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ABSTRACT

Graph sparsification has emerged as a promising approach to improve efficiency
and remove redundant or noisy edges in large-scale graphs. However, existing
methods often rely on task-specific labels, limiting their applicability in label-
scarce scenarios, and they rarely address the residual noise that persists after spar-
sification. In this work, we present GRAPHSPA, a self-supervised graph spar-
sification framework that learns to construct compact yet informative subgraphs
without requiring labels, while explicitly mitigating the effect of residual noise.
GRAPHSPA formulates sparsification with a target edge budget as a constrained
optimization problem, modeling each edge as a differentiable Bernoulli random
variable and employing the mutual information between sampled subgraphs and
the original graph as a loss function to learn individual edge importance. To pro-
gressively impose sparsity with stability, GRAPHSPA adopts an augmented La-
grangian scheme with convergence guarantees. In addition, the encoder is trained
in a flatness-aware manner using Sharpness-Aware Minimization (SAM), which
reduces sensitivity to residual noise and improves generalization. Extensive ex-
periments on benchmark datasets demonstrate that GRAPHSPA consistently out-
performs baselines across different sparsity ratios, preserves cluster structures in
t-SNE visualizations, and remains robust even when noisy edges are injected af-
ter sparsification. These results highlight GRAPHSPA as a principled and reliable
framework for graph sparsification without labels and under residual noise.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success in a wide range of graph learn-
ing tasks, including node classification (Kipf & Welling, 2016), link prediction (Zhang & Chen,
2018), recommender systems (Ying et al., 2018), and social network modeling (Qiu & et al., 2018).
These advances demonstrate the strong potential of GNNs for analyzing complex relational data,
yet scaling them to large real-world graphs remains challenging. As graph size increases, compu-
tational and memory costs grow rapidly, and real-world graphs often contain redundant or spurious
edges (Li et al., 2024; Satuluri & Parthasarathy, 2011) that propagate misleading signals and degrade
representation quality. Graph sparsification has emerged as a promising approach to mitigate these
issues by removing redundant or noisy edges, thereby reducing overhead and yielding cleaner struc-
tural representations (Batson et al., 2013; Zheng et al., 2020). However, supervised sparsification
methods rely on task-specific labels (Chen et al., 2021; Li et al., 2019), limiting their applicability in
label-free scenarios such as recommender systems or social networks (Sobolevsky & Belyi, 2022;
Guo et al., 2024). Meanwhile, unsupervised heuristic methods based on structural indicators such
as degree or PageRank have also been explored (Batagelj & Zaversnik, 2003; Page et al., 1999).
Yet these methods depend only on shallow cues and merely attempt to remove unnecessary edges,
without explicitly addressing the residual noise that inevitably remains after sparsification.

Alongside reliance on labels, residual noise from sparsification poses another fundamental chal-
lenge. Since sparsification simplifies the graph structure, the diversity of propagation paths is re-
duced, making models more vulnerable to noisy edges (Dong & Kluger, 2023). With fewer effective
signals, over-parameterized GNNs tend to overfit and become more sensitive to residual noise (Zhou
et al., 2018). This issue is particularly acute in domains such as social networks, where relationships
themselves act as supervision signals. Spurious edges introduced by fake accounts or ephemeral
connections distort the learning process and undermine downstream tasks such as community de-
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tection or link prediction (Wang et al., 2018). Addressing this challenge requires new sparsification
methods that can effectively mitigate residual noise while operating without labels.

In this paper, we propose GRAPHSPA, a self-supervised graph sparsification framework designed to
address both the reliance on labels and the vulnerability to residual noise. To overcome label depen-
dence, GRAPHSPA explores diverse subgraph combinations and learns individual edge importance
by comparing their mutual information with the original graph, enabling the discovery of meaning-
ful sparsified structures without labels. To further mitigate the residual noise that inevitably remains
after sparsification, GRAPHSPA jointly optimizes the encoder during sparsification by leveraging
Sharpness-Aware Minimization (SAM) (Foret et al., 2021). This encourages convergence toward
flat minima, reduces sensitivity to noise, and ultimately enhances generalization.

GRAPHSPA models each edge as a Bernoulli random variable and samples subgraphs according to
its probability. By relaxing the discrete edge selection into continuous probabilities, the process be-
comes differentiable, which enables gradient propagation during training. The mutual information
between the sampled subgraphs and the original graph is employed as a loss function to learn indi-
vidual edge importance scores. In the early stage of training, the framework encourages broad explo-
ration of diverse structural variants, and later progressively shifts toward concentrating on meaning-
ful structures. To enforce the target edge budget while preserving structural information, GRAPHSPA
adopts an Augmented Lagrangian scheme (Boyd et al., 2011b). Unlike one-shot sparsification, spar-
sity is imposed progressively with theoretical convergence guarantees, ensuring training stability.
Moreover, to mitigate the effect of residual noise, the encoder is jointly optimized during sparsifi-
cation by leveraging Sharpness-Aware Minimization (SAM). This guides optimization toward flat
minima, reduces sensitivity to noisy edges, and improves generalization performance.

We validate the effectiveness of GRAPHSPA through extensive experiments on benchmark datasets
including Cora, Citeseer, and Pubmed. Across different edge ratios, GRAPHSPA consistently out-
performs existing baselines, showing better accuracy while preserving structural information. Vi-
sualization studies further confirm that GRAPHSPA maintains the cluster structure of the original
graph in t-SNE embeddings, and robustness evaluations demonstrate that the framework sustains
strong performance even when noisy edges are injected after sparsification. These results highlight
GRAPHSPA as a reliable and generalizable framework for graph sparsification without labels.

