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Abstract

Large multimodal models (LMM) have recently shown encouraging progress
with visual instruction tuning. In this note, we show that the fully-connected
vision-language cross-modal connector in LLaVA is surprisingly powerful and
data-efficient. With simple modifications to LLaVA, namely, using CLIP-ViT-L-
336px with an MLP projection and adding academic-task-oriented VQA data with
simple response formatting prompts, we establish stronger baselines that achieve
state-of-the-art across 11 benchmarks. Our final 13B checkpoint uses merely 1.2M
publicly available data, and finishes full training in ∼1 day on a single 8-A100
node. We hope this can make state-of-the-art LMM research more accessible. Code
and model will be publicly available.
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Figure 1: LLaVA-1.5 achieves SoTA on a broad range of 11 tasks (Top), with high training sample
efficiency (Left) and simple modifications to LLaVA (Right): an MLP connector and including
academic-task-oriented data with response formatting prompts.

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.

https://llava-vl.github.io


1 Introduction

Large multimodal models (LMMs) have become increasingly popular in the research community, as
they are the key building blocks towards general-purpose assistants [21, 34, 1]. Recent studies on
LMMs are converging on a central concept known as visual instruction tuning [27]. The results are
promising, e.g. LLaVA [27] and MiniGPT-4 [46] demonstrate impressive results on natural instruction-
following and visual reasoning capabilities. To better understand the capability of LMMs, multiple
benchmarks [28, 40, 20, 25, 11] have been proposed. Recent works further demonstrate improved
performance by scaling up the pretraining data [9, 2], instruction-following data [42, 43, 19, 9],
visual encoders [2], or langauge models [30], respectively. The LLaVA architecture is also leveraged
in different downstream tasks and domains, including region-level [6, 41] and pixel-level [18]
understanding, biomedical assistants [22], image generation [3], adversarial studies [4, 44].

This note establishes stronger and more feasible baselines built upon the LLaVA framework. We
report that two simple improvements, namely, an MLP cross-modal connector and incorporating
academic task related data such as VQA, are orthogonal to the framework of LLaVA, and when used
with LLaVA, lead to better multimodal understanding capabilities. In contrast to InstructBLIP [9]
or Qwen-VL [2], which trains specially designed visual resamplers on hundreds of millions or
even billions of image-text paired data, LLaVA uses the simplest architecture design for LMMs
and requires only training a simple fully-connected projection layer on merely 600K image-text
pairs. Our final model can finish training in ∼1 day on a single 8-A100 machine and achieves
state-of-the-art results on a wide range of benchmarks. Moreover, unlike Qwen-VL [2] that includes
in-house data in training, LLaVA utilizes only publicly available data. We hope these improved and
easily-reproducible baselines will provide a reference for future research in open-source LMM.

2 Background

Instruction-following LMM. Common architectures include a pre-trained visual backbone to encode
visual features, a pre-trained large language model (LLM) to comprehend the user instructions and
produce responses, and a vision-language cross-modal connector to align the vision encoder outputs
to the language models. As shown in Fig. 1, LLaVA [27] is perhaps the simplest architecture for
LMMs. Optionally, visual resamplers (e.g. Qformer [23]) are used to reduce the number of visual
patches [46, 9, 2]. Training an instruction-following LMM usually follows a two-stage protocol. First,
the vision-language alignment pretraining stage leverages image-text pairs to align the visual features
with the language model’s word embedding space. Earlier works utilize relatively few image-text
pairs (e.g. ∼600K [27] or ∼6M [46]), while some recent works pretrain the vision-language connector
for a specific language model on a large amount of image-text pairs (e.g. 129M [9] and 1.4B [2]), to
maximize the LMM’s performance. Second, the visual instruction tuning stage tunes the model on
visual instructions, to enable the model to follow users’ diverse requests on instructions that involve
the visual contents.

