
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPHSPA: SELF-SUPERVISED GRAPH SPARSIFICA-
TION FOR ROBUST GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph sparsification has emerged as a promising approach to improve efficiency
and remove redundant or noisy edges in large-scale graphs. However, existing
methods often rely on task-specific labels, limiting their applicability in label-
scarce scenarios, and they rarely address the residual noise that persists after spar-
sification. In this work, we present GRAPHSPA, a self-supervised graph spar-
sification framework that learns to construct compact yet informative subgraphs
without requiring labels, while explicitly mitigating the effect of residual noise.
GRAPHSPA formulates sparsification with a target edge budget as a constrained
optimization problem, modeling each edge as a differentiable Bernoulli random
variable and employing the mutual information between sampled subgraphs and
the original graph as a loss function to learn individual edge importance. To pro-
gressively impose sparsity with stability, GRAPHSPA adopts an augmented La-
grangian scheme with convergence guarantees. In addition, the encoder is trained
in a flatness-aware manner using Sharpness-Aware Minimization (SAM), which
reduces sensitivity to residual noise and improves generalization. Extensive ex-
periments on benchmark datasets demonstrate that GRAPHSPA consistently out-
performs baselines across different sparsity ratios, preserves cluster structures in
t-SNE visualizations, and remains robust even when noisy edges are injected af-
ter sparsification. These results highlight GRAPHSPA as a principled and reliable
framework for graph sparsification without labels and under residual noise.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success in a wide range of graph learn-
ing tasks, including node classification (Kipf & Welling, 2016), link prediction (Zhang & Chen,
2018), recommender systems (Ying et al., 2018), and social network modeling (Qiu & et al., 2018).
These advances demonstrate the strong potential of GNNs for analyzing complex relational data,
yet scaling them to large real-world graphs remains challenging. As graph size increases, compu-
tational and memory costs grow rapidly, and real-world graphs often contain redundant or spurious
edges (Li et al., 2024; Satuluri & Parthasarathy, 2011) that propagate misleading signals and degrade
representation quality. Graph sparsification has emerged as a promising approach to mitigate these
issues by removing redundant or noisy edges, thereby reducing overhead and yielding cleaner struc-
tural representations (Batson et al., 2013; Zheng et al., 2020). However, supervised sparsification
methods rely on task-specific labels (Chen et al., 2021; Li et al., 2019), limiting their applicability in
label-free scenarios such as recommender systems or social networks (Sobolevsky & Belyi, 2022;
Guo et al., 2024). Meanwhile, unsupervised heuristic methods based on structural indicators such
as degree or PageRank have also been explored (Batagelj & Zaversnik, 2003; Page et al., 1999).
Yet these methods depend only on shallow cues and merely attempt to remove unnecessary edges,
without explicitly addressing the residual noise that inevitably remains after sparsification.

Alongside reliance on labels, residual noise from sparsification poses another fundamental chal-
lenge. Since sparsification simplifies the graph structure, the diversity of propagation paths is re-
duced, making models more vulnerable to noisy edges (Dong & Kluger, 2023). With fewer effective
signals, over-parameterized GNNs tend to overfit and become more sensitive to residual noise (Zhou
et al., 2018). This issue is particularly acute in domains such as social networks, where relationships
themselves act as supervision signals. Spurious edges introduced by fake accounts or ephemeral
connections distort the learning process and undermine downstream tasks such as community de-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tection or link prediction (Wang et al., 2018). Addressing this challenge requires new sparsification
methods that can effectively mitigate residual noise while operating without labels.

In this paper, we propose GRAPHSPA, a self-supervised graph sparsification framework designed to
address both the reliance on labels and the vulnerability to residual noise. To overcome label depen-
dence, GRAPHSPA explores diverse subgraph combinations and learns individual edge importance
by comparing their mutual information with the original graph, enabling the discovery of meaning-
ful sparsified structures without labels. To further mitigate the residual noise that inevitably remains
after sparsification, GRAPHSPA jointly optimizes the encoder during sparsification by leveraging
Sharpness-Aware Minimization (SAM) (Foret et al., 2021). This encourages convergence toward
flat minima, reduces sensitivity to noise, and ultimately enhances generalization.

GRAPHSPA models each edge as a Bernoulli random variable and samples subgraphs according to
its probability. By relaxing the discrete edge selection into continuous probabilities, the process be-
comes differentiable, which enables gradient propagation during training. The mutual information
between the sampled subgraphs and the original graph is employed as a loss function to learn indi-
vidual edge importance scores. In the early stage of training, the framework encourages broad explo-
ration of diverse structural variants, and later progressively shifts toward concentrating on meaning-
ful structures. To enforce the target edge budget while preserving structural information, GRAPHSPA
adopts an Augmented Lagrangian scheme (Boyd et al., 2011b). Unlike one-shot sparsification, spar-
sity is imposed progressively with theoretical convergence guarantees, ensuring training stability.
Moreover, to mitigate the effect of residual noise, the encoder is jointly optimized during sparsifi-
cation by leveraging Sharpness-Aware Minimization (SAM). This guides optimization toward flat
minima, reduces sensitivity to noisy edges, and improves generalization performance.

We validate the effectiveness of GRAPHSPA through extensive experiments on benchmark datasets
including Cora, Citeseer, and Pubmed. Across different edge ratios, GRAPHSPA consistently out-
performs existing baselines, showing better accuracy while preserving structural information. Vi-
sualization studies further confirm that GRAPHSPA maintains the cluster structure of the original
graph in t-SNE embeddings, and robustness evaluations demonstrate that the framework sustains
strong performance even when noisy edges are injected after sparsification. These results highlight
GRAPHSPA as a reliable and generalizable framework for graph sparsification without labels.

Our main contributions are summarized as follows:

• We propose GRAPHSPA, a self-supervised graph sparsification framework that removes the
reliance on labels while explicitly addressing the persistent influence of residual noise.

• We propose a unified framework that combines Bernoulli edge sampling with mutual in-
formation guided importance learning, progressive sparsification under an augmented La-
grangian formulation, and flatness aware optimization using SAM.

• We conduct extensive experiments on multiple benchmarks, demonstrating that
GRAPHSPA consistently outperforms baselines across edge ratios, preserves structural in-
tegrity, and achieves strong generalization under noisy conditions.