Our main contributions are summarized as follows:

• We propose GRAPHSPA, a self-supervised graph sparsification framework that removes the
reliance on labels while explicitly addressing the persistent influence of residual noise.

• We propose a unified framework that combines Bernoulli edge sampling with mutual in-
formation guided importance learning, progressive sparsification under an augmented La-
grangian formulation, and flatness aware optimization using SAM.

• We conduct extensive experiments on multiple benchmarks, demonstrating that
GRAPHSPA consistently outperforms baselines across edge ratios, preserves structural in-
tegrity, and achieves strong generalization under noisy conditions.

2 RELATED WORKS

Graph Self-Supervised Learning (Graph SSL) has emerged as a powerful paradigm in graph
neural network (GNN) research, attracting significant attention from both academia and industry. In
graph SSL, the model is trained through well-designed auxiliary tasks, where supervisory signals
are automatically generated from the data without requiring manual labels (Li et al., 2022; Liu et al.,
2021). Among various approaches, contrastive learning has proven to be one of the most successful
strategies for graph data (Velickovic et al., 2019; Xu et al., 2021; Zeng & Xie, 2021). Its key idea
is to maximize the similarity between representations of two different augmented views of the same
graph, typically by maximizing their mutual information (van den Oord et al., 2018). Such methods
have achieved state-of-the-art performance in diverse graph-based downstream tasks, but research
that combines graph SSL with graph sparsification remains relatively limited.

Graph Sparsification aims to construct a sparser graph by removing a subset of edges from the
original graph. This reduces storage cost, accelerates GNN training and inference, and alleviates
the impact of redundant or noisy edges. However, many existing sparsification methods rely heavily
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on sufficient label information, which is often scarce in real-world scenarios such as recommender
systems or social networks (Yang et al., 2016; Hu et al., 2020). In the absence of labels, they are
largely restricted to heuristic strategies such as random or degree-based removal. A representative
example is DropEdge (Rong et al., 2020), which randomly removes edges at each training epoch to
improve generalization. Beyond random removal, heuristic sparsification methods based on struc-
tural indicators have also been explored, such as degree-based sparsification (Batagelj & Zaversnik,
2003), which removes edges connected to nodes with low degree or limited contribution to graph
connectivity, and centrality-based sparsification (Girvan & Newman, 2002; Chen et al., 2021), which
removes structurally less important edges according to centrality measures such as PageRank (Page
et al., 1999). While these approaches are simple and computationally efficient, sparsification inher-
ently simplifies the graph structure. As a result, informative edges may be inadvertently discarded
or spurious ones retained, and the simplified structure becomes more vulnerable to residual noise,
ultimately leading to degraded robustness and generalization performance (Xu et al., 2019; Zheng
et al., 2020; Luo et al., 2021; Wu et al., 2023).

3 PRELIMINARIES

To ground our method, we first formalize the problem of graph sparsification and review the prin-
ciple of flatness-aware optimization. These preliminaries establish the foundation for GRAPHSPA,
which integrates self-supervised sparsification with flatness-aware training to address residual noise.

3.1 PROBLEM SETUP

We begin by representing an undirected input graph G = (V,E), where V is the set of N vertices
and E is the set of edges. The graph structure is described by the adjacency matrix A ∈ RN×N ,
where A[i, j] = 1 if (i, j) ∈ E and 0 otherwise. Each vertex v ∈ V is associated with a feature
vector xv ∈ RF , and the feature matrix is denoted as X ∈ RN×F .

Given (A,X), GNN fθ learns node representations by iteratively aggregating information from
neighbors across layers. At the l-th layer, the representation of node v is updated as:

h(l+1)
v = ψ

(
h(l)v , ϕ{h(l)u | u ∈ Nv}

)
, (1)

where ϕ denotes an aggregation function over neighbors, ψ combines the previous representation of
v with the aggregated messages, and h(0)v = xv is the initial representation.

The goal of graph sparsification is to learn a function

P : G→ Gs, (2)

whereGs ⊆ G is a sparsified subgraph that preserves as much informative structure ofG as possible.
Formally, Gs = (V,Es) is defined by an adjacency matrix As ∈ {0, 1}|E|, where As[i, j] = 1 if the
edge (i, j) ∈ Es is kept and 0 otherwise. An edge retention ratio r ∈ (0, 1) controls the proportion
of edges retained, and Gs keeps r% of the original edges. In the self-supervised setting, no label
information such as node labels is available. Instead, the sparsification mechanism has to identify
and retain informative edges without supervision.

3.2 SHARPNESS-AWARE MINIMIZATION

Sharpness-Aware Minimization (SAM) aims to find loss minima that are not only high-performing
but also insensitive to parameter perturbations, thereby improving generalization and robustness
(Foret et al., 2021). Formally, SAM solves the following min–max optimization problem:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (3)

where L(θ) is the training loss for parameters θ, and ϵ denotes parameter perturbations within an ℓp
ball of radius ρ, which determines the maximum perturbation size. The inner maximization seeks the
worst-case performance under perturbations, while the outer minimization finds parameters robust
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to such perturbations. To efficiently approximate the inner maximization, SAM uses a first-order
Taylor expansion. The perturbation that maximally increases the loss is estimated as:

ϵ̂ = ρ · ∇θL(θ)
∥∇θL(θ)∥2

≈ arg max
∥ϵ∥p≤ρ

L(θ + ϵ), (4)

At training step t, SAM is implemented via the following iterative process:

ϵt = ∇θL(θt), ϵ̂t = ρ · ϵt
∥ϵt∥2

, ωt = ∇θL(θt + ϵ̂t), θt+1 = θt − η · ωt, (5)

where ϵt is the perturbation gradient, ϵ̂t is the normalized perturbation within the ρ-ball, ωt is the
updating gradient evaluated at the perturbed parameters, and η is the learning rate. By updating pa-
rameters using gradients computed at perturbed weights, SAM explicitly encourages convergence to
flat minima, where the loss landscape varies smoothly under small perturbations, thereby improving
generalization and robustness across diverse domains (Foret et al., 2021; Baek et al., 2024).

