
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHSPA: SELF-SUPERVISED GRAPH SPARSIFICA-
TION FOR ROBUST GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph sparsification has emerged as a promising approach to improve efficiency
and remove redundant or noisy edges in large-scale graphs. However, existing
methods often rely on task-specific labels, limiting their applicability in label-
scarce scenarios, and they rarely address the residual noise that remains after
sparsification. To address this issue, we aim to jointly consider both sparsity and
robustness. In this work, we present GRAPHSPA, a self-supervised graph spar-
sification framework that constructs compact yet informative subgraphs without
requiring labels, while explicitly mitigating residual noise. We formulate sparsifi-
cation as a constrained optimization problem in which flatness is incorporated as
part of the objective. Specifically, we address this problem by leveraging an aug-
mented Lagrangian scheme to progressively satisfy the target sparsity. We also
train the encoder to be robust to perturbations so that optimization is guided to-
ward flatter regions of the loss landscape, reducing sensitivity to residual noise,
and improving generalization. We theoretically demonstrate that this framework
guarantees stable convergence while addressing both sparsity and robustness. Ex-
tensive experiments on benchmark datasets show that GRAPHSPA consistently
outperforms baselines across various sparsity ratios and preserves cluster struc-
tures in t-SNE visualizations. Notably, it demonstrates strong and consistent per-
formance on both large-scale and heterophilic datasets, validating its applicability
in real-world scenarios. These results highlight GRAPHSPA as a principled and re-
liable framework for graph sparsification without labels and under residual noise.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success in a wide range of graph learn-
ing tasks, including node classification (Kipf & Welling, 2016), link prediction (Zhang & Chen,
2018), recommender systems (Ying et al., 2018), and social network modeling (Qiu et al., 2018).
These advances demonstrate the strong potential of GNNs for analyzing complex relational data, yet
scaling them to large real-world graphs remains challenging. As graph size increases, computational
and memory costs grow rapidly, and real-world graphs often contain redundant or spurious edges (Li
et al., 2024; Satuluri & Parthasarathy, 2011) that propagate misleading signals and degrade represen-
tation quality. Graph sparsification has emerged as a promising approach to mitigate these issues by
removing redundant or noisy edges, thereby reducing overhead and yielding cleaner structural rep-
resentations (Batson et al., 2013; Zheng et al., 2020). However, supervised sparsification methods
rely on task-specific labels (Chen et al., 2021; Li et al., 2019), limiting their applicability in label-
free scenarios such as recommender systems or social networks (Sobolevsky & Belyi, 2022; Guo
et al., 2024). Meanwhile, unsupervised sparsification methods based on different structural prop-
erties have also been extensively explored, including path-based sparsification (Elkin & Neiman,
2017), topology-preserving sparsification (Meng et al., 2024; Loukas, 2019), and spectral sparsifi-
cation based on effective resistance (Liu & Yu, 2022). However, these approaches rely on predefined
structural properties and tailor sparsification toward specific notions of importance. As a result, they
may preserve edges aligned with the chosen property while overlooking task-relevant information,
and they do not explicitly address the residual noise that inevitably remains after sparsification.

Alongside reliance on labels, residual noise from sparsification poses another fundamental chal-
lenge. Since sparsification simplifies the graph structure, the diversity of propagation paths is re-
duced, making models more vulnerable to noisy edges (Dong & Kluger, 2023). With fewer effective

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

signals, over-parameterized GNNs tend to overfit and become more sensitive to residual noise (Zhou
et al., 2018). This issue is particularly acute in domains such as social networks, where relationships
themselves act as supervision signals. Spurious edges introduced by fake accounts or ephemeral
connections distort the learning process and undermine downstream tasks such as community detec-
tion or node prediction (Wang et al., 2018). Addressing this challenge requires new sparsification
methods that can effectively mitigate residual noise while operating without labels.

In this paper, we propose GRAPHSPA, a self-supervised graph sparsification framework designed
to address both the reliance on labels and the vulnerability to residual noise. To overcome label
dependence, GRAPHSPA explores diverse subgraph combinations and learns edge importance by
comparing the mutual information shared between each sampled subgraph and the original graph.
Each edge is modeled as a Bernoulli random variable, enabling probabilistic subgraph sampling,
and the discrete edge-selection process is relaxed into continuous probabilities to allow gradient
propagation. This formulation encourages broad exploration of structural variants early in training
and gradually shifts focus toward meaningful structures, enabling the model to identify informa-
tive sparsified graphs without labels. Additionally, to mitigate residual noise after sparsification,
GRAPHSPA applies Sharpness-Aware Minimization (SAM) (Foret et al., 2021) to the encoder, guid-
ing optimization toward flatter minima through parameter perturbation. Although SAM is known for
improving robustness to noise, sharpness-aware approaches remain underexplored in the context of
sparsification. We formulate sparsification as a constrained optimization problem in which flatness
is explicitly encouraged as an objective. To realize this formulation, GRAPHSPA adopts an aug-
mented Lagrangian scheme (Boyd et al., 2011), enabling progressive rather than one-shot sparsity
enforcement while guaranteeing convergence under both sparsity and robustness considerations.

We validate the effectiveness of GRAPHSPA through comprehensive experiments across a wide
range of graph scenarios. On standard benchmark datasets such as Cora, Citeseer, and Pubmed,
GRAPHSPA consistently outperforms existing baselines across different edge ratios while preserv-
ing meaningful structural information. Beyond these homophilous citation networks, GRAPHSPA
also achieves strong performance on large-scale graphs such as Reddit and ogbn-arxiv as well as
on heterophilic datasets, further demonstrating its scalability across diverse graph structures. In
addition, robustness evaluations show that the learned representations remain stable even when vari-
ous types of structural noise, including random noise, adversarial noise, and particularly homophily
breaking noise, are injected after sparsification. These results indicate that GRAPHSPA is a robust
and scalable sparsification framework suitable for label scarce graph learning settings.

Our main contributions are summarized as follows:

• We propose GRAPHSPA, a self-supervised graph sparsification framework that removes
the reliance on labels and, to the best of our knowledge, is the first to explicitly address the
harmful effect of residual noisy edges that remain after sparsification.

• We propose a sparsification framework that unifies augmented Lagrangian based con-
strained optimization with flatness-aware training, achieving both sparsity and robustness
under provable convergence guarantees.

• We conduct extensive experiments on multiple benchmarks, demonstrating that
GRAPHSPA consistently outperforms baselines across edge ratios, preserves structural in-
tegrity, and achieves strong generalization under noisy conditions.

2 RELATED WORKS

Graph Self-Supervised Learning (Graph SSL) has emerged as a powerful paradigm in graph
neural network (GNN) research, attracting significant attention from both academia and industry. In
graph SSL, the model is trained through well-designed auxiliary tasks, where supervisory signals are
automatically generated from the data without requiring manual labels (Li et al., 2022b; Liu et al.,
2021). Among various approaches, contrastive learning has proven to be one of the most successful
strategies for graph data (Velickovic et al., 2019; Xu et al., 2021; Zeng & Xie, 2021). Its key idea
is to maximize the similarity between representations of two different augmented views of the same
graph, typically by maximizing their mutual information (van den Oord et al., 2018). Such methods
have achieved state-of-the-art performance in diverse graph-based downstream tasks, but research
that combines graph SSL with graph sparsification remains relatively limited.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Graph Sparsification aims to construct a sparser graph by removing a subset of edges from the
original graph. This reduces storage cost, accelerates GNN training and inference, and alleviates the
impact of redundant or noisy edges. However, many existing sparsification methods rely heavily on
sufficient label information, which is often scarce in real-world scenarios such as recommender sys-
tems or social networks (Yang et al., 2016; Hu et al., 2020). In label-scarce settings, sparsification is
typically performed by preserving certain structural properties of the graph, such as degree distribu-
tion, local topology, path distance, or spectral characteristics. However, the edges that are important
for downstream tasks vary significantly across applications, and sparsifying the graph based on a sin-
gle structural property cannot capture such diversity. As a result, important edges may be removed
or irrelevant ones retained, limiting the generality of property-preserving sparsifiers. Furthermore,
existing studies have shown that GNNs are highly vulnerable to structural noise (Li et al., 2022a) or
intentionally injected adversarial perturbations (Chen et al., 2020). Remaining noisy edges can even
distort node representations and severely degrade the generalization performance of GNNs (Zügner
et al., 2018). Prior work also reports that conventional sparsification methods often fail to consis-
tently eliminate such harmful edges (Chen et al., 2021). Therefore, to obtain sparsified graphs that
remain reliable in realistic environments, it is essential to develop a new sparsification strategy that
does not depend on predefined structural properties while effectively reducing the model’s sensitivity
to remaining noisy edges in practice, particularly under challenging conditions.