2 RELATED WORKS

Graph Self-Supervised Learning (Graph SSL) has emerged as a powerful paradigm in graph
neural network (GNN) research, attracting significant attention from both academia and industry. In
graph SSL, the model is trained through well-designed auxiliary tasks, where supervisory signals
are automatically generated from the data without requiring manual labels (Li et al., 2022; Liu et al.,
2021). Among various approaches, contrastive learning has proven to be one of the most successful
strategies for graph data (Velickovic et al., 2019; Xu et al., 2021; Zeng & Xie, 2021). Its key idea
is to maximize the similarity between representations of two different augmented views of the same
graph, typically by maximizing their mutual information (van den Oord et al., 2018). Such methods
have achieved state-of-the-art performance in diverse graph-based downstream tasks, but research
that combines graph SSL with graph sparsification remains relatively limited.

Graph Sparsification aims to construct a sparser graph by removing a subset of edges from the
original graph. This reduces storage cost, accelerates GNN training and inference, and alleviates
the impact of redundant or noisy edges. However, many existing sparsification methods rely heavily

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on sufficient label information, which is often scarce in real-world scenarios such as recommender
systems or social networks (Yang et al., 2016; Hu et al., 2020). In the absence of labels, they are
largely restricted to heuristic strategies such as random or degree-based removal. A representative
example is DropEdge (Rong et al., 2020), which randomly removes edges at each training epoch to
improve generalization. Beyond random removal, heuristic sparsification methods based on struc-
tural indicators have also been explored, such as degree-based sparsification (Batagelj & Zaversnik,
2003), which removes edges connected to nodes with low degree or limited contribution to graph
connectivity, and centrality-based sparsification (Girvan & Newman, 2002; Chen et al., 2021), which
removes structurally less important edges according to centrality measures such as PageRank (Page
et al., 1999). While these approaches are simple and computationally efficient, sparsification inher-
ently simplifies the graph structure. As a result, informative edges may be inadvertently discarded
or spurious ones retained, and the simplified structure becomes more vulnerable to residual noise,
ultimately leading to degraded robustness and generalization performance (Xu et al., 2019; Zheng
et al., 2020; Luo et al., 2021; Wu et al., 2023).

3 PRELIMINARIES

To ground our method, we first formalize the problem of graph sparsification and review the prin-
ciple of flatness-aware optimization. These preliminaries establish the foundation for GRAPHSPA,
which integrates self-supervised sparsification with flatness-aware training to address residual noise.

3.1 PROBLEM SETUP

We begin by representing an undirected input graph G = (V,E), where V is the set of N vertices
and E is the set of edges. The graph structure is described by the adjacency matrix A ∈ RN×N ,
where A[i, j] = 1 if (i, j) ∈ E and 0 otherwise. Each vertex v ∈ V is associated with a feature
vector xv ∈ RF , and the feature matrix is denoted as X ∈ RN×F .

Given (A,X), GNN fθ learns node representations by iteratively aggregating information from
neighbors across layers. At the l-th layer, the representation of node v is updated as:

h(l+1)
v = ψ

(
h(l)v , ϕ{h(l)u | u ∈ Nv}

)
, (1)

where ϕ denotes an aggregation function over neighbors, ψ combines the previous representation of
v with the aggregated messages, and h(0)v = xv is the initial representation.

The goal of graph sparsification is to learn a function

P : G→ Gs, (2)

whereGs ⊆ G is a sparsified subgraph that preserves as much informative structure ofG as possible.
Formally, Gs = (V,Es) is defined by an adjacency matrix As ∈ {0, 1}|E|, where As[i, j] = 1 if the
edge (i, j) ∈ Es is kept and 0 otherwise. An edge retention ratio r ∈ (0, 1) controls the proportion
of edges retained, and Gs keeps r% of the original edges. In the self-supervised setting, no label
information such as node labels is available. Instead, the sparsification mechanism has to identify
and retain informative edges without supervision.

3.2 SHARPNESS-AWARE MINIMIZATION

Sharpness-Aware Minimization (SAM) aims to find loss minima that are not only high-performing
but also insensitive to parameter perturbations, thereby improving generalization and robustness
(Foret et al., 2021). Formally, SAM solves the following min–max optimization problem:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ), (3)

where L(θ) is the training loss for parameters θ, and ϵ denotes parameter perturbations within an ℓp
ball of radius ρ, which determines the maximum perturbation size. The inner maximization seeks the
worst-case performance under perturbations, while the outer minimization finds parameters robust

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to such perturbations. To efficiently approximate the inner maximization, SAM uses a first-order
Taylor expansion. The perturbation that maximally increases the loss is estimated as:

ϵ̂ = ρ · ∇θL(θ)
∥∇θL(θ)∥2

≈ arg max
∥ϵ∥p≤ρ

L(θ + ϵ), (4)

At training step t, SAM is implemented via the following iterative process:

ϵt = ∇θL(θt), ϵ̂t = ρ · ϵt
∥ϵt∥2

, ωt = ∇θL(θt + ϵ̂t), θt+1 = θt − η · ωt, (5)

where ϵt is the perturbation gradient, ϵ̂t is the normalized perturbation within the ρ-ball, ωt is the
updating gradient evaluated at the perturbed parameters, and η is the learning rate. By updating pa-
rameters using gradients computed at perturbed weights, SAM explicitly encourages convergence to
flat minima, where the loss landscape varies smoothly under small perturbations, thereby improving
generalization and robustness across diverse domains (Foret et al., 2021; Baek et al., 2024).

4 GRAPHSPA

In this section, we introduce GRAPHSPA, a self-supervised graph sparsification framework that ex-
plicitly addresses residual noise while preserving the structural information of the original graph.
GRAPHSPA formulates sparsification with a target edge budget as a constrained optimization prob-
lem. Instead of relying on labels, each edge is modeled as a differentiable Bernoulli random variable,
and the loss is defined as the mutual information between the sampled subgraph and the original
graph. By maximizing this objective, the framework learns edge importance scores and identifies
informative structures. Based on these importance scores, we adopt an augmented Lagrangian ap-
proach with convergence guarantees to gradually impose sparsity during optimization, rather than
removing edges in a one-shot manner. Moreover, GRAPHSPA integrates flatness-aware training into
the sparsification process to optimize the encoder in a way that reduces sensitivity to residual noise,
thereby ensuring robust generalization even without labels.