4 GRAPHSPA

In this section, we introduce GRAPHSPA, a self-supervised graph sparsification framework that ex-
plicitly addresses residual noise while preserving the structural information of the original graph.
GRAPHSPA formulates sparsification with a target edge budget as a constrained optimization prob-
lem. Instead of relying on labels, each edge is modeled as a differentiable Bernoulli random variable,
and the loss is defined as the mutual information between the sampled subgraph and the original
graph. By maximizing this objective, the framework learns edge importance scores and identifies
informative structures. Based on these importance scores, we adopt an augmented Lagrangian ap-
proach with convergence guarantees to gradually impose sparsity during optimization, rather than
removing edges in a one-shot manner. Moreover, GRAPHSPA integrates flatness-aware training into
the sparsification process to optimize the encoder in a way that reduces sensitivity to residual noise,
thereby ensuring robust generalization even without labels.

4.1 PROBLEM FORMULATION

Self-Supervised Objective. We adopt a self-supervised strategy to preserve the essential informa-
tion of the original graph G. Specifically, we maximize the mutual information between the original
graph G and the sparsified graph Gs by adopting the InfoNCE loss (van den Oord et al., 2018).

Let node embeddings be H = fθ(X,As) obtained from a GNN encoder parameterized by θ, where
hv denotes the embedding of node v ∈ V . The pair (G,Gs) is treated as a positive sample, while
negative samples G̃s are generated by randomly dropping a portion of edges fromG. The contrastive
loss is then defined as

L = −
∑
v∈V

log
exp(sim(hGv , h

Gs
v )/β)∑

u∈V exp(sim(hGv , h
Gs
u )/β)

, (6)

where sim(·, ·) is a similarity function such as cosine similarity and β is a temperature parameter.
This loss encourages the embeddings fromGs to remain consistent with those fromG, ensuring that
sparsification retains informative edges without using labels.

Edge Importance Learning via Bernoulli Subgraph Sampling. At each training iteration, we
need to construct a sparsified subgraph to learn importance of individual egdes. A naive approach
would be to randomly sample edges from the original graph, which incurs an exponential search
space of 2|E| possible subgraphs and does not allow gradient propagation since edge selection is a
discrete 0-1 decision. To address this, we relax the binary mask into a continuous probability through
a learnable logit xij , which reflects the latent importance of edge (i, j). Through the Gumbel-
Softmax relaxation (Jang et al., 2017), we obtain a continuous importance score sij ∈ (0, 1):

sij = σ

(
log ξij − log(1− ξij) + xij

τ

)
, ξij ∼ U(0, 1), (7)
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where σ(·) is the sigmoid function and τ > 0 is a temperature parameter. We initialize xij = 0 so
that all edges start with equal importance.

The importance score sij serves a dual role. It provides a differentiable relaxation of binary edge
selection, and it determines the probability that edge (i, j) is selected when constructing a subgraph.
Formally, each edge is sampled according to a Bernoulli distribution with selection probability sij :

As(i, j) ∼ Bernoulli(sij), ∀(i, j) ∈ E . (8)

In other words, edge (i, j) is included in the sampled subgraph with probability sij and excluded
otherwise. By interpreting sij as both a trainable relaxation and a sampling probability, the model
can generate subgraphs in a stochastic manner. This sampling mechanism enables exploration of
diverse structural variants, ensuring that even edges with low scores are occasionally selected. As
perfectly identifying and removing noisy edges is infeasible, this strategy prevents the model from
prematurely discarding potentially informative connections while still encouraging sparsification.

In practice, we start from a high temperature τ to encourage exploration of diverse subgraphs and
gradually decrease it following a cosine scheduling strategy. This allows the model to explore struc-
tural variants more freely in the early stage of training, while focusing on more deterministic edge
selection in the later stage. Details of the ablation study on the temperature scheduling strategy are
provided in Appendix D.3.

Flatness-Aware Training. To enhance robustness against residual noise and improve generaliza-
tion performance, we adopt a flatness-aware training strategy based on a min–max optimization.
Specifically, the sparsified subgraph Gs is sampled from the original graph G according to the im-
portance score sij . We then optimize the following objective:

min
θ

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ), (9)

where θ denotes the encoder parameters, ϵ is a perturbation vector, and ρ is the perturbation radius.
The inner maximization corresponds to injecting perturbations into the encoder parameters, which
simulates worst-case deviations during training and mimics the corrupted message passing caused by
noisy edges. The outer minimization then drives the model to learn representations that remain stable
under such perturbations, thereby improving generalization performance and reducing sensitivity to
residual noise. In other words, the encoder is guided toward flat minima that generalize well under
residual noise conditions.

4.2 CONSTRAINED OPTIMIZATION

To mitigate the irreversible information loss caused by one-shot criterion-based sparsification, our
key idea is to gradually impose substantial sparsity onto the edges while maximally preserving
information during training. However, the restriction on the number of edges is inherently non-
differentiable due to the discrete nature of the ℓ0 constraint, which makes direct optimization in-
feasible. A standard approach for such constrained problems is to employ Lagrangian duality or
projected gradient descent. Yet, the discrete nature of the ℓ0-norm makes Lagrangian duality infea-
sible, while projected gradient descent, despite its efficiency, often struggles with highly non-convex
objectives in neural network optimization.

