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Abstract

In this work we undertake a thorough study of the non-asymptotic properties of the vanilla
generative adversarial networks (GANs). We prove an oracle inequality for the Jensen-
Shannon (JS) divergence between the underlying density p∗ and the GAN estimate with a
significantly better statistical error term compared to the previously known results. The
advantage of our bound becomes clear in application to nonparametric density estimation.
We show that the JS-divergence between the GAN estimate and p∗ decays as fast as
(log n/n)2β/(2β+d), where n is the sample size and β determines the smoothness of p∗. This
rate of convergence coincides (up to logarithmic factors) with minimax optimal for the
considered class of densities.

Keywords: generative model, oracle inequality, Jensen-Shannon risk, minimax rates,
nonparametric density estimation.

1. Introduction

Let X1, . . . , Xn be i.i.d. random elements with values in X ⊆ Rd drawn from a distribution
P ∗. We assume that P ∗ admits a density p∗ with respect to a dominating measure µ. The
measure µ is not necessarily absolutely continuous with respect to the Lebesgue measure,
it can be the counting measure or the Hausdorff measure on a low-dimensional manifold
as well. Our goal is to estimate p∗ based on a finite sample. The problem of density
estimation was extensively studied in the literature and encounters numerous approaches
such as kernel (see, e.g., (Tsybakov, 2008, Section 1.2) and (McDonald, 2017)) and k-
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nearest neighbors density estimators (Dasgupta and Kpotufe, 2014), wavelet thresholding
(Donoho et al., 1996), and aggregation (Rakhlin et al., 2005; Rigollet and Tsybakov, 2006;
Bunea et al., 2007; Butucea et al., 2017; Dalalyan and Sebbar, 2018). Recently, Goodfellow
et al. (2014) have introduced a novel approach for a related problem of generative modeling
called generative adversarial networks (or simply GANs). A generative adversarial network
consists of a generator and a discriminator. Given a known easy-to-sample distribution on
a latent space Y with a density φ, the generator g : Y → X takes i.i.d. samples Y1, . . . , Yn
from φ and produces fake ones g(Y1), . . . , g(Yn). The goal of the discriminator D is to
distinguish between the real samples X1, . . . , Xn and g(Y1), . . . , g(Yn). Usually, D can be
thought of as a map X 7→ (0, 1), where larger values correspond to higher confidence that
an input variable is drawn from p∗. In practice, both generator and discriminator usually
belong to some parametric families (for example, to classes of neural networks). Let us fix
positive integers dG and dD and some compact sets W ⊂ RdG and Θ ⊂ RdD . In our paper
we assume that

g ∈ G = {gw : w ∈W} and D ∈ D = {Dθ : θ ∈ Θ}.

As a byproduct of the described generative approach, GANs also provide an implicit density
estimate for p∗. Indeed, if a statistician manages to find a good generator gw, then the
density of gw(Y ) is a reasonable estimate of p∗. In (Goodfellow et al., 2014), the authors
suggested to solve the following minimax problem, also called vanilla GAN :

min
w∈W

max
θ∈Θ

{
L(w, θ) :=

1

2
EX∼p∗ logDθ(X) +

1

2
EY∼φ log

(
1−Dθ(gw(Y ))

)}
. (1.1)

Here and further in the paper, log stands for the natural logarithm. The intuition behind
(1.1) is that if D contained all measurable functions on X with values in (0, 1), the minimax
problem (1.1) would reduce to (see (Goodfellow et al., 2014, Theorem 1))

min
w∈W

[
JS(pw, p

∗)− log 2
]
, (1.2)

where JS is the Jensen-Shannon divergence (see (2.1) for the definition), and pw is the
density of gw(Y ) with Y ∼ φ. Unfortunately, since D is a parametric class (and, hence, it
cannot contain all the measurable functions), the actual value of maxθ∈Θ L(w, θ) differs from
(JS(pw, p

∗)− log 2). Fortunately, the gap between maxθ∈Θ L(w, θ) and (JS(pw, p
∗)− log 2)

may be rather small for a proper class of discriminators. Since the true distribution p∗ in
(1.1) is unknown, we consider a plug-in estimate pŵ, where ŵ is a solution of the optimization
problem

ŵ ∈ argmin
w∈W

max
θ∈Θ

Ln(w, θ), (1.3)

and

Ln(w, θ) =
1

2n

n∑
i=1

logDθ(Xi) +
1

2n

n∑
j=1

log
(

1−Dθ

(
gw(Yj)

))
(1.4)

is the empirical version of the functional L(w, θ) defined in (1.1).
GANs provide a flexible tool for sampling from an unknown distribution, and they have

recently become extremely popular among practitioners. Using deep neural network classes
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G and D, one can reach the state-of-the-art generative performance in many challenging
tasks, including image super-resolution (Ledig et al., 2017), video synthesis (Kim et al.,
2018), and many others. Various GAN formulations were later proposed by varying the
divergence measure in (1.2). For instance, f-GAN (Nowozin et al., 2016) generalized vanilla
GAN by minimizing a general f-divergence; Wasserstein GAN (WGAN) (Arjovsky et al.,
2017) considered the first-order Wasserstein (Kantorovich) distance (W1 distance); MMD-
GAN (Dziugaite et al., 2015) was based on the maximum mean discrepancy; energy-based
GAN (Zhao et al., 2016) minimizes the total variation distance as discussed in (Arjovsky
et al., 2017); Quadratic GAN (Feizi et al., 2020) aimed to find the distribution minimizing
the second-order Wasserstein (Kantorovich) distance.

The empirical success of GANs motivated many researchers to analyze their theoretical
properties. For example, in (Biau et al., 2021; Schreuder et al., 2021), the authors carried out
theoretical analysis of WGANs. In (Biau et al., 2021), the authors obtained upper bounds
for the excess risk of GANs for parametric classes (including the class of neural networks).
In contrast to Biau et al. (2021), Schreuder et al. (2021) considered generative models based
on β times differentiable transformations of the d-dimensional unit hypercube and derived
rates of convergence of order O

(
n−β/d ∨ n−1/2

)
for the corresponding W1 distance. Liang

(2021) used results from the empirical process theory to prove upper bounds for Sobolev
GANs (i.e., when generators and discriminators belong to Sobolev classes Wα and Wβ,
respectively), MMD GANs, WGANs, and vanilla GANs. In the case of Sobolev GANs,
the obtained rate n−(α+β)/(2β+d) ∨ n−1/2 for the corresponding integral probability metric
(IPM) is shown to be minimax optimal. The research of Liang (2021) was continued in
the works of Singh and Póczos (2018); Uppal et al. (2019); Luise et al. (2020); Chen et al.
(2022); Vardanyan et al. (2023) where the authors studied the performance of GANs in
terms of different IPM losses and the Sinkhorn divergence. The vanilla GANs were studied
in (Liang, 2021; Biau et al., 2020; Asatryan et al., 2023). However, the rates of convergence
for them in terms of Jensen-Shannon divergence are not yet fully understood. Biau et al.
(2020) and Asatryan et al. (2023) improved approximation terms as compared to Liang
(2021), but it is not clear whether the rates obtained in (Biau et al., 2020; Asatryan et al.,
2023) are minimax optimal. In this work, we provide a refined analysis of the theoretical
properties of vanilla GANs and derive minimax optimal rates.

Contributions. Our contributions can be summarized as follows.

• We prove (Theorem 1) a sharp oracle inequality for the case when the classes G and
D are general parametric classes, which significantly improves the existing inequalities
from the works of Biau et al. (2020) and Asatryan et al. (2023).

• We apply the result of Theorem 1 to a nonparametric density estimation problem. Choos-
ing G and D as classes of neural networks of appropriate architectures with ReQU activa-
tion functions, we derive the rates of convergence for the estimate pŵ to the true density
p∗ in terms of the Jensen-Shannon divergence. Namely, we show that, with probability
at least 1− δ, it holds that

JS(pŵ, p
∗) .

(
log n

n

) 2β
2β+d

+
log(1/δ)

n
, (Theorem 2)
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provided that the actual density p∗ is the density of a random variable g∗(Y ) with Y
being uniformly distributed on [0, 1]d, for a smooth invertible transform g∗ not necessary
belonging to G. We also discuss that previously known bounds do not yield this rate of
convergence.

• We show that the result of Theorem 2 is minimax optimal up to a logarithmic factor.
Namely, we prove that for any estimate p̂, it holds that

sup
p∗

E JS(p̂, p∗) & n
− 2β

2β+d , (Theorem 3)

where the supremum is taken with respect to the densities p∗ satisfying the same regu-
larity assumptions as in Theorem 2. Hence, our results imply the minimax optimality of
GANs (up to logarithmic factors) in the context of nonparametric density estimation.

2. Preliminaries and notations

Kullback-Leibler and Jensen-Shannon divergences. Let Ω ⊂ Rd be a bounded
domain. For two probability measures on a measurable space (Ω,B(Ω)) with Lebesgue
densities p and q, respectively, we define the Kullback-Leibler divergence between them as

KL(p, q) =

{∫
p(x) log

(
p(x)/q(x)

)
dµ, if p� q,

+∞, otherwise.

Here and further in this paper, log stands for the natural logarithm. By JS(p, q), we denote
the Jensen-Shannon divergence

JS(p, q) =
1

2
KL

(
p,

p + q

2

)
+

1

2
KL

(
q,

p + q

2

)
. (2.1)

Norms. For a matrix A and a vector v, we denote by ‖A‖∞ and ‖v‖∞ the maximal
absolute value of entries of A and v, respectively. ‖A‖0 and ‖v‖0 shall stand for the number
of non-zero entries of A and v, respectively. Finally, the Frobenius norm and operator norm
of A are denoted by ‖A‖F and ‖A‖, respectively, and the Euclidean norm of v is denoted
by ‖v‖. For x ∈ Rd and r > 0 we write B(x, r) = {y ∈ Rd, ‖y − x‖ 6 r}. For a function
f : Ω→ Rd, we set

‖f‖L∞(Ω) = sup
x∈Ω
‖f(x)‖,

‖f‖L2(Ω) =

{∫
Ω
‖f(x)‖2 dµ

}1/2

,

and

‖f‖L2(p,Ω) =

∫
Ω

‖f(x)‖2 p(x) dµ

1/2

.

Sometimes, we omit the domain Ω in the notations L∞(Ω), L2(Ω), L2(p,Ω) and simply
write L∞, L2, and L2(p), respectively, if there is no ambiguity.
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Smoothness classes. For any s ∈ N, the function space Cs(Ω) consists of those functions
over the domain Ω which have partial derivatives up to order s in Ω, and these derivatives
are bounded and continuous in Ω. Formally,

Cs(Ω) =
{
f : Ω→ Rm : ‖f‖Cs := max

|γ|6s
‖Dγf‖L∞(Ω) <∞

}
,

where, for any multi-index γ = (γ1, . . . , γd) ∈ Nd0, the partial differential operator Dγ is
defined as

Dγfi =
∂|γ|fi

∂xγ11 · · · ∂x
γd
d

, i ∈ {1, . . . ,m} , and ‖Dγf‖L∞(Ω) = max
16i6m

‖Dγfi‖L∞(Ω) .

Here we have written |γ| =
∑d

i=1 γi for the order of Dγ . To avoid confusion between multi-
indices and scalars, we reserve the bold font for the former ones. For the matrix of first
derivatives, we use the usual notation ∇f = (∂fi/∂xj) i = 1, . . . ,m, j = 1, . . . , d. For a
function ϕ : Rd 7→ R, ϕ ∈ C2(Ω), we write ∇2ϕ(x) ∈ Rd×d for its Hessian at point x. For a
function f : Ω→ Rm and any positive number 0 < δ 6 1, the Hölder constant of order δ is
given by

[f ]δ := max
i∈{1,...,m}

sup
x 6=y∈Ω

|fi(x)− fi(y)|
min{1, ‖x− y‖}δ

. (2.2)

Now, for any α > 0, we set s = bαc and define the Hölder ball Hα(Ω, H) as

Hα(Ω, H) =
{
f ∈ Cs(Ω) : ‖f‖Hα := max{‖f‖Cs , max

|γ|=s
[Dγf ]δ} 6 H

}
.

Note that if f ∈ H1+β(Ω, H) for some β > 0, then, for any i ∈ {1, . . . ,m}, j ∈ {1, . . . , d},
it holds that∣∣∣∣∂fi(x)

∂xj
− ∂fi(y)

∂xj

∣∣∣∣ 6 ‖f‖H1+β · ‖x− y‖1∧β 6 H · ‖x− y‖1∧β for all x, y ∈ Ω,

since ‖f‖Hβ1 6 ‖f‖Hβ2 for any β2 > β1. We will also write f ∈ Hα(Ω) if f ∈ Hα(Ω, H) for
some H <∞. We also introduce a class of Λ-regular functions HαΛ(Ω, H), Λ > 1:

HαΛ(Ω, H) =
{
f ∈ Hα(Ω, H) : Λ−2Id×d � ∇f(x)>∇f(x) � Λ2Id×d for all x ∈ Ω

}
, (2.3)

where for symmetric matrices A,B ∈ Rd×d we write A � B if u>(B − A)u > 0 for any
u ∈ Rd.

Neural networks. To give a formal definition of a neural network, we first fix an activa-
tion function σ : R→ R. For a vector v = (v1, . . . , vp) ∈ Rp, we define the shifted activation
function σv : Rp → Rp as

σv(x) =
(
σ(x1 − v1), . . . , σ(xp − vp)

)
, x = (x1, . . . , xp) ∈ Rp.

