locked) environ-
ment. During training, the in-distribution (ID) set consists of the most recent 3,000 frames collected
from the agent’s own trajectory. The out-of-distribution (OOD) set is fixed and sampled from 100
episodes of a random policy in the target environment, where the agent is randomly initialized in any
room at the start of each episode to ensure unbiased state coverage (rather than being constrained
to the upper room). We evaluate six combinations of (min,mout) used in the energy regularization
loss (defined over energy scores ϕ(s) = −E(s)): (10, 15), (5, 10), (15, 20), (10, 10), (15, 15), (12,
14). Each configuration is trained with 3 random seeds using a shared PPO setup and evaluated at
the 800,000-step checkpoint.

Sensitivity Evaluation Protocol. We assess whether the teacher consistently distinguishes be-
tween false OOD states – those similar to ID states and where guidance should be issued – and true
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Figure 8: Actor-Critic architectures used in our experiments. (a) MiniGrid. (b) Overcooked.

OOD states – those clearly out-of-distribution and where guidance should be withheld. Both sets
are drawn from a fixed OOD dataset collected via a random policy in the target environment. For
each (min,mout) configuration, we compute the divergence between the energy score distributions
of false and true OOD states across three training seeds using Jensen-Shannon divergence, total vari-
ation distance, Hellinger distance, and Kullback-Leibler (KL) divergence. To evaluate sensitivity,
we apply one-way ANOVA and Kruskal-Wallis tests to determine whether this separation remains
consistent across different regularization settings. A high p-value indicates that the teacher’s ability
to determine when to issue guidance is robust to the choice of (min,mout).

Metric ANOVA p-value Kruskal–Wallis p-value
Jensen–Shannon 0.1138 0.1592
Kullback–Leibler 0.2457 0.1799
Total Variation 0.1728 0.2322
Hellinger Distance 0.1247 0.1592

Table 7: Statistical test results (p-values) for divergence between False OOD and True OOD energy
distributions across different (min,mout) settings.
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Table 8: Choice of ID states for setting the quantile q. “Post-train” derives q from evaluation rollouts
of the converged teacher (no exploration); “In-train” derives q from exploration-time states during
teacher training. Values are student transfer performance relative to training from scratch (mean ±
95% CI

.

(a) Alternating-Goal Environment

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Post-train −9.8±6.0 21.2±8.8 22.5±9.0 28.9±10.6 33.1±8.0 37.8±6.5 46.9±4.2 37.8±8.7 25.9±12.0 34.7±7.1
In-train 1.9±8.0 36.4±6.9 41.6±4.3 41.2±4.9 46.1±8.2 46.1±4.5 37.3±4.2 40.3±4.7 25.8±7.4 29.2±5.9

(b) UnlockedToLocked Environment

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Post-train 11.2±4.6 21.5±4.5 31.1±1.6 29.2±4.8 31.7±5.2 36.8±4.6 40.0±2.8 38.0±3.3 35.8±5.3 24.3±3.9
In-train 16.8±4.4 27.1±3.8 29.3±3.7 31.2±4.8 28.8±3.1 33.6±3.4 35.3±2.5 35.1±2.7 30.7±7.6 32.9±5.8

Results. As shown in Table 7, we observe no statistically significant variation in the separation
between false and true OOD states across different (min,mout) configurations. The ANOVA and
Kruskal-Wallis tests yield p-values above 0.1 for all four divergence metrics, indicating that the
teacher’s ability to distinguish between states where guidance should or should not be issued is
stable across regularization settings.

E.2 CHOICE OF ID STATES

When available, we set the threshold quantile q from the empirical distribution of in-train states
Dtrain

in collected during teacher on-policy learning (with exploration). When the teacher’s training
distribution is unavailable, we approximate this post-train by rolling out the converged teacher (no
exploration) and computing q from those states. Because exploration noise is negligible at conver-
gence, these rollouts serve as a reliable proxy for the high-density regions of the teacher’s visitation
distribution. We validated both choices by running 100 on-policy evaluation episodes and setting
q from the resulting state samples across 10 seeds in two GridWorld settings. Tables 8a–8b report
student transfer performance (relative to training from scratch) across quantiles.

E.3 EFFECT OF ENERGY REGULARIZATION ON TEACHER CONVERGENCE

We assess whether adding the energy regularizer to the teacher objective harms final performance
or slows learning. Across two GridWorld source tasks and 10 seeds, final returns are unchanged,
while convergence is faster with the energy term.

Table 9: Training steps to convergence (mean over 10 seeds; lower is better).

Teacher Without energy loss With energy loss

Alternating Room 100,000 60,000
Unlocked-to-Locked 260,000 220,000

We conjecture that the acceleration arises because the energy term adds an inductive bias that high-
lights which states are in-distribution (high score) versus out-of-distribution (low score), guiding
updates toward familiar regions of the state space more efficiently.
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