4.1 PROBLEM FORMULATION

Self-Supervised Objective. We adopt a self-supervised strategy to preserve the essential informa-
tion of the original graph G. Specifically, we maximize the mutual information between the original
graph G and the sparsified graph Gs by adopting the InfoNCE loss (van den Oord et al., 2018).

Let node embeddings be H = fθ(X,As) obtained from a GNN encoder parameterized by θ, where
hv denotes the embedding of node v ∈ V . The pair (G,Gs) is treated as a positive sample, while
negative samples G̃s are generated by randomly dropping a portion of edges fromG. The contrastive
loss is then defined as

L = −
∑
v∈V

log
exp(sim(hGv , h

Gs
v)/β)∑

u∈V exp(sim(hGv , h
Gs
u)/β)

, (6)

where sim(·, ·) is a similarity function such as cosine similarity and β is a temperature parameter.
This loss encourages the embeddings fromGs to remain consistent with those fromG, ensuring that
sparsification retains informative edges without using labels.

Edge Importance Learning via Bernoulli Subgraph Sampling. At each training iteration, we
need to construct a sparsified subgraph to learn importance of individual egdes. A naive approach
would be to randomly sample edges from the original graph, which incurs an exponential search
space of 2|E| possible subgraphs and does not allow gradient propagation since edge selection is a
discrete 0-1 decision. To address this, we relax the binary mask into a continuous probability through
a learnable logit xij , which reflects the latent importance of edge (i, j). Through the Gumbel-
Softmax relaxation (Jang et al., 2017), we obtain a continuous importance score sij ∈ (0, 1):

sij = σ

(
log ξij − log(1− ξij) + xij

τ

)
, ξij ∼ U(0, 1), (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where σ(·) is the sigmoid function and τ > 0 is a temperature parameter. We initialize xij = 0 so
that all edges start with equal importance.

The importance score sij serves a dual role. It provides a differentiable relaxation of binary edge
selection, and it determines the probability that edge (i, j) is selected when constructing a subgraph.
Formally, each edge is sampled according to a Bernoulli distribution with selection probability sij :

As(i, j) ∼ Bernoulli(sij), ∀(i, j) ∈ E . (8)

In other words, edge (i, j) is included in the sampled subgraph with probability sij and excluded
otherwise. By interpreting sij as both a trainable relaxation and a sampling probability, the model
can generate subgraphs in a stochastic manner. This sampling mechanism enables exploration of
diverse structural variants, ensuring that even edges with low scores are occasionally selected. As
perfectly identifying and removing noisy edges is infeasible, this strategy prevents the model from
prematurely discarding potentially informative connections while still encouraging sparsification.

In practice, we start from a high temperature τ to encourage exploration of diverse subgraphs and
gradually decrease it following a cosine scheduling strategy. This allows the model to explore struc-
tural variants more freely in the early stage of training, while focusing on more deterministic edge
selection in the later stage. Details of the ablation study on the temperature scheduling strategy are
provided in Appendix D.3.

Flatness-Aware Training. To enhance robustness against residual noise and improve generaliza-
tion performance, we adopt a flatness-aware training strategy based on a min–max optimization.
Specifically, the sparsified subgraph Gs is sampled from the original graph G according to the im-
portance score sij . We then optimize the following objective:

min
θ

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ), (9)

where θ denotes the encoder parameters, ϵ is a perturbation vector, and ρ is the perturbation radius.
The inner maximization corresponds to injecting perturbations into the encoder parameters, which
simulates worst-case deviations during training and mimics the corrupted message passing caused by
noisy edges. The outer minimization then drives the model to learn representations that remain stable
under such perturbations, thereby improving generalization performance and reducing sensitivity to
residual noise. In other words, the encoder is guided toward flat minima that generalize well under
residual noise conditions.

4.2 CONSTRAINED OPTIMIZATION

To mitigate the irreversible information loss caused by one-shot criterion-based sparsification, our
key idea is to gradually impose substantial sparsity onto the edges while maximally preserving
information during training. However, the restriction on the number of edges is inherently non-
differentiable due to the discrete nature of the ℓ0 constraint, which makes direct optimization in-
feasible. A standard approach for such constrained problems is to employ Lagrangian duality or
projected gradient descent. Yet, the discrete nature of the ℓ0-norm makes Lagrangian duality infea-
sible, while projected gradient descent, despite its efficiency, often struggles with highly non-convex
objectives in neural network optimization.

To balance the smooth optimization of Lagrangian methods with the efficiency of projection, we
adopt an augmented Lagrangian relaxation inspired by ADMM (Boyd et al., 2011b). To impose
sparsity, we introduce an auxiliary variable z with the equality constraint x = z, where z periodi-
cally stores the projected sparse solution. This leads to the following problem, where the sparsity
constraint ∥z∥0 ≤ r|E| ensures that only r × |E| edges are retained:

min
x,z

max
∥ϵ∥p≤ρ

L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z), s.t. x = z, (10)

where I∥z∥0≤r|E|(z) is the indicator function of the sparsity constraint:

I∥z∥0≤r|E|(z) :=

{
0, ∥z∥0 ≤ r|E|,
∞, otherwise.

(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 GraphSpa

Require: Target edge ratio r, total iterations T , dual-update interval K, penalty parameter λ, per-
turbation radius ρ, temperature τ

1: Initialize x(0)
2: u = 0
3: for t = 0 in T − 1 do
4: for each edge (i, j) ∈ E do
5: ξij ∼ U(0, 1)

6: s
(t)
ij ← σ

(
log ξij − log(1− ξij) + x

(t)
ij

τ

)
7: A

(t)
s (i, j) ∼ Bernoulli(s(t)ij)

8: end for
9: Construct subgraph G(t)

s = (V,A
(t)
s)

10: if t mod K = 0 then
11: z(t+1) ← Proj∥z∥0≤r|E|

(
x(t) + u(t)

)
12: u(t+1) ← u(t) + x(t) − z(t+1)

13: else
14: z(t+1) ← z(t), u(t+1) ← u(t)

15: end if
16: x(t+1) ← x(t) − η(t)

(
∇xL(G(t)

s , θ(t)) + λ(x(t) − z(t) + u(t))
)

17: ϵ̂← ρ · ∇θL(G(t)
s , θ(t))