Multimodal instruction-following data. In NLP, studies show that the quality of instruction-
following data largely affects the capability of the resulting instruction-following models [45]. For
visual instruction tuning, LLaVA [27] is the pioneer to leverage text-only GPT-4 to expand the
existing COCO [26] bounding box and caption dataset to a multimodal instruction-following dataset
that contains three types of instruction-following data: conversational-style QA, detailed description,
and complex reasoning. LLaVA’s pipeline has been employed to expand to textual understanding [42],
million-scales [43], and region-level conversations [6]. InstructBLIP [9] incorporates academic-task-
oriented VQA datasets to further enhance the model’s visual capabilities. Conversely, [5] identifies
that such naive data merging can result in the models that tend to overfit to VQA datasets and thus are
inability to participate in natural conversations. The authors further proposes to leverage the LLaVA
pipeline to convert VQA datasets to a conversational style. While this proves effective for training, it
introduces added complexities in data scaling.

3 Improved Baselines of LLaVA

Overview. As the initial work of visual instruction tuning, LLaVA has showcased commendable pro-
ficiency in visual reasoning capabilities, surpassing even more recent models on diverse benchmarks
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Method LLM Res. GQA MME MM-Vet

InstructBLIP 14B 224 49.5 1212.8 25.6

Only using a subset of InstructBLIP training data
0 LLaVA 7B 224 – 502.8 23.8
1 +VQA-v2 7B 224 47.0 1197.0 27.7
2 +Format prompt 7B 224 46.8 1323.8 26.3
3 +MLP VL connector 7B 224 47.3 1355.2 27.8
4 +OKVQA/OCR 7B 224 50.0 1377.6 29.6

Additional scaling
5 +Region-level VQA 7B 224 50.3 1426.5 30.8
6 +Scale up resolution 7B 336 51.4 1450 30.3
7 +GQA 7B 336 62.0∗ 1469.2 30.7
8 +ShareGPT 7B 336 62.0∗ 1510.7 31.1
9 +Scale up LLM 13B 336 63.3∗ 1531.3 36.1

Table 1: Scaling results on ■ data, ■ model, and ■ resolution. We choose to conduct experiments
on GQA [14], MME [11], and MM-Vet [40] to examine the representative capabilities of VQA with
short answers, VQA with output formatting, and natural visual conversations, respectively. ∗Training
images of GQA were observed during training.

Q: What is the color of the shirt 
that the man is wearing? A:

Ambiguous promptResponse formatting prompt

query

answer

Input Image Normal prompt

What is the color of the shirt 
that the man is wearing?

What is the color of the shirt that the 
man is wearing? Answer the question 
using a single word or phrase.

The man is wearing a yellow shirt.The man is wearing a yellow shirt. Yellow.

Figure 2: Comparison of how different prompt regularizes the output format. The results are obtained
zero-shot directly after LLaVA undergoes the first-stage vision-language alignment pretraining,
without any visual instruction tuning.

for real-life visual instruction-following tasks, while only falling short on academic benchmarks that
typically require short-form answers (e.g. single-word). The latter was attributed to the fact that
LLaVA has not been pretrained on large-scale data, as other approaches do. In this note, we first
study the scaling effect of data, models and input image resolution on a selection of three datasets in
Table 1, and then compare the final model against existing LMMs on a diverse set of 12 benchmarks
in Table 2. We show that the LLaVA’s architecture is powerful and data-efficient for visual instruction
tuning, and achieves the best performance using significantly less compute and training data than all
other methods.

Response formatting prompts. We find that the inability [5] to balance between short- and long-form
VQA for approaches like InstructBLIP [9] is mainly due to the following reasons. First, ambiguous
prompts on the response format. For example, Q: {Question} A: {Answer}. Such prompts do not
clearly indicate the desirable output format, and can overfit an LLM behavorially to short-form
answers even for natural visual conversations. Second, not finetuning the LLM. The first issue
is worsened by InstructBLIP only finetuning the Qformer for instruction-tuning. It requires the
Qformer’s visual output tokens to control the length of the LLM’s output to be either long-form or
short-form, as in prefix tuning [24], but Qformer may lack the capability of properly doing so, due to
its limited capacity compared with LLMs like LLaMA. See Fig. 2 for an qualitative example.