3 PRELIMINARIES

To ground our method, we first formalize the problem of graph sparsification and review the prin-
ciple of flatness-aware optimization. These preliminaries establish the foundation for GRAPHSPA,
which integrates self-supervised sparsification with flatness-aware training to address residual noise.

3.1 PROBLEM SETUP

We begin by representing an undirected input graph G = (V,E), where V is the set of N vertices
and E is the set of edges. The graph structure is described by the adjacency matrix A ∈ RN×N ,
where A[i, j] = 1 if (i, j) ∈ E and 0 otherwise. Each vertex v ∈ V is associated with a feature
vector xv ∈ RF , and the feature matrix is denoted as X ∈ RN×F .

Given (A,X), GNN fθ learns node representations by iteratively aggregating information from
neighbors across layers. At the l-th layer, the representation of node v is updated as:

h(l+1)
v = ψ

(
h(l)v , ϕ{h(l)u | u ∈ Nv}

)
, (1)

where ϕ denotes an aggregation function over neighbors, ψ combines the previous representation of
v with the aggregated messages, and h(0)v = xv is the initial representation.

The goal of graph sparsification is to learn a function

P : G→ Gs, (2)

whereGs ⊆ G is a sparsified subgraph that preserves as much informative structure ofG as possible.
Formally, Gs = (V,Es) is defined by an adjacency matrix As ∈ {0, 1}|E|, where As[i, j] = 1 if the
edge (i, j) ∈ Es is kept and 0 otherwise. An edge retention ratio r ∈ (0, 1) controls the proportion
of edges retained, and Gs keeps r% of the original edges. In the self-supervised setting, no label
information such as node labels is available. Instead, the sparsification mechanism has to identify
and retain informative edges without supervision.

3.2 SHARPNESS-AWARE MINIMIZATION

Sharpness-Aware Minimization (SAM) aims to find loss minima that are not only high-performing
but also insensitive to parameter perturbations, thereby improving generalization and robustness
(Foret et al., 2021). Formally, SAM solves the following min–max optimization problem:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (3)

where L(θ) is the training loss for parameters θ, and ϵ denotes parameter perturbations within an ℓp
ball of radius ρ, which determines the maximum perturbation size. The inner maximization seeks the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

worst-case performance under perturbations, while the outer minimization finds parameters robust
to such perturbations. To efficiently approximate the inner maximization, SAM uses a first-order
Taylor expansion. The perturbation that maximally increases the loss is estimated as:

ϵ̂ = ρ · ∇θL(θ)
∥∇θL(θ)∥2

≈ arg max
∥ϵ∥p≤ρ

L(θ + ϵ), (4)

At training step t, SAM is implemented via the following iterative process:

ϵt = ∇θL(θt), ϵ̂t = ρ · ϵt
∥ϵt∥2

, ωt = ∇θL(θt + ϵ̂t), θt+1 = θt − η · ωt, (5)

where ϵt is the perturbation gradient, ϵ̂t is the normalized perturbation within the ρ-ball, ωt is the
updating gradient evaluated at the perturbed parameters, and η is the learning rate. By updating pa-
rameters using gradients computed at perturbed weights, SAM explicitly encourages convergence to
flat minima, where the loss landscape varies smoothly under small perturbations, thereby improving
generalization and robustness across diverse domains (Foret et al., 2021; Baek et al., 2024).

4 GRAPHSPA

In this section, we introduce GRAPHSPA, a self-supervised graph sparsification framework that ex-
plicitly addresses residual noise while preserving the structural information of the original graph.
GRAPHSPA formulates sparsification with a target edge budget as a constrained optimization prob-
lem. Instead of relying on labels, each edge is modeled as a differentiable Bernoulli random variable,
and the loss is defined as the mutual information between the sampled subgraph and the original
graph. By maximizing this objective, the framework learns edge importance scores and identifies
particularly informative structures. Based on these importance scores, we adopt an augmented La-
grangian approach with convergence guarantees to gradually impose sparsity during optimization,
rather than removing edges in a one-shot manner. Moreover, GRAPHSPA further integrates flatness-
aware training into the sparsification process to optimize the encoder in a way that effectively reduces
sensitivity to residual noise, thereby ensuring robust generalization even without labels.

4.1 PROBLEM FORMULATION

Self-Supervised Objective. We adopt a self-supervised strategy to preserve the essential informa-
tion of the original graph G. Specifically, we maximize the mutual information between the original
graph G and the sparsified graph Gs by adopting the InfoNCE loss (van den Oord et al., 2018).

Let node embeddings be H = fθ(X,As) obtained from a GNN encoder parameterized by θ, where
hv denotes the embedding of node v ∈ V . The pair (G,Gs) is treated as a positive sample, while
negative samples G̃s are generated by randomly dropping a portion of edges fromG. The contrastive
loss is then defined as

L = −
∑
v∈V

log
exp(sim(hGv , h

Gs
v)/β)∑

u∈V exp(sim(hGv , h
Gs
u)/β)

, (6)

where sim(·, ·) is a similarity function such as cosine similarity and β is a temperature parameter.
This loss encourages the embeddings fromGs to remain consistent with those fromG, ensuring that
sparsification retains informative edges without using labels.

Edge Importance Learning via Bernoulli Subgraph Sampling. At each training iteration, we
need to construct a sparsified subgraph to learn importance of individual egdes. A naive approach
would be to randomly sample edges from the original graph, which incurs an exponential search
space of 2|E| possible subgraphs and does not allow gradient propagation since edge selection is a
discrete 0-1 decision. To address this, we relax the binary mask into a continuous probability through
a learnable logit xij , which reflects the latent importance of edge (i, j). Through the Gumbel-
Softmax relaxation (Jang et al., 2017), we obtain a continuous importance score sij ∈ (0, 1):

sij = σ

(
log ξij − log(1− ξij) + xij

τ

)
, ξij ∼ U(0, 1), (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where σ(·) is the sigmoid function and τ > 0 is a temperature parameter. We initialize xij = 0 so
that all edges start with equal importance.

The importance score sij serves a dual role. It provides a differentiable relaxation of binary edge
selection, and it determines the probability that edge (i, j) is selected when constructing a subgraph.
Formally, each edge is sampled according to a Bernoulli distribution with selection probability sij :

As(i, j) ∼ Bernoulli(sij), ∀(i, j) ∈ E . (8)

In other words, edge (i, j) is included in the sampled subgraph with probability sij and excluded
otherwise. By interpreting sij as both a trainable relaxation and a sampling probability, the model
can generate subgraphs in a stochastic manner. This sampling mechanism enables exploration of
diverse structural variants, ensuring that even edges with low scores are occasionally selected. As
perfectly identifying and removing noisy edges is infeasible, this strategy prevents the model from
prematurely discarding potentially informative connections while still encouraging sparsification.

In practice, we start from a high temperature τ to encourage exploration of diverse subgraphs and
gradually decrease it following a cosine scheduling strategy. This allows the model to explore struc-
tural variants more freely in the early stage of training, while focusing on more deterministic edge
selection in the later stage as the sparsity constraint becomes progressively tighter. Details of the
ablation study on the temperature scheduling strategy are provided in Appendix D.5.