To balance the smooth optimization of Lagrangian methods with the efficiency of projection, we
adopt an augmented Lagrangian relaxation inspired by ADMM (Boyd et al., 2011b). To impose
sparsity, we introduce an auxiliary variable z with the equality constraint x = z, where z periodi-
cally stores the projected sparse solution. This leads to the following problem, where the sparsity
constraint ∥z∥0 ≤ r|E| ensures that only r × |E| edges are retained:

min
x,z

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z), s.t. x = z, (10)

where I∥z∥0≤r|E|(z) is the indicator function of the sparsity constraint:

I∥z∥0≤r|E|(z) :=

{
0, ∥z∥0 ≤ r|E|,
∞, otherwise.

(11)
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Algorithm 1 GraphSpa

Require: Target edge ratio r, total iterations T , dual-update interval K, penalty parameter λ, per-
turbation radius ρ, temperature τ

1: Initialize x(0)
2: u = 0
3: for t = 0 in T − 1 do
4: for each edge (i, j) ∈ E do
5: ξij ∼ U(0, 1)

6: s
(t)
ij ← σ

(
log ξij − log(1− ξij) + x

(t)
ij

τ

)
7: A

(t)
s (i, j) ∼ Bernoulli(s(t)ij )

8: end for
9: Construct subgraph G(t)

s = (V,A
(t)
s )

10: if t mod K = 0 then
11: z(t+1) ← Proj∥z∥0≤r|E|

(
x(t) + u(t)

)
12: u(t+1) ← u(t) + x(t) − z(t+1)

13: else
14: z(t+1) ← z(t), u(t+1) ← u(t)

15: end if
16: x(t+1) ← x(t) − η(t)

(
∇xL(G(t)

s , θ(t)) + λ(x(t) − z(t) + u(t))
)

17: ϵ̂← ρ · ∇θL(G(t)
s , θ(t))

∥∇θL(G(t)
s , θ(t))∥2

18: θ(t+1) ← θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂)

19: end for
20: return Proj∥z∥0≤r|E|(x

(T ))

To enforce x = z during optimization, we introduce a scaled dual variable u and add a quadratic
penalty term λ

2 ∥x− z∥
2
2, yielding the augmented Lagrangian relaxation:

max
u
,min

x,z

(
L(x, z, u) := max

∥ϵ∥p≤ρ
L(Gs, θ+ ϵ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2
2 +

λ
2 ∥x− z + u∥22

)
. (12)

Applying alternating minimization with respect to x and z, and dual ascent on u, we obtain the
following optimization subproblems:

xk+1, zk+1 = argmin
x,z

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z) +

λ
2 ∥x− z + uk∥22

)
,

uk+1 = argmax
u

λ
2 ∥xk+1 − zk+1 + u∥22 − λ

2 ∥u∥
2
2.

(13)

The z-update corresponds to a projection due to the indicator function, and the u-update reduces to
a simple dual ascent step. Therefore, the iterative scheme becomes:

xk+1 = argmin
x

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + λ

2 ∥x− zk + uk∥22
)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(14)

Since the x-minimization cannot be solved in closed form, we approximate it by a single gradient
descent step on the objective. This yields the practical update rules:

xk+1 = xk − η
(
∇xL(Gs, θk) + λ(xk − zk + uk)

)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(15)
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Figure 1: Node classification accuracy under different graph sparsity ratio on GCN/GAT/GIN across
the Cora/Citeseer/Pubmed datasets. Results are reported as mean ± std over 5 random seeds.

During training, this procedure gradually aligns xwith z, allowing continuous optimization between
projection steps, and avoids the irreversible information loss of one-shot sparsification. In this way,
the framework achieves progressive sparsification that preserves essential structural information un-
der a hard ℓ0 constraint, while benefiting from the stability of augmented Lagrangian optimization.

4.3 NOISE-RESILIENT ENCODER OPTIMIZATION

While updating (x, z, u) with the augmented Lagrangian scheme, we simultaneously update the
model parameters θ using the same loss function L applied to the sparsified subgraph Gs. By inject-
ing perturbations into the GNN parameters, the encoder is trained in a flatness-aware manner, which
reduces its sensitivity to residual noisy edges. As a result, the learned representations become more
robust and generalizable, achieving improved performance even under conditions where residual
noise persists in the graph. The perturbation vector is approximated as:

ϵ̂ = ρ
∇θL(Gs, θk)

∥∇θL(Gs, θk)∥2
, (16)

and the parameter update is given by

θk+1 = θk − η∇θL(Gs, θk + ϵ̂). (17)

Intuition. Each iteration of GRAPHSPA proceeds as follows: (i) a subgraph Gs is sampled using
the current edge probabilities from x, with a high initial temperature gradually annealed via cosine
scheduling to balance exploration and exploitation, (ii) the auxiliary variables z and u are updated
every K steps to enforce the hard ℓ0 constraint through projection and dual ascent, (iii) the edge
logits x are updated while staying close to the sparsity-projected proxy z and simultaneously max-
imizing mutual information with the original graph to preserve informative structures, and (iv) the
model parameters θ are optimized toward flatter minima via perturbation-based updates, reducing

7
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sensitivity to residual noisy edges and mitigating overfitting. The overall procedure of our frame-
work is summarized in Algorithm 1. We provide a theoretical guarantee that the x-minimization
converges during training. The detailed proof of convergence is deferred to Appendix A.