∥∇θL(G(t)
s , θ(t))∥2

18: θ(t+1) ← θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂)

19: end for
20: return Proj∥z∥0≤r|E|(x

(T))

To enforce x = z during optimization, we introduce a scaled dual variable u and add a quadratic
penalty term λ

2 ∥x− z∥
2
2, yielding the augmented Lagrangian relaxation:

max
u
,min

x,z

(
L(x, z, u) := max

∥ϵ∥p≤ρ
L(Gs, θ+ ϵ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2
2 +

λ
2 ∥x− z + u∥22

)
. (12)

Applying alternating minimization with respect to x and z, and dual ascent on u, we obtain the
following optimization subproblems:

xk+1, zk+1 = argmin
x,z

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + I∥z∥0≤r|E|(z) +

λ
2 ∥x− z + uk∥22

)
,

uk+1 = argmax
u

λ
2 ∥xk+1 − zk+1 + u∥22 − λ

2 ∥u∥
2
2.

(13)

The z-update corresponds to a projection due to the indicator function, and the u-update reduces to
a simple dual ascent step. Therefore, the iterative scheme becomes:

xk+1 = argmin
x

max
∥ϵ∥p≤ρ

(
L(Gs, θ + ϵ) + λ

2 ∥x− zk + uk∥22
)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(14)

Since the x-minimization cannot be solved in closed form, we approximate it by a single gradient
descent step on the objective. This yields the practical update rules:

xk+1 = xk − η
(
∇xL(Gs, θk) + λ(xk − zk + uk)

)
,

zk+1 = Proj∥z∥0≤r|E|(xk+1 + uk),

uk+1 = uk + xk+1 − zk+1.

(15)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Node classification accuracy under different graph sparsity ratio on GCN/GAT/GIN across
the Cora/Citeseer/Pubmed datasets. Results are reported as mean ± std over 5 random seeds.

During training, this procedure gradually aligns xwith z, allowing continuous optimization between
projection steps, and avoids the irreversible information loss of one-shot sparsification. In this way,
the framework achieves progressive sparsification that preserves essential structural information un-
der a hard ℓ0 constraint, while benefiting from the stability of augmented Lagrangian optimization.

4.3 NOISE-RESILIENT ENCODER OPTIMIZATION

While updating (x, z, u) with the augmented Lagrangian scheme, we simultaneously update the
model parameters θ using the same loss function L applied to the sparsified subgraph Gs. By inject-
ing perturbations into the GNN parameters, the encoder is trained in a flatness-aware manner, which
reduces its sensitivity to residual noisy edges. As a result, the learned representations become more
robust and generalizable, achieving improved performance even under conditions where residual
noise persists in the graph. The perturbation vector is approximated as:

ϵ̂ = ρ
∇θL(Gs, θk)

∥∇θL(Gs, θk)∥2
, (16)

and the parameter update is given by

θk+1 = θk − η∇θL(Gs, θk + ϵ̂). (17)

Intuition. Each iteration of GRAPHSPA proceeds as follows: (i) a subgraph Gs is sampled using
the current edge probabilities from x, with a high initial temperature gradually annealed via cosine
scheduling to balance exploration and exploitation, (ii) the auxiliary variables z and u are updated
every K steps to enforce the hard ℓ0 constraint through projection and dual ascent, (iii) the edge
logits x are updated while staying close to the sparsity-projected proxy z and simultaneously max-
imizing mutual information with the original graph to preserve informative structures, and (iv) the
model parameters θ are optimized toward flatter minima via perturbation-based updates, reducing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

sensitivity to residual noisy edges and mitigating overfitting. The overall procedure of our frame-
work is summarized in Algorithm 1. We provide a theoretical guarantee that the x-minimization
converges during training. The detailed proof of convergence is deferred to Appendix A.

5 EXPERIMENTS

In this section, we present experiments to validate the effectiveness of the proposed framework.
We first introduce the experimental settings, then compare our method with several baselines that
do not use labels, and finally provide analysis to highlight its advantages in terms of performance,
generalization, and applicability under noisy graph settings.

5.1 EXPERIMENTAL SETUP

Datasets & Models. We evaluate our framework on three transductive benchmark datasets Cora,
Citeseer, and Pubmed (Kipf & Welling, 2016). We adopt the public splits for all datasets, and
dataset statistics are summarized in Appendix B. For backbone models, we use Graph Convolutional
Network (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT) (Veličković et al., 2018),
and Graph Isomorphism Network (GIN) (Xu et al., 2019).

Baselines. We compare our proposed method against the following sparsification strategies (i)
Vanilla use original graph for training (ii) DropEdge (Rong et al., 2020) (iii) degree-based (Batagelj
& Zaversnik, 2003) (iv) PageRank (Page et al., 1999). DropEdge reduces edge density uniformly,
while degree-based and PageRank heuristically remove edges associated with nodes of low degree
or low PageRank scores. PageRank method measures the relative importance of nodes in a graph
by simulating random walks and thus prioritizes preserving edges linked to structurally important
nodes. Further implementation details are provided in Appendix B.1.

5.2 PERFORMANCE ANALYSIS

Figure 1 reports the node classification accuracy under different edge retention ratios r, where r
denotes the proportion of edges retained after sparsification. All results are reported as averages
over 5 random seeds. At moderate sparsification levels such as r = 0.9, our method not only mit-
igates the adverse impact of edge removal but also consistently outperforms the vanilla backbone
models across all three datasets. This suggests that removing redundant or noisy edges through
sparsification enables the backbone to learn cleaner and more informative representations. When
the retention ratio decreases to r = 0.5, both Cora and Citeseer show a natural performance drop.
This is expected because graphs with relatively fewer edges are more likely to lose critical structural
information once a large proportion of edges are removed. Nevertheless, our method still exhibits
a much slower decline compared to DropEdge, degree-based, or PageRank-based heuristics, main-
taining higher accuracy under aggressive sparsification. In contrast, on the Pubmed dataset, which
contains substantially more edges, our method still achieves comparable performance to the vanilla
backbone even at r = 0.5. This indicates that our sparsification strategy can effectively preserve the
important structural information of the original graph. Overall, our method achieves the best per-
formance across all edge retention ratios and datasets, demonstrating that it can effectively remove
noisy or redundant edges while preserving essential structural information, even without any label
supervision. The superior results on Pubmed further highlight that the benefits of our method scale
with graph size, underscoring its practical applicability to large-scale real-world graphs.