Flatness-Aware Training. To enhance robustness against residual noise and improve generaliza-
tion performance, we adopt a flatness-aware training strategy based on a min–max optimization.
Specifically, the sparsified subgraph Gs is sampled from the original graph G according to the im-
portance score sij . We then optimize the following objective:

min
θ

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ), (9)

where θ denotes the encoder parameters, ϵ is a perturbation vector, and ρ is the perturbation radius.
The inner maximization corresponds to injecting perturbations into the encoder parameters, which
simulates worst-case deviations during training and mimics the corrupted message passing caused
by noisy edges commonly observed in practical scenarios. The outer minimization then drives the
model to learn representations that remain stable under such perturbations, thereby improving gen-
eralization performance and reducing sensitivity to residual noise. In other words, the encoder is
guided toward flat minima that generalize well under residual noise conditions during training.

4.2 CONSTRAINED OPTIMIZATION

To mitigate the irreversible information loss caused by one-shot criterion-based sparsification, our
key idea is to gradually impose substantial sparsity onto the edges while maximally preserving
information during training through a simple iterative process designed for stability. However, the
restriction on the number of edges is inherently non-differentiable due to the discrete nature of the
ℓ0 constraint, which makes direct optimization infeasible. A standard approach for such constrained
problems is to employ Lagrangian duality or projected gradient descent. Yet, the discrete nature
of the ℓ0-norm makes Lagrangian duality infeasible, while projected gradient descent, despite its
efficiency, often struggles with highly non-convex objectives in neural network optimization.

To balance the smooth optimization of Lagrangian methods with the efficiency of projection, we
adopt an augmented Lagrangian relaxation inspired by ADMM (Boyd et al., 2011). To impose
sparsity, we introduce an auxiliary variable z with the equality constraint x = z, where z periodi-
cally stores the projected sparse solution. This leads to the following problem, where the sparsity
constraint ∥z∥0 ≤ r|E| ensures that only r × |E| edges are retained:

min
x,z

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z), s.t. x = z, (10)

where I∥z∥0≤r|E|(z) is the indicator function of the sparsity constraint:

I∥z∥0≤r|E|(z) :=

{
0, ∥z∥0 ≤ r|E|,
∞, otherwise.

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 GRAPHSPA

Require: Target edge ratio r, total iterations T , dual-update interval K, penalty parameter λ, per-
turbation radius ρ, temperature τ

1: Initialize x(0)
2: u = 0
3: for t = 0 in T − 1 do
4: for each edge (i, j) ∈ E do
5: ξij ∼ U(0, 1)

6: s
(t)
ij ← σ

(
log ξij − log(1− ξij) + x

(t)
ij

τ

)
7: A

(t)
s (i, j) ∼ Bernoulli(s(t)ij)

8: end for
9: Construct subgraph G(t)

s = (V,A
(t)
s)

10: if t mod K = 0 then
11: z(t+1) ← Proj∥z∥0≤r|E|

(
x(t) + u(t)

)
12: u(t+1) ← u(t) + x(t) − z(t+1)

13: else
14: z(t+1) ← z(t), u(t+1) ← u(t)

15: end if
16: x(t+1) ← x(t) − η(t)

(
∇xL(G(t)

s , θ(t)) + λ(x(t) − z(t) + u(t))
)

17: ϵ̂← ρ · ∇θL(G(t)
s , θ(t))

∥∇θL(G(t)
s , θ(t))∥2

18: θ(t+1) ← θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂)

19: end for
20: return Proj∥z∥0≤r|E|(x

(T))

To enforce x = z during optimization, we introduce a scaled dual variable u and add a quadratic
penalty term λ

2 ∥x− z∥
2
2, yielding the augmented Lagrangian relaxation:

max
u
,min

x,z

(
L(x, z, u) := max

∥ϵ∥p≤ρ
L(Gs, θ+ ϵ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2
2 +

λ
2 ∥x− z + u∥22

)
. (12)

Applying alternating minimization with respect to x and z, and dual ascent on u, we obtain the
following optimization subproblems:

xk+1, zk+1 = argmin
x,z

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z) +

λ
2 ∥x− z + uk∥22

)
,

uk+1 = argmax
u

λ
2 ∥xk+1 − zk+1 + u∥22 − λ

2 ∥u∥
2
2.

(13)

The z-update corresponds to a projection due to the indicator function, and the u-update reduces to
a simple dual ascent step. Therefore, the iterative scheme becomes:

xk+1 = argmin
x

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + λ

2 ∥x− zk + uk∥22
)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(14)

Since the x-minimization cannot be solved in closed form, we approximate it by a single gradient
descent step on the objective. This yields the practical update rules:

xk+1 = xk − η
(
∇xL(Gs, θk) + λ(xk − zk + uk)

)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Node classification accuracy under different graph sparsity ratios on GCN/GAT/GIN
across the Cora/Citeseer/Pubmed datasets. Results are reported as mean over five random seeds,
and statistical significance is validated with paired t-tests (p < 0.05).

During training, this procedure gradually aligns xwith z, allowing continuous optimization between
projection steps, and avoids the irreversible information loss of one-shot sparsification. In this way,
the framework achieves progressive sparsification that preserves essential structural information un-
der a hard ℓ0 constraint, while benefiting from the stability of augmented Lagrangian optimization.

4.3 NOISE-RESILIENT ENCODER OPTIMIZATION

While updating (x, z, u) with the augmented Lagrangian scheme, we simultaneously update the
model parameters θ using the same loss function L applied to the sparsified subgraph Gs. By inject-
ing perturbations into the GNN parameters, the encoder is trained in a flatness-aware manner, which
reduces its sensitivity to residual noisy edges. As a result, the learned representations become more
robust and generalizable, achieving improved performance even under conditions where residual
noise persists in the graph. The perturbation vector is approximated as:

ϵ̂ = ρ
∇θL(Gs, θk)

∥∇θL(Gs, θk)∥2
, (16)

and the parameter update is given by

θk+1 = θk − η∇θL(Gs, θk + ϵ̂). (17)

Intuition. Each iteration of GRAPHSPA proceeds as follows: (i) a subgraph Gs is sampled using
the current edge probabilities from x, with a high initial temperature gradually annealed via cosine
scheduling to balance exploration and exploitation, (ii) the auxiliary variables z and u are updated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

every K steps to enforce the hard ℓ0 constraint through projection and dual ascent, (iii) the edge
logits x are updated while staying close to the sparsity-projected proxy z and simultaneously max-
imizing mutual information with the original graph to preserve informative structures, and (iv) the
model parameters θ are optimized toward flatter minima via perturbation-based updates, reducing
sensitivity to residual noisy edges and mitigating overfitting. The overall procedure of our frame-
work is summarized in Algorithm 1. We provide a theoretical guarantee that the x-minimization
converges during training. The detailed proof of convergence is deferred to Appendix A.

5 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework.
We first introduce the experimental settings, then compare our method with several baselines that
do not use labels, and finally provide analysis to highlight its advantages in terms of performance,
generalization, and applicability under noisy graph settings.

Datasets & Models. We evaluate our framework on three transductive benchmark datasets: Cora,
Citeseer, and Pubmed (Kipf & Welling, 2016). To examine scalability on large-scale graphs, we
additionally evaluate on Reddit (Hamilton et al., 2017), which follows an inductive setting, and
ogbn-arxiv (Hu et al., 2020). We adopt the public splits for all datasets, and the dataset statistics are
summarized in Table 2. For backbone models, we use Graph Convolutional Network (GCN) (Kipf &
Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2018), and Graph Isomorphism
Network (GIN) (Xu et al., 2019). For the larger datasets, we follow standard practice and use
GraphSAGE (Hamilton et al., 2017) as the backbone model.