Given a positive integer N and a vector A = (p0, p1, . . . , pN+1) ∈ NN+2, a neural network
of depth N + 1 (with N hidden layers) and architecture A is a function of the form

f : Rp0 → RpN+1 , f(x) = WN ◦ σvN ◦WN−1 ◦ σvN−1 ◦ · · · ◦W1 ◦ σv1 ◦W0 ◦ x, (2.4)
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where Wi ∈ Rpi+1×pi are weight matrices and vi ∈ Rpi are shift vectors. The numbers
p, p0, . . . , pN+1 should not be confused with the density p(x) nor with p∗(x), which are
always displayed in serif. Next, we introduce a special subclass class of neural networks of
depth N + 1 with architecture A:

NN(N,A) =

{
f of the form (2.4) : ‖W0‖∞ ∨ max

16`6N
{‖W`‖∞ ∨ ‖v`‖∞} 6 1

}
.

The maximum number of neurons in one layer ‖A‖∞ is called the width of the neural
network. Similarly to (Schmidt-Hieber, 2020), we consider sparse neural networks assuming
that only a few weights are not equal to zero. For this purpose, we introduce a class of
neural networks of depth N + 1 with architecture A and at most s non-zero weights:

NN(N,A, s) =

{
f ∈ NN(N,A) : ‖W0‖0 +

N∑
`=1

(‖W`‖0 + ‖v`‖0) 6 s

}
.

3. Theoretical properties of vanilla GANs: a general oracle inequality

We begin with a sharp oracle inequality for general parametric classes of generators G and
discriminators D. Following (Biau et al., 2020), we impose the next regularity assumptions
on generators and discriminators.

Assumption AG. For all g ∈ G, the image of the latent space Y is a subset of X, that is,
g(Y) ⊆ X. Moreover, for all y ∈ Y, the map w 7→ gw(y) is Lipschitz on the parameter space
W with a constant LG . That is, for any y ∈ Y and any u, v ∈W, it holds that

‖gu(y)− gv(y)‖ 6 LG‖u− v‖∞.

Assumption AD. The maps x 7→ Dθ(x) and θ 7→ Dθ(x) are Lipschitz on the ambient space
X and on the parameter set Θ with constants LX and LΘ, respectively. More precisely, for
any x, x1, x2 ∈ X and any θ, θ1, θ2 ∈ Θ, the following inequalities hold:

|Dθ(x1)−Dθ(x2)| 6 LX‖x1 − x2‖ and |Dθ1(x)−Dθ2(x)| 6 LΘ‖θ1 − θ2‖∞.

Moreover, there exist constants 0 < Dmin 6 Dmax < 1 such that

Dθ(x) ∈ [Dmin, Dmax] for all x ∈ X and θ ∈ Θ.

We would like to note that the requirement that all functions from D are bounded away
from 0 and 1 is needed for the logDθ and log(1−Dθ) to be well defined. Similar conditions
appear in the literature for aggregation with the Kullback-Leibler loss (for instance, in
(Polzehl and Spokoiny, 2006; Belomestny and Spokoiny, 2007; Rigollet, 2012; Butucea et al.,
2017)). Finally, similarly to (Biau et al., 2020), we require the densities of fake random
elements pw(x), w ∈W to fulfil the following property.

Assumption Ap. For all x ∈ X, the map w 7→ pw(x) is Lipschitz on W with a constant Lp.
That is, for any x ∈ X and any u, v ∈W, we have

|pu(x)− pv(x)| 6 Lp‖u− v‖∞.
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Under Assumptions AG, AD, and Ap, we establish the following oracle inequality for
the GAN estimate (1.3).

Theorem 1. Assume AG, AD, and Ap. Let W ⊆ [−1, 1]dG and Θ ⊆ [−1, 1]dD . Then, for
any δ ∈ (0, 1), with probability at least 1− δ, it holds that

JS(pŵ, p
∗)−∆G −∆D .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
(3.1)

where
∆G = min

w∈W
JS(pw, p

∗), ∆D = max
w∈W

min
θ∈Θ

[JS(pw, p
∗)− log 2− L(w, θ)],

and

C3.2 =

(
log(1/Dmin)

D2
min

+
log
(
1/(1−Dmax

)
(1−Dmax)2

)
. (3.2)

Here . stands for inequality up to an absolute multiplicative constant.

Remark 1. Let us recall that we assumed the number of fake samples m equal to the sample
size n. In general, if m 6= n, n should be replaced by (m ∧ n) in (3.1). This does not affect
the bound much, because usually m > n.

Theoretical properties of vanilla GANs were studied in the works of Liang (2021); Biau
et al. (2020); Asatryan et al. (2023). The results of Asatryan et al. (2023) mainly concern
the case of highly smooth generators, so we postpone a comparison with their rates of
convergence, and we will return to it after Theorem 2. To our knowledge, the first upper
bound on the Jensen-Shannon divergence between the true density p∗ and the vanilla GAN
estimate pŵ was obtained in (Liang, 2021, Theorem 13). In (Biau et al., 2020), the authors
significantly improved the approximation terms in the oracle inequality of (Liang, 2021,
Theorem 13). The closest result to our Theorem 1 in the literature is (Biau et al., 2020,
Theorem 4.1), so let us focus on the comparison of these two results. First, in (Biau et al.,
2020) the authors assumed that the true density p∗ is bounded away from 0 and +∞ on its
support and that pw is uniformly bounded over all w ∈W, while we avoid such requirements
in our analysis. Second, the oracle inequality for the JS risk of the vanilla GAN estimate,
established in (Biau et al., 2020) under similar assumptions is weaker than the bound from
Theorem 1. The authors of the work (Biau et al., 2020) proved that

E JS(pŵ, p
∗)−∆G −∆D .

√
dG + dD

n
. (3.3)

One can also use McDiarmid’s inequality (see, e.g. (Boucheron et al., 2004, Corollary 4))
to transform the in-expectation guarantee (3.3) into a large deviation bound on JS(pŵ, p

∗)
of the form

JS(pŵ, p
∗)−∆G −∆D .

√
dG + dD

n
+

√
log(1/δ)

n
, (3.4)

which holds with probability at least 1− δ. If the classes G, D cannot approximate g∗ and
the respective optimal discriminator with high accuracy, then ∆G and ∆D are of order 1.
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In this case, our rates show no improvements over (Biau et al., 2020). However, in practice
one uses rather expressive classes of deep neural networks for G and D, and the bound (3.1)
can be significantly better than (3.4). In Section 4, we give an example parametric families
G,D such that ∆G and ∆D tend to 0 polynomially fast as n goes to ∞. Finally, in contrast
to (Biau et al., 2020), we specify the dependence of the rate on the constants LG and LΘ,
which may be large, especially in the case of wide and deep networks.

To get further insights of the result of Theorem 1, let us elaborate on the properties of
∆D. The next lemma shows that ∆D exhibits quadratic behaviour and its upper bound is
closely related to approximation properties of the class of discriminators considered.

Lemma 1. Under Assumption (AD), for any w ∈W and any θ ∈ Θ, it holds that

JS(pw, p
∗)− log 2− L(w, θ) >

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L2(p∗+pw)

and

JS(pw, p
∗)− log 2−L(w, θ) 6

C2
3.6

(C3.6 − 1)2Dmin(1−Dmax)

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L2(p∗+pw)

, (3.5)

where

C3.6 = 1 +

√
Dmin

(1−Dmin) log(1/(1−Dmax)
∧ 1−Dmax

Dmax log(1/Dmin)
. (3.6)

The proof of Lemma 1 is deferred to Appendix C.1. Lemma 1 plays a key role in
derivation of faster rates of convergence. It shows that, for each w ∈ W, L(w, θ) enjoys
a similar curvature as the squared loss. This fact remained unnoticed in the literature.
Though it is well known that JS(pw, p

∗) has a quadratic behaviour with respect to pw
(see, for instance, our Lemma 7 below), this fact alone is not enough to derive the uniform
Bernstein-type inequality (3.1). Only the combination of Lemma 1 and Lemma 7 leads us to
a new, significantly better result. In particular, if for any w ∈W there exists θ(w) ∈ Θ such
that ‖Dθ(w) − p∗/(p∗ + pw)‖L2(p∗+pw) 6 ε, then ∆D . ε2. Hence, in this case, Theorem 1
and the Cauchy-Schwarz inequality immediately yield that

JS(pŵ, p
∗)−∆G . ε2 +

dG + dD + log(1/δ)

n

with probability at least 1 − δ. In (Biau et al., 2020), the authors could not exploit the
quadratic behaviour of (JS(pw, p

∗)− log 2− L(w, θ)) properly, and they only proved that

JS(pŵ, p
∗)−∆G . ε2 +

√
dG + dD

n
+

√
log(1/δ)

n

under more restrictive assumptions. Finally, we would like to note that, in contrary to the
remark in (Singh et al., 2018, Section 10.1), the oracle inequality in Theorem 1 does not
require the density p∗ to be bounded away from zero.

8



Rates of convergence for density estimation with GANs

4. Example: deep nonparametric density estimation

The goal of this section is to show that GAN estimates achieve minimax rates of convergence
in the problem of nonparametric density estimation. From now on, we assume that X =
Y = [0, 1]d, µ is the Lebesgue measure in Rd, and the generators gw ∈ G are non-degenerate
maps, so the density of the fake samples with respect to µ is defined correctly. In this setup,
if a latent random element Y is drawn according to the density φ supported on [0, 1]d, then
the corresponding density of gw(Y ) is given by

pw(x) = |det[∇gw(g−1
w (x))]|−1φ(g−1

w (x)), x ∈ [0, 1]d. (4.1)

For the ease of exposition, we assume that Y is distributed uniformly on [0, 1]d, so that
(4.1) simplifies to

pw(x) = |det[∇gw(g−1
w (x))]|−1, x ∈ [0, 1]d. (4.2)

We also impose a structural assumption on the underlying density p∗, assuming that it is
the density of a random element g∗(Y ) where g∗ : [0, 1]d → [0, 1]d is a smooth regular map
and, as before, Y has a uniform distribution on [0, 1]d.

Assumption Ap∗. There exist constants β > 2, H∗ > 0, and Λ > 1 such that p∗ is of the
form

p∗(x) = |det[∇g∗((g∗)−1(x))]|−1, x ∈ [0, 1]d,

with g∗ ∈ H1+β
Λ ([0, 1]d, H∗).

In fact, Assumption Ap∗ is not very restrictive and allows for a quite large class of
densities. The celebrated Brenier’s theorem (Brenier, 1991) implies that, for any density p
with a finite second moment, there exists a convex almost everywhere differentiable function
ϕ such that ∇ϕ(Y ) ∼ p where Y ∼ U([0, 1]d). The Caffarelli’s regularity theory (Caffarelli,
1991, 1992a,b, 1996) extends the Brenier’s result in the following way. If p is bounded away
from zero and infinity, Ω = supp(p) is convex, and p is in Cβ(Int(Ω)), then the potential ϕ
is in Cβ+2.

Remark 2. Lemma 8 yields that p∗ is bounded away from zero and infinity in the considered
model. This is a so-called strong density assumption (see, e.g., (Audibert and Tsybakov,
2007, Definition 2.2)), widely used in statistics.

When applying GANs to the problem of nonparametric density estimation, we shall take
G and D to be classes of neural networks with ReQU (rectified quadratic unit) activation
functions:

σReQU(x) = (x ∨ 0)2.

While rectified linear unit (ReLU), defined as

σReLU(x) = x ∨ 0,

is the most common choice for the activation functions in neural networks, it is not suitable
for our purposes. The reason is that we want to use neural networks as generators. The
density of the fake random elements gw(Y1), . . . , gw(Yn) is given by (4.2) and, to enforce dif-
ferentiability, we use the ReQU activation function. Besides, a recent result of (Belomestny
et al., 2023) on approximation properties of neural networks with ReQU activations can be

9



Puchkin, Samsonov, Belomestny, Moulines, Naumov

used to bound ∆G and ∆D from Theorem 1. Since the activation function is fixed, we will
write σ(x), instead of σReQU(x). In this section, we impose the following assumptions on
the classes of generators and discriminators.

Assumption AG’. Fix NG , dG ∈ N, and an architecture AG ∈ NNG+2 with the first and the
last component equal to d. There are constants HG > 0 and ΛG > 1 such that

G = G(ΛG , HG , NG ,AG , dG) = H2
ΛG ([0, 1]d, HG) ∩ NN(NG ,AG , dG).

Besides, gw([0, 1]d) ⊆ [0, 1]d for all gw ∈ G.

Assumption AD’. Fix ND, dD ∈ N, and an architecture AD ∈ NND+2 with the first and
the last components equal to d and 1, respectively. There are constants HD > 0 and
0 < Dmin 6 Dmax < 1 such that

D = D(Dmin, Dmax, HD, ND,AD, dD) = H1([0, 1]d, HD) ∩ NN(ND,AD, dD),

and each D ∈ D satisfies

D(x) ∈ [Dmin, Dmax] ⊂ [0, 1] for all x ∈ [0, 1]d.

According to Assumption AG’ and the definition of the class NN(NG ,AG , dG), the gen-
erators are parametrized by vectors with at most dG components taking values in [−1, 1].
Hence, in the context of Section 4, we have W = [−1, 1]dG . Similarly, we take Θ = [−1, 1]dD .
Before applying Theorem 1 to the case of parametric families of neural networks, we first
check that the conditions of Theorem 1 are fulfilled.

4.1 Towards the rates of convergence: verifying the conditions of Theorem 1

Let us start with Assumptions AG and AD. To this end we show that the maps w 7→ gw(y)
and θ 7→ Dθ(x) are Lipschitz on [−1, 1]dG and [−1, 1]dD , respectively.