To address this, we propose to use a single response formatting prompt that clearly indicates the
output format, to be appended at the end of VQA questions when promoting short answers: Answer
the question using a single word or phrase. We empirically show that when LLM is finetuned with
such prompts, LLaVA is able to properly adjust the output format according to the user’s instructions,
and does not require additional processing of the VQA data using ChatGPT [5], which further
enables scaling to various data sources. As shown in Table 1, by merely including VQAv2 [12] in
training, LLaVA’s performance on MME significantly improves (1323.8 vs 502.8) and outperforms
InstructBLIP by 111 points.

MLP vision-language connector. Inspired by the improved performance in self-supervised learning
by changing from a linear projection to an MLP [7, 8], we find that improving the vision-language
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Method LLM Res. PT IT VQAv2 GQA VW SQAI VQAT POPE MME MMB MMBCN SEED LLaVAW MMVet

BLIP-2 13B 224 129M - 41.0 41 19.6 61 42.5 85.3 1293.8 – – 46.4 38.1 22.4
InstructBLIP 7B 224 129M 1.2M – 49.2 34.5 60.5 50.1 – – 36 23.7 53.4 60.9 26.2
InstructBLIP 13B 224 129M 1.2M – 49.5 33.4 63.1 50.7 78.9 1212.8 – – – 58.2 25.6
IDEFICS-9B 7B 224 353M 1M 50.9 38.4 35.5 – 25.9 – – 48.2 25.2 – – –
IDEFICS-80B 65B 224 353M 1M 60.0 45.2 36.0 – 30.9 – – 54.5 38.1 – – –
Shikra 13B 224 600K 5.5M 77.4∗ – – – – – – 58.8 – – – –
Qwen-VL 7B 448 1.4B† 50M† 78.8∗ 59.3∗ 35.2 67.1 63.8 – – 38.2 7.4 – – –
Qwen-VL-Chat 7B 448 1.4B† 50M† 78.2∗ 57.5∗ 38.9 68.2 61.5 – 1487.5 60.6 56.7 58.2 – –

LLaVA-1.5 7B 336 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 1510.7 64.3 58.3 58.6 65.4 31.1
LLaVA-1.5 13B 336 558K 665K 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 1531.3 67.7 63.6 61.6 72.5 36.1

Table 2: Comparison with SoTA methods on 12 benchmarks. LLaVA achieves the best perfor-
mance on 11/12 benchmarks, and ranks the second on the other. Res, PT, IT indicate input image
resolution, the number of samples in pretraining and instruction tuning stage, respectively. Bench-
mark names are abbreviated due to space limits. VQA-v2 [12]; GQA [14]; VW: VisWiz [13]; SQAI:
ScienceQA-IMG [29]; VQAT: TextVQA [39]; POPE [25]; MME [11]; MMB: MMBench [28];
MMBCN: MMBench-Chinese [28]; SEED: SEED-Bench [20]; LLaVAW: LLaVA-Bench (In-the-
Wild) [27]; MM-Vet [40]. ∗The training images of the datasets are observed during training. †Includes
in-house data that is not publicly available. Qwen-VL uses Qwen, and other methods use Vicuna.

connector’s representation power with a two-layer MLP can improve LLaVA’s multimodal capabilities,
compared with the original linear projection design.

Academic task oriented data. We further include additional academic-task-oriented VQA datasets
for VQA, OCR, and region-level perception, to enhance the model’s capabilities in various ways,
as shown in Table 1. We first include four additional datasets that are used in InstructBLIP: open-
knowledge VQA (OKVQA [32], A-OKVQA [36]) and OCR (OCRVQA [33], TextCaps [38]).
A-OKVQA is converted to multiple choice questions and a specific response formatting prompt
is used: Answer with the option’s letter from the given choices directly. With only a subset of the
datasets InstructBLIP uses, LLaVA already surpasses it on all three tasks in Table 1, suggesting
LLaVA’s effective design. Furthermore, we find further adding region-level VQA datasets (Visual
Genome [17], RefCOCO [16, 31]) improves the model’s capability of localizing fine-grained visual
details.