Baselines. We compare our method against representative sparsification strategies. Vanilla uses
the original graph without modifying edges and serves as a reference for evaluating the effect of
sparsification. DropEdge (Rong et al., 2020) removes edges uniformly at random to reduce over-
all edge density. Topology-preserving sparsification includes degree-based methods (Batagelj &
Zaversnik, 2003) and techniques designed to maintain important local structural organization dur-
ing sparsification. This category also includes Topo-Cycle (Loukas, 2019) and Topo-Cluster (Meng
et al., 2024), which aim to preserve characteristic neighborhood patterns and meaningful topological
structures. Spectral sparsification is represented by effective-resistance (ER) based approaches (Liu
& Yu, 2022), where edge importance is computed using analogies from electrical networks to pre-
serve the Laplacian quadratic form. Path-based sparsification includes Shortest-Path spanner con-
structions (Elkin & Neiman, 2017), which preserve approximate pairwise distances under bounded
stretch constraints, as well as PageRank-based sparsification (Page et al., 1999), which favors edges
associated with structurally influential nodes based on stationary random-walk probabilities. To
ensure consistent sparsity levels across all baselines, we lightly modify the algorithms that do not
originally support explicit sparsity control so that they can produce graphs that match the target
sparsity ratio. Further implementation details are provided in Appendix B.1.

5.1 PERFORMANCE ANALYSIS

Figure 1 reports the node classification accuracy under different edge retention ratios r, where r de-
notes the proportion of edges retained after sparsification. Overall, our method demonstrates consis-
tently strong performance across all sparsity ratios and datasets. MI objective maximizes the shared
information between the original and sparsified graphs, encouraging the model to preserve signals
such as node features, local connectivity patterns, multi-hop dependencies, embedding geometry,
and broader semanctic or structural information. Combined with the augmented Lagrangian–based
constrained optimization, our approach progressively satisfies the target sparsity while reliably re-
taining high-importance edges, thereby maintaining robust performance even as sparsity increases.

In contrast, traditional sparsification methods focus on preserving structural properties such as
Shortest-Path distances, spectral characteristics, or local topological patterns. Since the importance
of these properties varies across graph types, such methods often fail to operate consistently in real-
world settings where multiple structural patterns coexist. Our MI-driven formulation avoids making
such assumptions and instead preserves the information that is inherently important to the learned
representations. At a light sparsification level of r = 0.9, our method not only mitigates the neg-
ative impact of edge removal but also consistently outperforms the vanilla models across all three

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method ogbn-arxiv (Accuracy ↑) Reddit (Accuracy ↑)

Edge Ratio 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5

DropEdge 68.89 ↓ 2.36 69.20 ↓ 2.05 68.52 ↓ 2.73 67.68 ↓ 3.57 66.42 ↓ 4.83 93.60 ↓ 1.81 93.89 ↓ 1.52 93.47 ↓ 1.94 93.22 ↓ 2.19 92.78 ↓ 2.63

Degree 70.56 ↓ 0.69 70.01 ↓ 1.24 69.44 ↓ 1.81 68.39 ↓ 2.86 67.23 ↓ 4.02 94.33 ↓ 1.08 94.11 ↓ 1.30 93.94 ↓ 1.47 93.69 ↓ 1.72 93.21 ↓ 2.20

PageRank 69.48 ↓ 1.77 68.94 ↓ 2.31 68.20 ↓ 3.05 67.31 ↓ 3.94 66.18 ↓ 5.07 93.60 ↓ 1.81 93.41 ↓ 2.00 93.20 ↓ 2.21 92.98 ↓ 2.43 92.51 ↓ 2.90

GRAPHSPA 72.82 ↑ 1.57 72.15 ↑ 0.90 71.57 ↑ 0.32 70.84 ↓ 0.41 69.64 ↓ 1.61 96.18 ↑ 0.77 95.97 ↑ 0.56 95.89 ↑ 0.48 95.58 ↑ 0.17 95.24 ↓ 0.17

Vanilla 71.25 ± 0.08 95.41 ± 0.05

Table 1: Node classification performance on ogbn-arxiv and Reddit under different edge sparsity
ratios. All methods are trained using GraphSAGE, and the reported results denote the mean accuracy
over five random seeds. Out-of-time methods are excluded from the comparison.

datasets. This indicates that removing redundant or noisy edges through sparsification enables the
backbone to learn cleaner and more informative representations. When the edge ratio is reduced to
r = 0.5, Cora and Citeseer exhibit performance degradation, which is expected since graphs with
substantially fewer edges are more likely to lose essential structural information. Nevertheless, our
method shows a much slower decline compared to existing sparsification approaches that remove
edges based on specific structural properties, resulting in more stable performance across diverse
conditions. Finally, on the Pubmed dataset, which contains far more edges than Cora or Citeseer,
our method achieves performance comparable to the vanilla backbone even at r = 0.5. This suggests
that the advantages of our method become increasingly pronounced as graph size grows.

Table 1 demonstrates that our method consistently maintains strong performance even on large-
scale graphs such as ogbn-arxiv and Reddit. In contrast, several existing sparsification techniques
were unable to complete within the time budget due to their rapidly increasing computational re-
quirements on large graphs, and thus could not be included in the final comparison. For example,
shortest-path spanners require computations close to all-pairs shortest paths, and ER-based spectral
sparsifiers incur substantial memory and computational overhead when estimating effective resis-
tance. These characteristics make many structure-preserving sparsifiers impractical in large-scale
settings. Overall, the results indicate that our method achieves both efficiency and high performance
in large graph scenarios, highlighting its practical applicability to real-world, large-scale networks.

5.2 ROBUSTNESS TO NOISY EDGES

Existing studies have shown that GNNs are not robust to structural noise (Li et al., 2022a) or in-
tentionally injected adversarial perturbations (Chen et al., 2020). Such noise can distort node repre-
sentations and significantly degrade the generalization performance of GNNs (Zügner et al., 2018).
Furthermore, prior work has reported that conventional sparsification methods often fail to consis-
tently remove harmful edges (Chen et al., 2021), highlighting the need for sparsification techniques
that make the resulting model less sensitive to remaining noisy connections.

To evaluate the robustness of our approach under noisy conditions, we first sparsify the original
graph by retaining r = 0.7 of the edges and then inject three types of structural noise. Random
noise is generated by inserting spurious edges between randomly selected node pairs following the
protocol of (Jin et al., 2021). Adversarial noise is introduced by perturbing the graph structure
in a way that intentionally misleads the classifier, based on the Metattack framework (Zügner &
Günnemann, 2019). Homophily-breaking noise is produced by adding edges that connect nodes
with dissimilar labels or weak semantic similarity, thereby disrupting local structural consistency,
as discussed in (Bo et al., 2021). The noise ratio rnoise ∈ {0.1, 0.2, 0.3, 0.4, 0.5} denotes the
proportion of injected edges relative to the number of edges remaining after sparsification. Using a
GCN model, we report the average classification accuracy over five runs on the Pubmed dataset.

Figure 2 presents the results. The experimental results show that existing sparsification methods,
which are designed to preserve specific structural properties, are highly vulnerable when injected
noise disrupts the very properties they aim to maintain. Both homophily-breaking and adversar-
ial perturbations distort local structural consistency and induce misleading message-passing pat-
terns, leading to substantial performance degradation for property-based sparsifiers. In contrast,
GRAPHSPA does not rely on preserving any predefined structural property. Instead, it performs
sparsification by maximizing the shared information between the original and sparsified graphs,
encouraging the retention of rich, representation-level signals learned by the encoder rather than

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 2: Node classification accuracy of GCNs on the Pubmed dataset under three types of injected
structural noise after 30% edge sparsification. Results are reported as mean accuracy over five
random seeds, with statistical significance assessed using p < 0.05.

enforcing superficial structural similarity. These signals include node features, local connectivity
patterns, multi-hop dependencies, and geometric or semantic relationships within the embedding
space, enabling a more comprehensive form of information preservation. Furthermore, GRAPHSPA
adopts a flatness-aware optimization during sparsification, which guides the encoder toward flatter
and more stable minima. This joint sparsification–stabilization process makes the learned represen-
tations more resilient to noisy edges, preventing the encoder from overfitting to spurious structures
and maintaining robust performance even when substantial structural noise is present. Consequently,
although accuracy gradually decreases as the noise ratio increases, the decline remains consistently
smaller than that of all baseline methods, and GRAPHSPA achieves the highest accuracy across all
three noise types. These results demonstrate that the proposed approach produces sparsified graphs
that remain reliable in realistic settings where diverse forms of structural noise naturally arise.