Lemma 2. Let N ∈ N and fix an architecture A = (p0, p1, . . . , pN+1) ∈ NN+2. Let the

matrices W
(1)
i ,W

(2)
i ∈ [−1, 1]pi+1×pi, 0 6 i 6 N , and the vectors v

(1)
i , v

(2)
i ∈ [−1, 1]pi,

1 6 i 6 N , be such that∥∥∥W (1)
i −W (2)

i

∥∥∥
∞

6 ε for all i ∈ {0, . . . , L}

and ∥∥∥v(1)
i − v

(2)
i

∥∥∥
∞

6 ε for all i ∈ {1, . . . , L}.

Then the neural networks

f (1)(x) = W
(1)
N ◦ σ

v
(1)
N

◦W (1)
N−1 ◦ σv(1)N−1

◦ · · · ◦ σ
v
(1)
1

◦W (1)
0 ◦ x,

f (2)(x) = W
(2)
N ◦ σ

v
(2)
N

◦W (2)
N−1 ◦ σv(2)N−1

◦ · · · ◦ σ
v
(2)
1

◦W (2)
0 ◦ x

satisfy the inequality∥∥∥f (1)(x)− f (2)(x)
∥∥∥
∞

6 ε(N + 1)2N
N∏
`=0

(p` + 1)2N for all x ∈ [0, 1]d. (4.3)

10
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The proof of Lemma 2 is moved to Appendix B.1. Lemma 2 and the fact that D ⊂
H1([0, 1]d, HD) (due to Assumption AD’) imply that Assumptions AG and AD are fulfilled
with the constants

LG = (NG + 1)2NG
∏
p∈AG

(p+ 1)2NG , LΘ = (ND + 1)2ND
∏
p∈AD

(p+ 1)2ND , and LX = HD.

It only remains to check that Assumption Ap is satisfied as well. We do it in two steps.
First, we show that if two generators are close to each other with respect to the H1-norm,
then the corresponding densities are close as well.

Lemma 3. Assume AG’ and consider any u, v ∈ [−1, 1]dG . Then the corresponding gener-
ators gu, gv and the densities pu, pv fulfill

‖pu − pv‖L∞([0,1]d) 6 L2‖gu − gv‖H1([0,1]d)

with
L2 = d2+d/2Λ3d(1 +HGΛ

√
d). (4.4)

We provide the proof of Lemma 3 in Appendix A.1. Finally, let us show that the H1-
norm of (gu−gv) scales linearly with the norm of (u−v). We need a counterpart of Lemma 2
for the Jacobi matrices ∇f (1)(x) and ∇f (2)(x).

Lemma 4. Within the notations of Lemma 2, the neural networks f (1) and f (2) satisfy the
inequality

∥∥∥∇f (1)(x)−∇f (2)(x)
∥∥∥
∞

6 εN(N + 1)2N+1
N∏
`=0

(p` + 1)2N+1+1 for all x ∈ [0, 1]d. (4.5)

One can find the proof of Lemma 4 in Appendix B.2. Lemmata 2 and 4 immediately
yield that, under Assumption AG’, we have

‖gu − gv‖H1([0,1]d) 6 ‖u− v‖∞ ·NG(NG + 1)2NG+1
∏
p∈AG

(p+ 1)2NG+1+1.

Hence, Assumption Ap holds with

Lp = d2+d/2Λ3d(1 +HGΛ
√
d)NG(NG + 1)2NG+1

∏
p∈AG

(p+ 1)2NG+1+1.

Thus, we proved that Assumptions AG’ and AD’ yield Assumptions AG, AD, and Ap.

4.2 Rates of convergence in nonparametric density estimation with GANs

The discussion in Section 4.1 implies that Theorem 1 can be applied to the setting described
in the beginning of Section 4. In this section, we go further and provide upper bounds on
∆G and ∆D under assumptions AD’, AG’, and Ap∗. The key ingredient of our analysis is the
recent result of Belomestny et al. (2023) quantifying the expressiveness of neural networks
with ReQU activations. It ensures that for any f ∈ Hβ+1([0, 1]d, H∗), β > 1, and any ε > 0,

11
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there is a neural network with ReQU activation function from the class Hbβc([0, 1]d, H∗+ε)
which approximates f within the accuracy ε with respect to the norm in Hbβc([0, 1]d).
We would like to emphasize that, unlike many other results on approximation properties
of neural networks, Belomestny et al. (2023) considers simultaneous approximation of a
smooth function and its derivatives, which is crucial for our purposes. This result allows us
to derive the optimal rates of convergence for GAN estimates in the nonparametric density
estimation problem. However, we would like to emphasize that the proof of Theorem 2
works for any choice of activation function, which yields simultaneous approximation of a
function and its derivatives by a neural network with weights taking their values in [−1, 1].

Theorem 2. Assume that Ap∗ holds with β > 2. Choose HG > 2H∗, ΛG > 2Λ, Dmin 6
Λ−d/(Λd + Λ−d)], Dmax > Λd/(Λd + Λ−d)], and HD large enough. Then there are positive
integers NG, dG, ND, dD and the architectures AG ∈ NNG+2, AD ∈ NND+2 such that AG’
and AD’ define nonempty sets G and D, respectively. Let us consider the estimator (1.3)
with W = [−1, 1]dG , Θ = [−1, 1]dD , gw ∈ G and Dθ ∈ D. For any δ ∈ (0, 1), with probability
at least 1− δ, pŵ satisfies the inequality

JS(pŵ, p
∗) .

(
log n

n

)2β/(2β+d)

+
log(1/δ)

n
, (4.6)

provided that n > n0 with n0 depending only on β, d,Λ, H∗, and HG. In (4.6), the notation
. stands for an inequality up to a multiplicative constant depending on d, β,H∗, HG, and
HD only.

Remark 3. The dimensions dG and dD define the complexity of the optimization problem
in (1.3) and depend on n. It follows from the proof of Theorem 2 that

dG .

(
n

log n

)d/(2β+d)

, dD .

(
n

log n

)d/(2β+d)

.

Let us note that this dependence of dG and dD on n can not be avoided in general.

Theorem 2 improves the dependence on both n and δ in the existing bounds on the JS-
divergence between the vanilla GAN estimate pŵ and p∗. In (Asatryan et al., 2023, Theorem
3.13 and Theorem 4.4), the authors proved that E JS(pŵ, p

∗) decays as fast as n−1/2 if
2β > d. Our results show that in this case the rate of convergence can be much faster. The
reason for suboptimality of (Asatryan et al., 2023, Theorem 4.4) is the use of the chaining
technique to control the global supremum of the empirical process Ln(w, θ)−L(w, θ). This
approach was successfully applied to WGANs (see, e.g., (Liang, 2021)) but in the case of
vanilla GANs, one can prove better upper bounds for the supremum of Ln(w, θ)−L(w, θ) in
a local vicinity of the saddle point. It is also worth mentioning that, if one uses the bound
(3.3) from (Biau et al., 2020, Theorem 4.1) and (Belomestny et al., 2023, Theorem 2) to
control ∆G and ∆D, he will get a suboptimal rate of convergence

E JS(pŵ, p
∗) .

(
log n

n

)2β/(4β+d)

. (4.7)

Finally, the second term log(1/δ)/n in (4.6) significantly improves the standard rate
√

log(1/δ)/n
which follows from McDiarmid’s inequality.
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Theorem 2 also yields an upper bound on the squared L2-distance. Indeed, under the
conditions of Theorem 2, Lemma 7 and Lemma 8 yield that

‖pŵ − p∗‖2L2(µ) . JS(pŵ, p
∗) .

(
log n

n

)2β/(2β+d)

+
log(1/δ)

n
.

This coincides (up to logarithmic factors) with the well-known minimax rate of convergence
(log n/n)2β/(2β+d) for estimation of a smooth bounded away from zero density under the
squared L2-loss. It turns out that the bound on the JS-divergence from Theorem 2 is also
minimax optimal up to some logarithmic factors, provided that p∗ belongs to the class of
densities satisfying Assumption Ap∗.

Theorem 3. Let (X1, . . . , Xn) be a sample of i.i.d. observations generated from a density
p∗ satisfying Ap∗. Then for any estimate p̂ of p∗, that is, measurable function of X1, . . . , Xn,
it holds that

sup
p∗

E JS(p̂, p∗) & n−2β/(2β+d)

with a hidden constant depending on d only.

The proof of Theorem 3 relies on the van Trees inequality (see (Van Trees, 1968, p.
72) and (Gill and Levit, 1995)). Though under Assumption Ap∗ JS(pw, p

∗) is equivalent to
‖pw − p∗‖2L2

(see Lemma 7 and Lemma 8 below), we would like to emphasize that Theo-
rem 3 does not follow from the existing lower bounds in nonparametric density estimation
(see, for instance, (Tsybakov, 2008, Exercise 2.10)). The reason is that the class of ad-
missible densities in Assumption Ap∗ is narrower, than Hβ([0, 1]d, H0), H0 > 0, due to the

additional assumption that p∗ is the density of g∗(Y ) for some g∗ ∈ H1+β
Λ ([0, 1]d, H∗). If

p∗ ∈ Hβ([0, 1]d, H0), then, according to Brenier’s theorem, there is ϕ∗ : [0, 1]d → Rd, such
that ∇ϕ∗(Y ) ∼ p∗. However, Caffarelli’s regularity theory does not guarantee that ∇2ϕ∗

satisfies the condition

Λ−2Id×d � ∇2ϕ∗(x)>∇2ϕ∗(x) � Λ2Id×d,

as required by Assumption Ap∗. Without it, the lower bound will be irrelevant. Moreover,
the theory does not provide a uniform upper bound on the (β + 2)-th derivative of ϕ∗. In
contrary, it states that the (β + 2)-th derivative of ϕ∗ can tend to infinity at the border of
[0, 1]d. For these reasons, we find it necessary to prove an explicit lower bound in our setup.

5. Proofs of the main results

This section contains the proofs of our main results, Theorems 1, 2, and 3. The proof of
the upper bounds relies on the uniform high probability bound on Ln(w, θ)−L(w, θ), given
below.

Proposition 1. Grant Assumptions AG, AD, and Ap. Let W ⊆ [−1, 1]dG and Θ ⊆
[−1, 1]dD . Then, for any δ ∈ (0, 1) and any ε ∈ (0, 2], with probability at least 1 − δ, it

13
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holds that

|Ln(w, θ)− L(w, θ)| 6 3C5.1ε+
√

Lpε
1/2

+ 4

√
C5.2 JS(pw, p∗)(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+

√
C5.2∆(w, θ)(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+
2(C5.2 + C5.3)(dG log(2/ε) + dD log(2/ε) + log(2/δ))

3n

simultaneously for all w ∈ W and θ ∈ Θ. Here ∆(w, θ) = JS(pw, p
∗) − log 2 − L(w, θ) and

the constants C5.1, C5.2, and C5.3 are defined as follows:

C5.1 =
LGLX

2− 2Dmax
+

LΘ

Dmin ∧ (1−Dmax)
, (5.1)

C5.2 =

(
log2(2Dmin)

1/2−Dmin
∨ 2 log2 2

)
+

(
log2(2− 2Dmax)

Dmax − 1/2
∨ 2 log2 2

)
+

(
log(e/(2Dmin))

2D2
min

+
log(e/(2− 2Dmax))

2(1−Dmax)2

)
, (5.2)

C5.3 = log

(
1

Dmax
∨ 1

Dmin

)
∨log

(
1

1−Dmax
∨ 1

1−Dmin

)
= log

1

Dmin ∧ (1−Dmax)
. (5.3)

The rest of this section is organized in the following way. Section 5.1 is devoted to the
proof of Proposition 1. Then we prove Theorems 1, 2, and 3 in Sections 5.2, 5.3, and 5.4,
respectively. In the beginning of these sections, we restate the main results for convenience.

5.1 Proof of Proposition 1

Let us start with the sketch of the proof. First, we study large deviations of Ln(w, θ) −
L(w, θ) for a fixed pair (w, θ) ∈ W × Θ. After that, we show that Ln(w, θ), L(w, θ), and√

JS(pw, p∗) are Hölder with respect to w ∈ W and θ ∈ Θ. This and the ε-net argument
allow us to derive a uniform large deviation bound on Ln(w, θ)−L(w, θ). We split the proof
into several steps for the sake of readability.

Step 1: large deviation bound on Ln(w, θ)− L(w, θ). Under the conditions of Theo-
rem 1, the functional L(w, θ) has a kind of curvature inherited from the properties of the
cross-entropy. This special structure allows us to obtain tight large deviation bounds on
|Ln(w, θ)− L(w, θ)|. To be more precise, we have the following concentration result.

Lemma 5. Fix any w ∈ W and θ ∈ Θ. Assume the conditions of Theorem 1. Then, for
any δ ∈ (0, 1), with probability at least 1− δ, it holds that

|Ln(w, θ)− L(w, θ)| 6
√
C5.2(9 JS(pw, p∗) + ∆(w, θ)) log(2/δ)

2n
+

2C5.3 log(2/δ)

3n
, (5.4)

where ∆(w, θ) = JS(pw, p
∗) − log 2 − L(w, θ), and the constants C5.2, C5.3 are defined in

(5.2) and (5.3), respectively.
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The proof of Lemma 5 is moved to Appendix C.2. Our next goal is to convert the
concentration inequality (5.4) into a uniform bound on |Ln(w, θ)− L(w, θ)|.