5.3 ROBUSTNESS TO NOISY EDGES

If noisy edges remain after the sparsification process, they can distort node representations and sig-
nificantly degrade the generalization performance of GNNs (Zügner et al., 2018). Previous studies
have shown that existing sparsification methods fail to consistently remove all harmful connec-
tions (Chen et al., 2021). Therefore, it is necessary to make the model less sensitive to the remaining
noisy edges. To evaluate the robustness of our method against such noise, we first sparsify the orig-
inal graph by retaining r = 0.5 of the edges and then inject random edges following the protocol of
Jin et al. (2021) to construct corrupted graphs. The source and destination nodes of injected edges
are randomly sampled, and the noise ratio rnoise ∈ {0.1, 0.2, 0.3, 0.4, 0.5} denotes the proportion of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Node classification accuracy of GCNs under injected noisy edges after 50% edge sparsifi-
cation with different noisy edge ratios. Results are reported as mean ± std over 5 random seeds.

injected edges relative to the number of edges after sparsification. We use a GCN model and report
classification accuracy averaged over 5 runs on three benchmark datasets.

Figure 2 shows that as the noise ratio increases, the performance of existing methods deteriorates
rapidly, revealing that GNN is vulnerable to remaining noisy edges. In particular, our method main-
tains higher accuracy by training the encoder in a flatness-aware manner during sparsification, which
makes it less sensitive to noisy edges and improves generalization. An interesting observation is
made on the Cora dataset. When sparsification was performed without flatness-aware training de-
noted as ours (w/o perturbation), the model exhibited poor performance, even worse than the base-
lines. This suggests that Cora, being a relatively small dataset, is more vulnerable to mis-trained
encoders. Once the encoder is poorly optimized during sparsification, the erroneous representations
are carried over into the downstream training stage, leading to severe performance degradation.
In small graphs, even a few noisy or mis-specified edges can dominate the structural information,
while insufficient training signals make it difficult to correct such errors. These findings highlight
the necessity of flatness-aware training during sparsification to ensure noise-robust representations.

5.4 QUALITATIVE ANALYSIS

Figure 3: t-SNE visualization of node embeddings on the Pubmed after 50% edge sparsification.

Figure 3 presents the 2D t-SNE projections of node embeddings after removing 50% of the edges
using different methods. As observed, the embeddings from our method exhibit a clustering struc-
ture consistent with the original graph, whereas other baselines show altered cluster distributions.
This indirectly demonstrates that our sparsification strategy can more effectively preserve the struc-
tural information of the original graph. Moreover, our method produces compact yet informative
subgraphs, enabling reliable graph learning without labels even under noisy conditions.

6 CONCLUSION

In this work, we proposed GRAPHSPA, a self-supervised graph sparsification framework that unifies
constrained optimization with flatness-aware training. By modeling edges as differentiable Bernoulli
variables and maximizing mutual information, GRAPHSPA learns informative structures without
labels. Augmented Lagrangian scheme progressively enforces sparsity with convergence guaran-
tees, while flatness-aware optimization mitigates residual noise. Experiments show that GRAPHSPA
achieves strong accuracy across sparsity ratios, preserves structural integrity, and remains robust to
noisy edges, establishing it as a principled approach for scalable and reliable graph learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENT

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

Christina Baek, J Zico Kolter, and Aditi Raghunathan. Why is sam robust to label noise? In
International Conference on Learning Representations (ICLR), 2024.

Vladimir Batagelj and Matjaž Zaversnik. An o(m) algorithm for cores decomposition of networks.
arXiv preprint arXiv:cs/0310049, 2003.

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification
of graphs: Theory and algorithms. Communications of the ACM, 56(8):87–94, 2013.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed Optimiza-
tion and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations
and Trends in Machine Learning, 2011a.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011b. doi: 10.1561/2200000016.

Dongkwan Chen, Kyungwoo Shin, Tianxiang Zhang, Sung Ju Hwang, Kijung Shin, and Sung Ju
Lee. Unified graph structured learning with randomly pruned message passing. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Mingze Dong and Yuval Kluger. Towards understanding and reducing graph structural noise for
gnns. In Proceedings of the 2023 International Conference on Machine Learning (ICML), 2023.

Matthias Fey and Jan E. Lenssen. Pytorch geometric: Deep learning on irregularly structured in-
put data. In Proceedings of the International Conference on Learning Representations (ICLR)
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations (ICLR), 2021.

Michelle Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

Jing Guo, Yujie Wang, Ming Chen, Yu Zhang, and Xindong Wu. Unsupervised social event detection
via hybrid graph contrastive learning and reinforced incremental clustering. Knowledge-Based
Systems, 287:110289, 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hao Ren, Bowen Liu, Michela Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel–softmax. In
International Conference on Learning Representations, 2017. arXiv:1611.01144.

Wei Jin, Yao Ma, Xiaorui Liu, and Jiliang Tang. Node injection attacks on graphs via reinforcement
learning. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 1398–1408, 2021.

Pham Duy Khanh, Hoang-Chau Luong, Boris S. Mordukhovich, and Dat Ba Tran. Fundamental
convergence analysis of sharpness-aware minimization. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2401.08060.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

10

https://arxiv.org/abs/2401.08060

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. MaskGAE: Masked graph modeling meets graph autoencoders.
CoRR, abs/2205.10053, 2022.

Qimai Li, Xiao-Ming Wu, Hongwei Liu, Xiaotong Zhang, and Zhen Guan. Label efficient semi-
supervised learning via graph filtering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019. doi: 10.1109/TPAMI.2019.2960335.

Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang
Liu, Shu Wu, Liang Wang, et al. GSLB: The graph structure learning benchmark. In Advances in
Neural Information Processing Systems (NeurIPS), volume 36, 2024.

Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S. Yu. Graph self-supervised
learning: A survey. CoRR, abs/2103.00111, 2021.

Fan Luo, Wei Cheng, Wenchao Yu, Bo Zong, Haifeng Chen, Wei Zhang, and Haifeng Wang. Learn-
ing to Drop: Robust Graph Neural Network via Topological Denoising. In Proceedings of the
38th International Conference on Machine Learning (ICML), 2021.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1999. Previous number
= SIDL-WP-1999-0120.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems (NeurIPS 2019), vol-
ume 32, pp. 8024–8035, 2019.