5.3 QUALITATIVE ANALYSIS

Figure 3: t-SNE visualization of node embeddings on the Pubmed after 50% edge sparsification.

Figure 3 presents the 2D t-SNE projections of node embeddings after removing 50% of the edges
using different methods. As observed, the embeddings from our method exhibit a clustering struc-
ture consistent with the original graph, whereas other baselines show altered cluster distributions.
This indirectly demonstrates that our sparsification strategy can more effectively preserve the struc-
tural information of the original graph. Moreover, our method produces compact yet informative
subgraphs, enabling reliable graph learning without labels even under noisy conditions.

6 CONCLUSION

In this work, we presented GRAPHSPA, a self-supervised framework that effectively tackles the
dual challenges of label scarcity and residual noise. We formulated the sparsification process as
a constrained optimization problem using an augmented Lagrangian scheme to progressively learn
compact structures and achieve target sparsity. Concurrently, we integrated flatness-aware training to
resist parameter perturbations, explicitly mitigating the impact of residual noise on generalization.
Crucially, we theoretically demonstrated that this joint optimization framework guarantees stable
convergence while simultaneously balancing sparsity and robustness. Extensive experiments on
large-scale and heterophilic datasets validate GRAPHSPA’s superior efficiency and structural preser-
vation, establishing it as a principled and reliable solution for real-world graph learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENT

LLM USAGE

Large Language Models (LLMs) were used strictly as general-purpose assistants for writing re-
finement, retrieval of related work, and high-level research ideation. All technical contributions,
experimental designs, and analyses were developed and validated exclusively by the authors. The
LLM did not generate original scientific content, nor did it influence the methodological or empirical
decisions of the work. The authors take full responsibility for all content presented in this paper.

REFERENCES

Christina Baek, J Zico Kolter, and Aditi Raghunathan. Why is sam robust to label noise? In
International Conference on Learning Representations (ICLR), 2024.

Vladimir Batagelj and Matjaž Zaversnik. An o(m) algorithm for cores decomposition of networks.
arXiv preprint arXiv:cs/0310049, 2003.

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification
of graphs: Theory and algorithms. Communications of the ACM, 56(8):87–94, 2013.

Deyu Bo, Xiao Wang, Chuanqi Wang, Chuan Shi, Huawei Shen, and Xueqi Cheng. Beyond ho-
mophily in graph neural networks: Current limitations and effective designs. In Advances in
Neural Information Processing Systems, volume 34, pp. 7790–7803, 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011. doi: 10.1561/2200000016.

Dongkwan Chen, Kyungwoo Shin, Tianxiang Zhang, Sung Ju Hwang, Kijung Shin, and Sung Ju
Lee. Unified graph structured learning with randomly pruned message passing. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Liang Chen, Jintang Li, Jiaying Peng, Tao Xie, Zengxu Cao, Kun Xu, Xiangnan He, Zibin Zheng,
and Bingzhe Wu. A survey of adversarial learning on graph. arXiv preprint arXiv:2003.05730,
2020.

Mingze Dong and Yuval Kluger. Towards understanding and reducing graph structural noise for
gnns. In Proceedings of the 2023 International Conference on Machine Learning (ICML), 2023.

Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners and
emulators. In SODA, 2017.

Matthias Fey and Jan E. Lenssen. Pytorch geometric: Deep learning on irregularly structured in-
put data. In Proceedings of the International Conference on Learning Representations (ICLR)
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations (ICLR), 2021.

Jing Guo, Yujie Wang, Ming Chen, Yu Zhang, and Xindong Wu. Unsupervised social event detection
via hybrid graph contrastive learning and reinforced incremental clustering. Knowledge-Based
Systems, 287:110289, 2024.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hao Ren, Bowen Liu, Michela Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel–softmax. In
International Conference on Learning Representations, 2017. arXiv:1611.01144.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Jin, Yao Ma, Xiaorui Liu, and Jiliang Tang. Node injection attacks on graphs via reinforcement
learning. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 1398–1408, 2021.

Pham Duy Khanh, Hoang-Chau Luong, Boris S. Mordukhovich, and Dat Ba Tran. Fundamental
convergence analysis of sharpness-aware minimization. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2401.08060.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Jintang Li, Bingzhe Wu, Chengbin Hou, Guoji Fu, Yatao Bian, Liang Chen, and Junzhou Huang.
Recent advances in reliable deep graph learning: Inherent noise, distribution shift, and adversarial
attack. CoRR, abs/2202.07114, 2022a.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. MaskGAE: Masked graph modeling meets graph autoencoders.
CoRR, abs/2205.10053, 2022b.

Qimai Li, Xiao-Ming Wu, Hongwei Liu, Xiaotong Zhang, and Zhen Guan. Label efficient semi-
supervised learning via graph filtering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019. doi: 10.1109/TPAMI.2019.2960335.

Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang
Liu, Shu Wu, Liang Wang, et al. GSLB: The graph structure learning benchmark. In Advances in
Neural Information Processing Systems (NeurIPS), volume 36, 2024.

Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. CoRR, abs/2103.00111, 2021.

Zhiqiang Liu and Wenjian Yu. Pursuing more effective graph spectral sparsifiers via approximate
trace reduction. In DAC, 2022.

Andreas Loukas. Graph reduction with spectral and cut guarantees. In ICML, 2019.

Yuchen Meng, Rong Hua Li, Longlong Lin, Xunkai Li, and Guoren Wang. Topology preserving
graph coarsening: An elementary collapse based approach. PVLDB, 2024.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1999. Previous number
= SIDL-WP-1999-0120.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems (NeurIPS 2019), vol-
ume 32, pp. 8024–8035, 2019.

Hongbin Pei, Bingzhe Wei, Lingfei Chang, Yi Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In NeurIPS, 2020.

Jiezhong Qiu, Yuxiao Dong, and Jie Tang. Network embedding as matrix factorization: Unifying
deepwalk, line, pte, and node2vec. In Proceedings of the 11th ACM International Conference on
Web Search and Data Mining (WSDM), pp. xxx–xxx, 2018.

Yu Rong, Yatao Huang, Wenbing Xu, and Junzhou Huang. DropEdge: Towards deep graph convolu-
tional networks on node classification. In International Conference on Learning Representations
(ICLR), 2020.

Benedek Rozemberczki and Rik Sarkar. The web of false information: Rumors, fake news, misin-
formation. In CIKM, 2021.

12

https://arxiv.org/abs/2401.08060

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Venu Satuluri and Srinivasan Parthasarathy. Local graph sparsification. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, pp. 721–732. ACM, 2011.

Stanislav Sobolevsky and Alexander Belyi. Graph neural network inspired algorithm for unsuper-
vised network community detection through modularity optimization. Applied Network Science,
7(1):1–15, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive pre-
dictive coding. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019. Poster.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional
networks by adding fake nodes. In arXiv preprint arXiv:1810.10751, 2018.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. InfoGCL:
Information-aware graph contrastive learning. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 30414–30425, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In International Conference on Machine Learning (ICML), pp. 40–48,
2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983. ACM, 2018.