Step 2: towards a uniform bound on Ln(w, θ) − L(w, θ). Let ε > 0 be a parameter
to be specified later and let Wε and Θε be the minimal ε-nets of W and Θ, respectively,
with respect to the norm ‖ · ‖∞. It is straightforward to check that the cardinalities of Wε

and Θε satisfy the inequalities

|Wε| 6
(

2

ε

)dG
and |Θε| 6

(
2

ε

)dD
.

Applying Lemma 5 and the union bound, we conclude that, for any δ ∈ (0, 1), with proba-
bility at least 1− δ, it holds that

|Ln(w, θ)− L(w, θ)| 6
√
C5.2(9 JS(pw, p∗) + ∆(w, θ)) log(2|Wε||Θε|/δ)

2n

+
2C5.3 log(2|Wε||Θε|/δ)

3n
(5.5)

6

√
C5.2(9 JS(pw, p∗) + ∆(w, θ))(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+
2C5.3(dG log(2/ε) + dD log(2/ε) + log(2/δ))

3n

simultaneously for all (w, θ) ∈ Wε ×Θε. If we show that Ln(w, θ), L(w, θ), and JS(pw, p
∗)

are Lipschitz or at least Hölder with respect to w ∈W and θ ∈ Θ, then we can easily extend
the bound (5.5) from the ε-net Wε × Θε to the whole set W × Θ. The Lipschitzness of
Ln(w, θ) and L(w, θ) easily follows from Assumptions AG and AD.

Lemma 6. Grant Assumptions AD and AG. Let w,w1, w2 ∈W and θ, θ1, θ2 ∈ Θ. Then it
holds that

|Ln(w1, θ)− Ln(w2, θ)| 6
LGLX‖w1 − w2‖∞

2− 2Dmax
almost surely.

and

|Ln(w, θ1)− Ln(w, θ2)| 6 LΘ‖θ1 − θ2‖∞
Dmin ∧ (1−Dmax)

almost surely.

Moreover, under Assumptions AD and AG, we have

|L(w1, θ)− L(w2, θ)| 6
LGLX‖w1 − w2‖∞

2− 2Dmax

and

|L(w, θ1)− L(w, θ2)| 6 LΘ‖θ1 − θ2‖∞
Dmin ∧ (1−Dmax)

for any w,w1, w2 ∈W and θ, θ1, θ2 ∈ Θ.

The proof of Lemma 6 is given in Appendix C.3. The next result plays a crucial role in
the analysis of JS(pw, p

∗).
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Lemma 7. Let p and q be the densities of two probability distributions with respect to a
dominating measure µ. Then it holds that

1

4

∫
(p(x)− q(x))2

p(x) + q(x)
dµ 6 JS(p, q) 6

log 2

2

∫
(p(x)− q(x))2

p(x) + q(x)
dµ. (5.6)

Lemma 7 yields the Hölderness of JS1/2(pw, p
∗) with respect to w ∈ W, provided that

Assumption Ap is fulfilled.

Corollary 1. Grant Assumption Ap. Then, for any u, v ∈W, it holds that

∣∣∣√JS(pu, p∗)−
√

JS(pv, p∗)
∣∣∣ 6 √

Lp log 2

21/4
‖u− v‖1/4∞ <

√
Lp‖u− v‖1/4∞ .

The proofs of Lemma 7 and Corollary 1 are moved to Appendix C.4 and Appendix C.5,
respectively. We are ready to prove a uniform bound on large deviations of Ln(w, θ) −
L(w, θ).

Step 3: uniform bound on Ln(w, θ)− L(w, θ). Let E be the event where (5.5) holds.
Choose any (w, θ) ∈W×Θ and denote the closest to (w, θ) element of Wε×Θε by (wε, θε).
Then, due to Lemma 6, the following holds on E:

|Ln(w, θ)− L(w, θ)|

6 |Ln(wε, θε)− L(wε, θε)|+ 2

(
LGLX

2− 2Dmax
+

LΘ

Dmin ∨ (1−Dmax)

)
ε

6 2

(
LGLX

2− 2Dmax
+

LΘ

Dmin ∨ (1−Dmax)

)
ε

+

√
C5.2(9 JS(pwε , p

∗) + ∆(wε, θε))(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+
2C5.3(dG log(2/ε) + dD log(2/ε) + log(2/δ))

3n
.

According to Lemma 6 and Corollary 1,

√
JS(pwε , p

∗) 6
√

JS(pw, p∗) +
√

Lpε
1/4

and

√
∆(wε, θε) =

√
JS(pwε , p

∗)− log 2− L(wε, θε)

6
√

2 JS(pw, p∗)− log 2− L(w, θ) + 2Lpε1/2 + C5.1ε

6
√

JS(pw, p∗) +
√

∆(w, θ) +
√

2Lpε
1/4 +

√
C5.1ε.
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Thus, on E, it holds that

|Ln(w, θ)− L(w, θ)| 6 2C5.1ε+ 4

√
C5.2 JS(pw, p∗)(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+

√
C5.2∆(w, θ)(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+

√
C5.2Lpε1/2(dG log(2/ε) + dD log(2/ε) + log(2/δ))

n

+

√
C5.2C5.1ε(dG log(2/ε) + dD log(2/ε) + log(2/δ))

2n

+
2C5.3(dG log(2/ε) + dD log(2/ε) + log(2/δ))

3n
.

where C5.1 is defined in (5.1). Applying the Cauchy-Schwarz inequality to the fourth and
the fifth terms, we get the desired bound.

5.2 Proof of Theorem 1

Theorem 4 (restatement of Theorem 1). Assume AG, AD, and Ap. Let W ⊆ [−1, 1]dG

and Θ ⊆ [−1, 1]dD . Then, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

JS(pŵ, p
∗)−∆G −∆D .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n

where

∆G = min
w∈W

JS(pw, p
∗), ∆D = max

w∈W
min
θ∈Θ

[JS(pw, p
∗)− log 2− L(w, θ)],

and

C3.2 =

(
log(1/Dmin)

D2
min

+
log
(
1/(1−Dmax

)
(1−Dmax)2

)
.

Here . stands for inequality up to an absolute multiplicative constant.

Let us introduce w ∈ argminw∈W JS(pw, p
∗). We begin with studying the excess risk

JS(pŵ, p
∗)−∆G = JS(pŵ, p

∗)− min
w∈W

JS(pw, p
∗) = JS(pŵ, p

∗)− JS(pw, p
∗), (5.7)

where ŵ is given by (1.3). For any w ∈ W, let θ∗w denote the parameter, correspoding to
the best discriminator in D:

θ∗w ∈ argmax
θ∈Θ

L(w, θ).

Then the definition of ∆D yields that

JS(pŵ, p
∗)− JS(pw, p

∗) 6 ∆D + L(ŵ, θ∗ŵ)− L(w, θ∗w).
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Here we used the fact that for any w ∈ W and any θ ∈ Θ it holds that L(w, θ) + log 2 6
JS(pw, p

∗) (see, e.g., (Goodfellow et al., 2014, Proposition 1) or (Biau et al., 2020, Section
2)) for the explanation. The expression in the right-hand side of the last inequality can be
rewritten as follows:

∆D +
(
L(ŵ, θ∗ŵ)− Ln(ŵ, θ∗ŵ)

)︸ ︷︷ ︸
T1

+
(
Ln(ŵ, θ∗ŵ)− Ln(w, θ∗w)

)︸ ︷︷ ︸
T2

+
(
Ln(w, θ∗w)− L(w, θ∗w)

)︸ ︷︷ ︸
T3

. (5.8)

We split the rest of the proof into several steps for convenience.

Step 1: bounds on T1 and T3. Let us take

ε =
C5.2(dG log(2n) + dD log(2n) + log(8/δ))

C5.1n

∧ C
2
5.2(dG log(2n) + dD log(2n) + log(8/δ))2

L2
pn

2
∧ 1. (5.9)

Then C5.1ε 6 1/n,
√

Lpε 6 1/n, and

log(1/ε) 6 log n+ log

(
C5.1

C5.2
∨

L2
p

C2
5.2

)
. log n+ log(LGLX ∨ LΘ ∨ Lp ∨ 1).

Applying Proposition 1 with ε defined in (5.9), we get that, with probability at least 1−δ/2,
we simultaneously have

T1 .

√
(JS(pŵ, p∗) + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n

6

√
(JS(pŵ, p∗)−∆G)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

(5.10)

+

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n

and

T3 .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
. (5.11)
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Here we used the fact that JS(pw, p
∗) = ∆G by the definitions of w and ∆G . Also, it holds

that ∆(w, θ∗w) 6 ∆D due to the definitions of θ∗w and ∆D. Note that the hidden constants
in (5.10) and (5.11) are absolute.

Step 2: a bound on T2. It remains to bound T2 in (5.8). For any w ∈W, let us denote

θ̂w ∈ argmax
θ∈Θ

Ln(w, θ).

By the definition of ŵ, we have

Ln(ŵ, θ̂ŵ) 6 Ln(w, θ̂w).

Then T2 6 Ln(w, θ̂w)−Ln(w, θ∗w), and, applying Proposition 1 with ε from (5.9) again, we
obtain that, with probability at least 1− δ/2, it holds that

T2 . L(w, θ̂w)− L(w, θ∗w)

+

√
(∆G + ∆(w, θ̂w))

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
,

where, as before, the hidden constants are absolute. Since

∆(w, θ̂w) = ∆(w, θ∗w) + L(w, θ∗w)− L(w, θ̂w) 6 ∆D + L(w, θ∗w)− L(w, θ̂w),

the following inequality holds on the same event:

T2 . −
(
L(w, θ∗w)− L(w, θ̂w)

)

+

√√√√(L(w, θ∗w)− L(w, θ̂w)
) [

(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)
]

n

+

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
.

Maximizing the right-hand side over (L(w, θ∗w)− L(w, θ̂w))1/2, we obtain that

T2 .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
. (5.12)
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Step 3: final bound. Consider the union of events where (5.10), (5.11), and (5.12)
hold. Note that the probability measure of this event is at least 1 − δ. Moreover, on this
event, we have

JS(pŵ, p
∗)−∆G −∆D 6 T1 + T2 + T3

.

√
(JS(pŵ, p∗)−∆G)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
.

6

√
(JS(pŵ, p∗)−∆G −∆D)+

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ 2

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
.

Since the inequality x 6 2a
√
x + b yields

√
x 6 a +

√
a2 + b and, hence, x 6 4a2 + 2b, we

obtain that

JS(pŵ, p
∗)−∆G −∆D 6 (JS(pŵ, p

∗)−∆G −∆D)+

.

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n

on the event of probability measure at least 1− δ.

5.3 Proof of Theorem 2

Theorem 5 (restatement of Theorem 2). Assume that Ap∗ holds with β > 2. Choose
HG > 2H∗, ΛG > 2Λ, Dmin 6 Λ−d/(Λd + Λ−d)], Dmax > Λd/(Λd + Λ−d)], and HD large
enough. Then there are positive integers NG, dG, ND, dD and the architectures AG ∈ NNG+2,
AD ∈ NND+2 such that AG’ and AD’ define nonempty sets G and D, respectively. Let us
consider the estimator (1.3) with W = [−1, 1]dG , Θ = [−1, 1]dD , gw ∈ G and Dθ ∈ D. For
any δ ∈ (0, 1), with probability at least 1− δ, pŵ satisfies the inequality

JS(pŵ, p
∗) .

(
log n

n

)2β/(2β+d)

+
log(1/δ)

n
,

provided that n > n0 with n0 depending only on β, d,Λ, H∗, and HG. In (4.6), the notation
. stands for an inequality up to a multiplicative constant depending on d, β,H∗, HG, and
HD only.
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Applying Theorem 1, we obtain that, for any δ ∈ (0, 1), the GAN estimate pŵ satisfies
the inequality

JS(pŵ, p
∗)−∆G −∆D .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n
(5.13)

on an event with probability at least 1− δ. Let us recall that

∆G = min
w∈W

JS(pw, p
∗), and ∆D = max

w∈W
min
θ∈Θ

[
JS(pw, p

∗)− log 2− L(w, θ)
]
.

In the rest of the proof, we provide upper bounds on the approximation terms ∆G and ∆D
and specify the architectures of neural networks and the parameters dG and dD as well.
Our approach relies on the following result, concerning approximation properties of neural
networks with ReQU activations.

Theorem 6 (Belomestny et al. (2023), Theorem 2). Let β > 2 and let p, d ∈ N. Then,
for any H > 0, f : [0, 1]d → Rp, f ∈ Hβ([0, 1]d, H) and any integer K > 2, there exists a
neural network hf : [0, 1]d → Rp of the width(

4d(K + bβc)d
)
∨ 12 ((K + 2bβc) + 1) ∨ p

with

6 + 2(bβc − 2) + dlog2 de+ 2 (dlog2(2dbβc+ d) ∨ log2 log2He ∨ 1)

hidden layers and at most p(K + bβc)dC(β, d,H) non-zero weights taking their values in
[−1, 1], such that, for any ` ∈ {0, . . . , bβc},

‖f − hf‖H`([0,1]d) 6
(
√

2ed)βH

Kβ−` +
9d(bβc−1)(2bβc+ 1)2d+`(

√
2ed)βH

Kβ−` . (5.14)

The above constant C(β, d,H) is given by

C(β, d,H) =
(
60
(
dlog2(2dbβc+ d) ∨ log2 log2He ∨ 1

)
+ 38

)
+ 20d2 + 144dbβc+ 8d. (5.15)

We split the proof of Theorem 2 into several steps for convenience.