5 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework.
We first introduce the experimental settings, then compare our method with several baselines that
do not use labels, and finally provide analysis to highlight its advantages in terms of performance,
generalization, and applicability under noisy graph settings.

5.1 EXPERIMENTAL SETUP

Datasets & Models. We evaluate our framework on three transductive benchmark datasets Cora,
Citeseer, and Pubmed (Kipf & Welling, 2016). We adopt the public splits for all datasets, and
dataset statistics are summarized in Appendix B. For backbone models, we use Graph Convolutional
Network (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2018),
and Graph Isomorphism Network (GIN) (Xu et al., 2019).

Baselines. We compare our proposed method against the following sparsification strategies (i)
Vanilla use original graph for training (ii) DropEdge (Rong et al., 2020) (iii) degree-based (Batagelj
& Zaversnik, 2003) (iv) PageRank (Page et al., 1999). DropEdge reduces edge density uniformly,
while degree-based and PageRank heuristically remove edges associated with nodes of low degree
or low PageRank scores. PageRank method measures the relative importance of nodes in a graph
by simulating random walks and thus prioritizes preserving edges linked to structurally important
nodes. Further implementation details are provided in Appendix B.1.

5.2 PERFORMANCE ANALYSIS

Figure 1 reports the node classification accuracy under different edge retention ratios r, where r
denotes the proportion of edges retained after sparsification. All results are reported as averages
over 5 random seeds. At moderate sparsification levels such as r = 0.9, our method not only mit-
igates the adverse impact of edge removal but also consistently outperforms the vanilla backbone
models across all three datasets. This suggests that removing redundant or noisy edges through
sparsification enables the backbone to learn cleaner and more informative representations. When
the retention ratio decreases to r = 0.5, both Cora and Citeseer show a natural performance drop.
This is expected because graphs with relatively fewer edges are more likely to lose critical structural
information once a large proportion of edges are removed. Nevertheless, our method still exhibits
a much slower decline compared to DropEdge, degree-based, or PageRank-based heuristics, main-
taining higher accuracy under aggressive sparsification. In contrast, on the Pubmed dataset, which
contains substantially more edges, our method still achieves comparable performance to the vanilla
backbone even at r = 0.5. This indicates that our sparsification strategy can effectively preserve the
important structural information of the original graph. Overall, our method achieves the best per-
formance across all edge retention ratios and datasets, demonstrating that it can effectively remove
noisy or redundant edges while preserving essential structural information, even without any label
supervision. The superior results on Pubmed further highlight that the benefits of our method scale
with graph size, underscoring its practical applicability to large-scale real-world graphs.

5.3 ROBUSTNESS TO NOISY EDGES

If noisy edges remain after the sparsification process, they can distort node representations and sig-
nificantly degrade the generalization performance of GNNs (Zügner et al., 2018). Previous studies
have shown that existing sparsification methods fail to consistently remove all harmful connec-
tions (Chen et al., 2021). Therefore, it is necessary to make the model less sensitive to the remaining
noisy edges. To evaluate the robustness of our method against such noise, we first sparsify the orig-
inal graph by retaining r = 0.5 of the edges and then inject random edges following the protocol of
Jin et al. (2021) to construct corrupted graphs. The source and destination nodes of injected edges
are randomly sampled, and the noise ratio rnoise ∈ {0.1, 0.2, 0.3, 0.4, 0.5} denotes the proportion of

8
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Figure 2: Node classification accuracy of GCNs under injected noisy edges after 50% edge sparsifi-
cation with different noisy edge ratios. Results are reported as mean ± std over 5 random seeds.

injected edges relative to the number of edges after sparsification. We use a GCN model and report
classification accuracy averaged over 5 runs on three benchmark datasets.

Figure 2 shows that as the noise ratio increases, the performance of existing methods deteriorates
rapidly, revealing that GNN is vulnerable to remaining noisy edges. In particular, our method main-
tains higher accuracy by training the encoder in a flatness-aware manner during sparsification, which
makes it less sensitive to noisy edges and improves generalization. An interesting observation is
made on the Cora dataset. When sparsification was performed without flatness-aware training de-
noted as ours (w/o perturbation), the model exhibited poor performance, even worse than the base-
lines. This suggests that Cora, being a relatively small dataset, is more vulnerable to mis-trained
encoders. Once the encoder is poorly optimized during sparsification, the erroneous representations
are carried over into the downstream training stage, leading to severe performance degradation.
In small graphs, even a few noisy or mis-specified edges can dominate the structural information,
while insufficient training signals make it difficult to correct such errors. These findings highlight
the necessity of flatness-aware training during sparsification to ensure noise-robust representations.

5.4 QUALITATIVE ANALYSIS

Figure 3: t-SNE visualization of node embeddings on the Pubmed after 50% edge sparsification.

Figure 3 presents the 2D t-SNE projections of node embeddings after removing 50% of the edges
using different methods. As observed, the embeddings from our method exhibit a clustering struc-
ture consistent with the original graph, whereas other baselines show altered cluster distributions.
This indirectly demonstrates that our sparsification strategy can more effectively preserve the struc-
tural information of the original graph. Moreover, our method produces compact yet informative
subgraphs, enabling reliable graph learning without labels even under noisy conditions.