Jiaqi Zeng and Pengtao Xie. Contrastive self-supervised learning for graph classification. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pp. 10824–10832. AAAI Press, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, volume 31, 2018.

Dong Zheng, Liang Zhang, Wenxuan Pan, Xiang Zhang, and Shuiwang Ji. Neuralsparse: Learning
task-relevant sparsification of large graphs. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), pp. 2225–2235. ACM,
2020.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In KDD, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 2847–2856, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIALS

A CONVERGENCE ANALYSIS

In this section, we establish the convergence of our flatness-aware sparsification framework. Our
proof builds on the augmented Lagrangian method (Boyd et al., 2011) and extends the fundamen-
tal convergence analysis of sharpness-aware minimization (Khanh et al., 2024), thereby providing
theoretical guarantees for the stability of our approach.

A.1 ASSUMPTIONS

Assumption A.1. (Smoothness and Weak Convexity) The lossL(G(t)
s , θ) is β-smooth and µ-weakly

convex in x.

Assumption A.2. (Lipschitz Gradient) The gradient of L with respect to x is Lipschitz, and stochas-
tic gradients (if any) are unbiased and have bounded variance.

Assumption A.3. (Step Size) The step size {η(t)} is diminishing, satisfying
∞∑
t=1

η(t) =∞,
∞∑
t=1

(η(t))2 <∞.

Assumption A.4. (Perturbation Radius) The perturbation radius {ρ(t)} applies only to θ-updates
and is bounded and/or diminishing, satisfying

lim sup
t→∞

ρ(t) < 1
β ,

∞∑
t=1

η(t)ρ(t) <∞.

Assumption A.5. (Strong Convexity of the Augmented Term) The penalty parameter satisfies λ >
µ, ensuring a strong convexity component in the augmented Lagrangian.

A.2 SMOOTHNESS AND CONVEXITY OF THE AUGMENTED LAGRANGIAN

Lemma A.1. Under Assumptions A.1–A.5, the augmented Lagrangian

L̂(x, z, u, θ) = L(G(t)
s , θ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2 + λ

2 ∥x− z + u∥2

is (β + λ)-smooth and (λ− µ)-strongly convex in x.

Proof. From β-smoothness ofL and quadratic penalty λ
2 ∥x−z+u∥

2, we obtain (β+λ)-smoothness.
Since λ > µ, the strong convexity term dominates the µ-weak convexity, yielding (λ − µ)-strong
convexity.

A.3 CONVERGENCE OF x-MINIMIZATION

The x-update is given by

x(t+1) = x(t) − η(t)
(
∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t))
)
.

Define
g(t) := ∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t)).

By β-smoothness of L̂, we have

L̂(x(t+1)) ≤ L̂(x(t))− η(t)⟨∇L̂(x(t)), g(t)⟩+ β(η(t))2

2 ∥g(t)∥2. (18)

Lemma A.2. (Projection Consistency) The projection step z(t) = ΠC(x
(t)+u(t)) ensures feasibility

of the sparsity constraint ∥z∥0 ≤ r|E| and preserves boundedness of {z(t)}.
Proof. By non-expansiveness of Euclidean projection,

∥z(t+1) − z(t)∥ ≤ ∥(x(t+1) − x(t)) + (u(t+1) − u(t))∥.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 CONVERGENCE OF θ UPDATES

The θ-update uses SAM perturbations:

ϵ̂(t) = ρ(t)
∇θL(G(t)

s , θ(t))

∥∇θL(G(t)
s , θ(t))∥

, θ(t+1) = θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂(t)).

Lemma A.3. (Lemma B.1 of (Khanh et al., 2024)) Let {a(t)}, {b(t)}, {c(t)} be nonnegative se-
quences satisfying

a(t+1) − a(t) ≤ b(t)a(t) + c(t),

with conditions
∞∑
t=1

b(t) =∞,
∞∑
t=1

c(t) <∞,
∞∑
t=1

b(t)a(t) <∞.

Then a(t) → 0 as t→∞.

Lemma A.4. (Perturbation Stability) Under Assumptions A.2–A.4, the perturbed gradient satisfies

∥∇θL(G(t)
s , θ(t) + ϵ̂(t))−∇θL(G(t)

s , θ(t))∥ ≤ βρ(t).

Proof. By β-smoothness of L, the deviation due to ϵ̂(t) is upper bounded by β∥ϵ̂(t)∥ = βρ(t).

A.5 CONVERGENCE TO STATIONARY POINTS

Theorem A.1. (Stationarity of Limit Points) Under Assumptions A.1–A.5, the iterates of Algo-
rithm 1 satisfy

∇xL̂(x(t), z(t), u(t), θ(t))→ 0, ∇θL(G(t)
s , θ(t))→ 0, as t→∞.

Thus, every limit point (x̄, z̄, ū, θ̄) is a stationary point of the augmented Lagrangian with SAM-
regularized parameter updates.

Proof. From equation 18, we see that L̂(x(t)) decreases up to error terms proportional to (η(t))2. By
Assumptions A.3–A.4,

∑
t η

(t)ρ(t) <∞, ensuring bounded cumulative perturbation. For θ, Lemma
A.4 guarantees perturbation errors vanish as ρ(t) → 0. Applying Lemma A.3 (Robbins–Siegmund
type argument), we obtain

lim
t→∞

∥∇xL̂(x(t))∥ = 0, lim
t→∞

∥∇θL(G(t)
s , θ(t))∥ = 0.

Therefore, every accumulation point is stationary in both (x, z, u) and θ.

A.6 COROLLARIES

Corollary A.1. (Expected Convergence) If the gradient is estimated via unbiased stochastic samples
with bounded variance, then the expected squared gradient norm satisfies

E
[
∥∇L̂(x(t))∥2

]
→ 0 as t→∞.

Proof. This follows directly from Theorem A.1 and the assumption that stochastic gradients are un-
biased with bounded variance (Hypothesis A.2). Applying Lemma A.3, we obtain the convergence
of expected gradient norms.

Corollary A.2. (Convergence Rate) If the step size is chosen as η(t) = 1√
t

and the perturbation

radius satisfies ρ(t) = O(1√
t
), then

min
1≤t≤T

E
[
∥∇L̂(x(t))∥2

]
= O

(
1√
T

)
.

Proof. The rate follows by combining the descent inequality equation 18, bounded perturbation from
Lemma A.4, and the standard analysis of diminishing step sizes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Scaling with Graph Size. An important implication of our analysis is how sparsification interacts
with graph size. Suppose the graph has N nodes with average degree d̄, so that |E| ≈ Nd̄. For a
fixed sparsification ratio ρ, the number of preserved edges is r|E|. As N → ∞, the redundancy of
edges increases, and the variance introduced by random edge removal vanishes:

Var[edge sampling]
|E|

→ 0.

This provides an intuitive explanation of why our sharpness-aware sparsification benefits become
more pronounced on large-scale graphs such as Reddit.

B EXPERIMENTAL SETTINGS

Dataset #Nodes #Edges #Features #Classes Split ratio
Cora 2,708 5,429 1,433 7 120/500/1000
Citeseer 3,327 4,732 3,703 6 140/500/1000
PubMed 19,717 44,338 500 3 60/500/1000
ogbn-arxiv 169,343 1,166,243 128 40 54%/18%/28%
Reddit 232,965 114,615,892 602 41 66%/10%/24%

Table 2: Statistics of benchmark datasets.

Table 2 summarizes the datasets used in our experiments, including the number of nodes, edges,
features, classes and split ratios. We adopt the public splits from (Yang et al., 2016).