Step 1: bounding ∆G. According to Lemma 7, it holds that

∆G = min
w∈W

JS(pw, p
∗) 6 min

w∈W

log 2

2

∫
(pw(x)− p∗(x))2

pw(x) + p∗(x)
dµ.

Note that under Assumptions AG’ and Ap∗, the densities p∗ and pw are bounded away from
zero and infinity.
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Lemma 8. Let a map g : [0, 1]d → [0, 1]d be from the class H2
Λ([0, 1]d, HG) and let

p(x) = | det[∇g(g−1(x))]|−1, x ∈ [0, 1]d.

Then it holds that
pmin 6 p(x) 6 pmax for any x ∈ [0, 1]d,

where
pmin = Λ−d, pmax = Λd. (5.16)

The proof of Lemma 8 is provided in Appendix A.2. Lemma 8 implies that

∆G . Λd min
w∈W

‖pw − p∗‖2L∞([0,1]d) .

Combining this bound with the result of Lemma 3, we obtain that

∆G . Λ9d min
w∈W

‖gw − g∗‖2H1([0,1]d) .

Let us introduce an auxiliary parameter

K =

⌈
n

log n

⌉1/(2β+d)

and set NG and dG as follows:

NG = 6 + 2(bβc − 1) + dlog2 de+ 2 (dlog2(2dbβc+ 3d) ∨ log2 log2H
∗e ∨ 1) ,

dG = d C(β + 1, d,H∗)(K + bβc+ 1)d .

(
n

log n

)d/(2β+d)

, (5.17)

where the constant C(β, d,H∗) is given by (5.15). According to Theorem 6, there is a neural
network gw of the width(

4d(K + bβc+ 1)d
)
∨ 12 ((K + 2bβc) + 3) ∨ d,

with ReQU activations, NG hidden layers and at most dG non-zero weights taking their
values in [−1, 1], such that

‖g∗ − gw‖H1([0,1]d) 6
(
√

2ed)β+1H∗

Kβ
+

9dbβc(2bβc+ 3)2d+1(
√

2ed)β+1H∗

Kβ
.

(
log n

n

)β/(2β+d)

and

‖g∗ − gw‖H2([0,1]d) .

(
log n

n

)(β−1)/(2β+d)

.

Hence, it holds that

∆G . Λ9d min
w∈W

‖gw − g∗‖2H1([0,1]d) . Λ9d

(
log n

n

)2β/(2β+d)

. (5.18)
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Step 2: bounding ∆D. According to Lemma 1, it holds that

∆D . max
w∈W

min
θ∈Θ

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L2(p∗+pw)

. max
w∈W

min
θ∈Θ

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L∞([0,1]d)

.

Our goal is to show that it is possible to approximate p∗/(p∗ + pw) with a neural net-
work, taking its values in [Dmin, Dmax]. Using (4.2), Lemma 8, and the fact that gw ∈
Hβ+1(HG , [0, 1]d), g∗ ∈ Hβ+1(H∗, [0, 1]d), it is straightforward to check that, for any w ∈W,

p∗

p∗ + pw
∈ Hβ(H◦, [0, 1]d),

where H◦ is a constant, depending on HG , H
∗, β, and d. Let us set the parameters ND, and

dD equal to

ND = 6 + 2(bβc − 2) + dlog2 de+ 2 (dlog2(2dbβc+ d) ∨ log2 log2H
◦e ∨ 1) ,

dD = d C(β, d,H∗)(K + bβc)d .
(

n

log n

)d/(2β+d)

, (5.19)

where the constant C(β, d,H◦) is defined in (5.15). Then, according to Theorem 6, for any
w ∈W, there exists θ(w) ∈ Θ and a neural network Dθ(w) of the width

(
4d(K + bβc)d

)
∨ 12 ((K + 2bβc) + 1) ,

with ReQU activations, LD hidden layers and at most dD non-zero weights taking their
values in [−1, 1], such that∥∥∥∥ p∗

p∗ + pw
−Dθ(w)

∥∥∥∥
L∞([0,1]d)

6
(
√

2ed)βH◦

Kβ
+

9d(bβc−1)(2bβc+ 1)2d(
√

2ed)βH◦

Kβ

.

(
log n

n

)2β/(2β+d)

.

Thus, we have

∆D . max
w∈W

min
θ∈Θ

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L∞([0,1]d)

.

(
log n

n

)2β/(2β+d)

. (5.20)

Step 3: final bound. According to Lemma 2 and Lemma 4, it holds that

log(LGLX ∨ LΘ ∨ Lp ∨ 1) . log(KΛ).

23



Puchkin, Samsonov, Belomestny, Moulines, Naumov

This and the inequalities (5.13), (5.17), (5.18), (5.19), and (5.20) yield that

JS(pŵ, p
∗) .

√
(∆G + ∆D)

[
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2(LGLX ∨ LΘ ∨ Lp ∨ 1)n) + log(8/δ)

n

.

√
(∆G + ∆D)

[
(dG + dD) log(2KΛ

n
) + log(8/δ)

]
n

+ C3.2 ·
(dG + dD) log(2KΛ

n
) + log(8/δ)n

. Λ9d/2

(
log n

n

) 2β
2β+d

+
C3.2

n
·

(
log(2Λn)

(
n

log n

) d
2β+d

+ log(8/δ)

)

.
(

Λ9d/2 + C3.2 log Λ
)( log n

n

)2β/(2β+d)

+ C3.2 ·
log(1/δ)

n

with probability at least 1− δ. The proof is finished.

5.4 Proof of Theorem 3

Theorem 7 (restatement of Theorem 3). Let (X1, . . . , Xn) be a sample of i.i.d. observa-
tions generated from a density p∗ satisfying Ap∗. Then for any estimate p̂ of p∗, that is,
measurable function of X1, . . . , Xn, it holds that

sup
p∗

E JS(p̂, p∗) & n−2β/(2β+d)

with a hidden constant depending on d only.

Let

h = h(n) =

(
1

nΛdd2

)1/(2β+d)

.

and let M be the (2h)-packing number of [1/3, 2/3]d. It is clear that M & h−d. Let
{x1, . . . , xM} ⊆ [1/3, 2/3]d be a 2h-separable set, that is, ‖xi − xj‖ > 2h for all i 6= j.

Let ϕ : Rd → R be a function from the class Hβ+2(Rd, Hϕ) with some Hϕ > 0, such
that supp(ϕ) = B(0, 1) ⊂ Rd, ϕ attains its maximum at 0, and −∇2ϕ(0) � Id×d. Consider
a parametric class of generators {gθ : θ ∈ B(0, h) ⊂ RM}, where

g−1
θ (x) = x+ hβ

M∑
j=1

θj∇ϕ
(
x− xj
h

)
, x ∈ [0, 1]d.

Here and further in the proof, g−1 stands for the inverse map of g. For convenience, we
split the rest of the proof into several steps.

Step 1: verifying the conditions. First, note that, according to the definition of gθ,
we have

∇g−1
θ (x) = Id×d + hβ−1

M∑
j=1

θj∇2ϕ

(
x− xj
h

)
.
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Since ϕ is supported on the unit ball B(0, 1), the last expression simplifies to

∇g−1
θ (x) =

{
Id×d + hβ−1θj∇2ϕ

(
x−xj
h

)
, if x ∈ B(xj , h) for some j ∈ {1, . . . ,M},

Id×d, otherwise.

The fact that ϕ ∈ Hβ+2(Rd, Hϕ) immediately implies that

e−1/dId×d �
(

1− hβHϕ

)
Id×d � ∇g−1

θ (x) �
(

1 + hβHϕ

)
Id×d � e1/dId×d, (5.21)

provided that

hβ 6
e1/d − 1

Hϕ
∧ 1− e−1/d

Hϕ
,

that is, if the sample size n is large enough. Hence, we checked that g−1
θ ∈ H

β+1

e1/d
([0, 1]d, H0)

for some H0 > 0 and each θ ∈ B(0, h) ⊂ RM . This yields that, for all θ ∈ B(0, h) ⊂ RM , gθ
belongs to a class Hβ+1

e1/d
([0, 1]d, H◦) with some H◦ > 0.

Besides, for each θ ∈ B(0, h), gθ differs from g0(x) ≡ x only on [1/3 − h, 2/3 + h]d.
If n is sufficiently large, then h is small and g−1

θ ([1/3 − h, 2/3 + h]d) ⊂ [0, 1]d. Then
g−1
θ ([0, 1]d) ⊆ [0, 1]d. Similarly, we can show that gθ([0, 1]d) ⊆ [0, 1]d. Hence, for any
θ ∈ B(0, h), gθ is indeed a bijection between [0, 1]d and [0, 1]d, provided that h is small
enough.

Step 2: a minimax lower bound on the accuracy of parametric estimation. The
next auxiliary result provides a lower bound on the accuracy of estimation of the parameter
θ.

Lemma 9. Let Y1, . . . , Yn be i.i.d. random elements on Y, Vol(Y) = 1, drawn from the
uniform distribution on Y and assume that a learner observes a sample (X1, . . . , Xn) where
Xi = gθ(Yi), i ∈ {1, . . . , n}. Under the assumptions of Theorem 3, if n is large enough, for
any estimate θ̂ taking its values in B(0, h) ⊂ RM it holds that

sup
‖θ‖6h

Eθ‖θ̂ − θ‖2 &
Mh2

nh2β+dd2 + 1
.

Here we write Eθ to emphasize that the expectation is taken with respect to the prob-
ability measure P⊗ngθ where Pgθ is a distribution of random element X = gθ(Y ) with Y

uniformly distributed on [0, 1]d. The proof of Lemma 9 is based on the van Trees inequality
and it is postponed to Appendix D.1 below.

Step 3: a minimax lower bound on the accuracy of density estimation. Denote
a density of the measure Pgθ by pgθ . Our next goal is to convert the result of Lemma 9 to
the lower bound on

inf
θ̂

sup
‖θ‖6h

Eθ‖pg
θ̂
− pgθ‖

2
L2(X)

where the infimum is taken with respect to measurable functions θ̂ of the sample satisfying
assumptions of Lemma 9. Recall that, for any θ ∈ B(0, h), the log-density of r.v. X = gθ(Y )
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is given by

log pgθ(x) = log det

Id×d + hβ−1
M∑
j=1

θj∇2ϕ

(
x− xj
h

) . (5.22)

Before obtaining a minimax lower bound on sup
‖θ‖6h

Eθ‖pg
θ̂
− pgθ‖2L2(X), we prove some prop-

erties of the map θ 7→ log pgθ . The next lemma shows that, for any j ∈ {1, . . . ,M}, the
partial derivative

∂ log pgθ(x)

∂θj

is bounded away from zero in a vicinity of xj .

Lemma 10. Let

r0 =
h

2(Hϕ ∨ 1)
.

Then, under the assumptions of Theorem 3, for a sufficiently small h > 0 and any estimate
θ̂ taking its values in B(0, h) ⊂ RM , it holds that∣∣∣∣∂ log pgθ(x)

∂θj

∣∣∣∣ > hβ−1d/2, for all x ∈ B(xj , r0).

The proof of Lemma 10 is postponed until Appendix D.2. Lemma 10 implies that, for
any j ∈ {1, . . . ,M},∣∣∣∣∂pgθ(x)

∂θj

∣∣∣∣ =
1

pgθ(x)

∣∣∣∣∂ log pgθ(x)

∂θj

∣∣∣∣ > hβ−1d

2pgθ(x)
, for all x ∈ B(xj , r0).

The equality (5.22) implies that for x ∈ B(xj , r0),
∂pgθ (x)

∂θi
= 0 for i 6= j. Hence, for

θ, θ′ ∈ B(0, h), it holds that

‖pgθ′ − pgθ‖
2
L2(X) >

M∑
j=1

∫
B(xj ,r0)

(
pgθ′ (x)− pgθ(x)

)2
dx

>
M∑
j=1

∫
B(xj ,r0)

h2β−2d2(θ′j − θj)2

4pgϑ(x)(x)2
dx

for some ϑ(x) = t(x)θ+(1− t(x))θ′, t(x) ∈ [0, 1]. The inequality (5.21) and Lemma 8 imply
that

‖pgθ′ − pgθ‖
2
L2(X) >

M∑
j=1

∫
B(xj ,r0)

h2β−2d2

4e2
(θ′j − θj)2dx

&
M∑
j=1

(r0

h

)d
h2β−2+d (θ′j − θj)2

& h2β−2+d ‖θ′ − θ‖2,

26



Rates of convergence for density estimation with GANs

where we write & for inequality up to an absolute constant in power d. Hence, Lemma 9
implies that

sup
‖θ‖6h

Eθ‖pg
θ̂
− pgθ‖

2
L2(X) & h2β−2+d sup

‖θ‖6h
Eθ‖θ̂ − θ‖2

&
h2β

nh2β+dd2 + 1

for any estimate θ̂ taking its values in B(0, h). Since h =
(
nd2
)−1/(2β+d)

, we get

sup
‖θ‖6h

Eθ‖pg
θ̂
− pgθ‖

2
L2(X) & n−2β/(2β+d), (5.23)

where the hidden constant depends on d only.

Step 4: a minimax lower bound on the accuracy of nonparametric estimation.
We now prove that (5.23) yields

inf
p̂

sup
p∗

E‖p̂− p∗‖2L2(X) & n−2β/(2β+d),

where p∗ satisfies Ap∗ and p̂ is any estimate of p∗. Let Cd be the hidden constant in (5.23),
that is,

sup
‖θ‖6h

Eθ‖pg
θ̂
− pgθ‖

2
L2(X) > Cd n

−2β/(2β+d). (5.24)

Let p̂ be an arbitrary estimate. Since sup
p∗

E‖p̂ − p∗‖2L2(X) > sup
‖θ‖6h

Eθ‖p̂ − pgθ‖2L2(X), it is

enough to show that

sup
‖θ‖6h

Eθ‖p̂− pgθ‖
2
L2(X) & n−2β/(2β+d).