Jiezhong Qiu and et al. Network embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec. In WSDM, 2018.

Yu Rong, Yatao Huang, Wenbing Xu, and Junzhou Huang. DropEdge: Towards deep graph convolu-
tional networks on node classification. In International Conference on Learning Representations
(ICLR), 2020.

Venu Satuluri and Srinivasan Parthasarathy. Local graph sparsification. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, pp. 721–732. ACM, 2011.

Stanislav Sobolevsky and Alexander Belyi. Graph neural network inspired algorithm for unsuper-
vised network community detection through modularity optimization. Applied Network Science,
7(1):1–15, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive pre-
dictive coding. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019. Poster.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional
networks by adding fake nodes. In arXiv preprint arXiv:1810.10751, 2018.

Lirong Wu, Dongkun Luo, Keyulu Xu, Yuanchun Zhuang, et al. SUBLIME: A self-supervised learn-
ing framework for graphs via virtual node information maximization. In International Conference
on Machine Learning (ICML), 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. InfoGCL:
Information-aware graph contrastive learning. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 30414–30425, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In International Conference on Machine Learning (ICML), pp. 40–48,
2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983. ACM, 2018.

Jiaqi Zeng and Pengtao Xie. Contrastive self-supervised learning for graph classification. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pp. 10824–10832. AAAI Press, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, volume 31, 2018.

Xiaoxin Zheng et al. Graph Learning with Personalized PageRank for Semi-Supervised Node Clas-
sification. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), 2020.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 2847–2856, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIALS

A CONVERGENCE ANALYSIS

n this section, we establish the convergence of our flatness-aware sparsification framework. Our
proof builds on the augmented Lagrangian method (Boyd et al., 2011a) and extends the fundamen-
tal convergence analysis of sharpness-aware minimization (Khanh et al., 2024), thereby providing
theoretical guarantees for the stability of our approach.

A.1 ASSUMPTIONS

Assumption A.1. (Smoothness and Weak Convexity) The lossL(G(t)
s , θ) is β-smooth and µ-weakly

convex in x.

Assumption A.2. (Lipschitz Gradient) The gradient of L with respect to x is Lipschitz, and stochas-
tic gradients (if any) are unbiased and have bounded variance.

Assumption A.3. (Step Size) The step size {η(t)} is diminishing, satisfying
∞∑
t=1

η(t) =∞,
∞∑
t=1

(η(t))2 <∞.

Assumption A.4. (Perturbation Radius) The perturbation radius {ρ(t)} applies only to θ-updates
and is bounded and/or diminishing, satisfying

lim sup
t→∞

ρ(t) < 1
β ,

∞∑
t=1

η(t)ρ(t) <∞.

Assumption A.5. (Strong Convexity of the Augmented Term) The penalty parameter satisfies λ >
µ, ensuring a strong convexity component in the augmented Lagrangian.

A.2 SMOOTHNESS AND CONVEXITY OF THE AUGMENTED LAGRANGIAN

Lemma A.1. Under Assumptions A.1–A.5, the augmented Lagrangian

L̂(x, z, u, θ) = L(G(t)
s , θ) + I∥z∥0≤r|E|(z)− λ

2 ∥u∥
2 + λ

2 ∥x− z + u∥2

is (β + λ)-smooth and (λ− µ)-strongly convex in x.

Proof. From β-smoothness ofL and quadratic penalty λ
2 ∥x−z+u∥

2, we obtain (β+λ)-smoothness.
Since λ > µ, the strong convexity term dominates the µ-weak convexity, yielding (λ − µ)-strong
convexity.

A.3 CONVERGENCE OF x-MINIMIZATION

The x-update is given by

x(t+1) = x(t) − η(t)
(
∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t))
)
.

Define
g(t) := ∇xL(G(t)

s , θ) + λ(x(t) − z(t) + u(t)).

By β-smoothness of L̂, we have

L̂(x(t+1)) ≤ L̂(x(t))− η(t)⟨∇L̂(x(t)), g(t)⟩+ β(η(t))2

2 ∥g(t)∥2. (18)

Lemma A.2. (Projection Consistency) The projection step z(t) = ΠC(x
(t)+u(t)) ensures feasibility

of the sparsity constraint ∥z∥0 ≤ r|E| and preserves boundedness of {z(t)}.
Proof. By non-expansiveness of Euclidean projection,

∥z(t+1) − z(t)∥ ≤ ∥(x(t+1) − x(t)) + (u(t+1) − u(t))∥.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 CONVERGENCE OF θ UPDATES

The θ-update uses SAM perturbations:

ϵ̂(t) = ρ(t)
∇θL(G(t)

s , θ(t))

∥∇θL(G(t)
s , θ(t))∥

, θ(t+1) = θ(t) − η(t)∇θL(G(t)
s , θ(t) + ϵ̂(t)).

Lemma A.3. (Lemma B.1 of (Khanh et al., 2024)) Let {a(t)}, {b(t)}, {c(t)} be nonnegative se-
quences satisfying

a(t+1) − a(t) ≤ b(t)a(t) + c(t),

with conditions
∞∑
t=1

b(t) =∞,
∞∑
t=1

c(t) <∞,
∞∑
t=1

b(t)a(t) <∞.

Then a(t) → 0 as t→∞.

Lemma A.4. (Perturbation Stability) Under Assumptions A.2–A.4, the perturbed gradient satisfies

∥∇θL(G(t)
s , θ(t) + ϵ̂(t))−∇θL(G(t)

s , θ(t))∥ ≤ βρ(t).

Proof. By β-smoothness of L, the deviation due to ϵ̂(t) is upper bounded by β∥ϵ̂(t)∥ = βρ(t).

A.5 CONVERGENCE TO STATIONARY POINTS

Theorem A.1. (Stationarity of Limit Points) Under Assumptions A.1–A.5, the iterates of Algo-
rithm 1 satisfy

∇xL̂(x(t), z(t), u(t), θ(t))→ 0, ∇θL(G(t)
s , θ(t))→ 0, as t→∞.

Thus, every limit point (x̄, z̄, ū, θ̄) is a stationary point of the augmented Lagrangian with SAM-
regularized parameter updates.