B.1 IMPLEMENTATION DETAILS

Hyper-parameter Value / Search Space
Epochs 200
Learning rate (η) 0.001
Learning rate schedule cosine
Weight decay 0.005
Dropout 0.5
Hidden units 128
Attention heads 8
β 0.2
τ (Gumbel temperature) cosine schedule
Perturbation radius (ρ) {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0}
Dual-update interval (K) {1, 2, 5, 10, 20, 40}
Penalty parameter (λ) {0.0001, 0.001, 0.01, 0.1}

Table 3: Hyperparameter details used for GRAPHSPA

All experiments are implemented in PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019), and conducted on four NVIDIA RTX 4090 GPUs (24GB each). Each experiment
is repeated with five random seeds, and we report the average accuracy and the standard deviation.
We adopt GCN, GAT, GIN, and GraphSAGE as backbone in our experiments. For GCN, we use a
two-layer architecture with 128 hidden units, weight decay of 0.005, and dropout rate of 0.5. GAT
has two layers with 128 hidden units, and employs 8 attention heads and a dropout rate of 0.5. For
GIN, we use a two-layer network with 128 hidden units and dropout rate of 0.5. GraphSAGE is
implemented following the configuration with two layers, 128 hidden units, and a dropout rate of
0.5. We adopt a cosine learning rate schedule across all models. In our method, hyperparameters
play a role, including the perturbation radius (ρ), dual-update interval (K), and penalty parameter
(λ). These hyperparameters are tuned via grid search for each dataset, and the final results are
reported using the best configuration selected from the search space summarized in Table 3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C COMPUTATION COMPLEXITY ANALYSIS

C.1 SPARSIFICATION COMPLEXITY

The computational complexity of our self-supervised sparsification framework can be decomposed
into three main components: (i) sparsification, (ii) contrastive loss computation, and (iii) encoder
training.

Sparsification stage. Each epoch involves parameterizing edge scores x ∈ R|E|, applying the
Gumbel–Sigmoid relaxation, and constructing the normalized sparse adjacency, which requires

O(|E|).

In addition, every K iterations a projection step is performed at a cost of

O(|E| log |E|),

which amortizes to 1
KO(|E| log |E|) per epoch.

Contrastive loss Computation. Constructing the similarity matrix between embeddings z1, z2 ∈
RN×d has a complexity of

O(N2d).

When negative sampling or mini-batch contrastive learning is adopted, this reduces to

O(Nd).

Encoder training. For each forward/backward pass, the GNN encoder requires

O(|E|d).

Since SAM optimization performs two such passes per epoch, the encoder cost is effectively dou-
bled, though it remains O(|E|d) in asymptotic order.

Total complexity. Putting everything together, the per-epoch complexity is

O(|E|d+N2d) + 1
KO(|E| log |E|),

and for T epochs, the total complexity becomes

O
(
T · (|E|d+N2d) + T

K |E| log |E|
)
.

Simplification. The number of edges can be approximated by the average degree d̄avg as |E| ≈
1
2Nd̄avg. Thus, the edge-related term simplifies to |E|d ≈ Nd̄avgd. For sparse graphs where
d̄avg = O(1), we obtain |E|d = O(Nd), showing that the edge cost grows linearly with N and d.

Final complexity. After simplification, the dominant cost depends on the loss calculation scheme:

• Full contrastive learning: all node pairs are compared, so the N2d term dominates, lead-
ing to

O(T · (N2d+Nd)) .

• Negative sampling: only sampled edges are considered, so message passing dominates,
giving

O(T · |E|d) which simplifies to O(TNd) for sparse graphs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Method Time Complexity Explanation
DropEdge O(|E|) Random edge sampling per epoch: O(|E|)

Degree O(|E| log |E|) Degree computation: O(|E|)
Edge sorting: O(|E| log |E|)

PageRank O(|E| log |E|) Power iteration PageRank: O(K|E|)
Edge scoring: O(|E|), sorting: O(|E| log |E|)

Spectral (ER) O(N3 + |E|) Dense Laplacian eigen-decomposition: O(N3)
Effective resistance per edge: O(|E|)

Shortest-Path O(|E|(N + |E|)) For each edge, BFS-based shortest path: O(N + |E|)
Repeated over all |E| edges: O(|E|(N + |E|))

Topo-Cycle O(|E|2) Cycle basis extraction: O(N + |E|+
∑

i |Ci|)
Cycle-based edge scoring: O(

∑
i |Ci|) = O(|E|C) ≤ O(|E|2)

Topo-Cluster O(|E|N)
Triangle counting per edge: O(min(deg(i),deg(v)))
Total: O

(∑
(i,j)∈E min(deg(i),deg(j))

)
≤ O(|E|∆) ≤ O(|E|N)

GRAPHSPA O(TN2d) or O(T |E|d)
Subgraph sampling: O(|E|)
Contrastive loss computation: O(N2d) or O(|E|d)
Encoder training: O(Nd)

Table 4: Time complexity analysis for baseline sparsification methods and GRAPHSPA.

C.2 SPARSIFICATION COMPLEXITY COMPARISION

Table 4 summarizes the computational complexity of existing sparsification methods compared
to GRAPHSPA. Spectral approaches rely on expensive operations such as Laplacian eigen-
decomposition, shortest-path spanners require repeated BFS expansions for many edges, and
topology-based methods depend on cycle or triangle extraction. These procedures incur substantial
computational overhead and tend to scale poorly as the number of edges or the structural complexity
of the graph increases, making them impractical for large-scale datasets.

In contrast, GRAPHSPA trains the encoder jointly with sparsification, but the dominant cost still
comes from the standard GNN forward–backward propagation that all methods share. The addi-
tional computations introduced by the augmented Lagrangian module are minimal in practice: the
z-update involves an O(|E| log |E|) sorting step, and the u-update requires only simple element-
wise operations of complexity O(|E|). Moreover, these updates are performed only once every K
iterations (we use K = 20), so their amortized overhead accounts for less than 3% of the total
training time. Although flatness-aware optimization theoretically increases gradient computation,
its practical overhead in GRAPHSPA remains limited because perturbations are applied only to the
encoder parameters. Empirically, the wall-clock time increases by approximately 1.4–1.6× rather
than the full 2× expected from theory. Furthermore, optimizing toward flatter minima improves ro-
bustness to residual noise and reduces the number of training epochs required by roughly 20–30%,
compensating for part of the additional cost.

D ABLATION STUDIES

D.1 IMPACT OF FLATNESS-AWARE TRAINING DURING SPARSIFICATION

Method r = 0.9 0.8 0.7 0.6 0.5

GRAPHSPA (Frozen) 76.60 ± 0.21 76.06 ± 2.80 76.46 ± 1.11 75.16 ± 1.80 74.44 ± 1.24

GRAPHSPA (w/ Adam) 76.52 ± 1.49 75.90 ± 2.52 76.66 ± 1.28 75.58 ± 1.46 74.86 ± 1.02

GRAPHSPA (w/ SAM) 78.34 ± 0.76 77.52 ± 1.04 77.10 ± 0.74 76.72 ± 0.45 77.26 ± 1.13

Table 5: Ablation study on encoder training during sparsification on Pubmed using GCN. Results
are reported as mean ± std over five random seeds.

Table 5 presents the ablation results on the Pubmed dataset, comparing three settings: Frozen En-
coder, Adam, and SAM. The results highlight that encoder training during sparsification is crucial for
achieving good generalization and robustness to noisy edges. Freezing the encoder significantly de-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

grades accuracy since the embeddings cannot adapt to the evolving sparse graph structure. Training
with Adam provides moderate results but is less robust across edge ratios. In contrast, SAM con-
sistently achieves the best performance, demonstrating that flatness-aware optimization enhances
stability during training and yields more reliable performance under varying sparsity levels.

D.2 PERFORMANCE ON HETEROPHILIC GRAPHS

To further evaluate the generality of GRAPHSPA, we conduct experiments on two widely used het-
erophilic benchmark datasets: Actor (Pei et al., 2020) and Chameleon (Rozemberczki & Sarkar,
2021). Unlike homophilous citation networks, these graphs exhibit low homophily ratios, meaning
that edges frequently connect nodes from different classes. This makes learning substantially more
challenging for most GNNs, as local neighborhoods do not reliably encode label information.