Let us introduce

θ̃ ∈ argmin
‖θ0‖6h

‖p̂− pgθ0‖
2
L2(X).

If

sup
‖θ‖6h

Eθ‖p̂− pg
θ̃
‖2L2(X) >

Cd
4
n−2β/(2β+d),

then, by the definition of θ̃,

sup
‖θ‖6h

Eθ‖p̂− pgθ‖
2
L2(X) > sup

‖θ‖6h
Eθ‖p̂− pg

θ̃
‖2L2(X)

>
Cd
4
n−2β/(2β+d).

On the other hand, if

sup
‖θ‖6h

Eθ‖p̂− pg
θ̃
‖2L2(X) 6

Cd
4
n−2β/(2β+d),
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then the Cauchy-Schwarz inequality and (5.24) yield

sup
‖θ‖6h

Eθ‖p̂− pgθ‖
2
L2(X) >

1

2
sup
‖θ‖6h

Eθ‖pgθ − pg
θ̃
‖2L2(X) − sup

‖θ‖6h
Eθ‖p̂− pg

θ̃
‖2L2(X)

>
Cd
4
n−2β/(2β+d).

Finally, Lemma 7, Lemma 8, and (5.21) yield that, for any p̂, it holds almost surely

JS(p̂, p∗) >
‖p̂− p∗‖2L2(X)

8e
.

Hence, for any p̂, we obtain that

sup
p∗

E JS(p̂, p∗) > sup
p∗

E‖p̂− p∗‖2L2(X)

8e
& Cd n

−2β/(2β+d),

where & stands for an inequality up to an absolute constant.

6. Conclusion and future directions

Despite the huge recent interest to theoretical properties of generative adversarial networks,
the existing papers mostly focus on the generalization ability of GANs, missing the issues
occurring in their practical use. For instance, one of the most challenging problems in the
GAN training process is the mode collapse phenomenon (Salimans et al., 2016; Che et al.,
2016), which appears for various loss functions, including Wasserstein GANs, “vanilla”
GANs, or GANs with other divergence measures. Moreover, in the present literature on
Wasserstein GANs, the estimation error is mostly governed by the rates of convergence of the
empirical measure to the population distribution. This leaves a question, whether WGANs
are able to produce a distribution estimate, which is strictly better that just the empirical
distribution. The first step in this direction was made in the recent work (Vardanyan et al.,
2023), where the authors imposed regularity conditions on generators. This agrees with
the papers on vanilla GANs in a sense that successful generalization requires smoothness
of generators and discriminators. Practitioners often use regularization (see, e.g., Gulrajani
et al. (2017)) for this purpose.
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Appendix A. Properties of smooth maps of random elements with
smooth densities

A.1 Proof of Lemma 3

Due to AG’, ∇gw(y) is non-degenerate for all w ∈W and all y ∈ [0, 1]d. Thus, det∇gw does
not change its sign, and, without loss of generality, we can assume that det∇gu(g−1

u (x)) and
det∇gv(g−1

v (x)) are positive for all x ∈ [0, 1]d. Let z = g−1
u (x) ∈ [0, 1]d. Then x = gu(z)

and ∥∥g−1
u (x)− g−1

w (x)
∥∥ =

∥∥g−1
u (gu(z))− g−1

v (gu(z))
∥∥ =

∥∥g−1
v (gv(z))− g−1

v (gu(z))
∥∥

6 Λ‖gv(z)− gu(z)‖ 6 Λ
√
d‖gv − gu‖L∞([0,1]d)

by the mean value theorem for vector valued functions. Furthermore, we have∣∣pu(x)− pv(x)
∣∣ =

∣∣det[∇gu(g−1
u (x))]−1 − det[∇gv(g−1

v (x))]−1
∣∣

6 min
{

det[∇gu(g−1
u (x))], det[∇gv(g−1

v (x))]
}−2

·
∣∣det∇gu(g−1

u (x))− det∇gv(g−1
v (x))

∣∣
6 Λ2d

∣∣det∇gu(g−1
u (x))− det∇gv(g−1

v (x))
∣∣ .

Here we used the fact that, due to AG’,

det[∇gu(g−1
u (x))]−1 =

√
det
(
[∇gu(g−1

u (x))]−>[∇gu(g−1
u (x))]−1

)
6
√

det(Λ2Id×d) = Λd,
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and, similarly, det[∇gv(g−1
v (x))]−1 6 Λd. Next, since for any d × d matrices A and B it

holds that

|detA− detB| 6 ‖A−B‖F
‖A‖dF − ‖B‖dF
‖A‖F − ‖B‖F

6 dmax{‖A‖dF, ‖B‖dF}‖A−B‖F

and

‖∇gu(g−1
u (x))‖2F = Tr

(
∇gu(g−1

u (x))>∇gu(g−1
u (x))

)
6 Λ2d,

‖∇gv(g−1
v (x))‖2F = Tr

(
∇gv(g−1

v (x))>∇gv(g−1
v (x))

)
6 Λ2d,

we obtain that∣∣det∇gu(g−1
u (x))− det∇gv(g−1

v (x))
∣∣ 6 Λdd1+d/2

∥∥∇gu(g−1
u (x))−∇gv(g−1

v (x))
∥∥

F

6 Λdd1+d/2
∥∥∇gu(g−1

u (x))−∇gv(g−1
u (x))

∥∥
F

+ Λdd1+d/2
∥∥∇gv(g−1

u (x))−∇gv(g−1
v (x))

∥∥
F

6 Λdd2+d/2‖gu − gv‖H1(Y)

+ Λdd2+d/2HG‖g−1
u (x)− g−1

v (x)‖

6 Λdd2+d/2(1 +HGΛ
√
d)‖gu − gv‖H1(Y).

Hence,

‖pu − pv‖L∞(X) 6 d2+d/2Λ3d(1 +HGΛ
√
d)‖gu − gv‖H1(Y).

A.2 Proof of Lemma 8

According to the definition of H2
Λ([0, 1]d, HG), we have Λ−2Id×d � ∇g(y)>∇g(y) � Λ2Id×d.

Hence,

Λ−d =
√

det(Λ−2Id×d) 6
√

det (∇g(g−1(x))>∇g(g−1(x))) 6
√

det(Λ2Id×d) = Λd.

Then the equality

p(x) = | det∇g(g−1(x))|−1

yields that

Λ−d 6 p(x) 6 Λd.

Appendix B. Some properties of feed-forward neural networks with
ReQU activations

Let N ∈ N,A = (p0, p1, . . . , pN+1) ∈ NN+2, and f(x) : Rp0 → RpN+1 be a neural network

f(x) = WN ◦ σvN ◦WL−1 ◦ σvL−1 ◦ · · · ◦ σv1 ◦W0 ◦ x ,
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where Wi ∈ Rpi+1×pi are weight matrices. Similarly to (Schmidt-Hieber, 2020, Lemma 5),
we introduce the following notations. For k ∈ {1, . . . , N + 1}, i 6 k, k 6 j 6 N , we define
functions Bk,i(x) : Rpi−1 → Rpk and Aj,kf(x) : Rpk−1 → Rpj+1 as follows

Bk,i(x) = σvk ◦Wk−1 ◦ σvk−1
· · · ◦ σvi ◦Wi−1 ◦ x;

Aj,k(x) = Wj ◦ σvj · · · ◦Wk ◦ σvk ◦Wk−1 ◦ x .
(B.1)

Set by convention AN,N+2(x) = B0,1f(x) = x. For notation simplicity, we write Aj instead
of AN,j , and Bj instead of Bj,1. Note that with this notation f(x) = A1(x).

Let us introduce the functions

f (1)(x) = W
(1)
N ◦ σ

v
(1)
N

◦W (1)
N−1 ◦ σv(1)N−1

◦ · · · ◦ σ
v
(1)
1

◦W (1)
0 ◦ x ,

f (2)(x) = W
(2)
N ◦ σ

v
(2)
N

◦W (2)
N−1 ◦ σv(2)N−1

◦ · · · ◦ σ
v
(2)
1

◦W (2)
0 ◦ x ,

(B.2)

where the parameters W
(1)
i ,W

(2)
i , v

(1)
i , v

(2)
i satisfy∥∥∥W (1)

i −W (2)
i

∥∥∥
∞

6 ε,
∥∥∥v(1)

i − v
(2)
i

∥∥∥
∞

6 ε , for all i ∈ {0, . . . , N} .

B.1 Proof of Lemma 2

Before we prove Lemma 2, we need the following auxiliary result.

Lemma 11. Let x ∈ Rd, ‖x‖∞ 6 K. Then for k, i ∈ {1, . . . , N}, k > i

‖Bk,i(x)‖∞ 6

{k−i+1∏
`=1

(pk−` + 1)2`
}

(K ∨ 1)2k−i+1
, (B.3)

where Bk,i(x) are defined in (B.1). Moreover, function Aj,k(x) is Lipshitz for x, y ∈ Rd :
‖x‖∞ 6 K, ‖y‖∞ 6 K, that is,

‖Aj,k(x)− Aj,k(y)‖∞ 6 2j−k+1
j−k+1∏
`=0

(pj−` + 1)2`(K ∨ 1)2j−k+1 ‖x− y‖∞ . (B.4)

Proof of Lemma 11 The inequality (B.3) follows from an easy induction in k. Indeed, if
k = i, Bi,i = σv(i) ◦Wi−1x, and

‖Bi,i‖∞ 6 (Kpi−1 + 1)2 6 (pi−1 + 1)2(K ∨ 1)2 .

Using ‖Bk,i‖∞ 6 (‖Bk−1,i‖∞ pk−1 + 1)2 completes the proof.
To prove (B.4), we use an induction in j. Assume that (B.4) holds for any k ∈

{1, . . . , N + 1} and j − 1 > k. Then

‖Aj,k(x)− Aj,k(y)‖∞ 6 pj ‖Bj,k(x)− Bj,k(y)‖∞
6 2pj ‖Aj−1,k(x)− Aj−1,k(y)‖∞

(
‖Aj−1,k(x)‖∞ ∨ ‖Aj−1,k(y)‖∞

)
6 2(pj + 1)(pj−1 + 1)

j−k∏
`=1

(pj−`−1 + 1)2`(K ∨ 1)2j−k×

‖Aj−1,k(x)− Aj−1,k(y)‖∞ ,
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and the statement follows from the elementary bound

‖Ak−1,k(x)− Ak−1,k(y)‖∞ 6 pk−1 ‖x− y‖∞ 6 pk−1 ‖x− y‖∞ (K ∨ 1) .

Proof of Lemma 2 Denote by A
(1)
j ,B

(1)
j ,A

(2)
j ,B

(2)
j the corresponding functions in (B.1).

Following (Schmidt-Hieber, 2020, Lemma 5), we write∥∥∥f (1)(x)− f (2)(x)
∥∥∥
∞

6
N+1∑
k=1

∥∥∥A
(1)
k+1 ◦ σv(1)k

◦W (1)
k−1 ◦ B

(2)
k−1(x)− A

(1)
k+1 ◦ σv(2)k

◦W (2)
k−1 ◦ B

(2)
k−1(x)

∥∥∥
∞
.

Due to Lemma 11, functions A
(1)
k+1 = A

(1)
L,k+1 are Lipshitz, and

∥∥∥f (1)(x)− f (2)(x)
∥∥∥
∞

6
N+1∑
k=1

2N−k
N−k∏
`=0

(
pN−` + 1

)2` (∥∥∥B
(2)
k (x)

∥∥∥
∞
∨ 1
)2N−k

×∥∥∥σ
v
(1)
k

◦W (1)
k−1 ◦ B

(2)
k−1(x)− σ

v
(2)
k

◦W (2)
k−1 ◦ B

(2)
k−1(x)

∥∥∥
∞

Note that∥∥∥σ
v
(1)
k

◦W (1)
k−1 ◦ B

(2)
k−1(x)− σ

v
(2)
k

◦W (2)
k−1 ◦ B

(2)
k−1(x)

∥∥∥
∞

6 ε(pk−1 + 1)
(∥∥∥B

(2)
k−1(x)

∥∥∥
∞
∨ 1
)
×(∥∥∥W (1)

k−1 ◦ B
(2)
k−1(x)

∥∥∥
∞

+ 1 ∨
∥∥∥B

(2)
k (x)

∥∥∥
∞

+ 1

)
6 2ε(pk−1 + 1)2

(∥∥∥B
(2)
k−1(x)

∥∥∥
∞
∨ 1
)2

.

Combining the previous bounds and (B.3) yields∥∥∥f (1)(x)− f (2)(x)
∥∥∥
∞

6 ε
N+1∑
k=1

2N−k+1

{
N−k∏
`=0

(
pN−` + 1

)2`}(
pk−1 + 1

)2(∥∥∥B
(2)
k (x)

∥∥∥2

∞
∨ 1

)2N−k

6 ε(N + 1)2N
N∏
`=0

(p` + 1)2N ,

and the statement follows.