6 CONCLUSION

In this work, we proposed GRAPHSPA, a self-supervised graph sparsification framework that unifies
constrained optimization with flatness-aware training. By modeling edges as differentiable Bernoulli
variables and maximizing mutual information, GRAPHSPA learns informative structures without
labels. Augmented Lagrangian scheme progressively enforces sparsity with convergence guaran-
tees, while flatness-aware optimization mitigates residual noise. Experiments show that GRAPHSPA
achieves strong accuracy across sparsity ratios, preserves structural integrity, and remains robust to
noisy edges, establishing it as a principled approach for scalable and reliable graph learning.

9
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SUPPLEMENTARY MATERIALS

A CONVERGENCE ANALYSIS

n this section, we establish the convergence of our flatness-aware sparsification framework. Our
proof builds on the augmented Lagrangian method (Boyd et al., 2011a) and extends the fundamen-
tal convergence analysis of sharpness-aware minimization (Khanh et al., 2024), thereby providing
theoretical guarantees for the stability of our approach.

A.1 ASSUMPTIONS

Assumption A.1. (Smoothness and Weak Convexity) The lossL(G(t)
s , θ) is β-smooth and µ-weakly

convex in x.

Assumption A.2. (Lipschitz Gradient) The gradient of L with respect to x is Lipschitz, and stochas-
tic gradients (if any) are unbiased and have bounded variance.

Assumption A.3. (Step Size) The step size {η(t)} is diminishing, satisfying
∞∑
t=1

η(t) =∞,
∞∑
t=1

(η(t))2 <∞.

Assumption A.4. (Perturbation Radius) The perturbation radius {ρ(t)} applies only to θ-updates
and is bounded and/or diminishing, satisfying

lim sup
t→∞

ρ(t) < 1
β ,

∞∑
t=1

η(t)ρ(t) <∞.

Assumption A.5. (Strong Convexity of the Augmented Term) The penalty parameter satisfies λ >
µ, ensuring a strong convexity component in the augmented Lagrangian.

A.2 SMOOTHNESS AND CONVEXITY OF THE AUGMENTED LAGRANGIAN

Lemma A.1. Under Assumptions A.1–A.5, the augmented Lagrangian

L̂(x, z, u, θ) = L(G(t)
s , θ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2 + λ

2 ∥x− z + u∥2

is (β + λ)-smooth and (λ− µ)-strongly convex in x.

Proof. From β-smoothness ofL and quadratic penalty λ
2 ∥x−z+u∥

2, we obtain (β+λ)-smoothness.
Since λ > µ, the strong convexity term dominates the µ-weak convexity, yielding (λ − µ)-strong
convexity.

A.3 CONVERGENCE OF x-MINIMIZATION

The x-update is given by

x(t+1) = x(t) − η(t)
(
∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t))
)
.

Define
g(t) := ∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t)).

By β-smoothness of L̂, we have

L̂(x(t+1)) ≤ L̂(x(t))− η(t)⟨∇L̂(x(t)), g(t)⟩+ β(η(t))2

2 ∥g(t)∥2. (18)

Lemma A.2. (Projection Consistency) The projection step z(t) = ΠC(x
(t)+u(t)) ensures feasibility

of the sparsity constraint ∥z∥0 ≤ r|E| and preserves boundedness of {z(t)}.
Proof. By non-expansiveness of Euclidean projection,

∥z(t+1) − z(t)∥ ≤ ∥(x(t+1) − x(t)) + (u(t+1) − u(t))∥.

13
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A.4 CONVERGENCE OF θ UPDATES

The θ-update uses SAM perturbations:

ϵ̂(t) = ρ(t)
∇θL(G(t)

s , θ(t))

∥∇θL(G(t)
s , θ(t))∥

, θ(t+1) = θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂(t)).

Lemma A.3. (Lemma B.1 of (Khanh et al., 2024)) Let {a(t)}, {b(t)}, {c(t)} be nonnegative se-
quences satisfying

a(t+1) − a(t) ≤ b(t)a(t) + c(t),

with conditions
∞∑
t=1

b(t) =∞,
∞∑
t=1

c(t) <∞,
∞∑
t=1

b(t)a(t) <∞.

Then a(t) → 0 as t→∞.

Lemma A.4. (Perturbation Stability) Under Assumptions A.2–A.4, the perturbed gradient satisfies

∥∇θL(G(t)
s , θ(t) + ϵ̂(t))−∇θL(G(t)

s , θ(t))∥ ≤ βρ(t).

Proof. By β-smoothness of L, the deviation due to ϵ̂(t) is upper bounded by β∥ϵ̂(t)∥ = βρ(t).

A.5 CONVERGENCE TO STATIONARY POINTS

Theorem A.1. (Stationarity of Limit Points) Under Assumptions A.1–A.5, the iterates of Algo-
rithm 1 satisfy

∇xL̂(x(t), z(t), u(t), θ(t))→ 0, ∇θL(G(t)
s , θ(t))→ 0, as t→∞.

Thus, every limit point (x̄, z̄, ū, θ̄) is a stationary point of the augmented Lagrangian with SAM-
regularized parameter updates.

Proof. From equation 18, we see that L̂(x(t)) decreases up to error terms proportional to (η(t))2. By
Assumptions A.3–A.4,

∑
t η

(t)ρ(t) <∞, ensuring bounded cumulative perturbation. For θ, Lemma
A.4 guarantees perturbation errors vanish as ρ(t) → 0. Applying Lemma A.3 (Robbins–Siegmund
type argument), we obtain

lim
t→∞

∥∇xL̂(x(t))∥ = 0, lim
t→∞

∥∇θL(G(t)
s , θ(t))∥ = 0.

Therefore, every accumulation point is stationary in both (x, z, u) and θ.