Dataset #Nodes #Edges #Features #Classes Homophily Rate

Actor 7,600 26,752 932 5 0.22
Chameleon 2,277 36,101 2,325 5 0.23

Table 6: Statistics of heterophilic datasets.

Table 6 provides comprehensive statistics of the datasets used in our experiments, including the
number of nodes, edges, classes, features and homophily rate.

Figure 4: Node classification accuracy on heterophilic datasets Actor/Chameleon using GCN under
various sparsity ratios. Results are reported as mean over five random seeds, and statistical signifi-
cance is validated with paired t-tests p < 0.05.

As shown in Figure 4, GRAPHSPA achieves the highest accuracy across almost all sparsity lev-
els on both heterophilic datasets. In contrast, traditional sparsification methods primarily preserve
structural properties such as degree, local topology, or shortest path distances, but these properties
often do not align with the semantic relationships in heterophilic graphs. As a result, structure-
preserving sparsifiers tend to retain edges that do not contribute to meaningful representation learn-
ing. GRAPHSPA instead retains edges that preserve representation-level signals, including node fea-
tures, multi-hop dependencies, and relationships in the embedding space. This characteristic enables
GRAPHSPA to remain effective even when nodes from different classes are frequently connected.
Overall, the results demonstrate that GRAPHSPA is highly robust in heterophilic scenarios and can
successfully sparsify graphs where conventional notions of structural similarity are unreliable. This
highlights its practical applicability to real-world networks where connections between semantically
dissimilar entities naturally arise.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 INFLUENCE OF THE INFONCE NEGATIVE SAMPLING TEMPERATURE β

The InfoNCE temperature β controls the sharpness of the negative sampling distribution and there-
fore affects the magnitude of the mutual information gradient. In GRAPHSPA, β appears only inside
the MI loss term within the augmented Lagrangian formulation in Equation (12). As a result, β
scales the magnitude of the MI gradient but does not alter the structure of the objective, the sparsity
constraint, or the direction of the optimization process. A key property of GRAPHSPA is that the
edge scores are not determined by a single MI gradient update. The sparsity projection variable z
enforces the target sparsity level, while the dual variable u accumulates the deviation between x and
z and corrects it over subsequent iterations. These augmented Lagrangian dynamics operate inde-
pendently of β, meaning that most of the variation induced by scaling the MI gradient is absorbed by
the penalty term, keeping the trajectory of the edge scores stable. To empirically verify this effect,
we conduct sensitivity experiments on Cora, Citeseer, and Pubmed using a GCN backbone and a
70% edge retention ratio. We vary the temperature parameter over β ∈ {0.2, 0.5, 0.8, 1.0, 1.5} and
report the average accuracy over five random seeds. The results are summarized in Table 7.

Dataset β = 0.2 0.5 0.8 1.0 1.5
Cora 78.48± 0.88 78.98± 0.94 78.88± 1.42 78.56± 0.89 78.46± 1.14
Citeseer 67.46± 1.40 67.72± 2.53 67.78± 1.39 67.44± 1.69 67.36± 4.05
Pubmed 76.74± 1.10 76.72± 0.90 76.68± 1.26 76.64± 1.21 77.06± 0.72

Table 7: Sensitivity of GRAPHSPA to the InfoNCE temperature β.

Across all datasets, the differences in accuracy remain within approximately 0.4 percent, which is
comparable to natural seed variance. These results confirm that β primarily adjusts the scale of the
MI gradient, while the augmented Lagrangian penalty terms regulate the edge-score updates and
maintain stability throughout training. Overall, GRAPHSPA shows strong robustness to the choice
of the temperature β, and variations in this parameter have minimal impact on the final sparsified
graph and downstream performance.

D.4 SENSITIVITY TO HYPERPARAMETER ρ

The perturbation radius ρ introduced by SAM is a critical hyperparameter that controls the extent of
parameter perturbations during optimization. Choosing an appropriate ρ is essential for balancing
robustness and training stability.

Figure 5: Sensitivity of performance to the SAM perturbation radius ρ on Pubmed. Results are
reported as mean ± std over five random seeds.

• Large ρ: When ρ is large, the optimizer explores flatter regions in the loss landscape, which
can potentially improve generalization and robustness. However, overly large perturbations
may destabilize training or hinder convergence, leading to degraded performance.

• Small ρ: When ρ is too small, it may result in limited robustness gains, as the perturbations
are not sufficient to promote significant flatness in the parameter space.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We conducted experiments by varying ρ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0} to evaluate its impact
on performance. Figure 5 illustrates the test accuracy across different edge ratios. Small ρ (e.g.,
0.01) provides only minor improvements, while very large ρ (e.g., 0.5 or above) causes unstable
training and significant degradation. An intermediate range (e.g., ρ = 0.1 or ρ = 0.2) yields the
best trade-off between robustness and stability.

D.5 EFFECTS OF τ SCHEDULING

(a) Test Accuracy (b) Schedules

Figure 6: Effects of τ scheduling. (a) Sparsification accuracy across different sparsification ratios
for constant τ compared with linear and cosine schedules. (b) Illustration of τ scheduling strategies,
where the cosine schedule maintains a higher τ in the early phase and decreases later for exploitation.

Figure 7: Effect of different penalty parameters λ on validation accuracy on Pubmed under varying
edge ratios. Results are reported as mean ± std over five random seeds.

In addition to fixed τ , we investigate different scheduling strategies to dynamically adjust the temper-
ature during training. As shown in Figure 6, we compare sparsification performance under different
τ settings. (a) demonstrates the effect of constant τ versus linear and cosine scheduling on sparsi-
fication accuracy across various sparsification ratios. (b) illustrates the scheduling dynamics of τ ,
where the cosine schedule starts with a relatively higher τ to encourage exploration of diverse sub-
graphs through broader edge distributions, and then gradually decays to enhance exploitation in the
later phase. This gradual transition from exploration to exploitation explains why cosine scheduling
consistently achieves better performance compared to both constant and linear schedules.

D.6 EFFECTS OF PENALTY PARAMETER λ

We investigate the effect of different choices of the penalty parameter λ on accuracy across
various edge ratios. Figure 7 reports the average accuracy with standard deviation for λ ∈

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

{10−4, 10−3, 10−2, 10−1} under edge ratios ranging from 0.9 to 0.5. We observe that larger values
of λ such as 10−1 generally alleviate the accuracy drop at moderate edge ratios but degrade the
performance when the sparsification becomes more aggressive. In contrast, smaller values such as
λ = 10−4 yield competitive performance at higher edge ratios but fail to stabilize under heavier spar-
sification. This highlights the trade-off between enforcing the sparsity constraint more strongly via
larger λ and preserving model accuracy under different sparsity levels. In particular, while λ = 10−2

achieves the highest performance around edge ratio 0.8, its accuracy decreases significantly at 0.6,
indicating that the choice of λ must be carefully balanced depending on the target sparsity.

22

	Introduction
	Related Works
	Preliminaries
	Problem Setup
	Sharpness-Aware Minimization

	GraphSpa
	Problem Formulation
	Constrained Optimization
	Noise-Resilient Encoder Optimization

	Experiments
	Performance Analysis
	Robustness to Noisy Edges
	Qualitative Analysis

	Conclusion
	Supplementary Materials
	Convergence Analysis
	Assumptions
	Smoothness and Convexity of the augmented Lagrangian
	Convergence of x-minimization
	Convergence of Updates
	Convergence to Stationary Points
	Corollaries

	Experimental Settings
	Implementation Details

	Computation Complexity Analysis
	Sparsification Complexity
	Sparsification Complexity Comparision

	Ablation Studies
	Impact of Flatness-aware Training during Sparsification
	Performance on Heterophilic Graphs
	Influence of the InfoNCE Negative Sampling Temperature β
	Sensitivity to Hyperparameter
	Effects of Scheduling
	Effects of Penalty Parameter