Proof. From equation 18, we see that L̂(x(t)) decreases up to error terms proportional to (η(t))2. By
Assumptions A.3–A.4,

∑
t η

(t)ρ(t) <∞, ensuring bounded cumulative perturbation. For θ, Lemma
A.4 guarantees perturbation errors vanish as ρ(t) → 0. Applying Lemma A.3 (Robbins–Siegmund
type argument), we obtain

lim
t→∞

∥∇xL̂(x(t))∥ = 0, lim
t→∞

∥∇θL(G(t)
s , θ(t))∥ = 0.

Therefore, every accumulation point is stationary in both (x, z, u) and θ.

A.6 COROLLARIES

Corollary A.1. (Expected Convergence) If the gradient is estimated via unbiased stochastic samples
with bounded variance, then the expected squared gradient norm satisfies

E
[
∥∇L̂(x(t))∥2

]
→ 0 as t→∞.

Proof. This follows directly from Theorem A.1 and the assumption that stochastic gradients are un-
biased with bounded variance (Hypothesis A.2). Applying Lemma A.3, we obtain the convergence
of expected gradient norms.

Corollary A.2. (Convergence Rate) If the step size is chosen as η(t) = 1√
t

and the perturbation

radius satisfies ρ(t) = O(1√
t
), then

min
1≤t≤T

E
[
∥∇L̂(x(t))∥2

]
= O

(
1√
T

)
.

Proof. The rate follows by combining the descent inequality equation 18, bounded perturbation from
Lemma A.4, and the standard analysis of diminishing step sizes.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Scaling with Graph Size. An important implication of our analysis is how sparsification interacts
with graph size. Suppose the graph has N nodes with average degree d̄, so that |E| ≈ Nd̄. For a
fixed sparsification ratio ρ, the number of preserved edges is r|E|. As N → ∞, the redundancy of
edges increases, and the variance introduced by random edge removal vanishes:

Var[edge sampling]
|E|

→ 0.

This provides an intuitive explanation of why our sharpness-aware sparsification benefits become
more pronounced on large-scale graphs such as Pubmed.

B EXPERIMENTAL SETTINGS

Dataset #Nodes #Edges #Features #Classes Split ratio
Cora 2,708 5,429 1,433 7 120/500/1000
Citeseer 3,327 4,732 3,703 6 140/500/1000
PubMed 19,717 44,338 500 3 60/500/1000

Table 1: Statistics of benchmark datasets.

Table 1 summarizes the datasets used in our experiments, including the number of nodes, edges,
features, classes and split ratios. We adopt the public splits from (Yang et al., 2016).

B.1 IMPLEMENTATION DETAILS

Hyper-parameter Value / Search Space
Epochs 200
Learning rate (η) 0.001
Learning rate schedule cosine
Weight decay 0.005
Dropout 0.5
Hidden units 128
Attention heads 8
β 0.2
τ (Gumbel temperature) cosine schedule
Perturbation radius (ρ) {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0}
Dual-update interval (K) {1, 2, 5, 10, 20, 40}
Penalty parameter (λ) {0.0001, 0.001, 0.01, 0.1}

Table 2: Hyperparameter details used for GraphSpa

All experiments are implemented in PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019), and conducted on a single NVIDIA RTX 2080 Ti (11GB) GPU. Each experiment
is repeated with 5 different random seeds, and we report the average accuracy together with the
standard deviation. We adopt GCN, GAT, and GIN as backbone in our experiments. For GCN, we
use a two-layer architecture with 128 hidden units, weight decay of 0.005, and dropout rate of 0.5.
GAT also has two layers with 128 hidden units, and employs 8 attention heads and a dropout rate of
0.5. For GIN, we use a two-layer network with 128 hidden units and dropout rate of 0.5. We adopt
a cosine learning rate schedule across all models. In our method, several hyperparameters play a
critical role, including the perturbation radius (ρ), dual-update interval (K), and penalty parameter
(λ). These hyperparameters are tuned via grid search for each dataset, and the final results are
reported using the best configuration selected from the search space summarized in Table 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C COMPUTATION COMPLEXITY ANALYSIS

C.1 SPARSIFICATION COMPLEXITY

The computational complexity of our self-supervised sparsification framework can be decomposed
into three main components: (i) sparsification, (ii) contrastive loss computation, and (iii) encoder
training.

Sparsification stage. Each epoch involves parameterizing edge scores x ∈ R|E|, applying the
Gumbel–Sigmoid relaxation, and constructing the normalized sparse adjacency, which requires

O(|E|).
In addition, every K iterations a projection step is performed at a cost of

O(|E| log |E|),
which amortizes to 1

KO(|E| log |E|) per epoch.

Contrastive loss Computation. Constructing the similarity matrix between embeddings z1, z2 ∈
RN×d has a complexity of

O(N2d).

When negative sampling or mini-batch contrastive learning is adopted, this reduces to

O(Nd).

Encoder training. For each forward/backward pass, the GNN encoder requires

O(|E|d).
Since SAM optimization performs two such passes per epoch, the encoder cost is effectively dou-
bled, though it remains O(|E|d) in asymptotic order.

Total complexity. Putting everything together, the per-epoch complexity is

O(|E|d+N2d) + 1
KO(|E| log |E|),

and for T epochs, the total complexity becomes

O
(
T · (|E|d+N2d) + T

K |E| log |E|
)
.

Simplification. The number of edges can be approximated by the average degree d̄avg as |E| ≈
1
2Nd̄avg. Thus, the edge-related term simplifies to |E|d ≈ Nd̄avgd. For sparse graphs where
d̄avg = O(1), we obtain |E|d = O(Nd), showing that the edge cost grows linearly with N and d.

Final complexity. After simplification, the dominant cost depends on the loss calculation scheme:

• Full contrastive learning: all node pairs are compared, so the N2d term dominates, lead-
ing to

O(T · (N2d+Nd)) .

• Negative sampling: only sampled edges are considered, so message passing dominates,
giving

O(T · |E|d) which simplifies to O(TNd) for sparse graphs.