A.6 COROLLARIES

Corollary A.1. (Expected Convergence) If the gradient is estimated via unbiased stochastic samples
with bounded variance, then the expected squared gradient norm satisfies

E
[
∥∇L̂(x(t))∥2

]
→ 0 as t→∞.

Proof. This follows directly from Theorem A.1 and the assumption that stochastic gradients are un-
biased with bounded variance (Hypothesis A.2). Applying Lemma A.3, we obtain the convergence
of expected gradient norms.

Corollary A.2. (Convergence Rate) If the step size is chosen as η(t) = 1√
t

and the perturbation

radius satisfies ρ(t) = O( 1√
t
), then

min
1≤t≤T

E
[
∥∇L̂(x(t))∥2

]
= O

(
1√
T

)
.

Proof. The rate follows by combining the descent inequality equation 18, bounded perturbation from
Lemma A.4, and the standard analysis of diminishing step sizes.
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Scaling with Graph Size. An important implication of our analysis is how sparsification interacts
with graph size. Suppose the graph has N nodes with average degree d̄, so that |E| ≈ Nd̄. For a
fixed sparsification ratio ρ, the number of preserved edges is r|E|. As N → ∞, the redundancy of
edges increases, and the variance introduced by random edge removal vanishes:

Var[edge sampling]
|E|

→ 0.

This provides an intuitive explanation of why our sharpness-aware sparsification benefits become
more pronounced on large-scale graphs such as Pubmed.

B EXPERIMENTAL SETTINGS

Dataset #Nodes #Edges #Features #Classes Split ratio
Cora 2,708 5,429 1,433 7 120/500/1000
Citeseer 3,327 4,732 3,703 6 140/500/1000
PubMed 19,717 44,338 500 3 60/500/1000

Table 1: Statistics of benchmark datasets.

Table 1 summarizes the datasets used in our experiments, including the number of nodes, edges,
features, classes and split ratios. We adopt the public splits from (Yang et al., 2016).

B.1 IMPLEMENTATION DETAILS

Hyper-parameter Value / Search Space
Epochs 200
Learning rate (η) 0.001
Learning rate schedule cosine
Weight decay 0.005
Dropout 0.5
Hidden units 128
Attention heads 8
β 0.2
τ (Gumbel temperature) cosine schedule
Perturbation radius (ρ) {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0}
Dual-update interval (K) {1, 2, 5, 10, 20, 40}
Penalty parameter (λ) {0.0001, 0.001, 0.01, 0.1}

Table 2: Hyperparameter details used for GraphSpa

All experiments are implemented in PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019), and conducted on a single NVIDIA RTX 2080 Ti (11GB) GPU. Each experiment
is repeated with 5 different random seeds, and we report the average accuracy together with the
standard deviation. We adopt GCN, GAT, and GIN as backbone in our experiments. For GCN, we
use a two-layer architecture with 128 hidden units, weight decay of 0.005, and dropout rate of 0.5.
GAT also has two layers with 128 hidden units, and employs 8 attention heads and a dropout rate of
0.5. For GIN, we use a two-layer network with 128 hidden units and dropout rate of 0.5. We adopt
a cosine learning rate schedule across all models. In our method, several hyperparameters play a
critical role, including the perturbation radius (ρ), dual-update interval (K), and penalty parameter
(λ). These hyperparameters are tuned via grid search for each dataset, and the final results are
reported using the best configuration selected from the search space summarized in Table 2.
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C COMPUTATION COMPLEXITY ANALYSIS

C.1 SPARSIFICATION COMPLEXITY

The computational complexity of our self-supervised sparsification framework can be decomposed
into three main components: (i) sparsification, (ii) contrastive loss computation, and (iii) encoder
training.

Sparsification stage. Each epoch involves parameterizing edge scores x ∈ R|E|, applying the
Gumbel–Sigmoid relaxation, and constructing the normalized sparse adjacency, which requires

O(|E|).
In addition, every K iterations a projection step is performed at a cost of

O(|E| log |E|),
which amortizes to 1

KO(|E| log |E|) per epoch.

Contrastive loss Computation. Constructing the similarity matrix between embeddings z1, z2 ∈
RN×d has a complexity of

O(N2d).

When negative sampling or mini-batch contrastive learning is adopted, this reduces to

O(Nd).

Encoder training. For each forward/backward pass, the GNN encoder requires

O(|E|d).
Since SAM optimization performs two such passes per epoch, the encoder cost is effectively dou-
bled, though it remains O(|E|d) in asymptotic order.

Total complexity. Putting everything together, the per-epoch complexity is

O(|E|d+N2d) + 1
KO(|E| log |E|),

and for T epochs, the total complexity becomes

O
(
T · (|E|d+N2d) + T

K |E| log |E|
)
.

Simplification. The number of edges can be approximated by the average degree d̄avg as |E| ≈
1
2Nd̄avg. Thus, the edge-related term simplifies to |E|d ≈ Nd̄avgd. For sparse graphs where
d̄avg = O(1), we obtain |E|d = O(Nd), showing that the edge cost grows linearly with N and d.

Final complexity. After simplification, the dominant cost depends on the loss calculation scheme:

• Full contrastive learning: all node pairs are compared, so the N2d term dominates, lead-
ing to

O(T · (N2d+Nd)) .

• Negative sampling: only sampled edges are considered, so message passing dominates,
giving

O(T · |E|d) which simplifies to O(TNd) for sparse graphs.