Additional scaling. We further scale up the input image resolution to allows LLM to clearly “see”
the details of images, and add the GQA dataset as an additional visual knowledge source. We
also incorporate ShareGPT [37] data and scale up the LLM to 13B as in [2, 30, 6]. Results on
MM-Vet shows the most significant improvement when scaling the LLM to 13B, suggesting the
importance of the base LLM’s capability for visual conversations. We denote the final model with
all the modifications as LLaVA-1.5 (the last two rows in Table 1), which achieves an impressive
performance that significantly outperforms the original LLaVA [27].

4 Discussion

Comparison with SoTA. We benchmark LLaVA-1.5 on a wide range of academic VQA benchmarks
and recent benchmarks specifically proposed for instruction-following LMMs, totalling 12 bench-
marks. We show that it achieves the best performance across 11 out of 12 benchmarks, despite using
magnitudes smaller pretraining and instruction tuning data compared with other methods [9, 2]. It is
encouraging that LLaVA-1.5 achieves the best performance with the simplest architecture, academic
compute and public datasets, and yields a fully-reproducible and affordable baseline for future
research. The results also suggest that visual instruction tuning plays a more important role in
improving an LMM’s capabilities than pretraining, and raises questions upon the common belief that
LMMs require significant amount of vision-language alignment pretraining [9, 23, 2], despite that
the vision encoders (e.g. CLIP [35], OpenCLIP [15], EVA-CLIP [10], etc.) are already pretrained on
web-scale image-text paired dataset. This also makes us rethink the benefits of the vision samplers and
the necessity of the additional large-scale pretraining, in terms of multimodal instruction-following
capabilities.
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Visual input example, Tricky Question:

User If there are factual errors in the questions, point it out; if not, proceed answering the question.
What’s happening in the desert?

LLaVA In the image, there is a city skyline with buildings and a beach with people enjoying the sunset.
The scene is set in a desert, which is unusual for a beach setting.

LLaVA-1.5 There are no deserts in the image. The image features a beach with palm trees, a city skyline, and
a large body of water.

Table 3: LLaVA-1.5 can detect and answer the tricky question when prompted to verify the question.

Visual input example, Constrained JSON Output:

User Please read the text in this image and return the information in the following JSON format
(note xxx is placeholder, if the information is not available in the image, put "N/A" instead).
{"class": xxx, "DLN": xxx, "DOB": xxx, "Name": xxx, "Address": xxx, "EXP": xxx, "ISS":
xxx, "SEX": xxx, "HGT": xxx, "WGT": xxx, "EYES": xxx, "HAIR": xxx, "DONOR": xxx}

GPT-4V {"class": "C", "DLN": "1234568", "DOB": "08/31/1977", "Name": "Ima Cardholder", "Ad-
dress": "2570 24th Street, Anytown, CA 95818", "EXP": "08/31/2014", "ISS": "08/31/2011",
"SEX": "F", "HGT": "5-05", "WGT": "125 lbs", "EYES": "BRN", "HAIR": "BRN",
"DONOR": "VETERAN"}

LLaVA {"class": "Driver License", "DLN": "CA123 456 789", "DOB": "01/01/1990", "Name":
"Amy", "Address": "Anytown, CA", "EXP": "08/31/2023", "ISS": "Veteran", "SEX":
“F", "HGT": "5’5", "WGT": "130", "EYES": "Brown", "HAIR": "Brown", "DONOR":
"Unknown"}

LLaVA-1.5 {"class": "C", "DLN": "1132456789", "DOB": "08/23/1971", "Name": "Ima Cardholder",
"Address": "Anytown, State, Zip", "EXP": "08/23/2014", "ISS": "California", "SEX": "F",
"HGT": "5’5", "WGT": "123", "EYES": "Brown", "HAIR": "Brown", "DONOR": "N/A"}

Table 4: LLaVA-1.5 can extract information from the image and respond to the user’s request
following the required format, despite a few errors compared with GPT-4V.