B.2 Proof of Lemma 4

Note that for f(x) defined in (B.2), it holds

∇f(x) = 2NWN

N∏
`=1

{diag [AN−`,1(x) + vN−`+1 ∨ 0]WN−`} . (B.5)

Let us define for j ∈ {0, . . . , N − 1} and i ∈ {1, 2} the quantities

∆
(i)
j = Aj,1(x) + v

(i)
j+1 ∨ 0 .
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Note that ∆
(1)
j ,∆

(2)
j ∈ Rpj+1 . With the triangular inequality,

∥∥∥∇f (1)(x)−∇f (2)(x)
∥∥∥
∞

6 2N

∥∥∥∥∥(W (1)
N −W (2)

N

) N∏
`=1

{
diag

[
∆

(1)
N−`

]
W

(1)
N−`

}∥∥∥∥∥
∞

+ 2N (pN + 1)×

N∑
k=1

∥∥∥∥∥
k−1∏
`=1

{
diag

[
∆

(1)
N−`

]
W

(1)
N−`

}(
diag

[
∆

(1)
k

]
W

(1)
k − diag

[
∆

(2)
k

]
W

(2)
k

) N∏
`=k+1

{
diag

[
∆

(2)
N−`

]
W

(2)
N−`

}∥∥∥∥∥
∞

Proceeding as in Lemma 2, we obtain∥∥∥diag
[
∆

(1)
k

]
W

(1)
k − diag

[
∆

(2)
k

]
W

(2)
k

∥∥∥
∞

6 ε(k + 1)2k
k∏
`=0

(p` + 1)2k + (pk + 1)
∥∥∥∆

(1)
k

∥∥∥
∞

6 2ε(k + 1)2k
k∏
`=0

(p` + 1)2k ,

and, similarly, ∥∥∥diag
[
∆

(1)
N−`

]
W

(1)
N−`

∥∥∥
∞

6
N−`∏
j=1

(pN−j + 1)2j .

Combining the previous bounds, we obtain∥∥∥∇f (1)(x)−∇f (2)(x)
∥∥∥
∞

6 ε2N
N∏
`=0

(p` + 1)2N+1 + εN(N + 1)2N
N∏
`=0

(p` + 1)2N+1+1 ,

and the statement follows.

Appendix C. Proofs of the auxiliary results

C.1 Proof of Lemma 1

Let D∗(x) = p∗(x)/(p∗(x) + pw(x)). By the definition of JS(pw, p
∗) and L(w, θ), it holds

that

JS(pw, p
∗)− log 2− L(w, θ) =

1

2

∫ [
p∗(x) log

(
D∗(x)

Dθ(x)

)
+ pw log

(
1−D∗(x)

1−Dθ(x)

)]
dµ

=

∫ [
D∗(x) log

(
D∗(x)

Dθ(x)

)
+ (1−D∗(x)) log

(
1−D∗(x)

1−Dθ(x)

)]
p∗(x) + pw(x)

2
dµ.

Let a ∈ [Dmin, Dmax] and introduce a function

ha(v) = (a+ v) log
(

1 +
v

a

)
+ (1− a− v) log

(
1− v

1− a

)
.

Then it holds that

JS(pw, p
∗)− log 2− L(w, θ) =

∫
hDθ(x)(D

∗(x)−Dθ(x))
p∗(x) + pw(x)

2
dµ.
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Fix any a ∈ [Dmin, Dmax] and prove that ha(v) > v2 for any v ∈ [−a, 1 − a]. For this
purpose, compute the derivatives of ha(v):

h′a(v) = log
(

1 +
v

a

)
− log

(
1− v

1− a

)
,

h′′a(v) =
1

(a+ v)(1− a− v)
> 4 for all v ∈ (−a, 1− a).

This yields that

ha(v) > ha(0) + h′a(0)v + 2v2 = 2v2 for all v ∈ [−a, 1− a].

Hence,

JS(pw, p
∗)− log 2− L(w, θ) =

∫
hDθ(x)(D

∗(x)−Dθ(x))
p∗(x) + pw(x)

2
dµ

>
∫

(D∗(x)−Dθ(x))2(p∗(x) + pw(x)) dµ.

=

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L2(p∗+pw)

.

To prove (3.5), it is enough to show that the following inequality holds for any a ∈
[Dmin, Dmax] and any v ∈ [−a, 1− a]:

ha(v) 6
C2
av

2

(Ca − 1)2a(1− a)
, where Ca = 1 +

√
a

(1− a) log(1/(1− a))
∧ 1− a
a log(1/a)

.

Then it is easy to observe that

Ca > C3.6 > 1 and a(1− a) > Dmin(1−Dmax) for all a ∈ [Dmin, Dmax],

which yields

ha(v) 6
C2

3.6v
2

(C3.6 − 1)2Dmin(1−Dmax)
for all a ∈ [Dmin, Dmax] and v ∈ [−a, 1− a].

Hence,

JS(pw, p
∗)− log 2− L(w, θ) =

∫
hDθ(x)(D

∗(x)−Dθ(x))
p∗(x) + pw(x)

2
dµ

6
C2

3.6

(C3.6 − 1)2Dmin(1−Dmax)

∫
(D∗(x)−Dθ(x))2(p∗(x) + pw(x)) dµ

=
C2

3.6

(C3.6 − 1)2Dmin(1−Dmax)

∥∥∥∥ p∗

p∗ + pw
−Dθ

∥∥∥∥2

L2(p∗+pw)

.

Note that, for any v ∈ [−a/Ca, (1− a)/Ca], we have

h′′a(v) =
1

(a+ v)(1− a− v)
6

1

(1− 1/Ca)2a(1− a)
.
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Since ha(0) = h′a(0) = 0, this yields that

ha(v) 6
C2
av

2

2(Ca − 1)2a(1− a)
.

Fix any v ∈ [−a,−a/Ca] and consider ha(v). Since ha decreases on [−a, 0], we obtain that

ha(v) 6 ha(−a) = log
1

1− a
.

On the other hand, if v ∈ [−a,−a/Ca], then v2 > a2/C2
a . Taking into account that

(Ca − 1)2 6
a

(1− a) log(1/(1− a))

due to the definition of Ca, we obtain that, for any v ∈ [−a,−a/Ca], the following inequality
holds:

C2
av

2

(Ca − 1)2a(1− a)
>

a

(Ca − 1)2(1− a)
> log

1

1− a
> ha(v).

Similarly, since ha increases on [0, 1− a], it holds that

ha(v) 6 ha(1− a) = log
1

a
for all v ∈

[
1− a
Ca

, 1− a
]
.

At the same time, v2 > (1− a)2/C2
a for any v ∈ [(1− a)/Ca, 1− a]. Using the inequality

(Ca − 1)2 6
1− a

a log(1/a)
,

which follows from the definition of Ca, we obtain that

C2
av

2

(Ca − 1)2a(1− a)
>

1− a
a(Ca − 1)2

> log
1

a
> ha(v), for all v ∈

[
1− a
Ca

, 1− a
]
,

and the proof is finished.

C.2 Proof of Lemma 5

Proof of Lemma 5 The proof of the lemma is quite long, so we split it in several steps.

Step 1: Bernstein’s bound. Let us recall that

Ln(w, θ) =
1

2n

n∑
i=1

logDθ(Xi) +
1

2n

n∑
i=1

log(1−Dθ(gw(Yi))),

and L(w, θ) is the expectation of Ln(w, θ). Assumption AD yields that the absolute values
of the random variables logDθ(Xi) and log(1 − Dθ(gw(Yi)) do not exceed 3C5.3/2, where
the constant C5.3 is given by (5.3). Then the Bernstein inequality implies that, for any
δ ∈ (0, 1), with probability at least 1− δ, we have

|Ln(w, θ)− L(w, θ)| 6
√

2Var[Ln(w, θ)] log(2/δ) +
2CD log(2/δ)

3n
. (C.1)
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It remains to prove that

4nVar[Ln(w, θ)] 6 C5.2(9 JS(pw, p
∗) + ∆(w, θ)).

Step 2a: bounding the variance. The variance of Ln(w, θ∗w) satisfies the inequality

4nVar[Ln(w, θ)] = Var
[

logDθ(Xi)
]

+ Var
[

log(1−Dθ(gw(Yi)))
]

= Var
[

log(2Dθ(Xi))
]

+ Var
[

log(2− 2Dθ(gw(Yi)))
]

6 E log2(2Dθ(X1)) + log2(2− 2Dθ(gw(Y1)))

=

∫ [
p∗(x) log2(2Dθ(x)) + pw(x) log2(2− 2Dθ(x))

]
dµ.

Note that ∫ [
p∗(x) log2(2Dθ(x)) + pw(x) log2(2− 2Dθ(x))

]
dµ

=

∫
p∗(x)

p∗(x) + pw(x)
log2(2Dθ(x)) (p∗(x) + pw(x)) dµ

+
pw(x)

p∗(x) + pw(x)
log2(2− 2Dθ(x)) (p∗(x) + pw(x)) dµ

=

∫ [
p∗(x)

p∗(x) + pw(x)
− 1

2

]
log2(2Dθ(x))(p∗(x) + pw(x)) dµ (C.2)

+

∫ [
pw(x)

p∗(x) + pw(x)
− 1

2

]
log2(2− 2Dθ(x))(p∗(x) + pw(x)) dµ

+

∫ [
log2(2Dθ(x)) + log2(2− 2Dθ(x))

] p∗(x) + pw(x)

2
dµ.

Step 2b: bounding the variance, the first term. Consider the first term in the
right-hand side. The Cauchy-Schwarz inequality yields that∫ [

p∗(x)

p∗(x) + pw(x)
− 1

2

]
log2(2Dθ(x))(p∗(x) + pw(x)) dµ

6

∥∥∥∥ p∗

p∗ + pw
− 1

2

∥∥∥∥
L2(p∗+pw)

∥∥log2(2Dθ)
∥∥
L2(p∗+pw)

.

Applying Lemma 7, we obtain that∫ [
p∗(x)

p∗(x) + pw(x)
− 1

2

]
log2(2Dθ(x))(p∗(x) + pw(x)) dµ

6 2
√

JS(pw, p∗)
∥∥log2(2Dθ)

∥∥
L2(p∗+pw)

.

According to Assumption AD, Dθ(x) ∈ [Dmin, Dmax] ⊂ (0, 1). The map g(u) = log2(2u) is
convex on [Dmin, 1]. Thus, it holds that

g(u) 6 g(1/2) +
g(1)(u− 1/2)

1− 1/2
for all u ∈ [1/2, Dmax]
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and

g(u) 6 g(1/2) +
g(Dmin)(u− 1/2)

Dmin − 1/2
for all u ∈ [Dmin, 1/2].

This implies that

∥∥log2(2Dθ)
∥∥
L2(p∗+pw)

6

(
log2(2Dmin)

1/2−Dmin
∨ 2 log2 2

)∥∥∥∥Dθ −
1

2

∥∥∥∥
L2(p∗+pw)

.

Hence, we finally obtain that∫ [
p∗(x)

p∗(x) + pw(x)
− 1

2

]
log2(2Dθ(x))(p∗(x) + pw(x)) dµ

6 2

(
log2(2Dmin)

1/2−Dmin
∨ 2 log2 2

)√
JS(pw, p∗)

∥∥∥∥Dθ −
1

2

∥∥∥∥
L2(p∗+pw)

.

Step 2c: bounding the variance, the second term. For the second term in the
right-hand side of (C.2) we similarly have∫ [

pw(x)

p∗(x) + pw(x)
− 1

2

]
log2(2− 2Dθw(x))(p∗(x) + pw(x)) dµ

6 2

(
log2(2− 2Dmax)

Dmax − 1/2
∨ 2 log2 2

)√
JS(pw, p∗)

∥∥∥∥Dθ −
1

2

∥∥∥∥
L2(p∗+pw)

.

Step 2d: bounding the variance, the third term. It remains to bound∫ [
log2(2Dθ(x)) + log2(2− 2Dθ(x))

] p∗(x) + pw(x)

2
dµ.

Consider the function h(u) = log2(2u)+log2(2−2u), u ∈ [Dmin, Dmax]. It is easy to observe
that h(1/2) = 0, h′(1/2) = 0, and

h′′(u) =
2 log(e/(2u))

u2
+

2 log(e/(2− 2u))

(1− u)2
6

2 log(e/(2Dmin))

D2
min

+
2 log(e/(2− 2Dmax))

(1−Dmax)2
.

Hence, it holds that

h(u) 6

(
log(e/(2Dmin))

D2
min

+
log(e/(2− 2Dmax))

(1−Dmax)2

)
(u− 1/2)2 for all u ∈ [Dmin, Dmax],

and, therefore,∫ [
log2(2Dθ(x)) + log2(2− 2Dθ(x))

] p∗(x) + pw(x)

2
dµ

6

(
log(e/(2Dmin))

2D2
min

+
log(e/(2− 2Dmax))

2(1−Dmax)2

)∥∥∥∥Dθ −
1

2

∥∥∥∥2

L2(p∗+pw)

.
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Step 3: final part. Steps 2a–d yield that

4nVar[Ln(w, θ)] 6 2

(
log2(2Dmin)

1/2−Dmin
∨ 2 log2 2

)√
JS(pw, p∗)

∥∥∥∥Dθ −
1

2

∥∥∥∥
L2(p∗+pw)

+ 2

(
log2(2− 2Dmax)

Dmax − 1/2
∨ 2 log2 2

)√
JS(pw, p∗)

∥∥∥∥Dθw −
1

2

∥∥∥∥
L2(p∗+pw)

+

(
log(e/(2Dmin))

2D2
min

+
log(e/(2− 2Dmax))

2(1−Dmax)2

)∥∥∥∥Dθ −
1

2

∥∥∥∥2

L2(p∗+pw)

.