C.2 SPARSIFICATION COMPLEXITY COMPARISION

Compared with heuristic sparsification methods such as DropEdge, degree-based, and centrality-
based sparsification, our method has a higher asymptotic complexity due to the additional con-
trastive loss and SAM-based optimization. However, in practice both the number of epochs T and
embedding dimension d are typically small constants (e.g., T ≤ 200, d ≤ 128). As a result, the
practical runtime of GRAPHSPA is comparable to these baselines, while achieving better accuracy
and robustness.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Method Time Complexity Explanation
DropEdge O(|E|) Random edge sampling per epoch: O(|E|)

Degree O(|E| log |E|) Degree computation: O(|E|)
+ Edge sorting: O(|E| log |E|)

PageRank O(N |E|) Betweenness centrality via Brandes: O(N |E|)

GraphSpa O(TN2d) or O(T |E|d)
Subgraph sampling: O(|E|)
Contrastive loss computation: O(N2d) or O(|E|d)
Encoder training: O(Nd)

Table 3: Time complexity analysis for baseline sparsification methods and GRAPHSPA.

D ABLATION STUDIES

D.1 IMPACT OF FLATNESS-AWARE TRAINING DURING SPARSIFICATION

Method Edge ratio 0.9 0.8 0.7 0.6 0.5
GraphSpa (Frozen) 76.60 ± 0.21 76.06 ± 2.80 76.46 ± 1.11 75.16 ± 1.80 74.44 ± 1.24

GraphSpa (Adam) 76.52 ± 1.49 75.90 ± 2.52 76.66 ± 1.28 75.58 ± 1.46 74.86 ± 1.02

GraphSpa 78.34 ± 0.76 77.52 ± 1.04 77.10 ± 0.74 76.72 ± 0.45 77.26 ± 1.13

Table 4: Ablation study on encoder training during sparsification on Pubmed. Results are reported
as mean ± std over 5 random seeds.

Table 4 presents the ablation results on the Pubmed dataset, comparing three settings: Frozen En-
coder, Adam, and SAM. The results highlight that encoder training during sparsification is crucial for
achieving good generalization and robustness to noisy edges. Freezing the encoder significantly de-
grades accuracy since the embeddings cannot adapt to the evolving sparse graph structure. Training
with Adam provides moderate results but is less robust across edge ratios. In contrast, SAM con-
sistently achieves the best performance, demonstrating that flatness-aware optimization enhances
stability during training and yields more reliable performance under varying sparsity levels.

D.2 SENSITIVITY TO HYPERPARAMETER ρ

The perturbation radius ρ introduced by SAM is a critical hyperparameter that controls the extent of
parameter perturbations during optimization. Choosing an appropriate ρ is essential for balancing
robustness and training stability.

Figure 4: Sensitivity of performance to the SAM perturbation radius ρ on Pubmed. Results are
reported as mean ± std over 5 random seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Large ρ: When ρ is large, the optimizer explores flatter regions in the loss landscape, which
can potentially improve generalization and robustness. However, overly large perturbations
may destabilize training or hinder convergence, leading to degraded performance.

• Small ρ: When ρ is too small, it may result in limited robustness gains, as the perturbations
are not sufficient to promote significant flatness in the parameter space.

We conducted experiments by varying ρ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1.0} to evaluate its impact
on performance. Figure 4 illustrates the test accuracy across different edge ratios. Small ρ (e.g.,
0.01) provides only minor improvements, while very large ρ (e.g., 0.5 or above) causes unstable
training and significant degradation. An intermediate range (e.g., ρ = 0.1 or ρ = 0.2) yields the
best trade-off between robustness and stability.

D.3 EFFECTS OF τ SCHEDULING

(a) Test Accuracy (b) Schedules

Figure 5: Effects of τ scheduling. (a) Sparsification accuracy across different sparsification ratios
for constant τ compared with linear and cosine schedules. (b) Illustration of τ scheduling strategies,
where the cosine schedule maintains a higher τ in the early phase and decreases later for exploitation.

Figure 6: Effect of different penalty parameters λ on validation accuracy on Pubmed under varying
edge ratios. Results are reported as mean ± std over 5 random seeds.

In addition to fixed τ , we investigate different scheduling strategies to dynamically adjust the temper-
ature during training. As shown in Figure 5, we compare sparsification performance under different
τ settings. (a) demonstrates the effect of constant τ versus linear and cosine scheduling on sparsi-
fication accuracy across various sparsification ratios. (b) illustrates the scheduling dynamics of τ ,
where the cosine schedule starts with a relatively higher τ to encourage exploration of diverse sub-
graphs through broader edge distributions, and then gradually decays to enhance exploitation in the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

later phase. This gradual transition from exploration to exploitation explains why cosine scheduling
consistently achieves better performance compared to both constant and linear schedules.

D.4 EFFECTS OF PENALTY PARAMETER λ

We investigate the effect of different choices of the penalty parameter λ on accuracy across
various edge ratios. Figure 6 reports the average accuracy with standard deviation for λ ∈
{10−4, 10−3, 10−2, 10−1} under edge ratios ranging from 0.9 to 0.5. We observe that larger values
of λ such as 10−1 generally alleviate the accuracy drop at moderate edge ratios but degrade the
performance when the sparsification becomes more aggressive. In contrast, smaller values such as
λ = 10−4 yield competitive performance at higher edge ratios but fail to stabilize under heavier spar-
sification. This highlights the trade-off between enforcing the sparsity constraint more strongly via
larger λ and preserving model accuracy under different sparsity levels. In particular, while λ = 10−2

achieves the highest performance around edge ratio 0.8, its accuracy decreases significantly at 0.6,
indicating that the choice of λ must be carefully balanced depending on the target sparsity.

19

	Introduction
	Related Works
	Preliminaries
	Problem Setup
	Sharpness-Aware Minimization

	GraphSpa
	Problem Formulation
	Constrained Optimization
	Noise-Resilient Encoder Optimization

	Experiments
	Experimental Setup
	Performance Analysis
	Robustness to Noisy Edges
	Qualitative Analysis

	Conclusion
	Supplementary Materials
	Convergence Analysis
	Assumptions
	Smoothness and Convexity of the Augmented Lagrangian
	Convergence of x-minimization
	Convergence of Updates
	Convergence to Stationary Points
	Corollaries

	Experimental Settings
	Implementation Details

	Computation Complexity Analysis
	Sparsification Complexity
	Sparsification Complexity Comparision

	Ablation Studies
	Impact of Flatness-aware Training during Sparsification
	Sensitivity to Hyperparameter
	Effects of Scheduling
	Effects of Penalty Parameter