C.2 SPARSIFICATION COMPLEXITY COMPARISION

Compared with heuristic sparsification methods such as DropEdge, degree-based, and centrality-
based sparsification, our method has a higher asymptotic complexity due to the additional con-
trastive loss and SAM-based optimization. However, in practice both the number of epochs T and
embedding dimension d are typically small constants (e.g., T ≤ 200, d ≤ 128). As a result, the
practical runtime of GRAPHSPA is comparable to these baselines, while achieving better accuracy
and robustness.
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Method Time Complexity Explanation
DropEdge O(|E|) Random edge sampling per epoch: O(|E|)

Degree O(|E| log |E|) Degree computation: O(|E|)
+ Edge sorting: O(|E| log |E|)

PageRank O(N |E|) Betweenness centrality via Brandes: O(N |E|)

GraphSpa O(TN2d) or O(T |E|d)
Subgraph sampling: O(|E|)
Contrastive loss computation: O(N2d) or O(|E|d)
Encoder training: O(Nd)

Table 3: Time complexity analysis for baseline sparsification methods and GRAPHSPA.

D ABLATION STUDIES

D.1 IMPACT OF FLATNESS-AWARE TRAINING DURING SPARSIFICATION

Method Edge ratio 0.9 0.8 0.7 0.6 0.5
GraphSpa (Frozen) 76.60 ± 0.21 76.06 ± 2.80 76.46 ± 1.11 75.16 ± 1.80 74.44 ± 1.24

GraphSpa (Adam) 76.52 ± 1.49 75.90 ± 2.52 76.66 ± 1.28 75.58 ± 1.46 74.86 ± 1.02

GraphSpa 78.34 ± 0.76 77.52 ± 1.04 77.10 ± 0.74 76.72 ± 0.45 77.26 ± 1.13

Table 4: Ablation study on encoder training during sparsification on Pubmed. Results are reported
as mean ± std over 5 random seeds.

Table 4 presents the ablation results on the Pubmed dataset, comparing three settings: Frozen En-
coder, Adam, and SAM. The results highlight that encoder training during sparsification is crucial for
achieving good generalization and robustness to noisy edges. Freezing the encoder significantly de-
grades accuracy since the embeddings cannot adapt to the evolving sparse graph structure. Training
with Adam provides moderate results but is less robust across edge ratios. In contrast, SAM con-
sistently achieves the best performance, demonstrating that flatness-aware optimization enhances
stability during training and yields more reliable performance under varying sparsity levels.

D.2 SENSITIVITY TO HYPERPARAMETER ρ

The perturbation radius ρ introduced by SAM is a critical hyperparameter that controls the extent of
parameter perturbations during optimization. Choosing an appropriate ρ is essential for balancing
robustness and training stability.

Figure 4: Sensitivity of performance to the SAM perturbation radius ρ on Pubmed. Results are
reported as mean ± std over 5 random seeds.
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• Large ρ: When ρ is large, the optimizer explores flatter regions in the loss landscape, which
can potentially improve generalization and robustness. However, overly large perturbations
may destabilize training or hinder convergence, leading to degraded performance.

• Small ρ: When ρ is too small, it may result in limited robustness gains, as the perturbations
are not sufficient to promote significant flatness in the parameter space.

We conducted experiments by varying ρ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0} to evaluate its impact
on performance. Figure 4 illustrates the test accuracy across different edge ratios. Small ρ (e.g.,
0.01) provides only minor improvements, while very large ρ (e.g., 0.5 or above) causes unstable
training and significant degradation. An intermediate range (e.g., ρ = 0.1 or ρ = 0.2) yields the
best trade-off between robustness and stability.

D.3 EFFECTS OF τ SCHEDULING

(a) Test Accuracy (b) Schedules

Figure 5: Effects of τ scheduling. (a) Sparsification accuracy across different sparsification ratios
for constant τ compared with linear and cosine schedules. (b) Illustration of τ scheduling strategies,
where the cosine schedule maintains a higher τ in the early phase and decreases later for exploitation.

Figure 6: Effect of different penalty parameters λ on validation accuracy on Pubmed under varying
edge ratios. Results are reported as mean ± std over 5 random seeds.

In addition to fixed τ , we investigate different scheduling strategies to dynamically adjust the temper-
ature during training. As shown in Figure 5, we compare sparsification performance under different
τ settings. (a) demonstrates the effect of constant τ versus linear and cosine scheduling on sparsi-
fication accuracy across various sparsification ratios. (b) illustrates the scheduling dynamics of τ ,
where the cosine schedule starts with a relatively higher τ to encourage exploration of diverse sub-
graphs through broader edge distributions, and then gradually decays to enhance exploitation in the
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later phase. This gradual transition from exploration to exploitation explains why cosine scheduling
consistently achieves better performance compared to both constant and linear schedules.

D.4 EFFECTS OF PENALTY PARAMETER λ

We investigate the effect of different choices of the penalty parameter λ on accuracy across
various edge ratios. Figure 6 reports the average accuracy with standard deviation for λ ∈
{10−4, 10−3, 10−2, 10−1} under edge ratios ranging from 0.9 to 0.5. We observe that larger values
of λ such as 10−1 generally alleviate the accuracy drop at moderate edge ratios but degrade the
performance when the sparsification becomes more aggressive. In contrast, smaller values such as
λ = 10−4 yield competitive performance at higher edge ratios but fail to stabilize under heavier spar-
sification. This highlights the trade-off between enforcing the sparsity constraint more strongly via
larger λ and preserving model accuracy under different sparsity levels. In particular, while λ = 10−2

achieves the highest performance around edge ratio 0.8, its accuracy decreases significantly at 0.6,
indicating that the choice of λ must be carefully balanced depending on the target sparsity.
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