Computational cost. For LLaVA-1.5, we use the same pretraining dataset of LCS-558K1, and keep
the training iterations and batch size roughly the same for instruction tuning as LLaVA [27]. Due to
the increased image input resolution to 336px, the training of LLaVA-1.5 is ∼2× as long as LLaVA:
∼6 hours of pretraining and ∼20 hours of visual instruction tuning, using 8× A100s.

Zero-shot format instruction generalization. Although LLaVA-1.5 is only instruction-tuned with
two format instructions: short answer and multiple-choice, it generalizes to other format instructions.
First, VizWiz [13] requires the model to output “Unanswerable” when the provided content is

1LCS-558K: a subset of ∼558K image-text pairs from LAION-CC-SBU with BLIP captions, as used in
LLaVA-Lightning series.
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insufficient to answer the question, and our response format prompt (Table 6) effectively instructs the
model to do so (11.1% → 67.8% on unanswerable questions). We additionally present qualitative
examples on instructing LLaVA-1.5 to verify the tricky questions (Fig. 3) and respond in a constrained
JSON format (Fig. 4).

Zero-shot multilingual capability. Though LLaVA-1.5 is not finetuned for multilingual multimodal
instruction following at all, we find that it is capable of following multilingual instructions, partly due
to the multilingual language instructions in ShareGPT [37]. We quantitatively evaluate the model’s
generalization capability to Chinese on MMBench-CN [28], where the questions of MMBench are
converted to Chinese. Notably, LLaVA-1.5 outperforms Qwen-VL-Chat by 7.3% (63.6% vs 56.7%),
despite Qwen-VL-Chat being finetuned on Chinese multimodal instructions while LLaVA-1.5 is not.

Limitations. Despite the promising results demonstrated by LLaVA-1.5, several limitations must be
acknowledged. First, LLaVA utilizes full image patches, potentially prolonging each training iteration.
While visual resamplers [23, 9, 2] reduce the number of visual patches in LLMs, they currently cannot
achieve convergence as efficiently as LLaVA with a comparable amount of training data, due to more
trainable parameters in the resamplers. The development of a sample-efficient visual resampler could
pave the way for future scaling-up of instruction-following multimodal models. Second, LLaVA-1.5
is not yet capable of processing multiple images due to the lack of such instruction-following data, and
the limit of the context length. Third, although LLaVA-1.5 exhibits proficiency in following complex
instructions, its problem-solving capabilities can still be limited in certain domains, which could
be improved with a more capable language model and with high-quality, targeted visual instruction
tuning data. Finally, despite its significantly reduced propensity for hallucination, LLaVA is not
exempt from producing hallucinations and occasionally disseminating misinformation, and should be
used with caution in critical applications (e.g. medical).

Data Size Response formatting prompts

LLaVA [27] 158K –
ShareGPT [37] 40K –

VQAv2 [12] 83K Answer the question using a single word or phrase.
GQA [14] 72K
OKVQA [32] 9K
OCRVQA [33] 80K

A-OKVQA [36] 50K Answer with the option’s letter from the given choices directly.

TextCaps [38] 22K Provide a one-sentence caption for the provided image.

RefCOCO [16, 31] 30K Randomly choose between the two formats
Provide a short description for this region.

VG [17] 86K Provide the bounding box coordinate of the region this sentence describes.

Total 665K

Table 5: Instruction-following Data Mixture of LLaVA-1.5.

Data Response formatting prompts

LLaVA-Bench, MM-Vet –

VQAv2, GQA, TextVQA,
MME, POPE

Answer the question using a sin-
gle word or phrase.

ScienceQA, MMBench,
SEED-Bench

Answer with the option’s letter
from the given choices directly.

VizWiz When the provided information is
insufficient, respond with ‘Unan-
swerable’. Answer the question
using a single word or phrase.

Table 6: Format Prompt for evaluation.

Hyperparameter Pretrain Finetune

batch size 256 128
lr 1e-3 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 2 3

Table 7: Hyperparameters of LLaVA-1.5
are the same as the original LLaVA, except
we halve the learning rate in pretraining as we
use MLP instead of linear projection layer.
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