By the Cauchy-Schwarz inequality,

4nVar[Ln(w, θ)] 6 C5.2 JS(pw, p
∗) + C5.2

∥∥∥∥Dθ −
1

2

∥∥∥∥2

L2(p∗+pw)

,

where C5.2 is given by (5.2). Consider the norm ‖Dθ∗w − 1/2‖L2(p∗+pw). By the triangle
inequality, it holds that∥∥∥∥Dθ∗w −

1

2

∥∥∥∥
L2(p∗+pw)

6

∥∥∥∥Dθ∗w −
p∗

p∗ + pw

∥∥∥∥
L2(p∗+pw)

+

∥∥∥∥ p∗

p∗ + pw
− 1

2

∥∥∥∥
L2(p∗+pw)

.

Applying Lemma 1 and Lemma 7, we obtain that∥∥∥∥Dθ −
1

2

∥∥∥∥2

L2(p∗+pw)

6
(√

JS(pw, p∗)− log 2− L(w, θ) + 2
√

JS(pw, p∗)
)2

6
(√

∆(w, θ) + 2
√

JS(pw, p∗)
)2

6 ∆(w, θ) + 8 JS(pw, p
∗).

Then it holds that

4nVar[Ln(w, θ)] 6 9C5.2 JS(pw, p
∗) + C5.2∆(w, θ),

and the claim of the lemma follows.

C.3 Proof of Lemma 6

Since the statement of the lemma contains four inequalities, we split the proof in several
steps for the sake of clarity.

Step 1. Prove that, for any w1, w2 ∈W and θ ∈ Θ, we have

|Ln(w1, θ)− Ln(w2, θ)| 6
LGLX‖w1 − w2‖∞

2− 2Dmax
almost surely.

It holds that

Ln(w1, θ)− Ln(w2, θ) =
1

2n

n∑
i=1

log
1−Dθ(gw1(Yi))

1−Dθ(gw2(Yi))
.
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Since the map x 7→ log(1− x) is Lipschitz on [Dmin, Dmax] with the constant 1/(1−Dmax),
Assumption AD yields that

|Ln(w1, θ)− Ln(w2, θ)| 6
1

2n

n∑
i=1

|Dθ(gw1(Yi))−Dθ(gw2(Yi))|
1−Dmax

6
1

2n

n∑
i=1

LX ‖gw1(Yi)− gw2(Yi)‖
1−Dmax

.

Due to Assumption AG, we have

|Ln(w1, θ)− Ln(w2, θ)| 6
LGLX‖w1 − w2‖∞

2− 2Dmax
almost surely.

Step 2. Let us show that, for any w ∈W and θ1, θ2 ∈ Θ, we have

|Ln(w, θ1)− Ln(w, θ2)| 6 LΘ‖θ1 − θ2‖∞
Dmin ∧ (1−Dmax)

almost surely.

It holds that

Ln(w, θ1)− Ln(w, θ2) =
1

2n

n∑
i=1

log
Dθ1(Xi)

Dθ2(Xi)
+

1

2n

n∑
i=1

log
1−Dθ1(gw(Yi))

1−Dθ2(gw(Yi))

The maps x 7→ log x and x 7→ log(1 − x) are Lipschitz on [Dmin, Dmax] with the constants
1/Dmin and 1/(1−Dmax), respectively. Hence, we have

|Ln(w, θ1)− Ln(w, θ2)| 6 1

2n

n∑
i=1

|Dθ1(Xi)−Dθ2(Xi)|
Dmin

+
1

2n

n∑
i=1

|Dθ1(Xi)−Dθ2(Xi)|
1−Dmax

.

Then, due to Assumption AD, it holds that

|Ln(w, θ1)− Ln(w, θ2)| 6 LΘ‖θ1 − θ2‖∞
2Dmin

+
LΘ‖θ1 − θ2‖∞

2− 2Dmax
6

LΘ‖θ1 − θ2‖∞
Dmin ∧ (1−Dmax)

almost surely.

Step 3. Finally, due to the Jensen inequality, it holds that

|L(w1, θ)− L(w2, θ)| = |ELn(w1, θ)− ELn(w2, θ)|
6 E |Ln(w1, θ)− Ln(w2, θ)|

6
LGLX‖w1 − w2‖∞

2− 2Dmax

and, similarly,

|L(w, θ1)− L(w, θ2)| = |ELn(w, θ1)− ELn(w, θ2)|
6 E |Ln(w, θ1)− Ln(w, θ2)|

6
LΘ‖θ1 − θ2‖∞

Dmin ∧ (1−Dmax)
.
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C.4 Proof of Lemma 7

Let h(u) = (1+u) log(1+u)+(1−u) log(1−u), u ∈ [−1, 1], and rewrite the Jensen-Shannon
divergence between p and q in the following form:

JS(p, q) =
1

2

[∫
log

(
2p(x)

p(x) + q(x)

)
p(x)dµ+

∫
log

2q(x)

p(x) + q(x)
q(x)dµ

]
=

∫ [
2p(x)

p(x) + q(x)
log

2p(x)

p(x) + q(x)
+

2q(x)

p(x) + q(x)
log

2q(x)

p(x) + q(x)

]
p(x) + q(x)

4
dµ

=

∫
h

(
p(x)− q(x)

p(x) + q(x)

)
p(x) + q(x)

4
dµ.

Note that the function h(u)/u2 is even and increasing on [0, 1]. Hence, it attains its max-
imum on [−1, 1] at the points u = −1 and u = 1 and its minimum at u = 0. This yields
that

1 = lim
v→0

h(v)

v2
6
h(u)

u2
6
h(1)

12
= 2 log 2 for all u ∈ [−1, 1].

Since (p(x)− q(x))/(p(x) + q(x)) ∈ [−1, 1] for all x from supp(p) ∪ supp(q), it holds that

1

4

∫
(p∗(x)− pw(x))2

p∗(x) + pw(x)
dµ 6 JS(pw, p

∗) 6
log 2

2

∫
(p∗(x)− pw(x))2

p∗(x) + pw(x)
dµ.

C.5 Proof of Corollary 1

Fix any u and v from W. The fact that the square root of the JS-divergence is a metric
(see, e.g., (Endres and Schindelin, 2003)) implies that∣∣∣√JS(pu, p∗)−

√
JS(pv, p∗)

∣∣∣ 6√JS(pu, pv)

Then the claim of the corollary follows from the inequalities

JS(pu, pv) 6
log 2

2

∫
(pu(x)− pv(x))2

pu(x) + pv(x)
dµ

6
log 2

2

∫
|pu(x)− pv(x)| dµ

6
log 2

2
‖pu − pv‖1/2L∞(X)

∫
|pu(x)− pv(x)|1/2 dµ

6
log 2

2
‖pu − pv‖1/2L∞(X)

√∫
|pu(x)− pv(x)|dµ

6
Lp log 2√

2
‖u− v‖1/2∞ < Lp‖u− v‖1/2∞ .

where we used Lemma 7 and Assumption Ap.
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Appendix D. Proofs related to Theorem 3

D.1 Proof of Lemma 9

The main ingredient we use is the multivariate van Trees inequality (see (Van Trees, 1968),
p. 72, and (Gill and Levit, 1995)). Choose a density λ of a prior distribution on the set of
parameters {θ ∈ RM : ‖θ‖ 6 h} of the form

λ(θ) =
1

hM
λ0

(
θ

h

)
,

where λ0 is a smooth density supported on B(0, 1) ⊂ RM . We write Eλ for the expectation
with respect to the density λ. Then, for any estimate θ̂, it holds that

sup
‖θ‖6h

Eθ‖θ̂ − θ‖2 > EλEθ‖θ̂ − θ‖2 >
M2

n
M∑
j=1

EλIj(θ) + J (λ)

, (D.1)

where

Ij(θ) = Eθ

(
∂ log pgθ(X)

∂θj

)2

is the Fischer information of one observation, pgθ(x) is the density of X, and

J (λ) =

∫
‖θ‖6h

M∑
j=1

(
∂λ(θ)

∂θj

)2 dθ

λ(θ)
.

First, let us bound J (λ).

J (λ) =
M∑
j=1

∫
‖θ‖6h

1

h2M

(
∂λ0(θ/h)

∂θj

)2 hM

λ0(θ/h)
dθ

Substituting θ = hν, ν ∈ B(0, 1), we obtain

J (λ) =
M∑
j=1

∫
‖ν‖61

h−2

(
∂λ0(ν)

∂νj

)2 dν

λ0(ν)
.

Since
∫

‖ν‖61

(
∂λ0(ν)
∂νj

)2
dν

λ0(ν) is finite, we conclude that

J (λ) .
M

h2
.

Now, we focus on Ij(θ):

log pgθ(x) = log det

Id×d + hβ−1
M∑
j=1

θj∇2ϕ

(
x− xj
h

) .
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For any j ∈ {1, . . . ,M} the partial derivative of log pgθ with respect to θj is equal to

∂ log pgθ(x)

∂θj
= hβ−1Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

))
,

where

Aθ(x) = Id×d +
M∑
j=1

θjh
β−1∇2ϕ

(
x− xj
h

)
.

Consider ∣∣∣∣Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

))∣∣∣∣
=

∣∣∣∣∣∣Tr

(Id×d + hβ−1
M∑
k=1

θk∇2ϕ

(
x− xk
h

))−1

∇2ϕ

(
x− xj
h

)∣∣∣∣∣∣ .
If x /∈ B(xj , h) then ∇2ϕ((x − xj)/h) = Od×d and, consequently, Tr(Aθ(x)−1∇2ϕ((x −
xj)/h)) = 0. Otherwise, we have ∇2ϕ((x− xk)/h) = Od×d for all k 6= j. Hence,∣∣∣∣∣∣Tr

(Id×d + hβ−1
M∑
k=1

θk∇2ϕ

(
x− xk
h

))−1

∇2ϕ

(
x− xj
h

)∣∣∣∣∣∣
=

∣∣∣∣∣Tr

((
Id×d + hβ−1θj∇2ϕ

(
x− xj
h

))−1

∇2ϕ

(
x− xj
h

))∣∣∣∣∣
=

∣∣∣∣∣Tr

( ∞∑
k=0

(hβ−1θj)
k

(
∇2ϕ

(
x− xj
h

))k+1
)∣∣∣∣∣

.

∣∣∣∣Tr

(
∇2ϕ

(
x− xj
h

))∣∣∣∣ . d.

Here we used the fact that hβ−1|θj | 6 hβ is small, provided that the sample size is large
enough. Consider

Ij(θ) =

∫
X

(
hβ−1Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

)))2

pgθ(x)dx.

Since ϕ is supported on B(0, 1), the last expression is equal to

Ij(θ) = h2β−2

∫
B(0,h)

(
Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

)))2

pgθ(x)dx

. h2β−2d2

∫
B(0,h)

pgθ(x)dx . h2β+d−2d2.

Here the last inequality follows from (5.21) and Lemma 8. Thus, it holds that

sup
‖θ‖6h

Eθ‖θ̂ − θ‖2 > EλEθ‖θ̂ − θ‖2 >
M2

n
M∑
j=1

EλIj(θ) + J (λ)

&
Mh2

nh2β+dd2 + 1
.
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D.2 Proof of Lemma 10

Recall that

log pgθ(x) = log det

Id×d + hβ−1
M∑
j=1

θj∇2ϕ

(
x− xj
h

) .

Then, for any j ∈ {1, . . . ,M} the partial derivative of log pgθ with respect to θj is equal to

∂ log pgθ(x)

∂θj
= hβ−1Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

))
,

where

Aθ(x) = Id×d +
M∑
j=1

θjh
β−1∇2ϕ

(
x− xj
h

)
.

Since, for any j ∈ {1, . . . , J}, ψj is supported on B(0, 1) and {x1, . . . , xM} is a (2h)-packing
on X, then, for any j ∈ {1, . . . , J} and for any x ∈ B(xj , h/2),

Aθ(x) = Id×d + θjh
β−1∇2ϕ

(
x− xj
h

)
.

Consider Tr
(
Aθ(x)−1∇2ϕ ((x− xj)/h)

)
. We recall that, by the construction,

−∇2ϕ(0) � Id×d.

Since ϕ ∈ Hβ+2(X, L), β > 1 and r0 is such that r0 6 h/(2Hϕ), we have

−∇2ϕ

(
x− xj
h

)
� 0.5Id×d, for all x ∈ B(xj , r0).

Taking into account that ∥∥∥∥∇2ϕ

(
x− xj
h

)∥∥∥∥ 6 Hϕ,

we obtain ∥∥∥∥θjhβ−1∇2ϕ

(
x− xj
h

)∥∥∥∥ 6 Hϕh
β < 1 for any h < H−1/β

ϕ .

Then (
Id×d + θjh

β−1∇g0(g−1
0 (x))∇ψj

(
x− xj
h

))−1

=

∞∑
k=0

θkj h
kβ−k

(
−∇g0(g−1

0 (x))∇ψj
(
x− xj
h

))k
.
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This implies

− Tr

((
Id×d + θjh

β−1∇2ϕ

(
x− xj
h

))−1

∇2ϕ

(
x− xj
h

))

= Tr

( ∞∑
k=0

θkj h
kβ−k

(
−∇2ϕ

(
x− xj
h

))k+1
)

>
∞∑
k=0

θkj h
kβ−k

2k+1
Tr(Id×d) > d/2.

Then∣∣∣∣∂ log pgθ(x)

∂θj

∣∣∣∣ = hβ−1

∣∣∣∣Tr

(
Aθ(x)−1∇2ϕ

(
x− xj
h

))∣∣∣∣ > hβ−1d/2 for all x ∈ B(xj , r0).
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