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Summary
Actor-critic methods have been central to many of the recent advances in deep reinforce-

ment learning. The most common approach is to use symmetric architectures, whereby both
actor and critic have the same network topology and number of parameters. However, recent
works have argued for the advantages of asymmetric setups, specifically with the use of smaller
actors. We perform broad empirical investigations and analyses to better understand the impli-
cations of this.

Contribution(s)
1. We show that reducing the size of the actor in actor-critic methods can lead to degraded

performance and increased overfitting in the critic.
Context: Prior work suggests that actors require less capacity than critics in actor-critic
algorithms (Mysore et al., 2021), and that asymmetric training with smaller actors can be
beneficial for real-world applications (Degrave et al., 2022).

2. We demonstrate that performance degradation and critic overfitting is largely due to poorer
data collection, and this arises due to value underestimation.
Context: This is somewhat surprising, as it stands in contrast to the over-estimation that’s
commonly addressed in many popular algorithms (Hasselt, 2010; Hasselt et al., 2016; Fuji-
moto et al., 2018). However, other papers have shown that underestimation can be an issue
with the actor-critic algorithms that address overestimation (Ciosek et al., 2019; Li et al.,
2023b; He & Hou, 2020).

3. We explore a number of approaches for mitigating the value underestimation and find the
most effective one to be replacing the min term with an average or max term when com-
bining the value estimates of two critics (as done in SAC).
Context: Taking the minimum of two estimated Q-values will, by definition, be conserva-
tive; indeed, the idea was originally proposed to deal with over-estimation (Hasselt, 2010).
Prior work has shown that resetting or regularizing the critic in particular improves plas-
ticity (Ma et al., 2023; Nikishin et al., 2022; Liu et al., 2021) and can help mitigate value-
estimation issues, particularly in the case of layer normalization (Nauman et al., 2024).
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Abstract
Actor-critic methods have been central to many of the recent advances in deep reinforce-1
ment learning. The most common approach is to use symmetric architectures, whereby2
both actor and critic have the same network topology and number of parameters. How-3
ever, recent works have argued for the advantages of asymmetric setups, specifically4
with the use of smaller actors. We perform broad empirical investigations and analy-5
ses to better understand the implications of this and find that, in general, smaller actors6
result in performance degradation and overfit critics. Our analyses suggest poor data7
collection, due to value underestimation, as one of the main causes for this behavior,8
and further highlight the crucial role the critic can play in alleviating this pathology.9
We explore techniques to mitigate the observed value underestimation, which enables10
further research in asymmetric actor-critic methods.11

1 Introduction12

Actor-critic (AC) algorithms are a fundamental part of deep reinforcement learning (RL), with vari-13
ous AC methods achieving state-of-the-art performance in complex discrete control (Espeholt et al.,14
2018) and continuous control (Haarnoja et al., 2018a) tasks. In these approaches, the actor interacts15
with the environment to collect data and to optimize a mapping of states to actions with the guidance16
of the critic, while the critic learns a value function with the collected data to guide the actor’s learn-17
ing. These symbiotic, but differing, roles have been traditionally implemented with either coupled18
or matching ("symmetric") neural network architectures (Haarnoja et al., 2018b; Yarats et al., 2021);19
however, recent work suggests that the actor requires less capacity and can be significantly reduced20
relative to the critic (Mysore et al., 2021).21

As only the actor is used during inference, reducing the size of the actor while keeping a bigger22
critic offers several advantages for real-world applications. A smaller actor reduces inference costs,23
which is beneficial for resource-constrained applications such as robotics, where fast computations24
are essential for real-time performance (Hu et al., 2024; Schmied et al., 2025), and inference time is25
a bottleneck for deployment (Firoozi et al., 2024). Decoupling the size of the actor from the critic26
allows for bigger critics that can fully leverage data available in simulators for learning complex27
tasks without then affecting inference costs. This approach has recently been successfully applied to28
training an RL agent for the magnetic control of tokamak plasmas for nuclear fusion - an application29
that requires particularly fast computation speeds (Degrave et al., 2022).30

Beyond computational constraints, another barrier to real-world deployment is interpretability and31
the incorporation of safety constraints, which are particularly important for safety-critical applica-32
tions like autonomous driving (Tang et al., 2024; Xu et al., 2023; Xiao et al., 2022). Smaller actors33
tend to generate simpler policies which are easier to interpret (Fan et al., 2021; Li et al., 2022).34
While distillation is another promising approach for generating compact policies for real-world de-35
ployment (Hinton et al., 2015; Liu et al., 2024), direct training makes the incorporation of safety and36
functional constraints simpler and more reliable.37

Despite their apparent advantages, there has been little work in developing an understanding of38
how to properly train asymmetric AC methods with smaller actors, as well as how the actor-critic39
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relationship is affected by this asymmetry. In this paper, we address this gap by performing a40
broad empirical investigation with the Soft Actor-Critic (SAC; Haarnoja et al., 2018b) and Data-41
Regularized Q (DrQ; Yarats et al., 2021) agents in the physics-simulated DeepMind Control suite42
(DMC; Tassa et al., 2018; Tunyasuvunakool et al., 2020) environments. We reduce the number of43
parameters in the actor (sometimes as far down as 1% of its original size) and observe increased44
overfitting in the critics as actor size decreases. However, rather than this being a hard limitation due45
to capacity loss, our analyses suggest that this performance drop can mostly be attributed to poorer46
data collection by the actor, which may be caused by pessimistic under-exploration problems with47
algorithms like SAC and DrQ that compute the minimum of Q value estimates (Ciosek et al., 2019;48
Haarnoja et al., 2018b; Yarats et al., 2021). Notably, we find that simply alleviating value under-49
estimation in the critics can drastically improve performance. We show a similar mitigation effect50
for a drop in performance caused by the actor receiving limited information, suggesting assisting51
constrained actors with optimism may be a general strategy for conservative AC methods.52

The paper is organized as follows: in section 2, we lay the groundwork and explain our experimental53
setup. In section 3, we show the performance effects when naively reducing a smaller actor across a54
variety of state-based and image-based continuous control tasks, and analyze what could be the cause55
of performance differences. In section 4, we focus on interventions that can gain back performance,56
specifically focusing on bias correction and value function underestimation. Finally, we conclude57
with discussions and avenues for future work in section 5.58

2 Preliminaries59

Reinforcement learning (RL) agents learn by interacting with an environment, which is typically60
formulated as a Markov decision process (MDP) ⟨X ,A,P,R⟩ (Puterman, 1994). Here, X denotes61
the agent state space; A is the set of actions available to the agent; P : X × A → ∆(X ) are the62
transition dynamics with P(x′ | x, a) indicating the probability of transitioning to state x′ ∈ X after63
selecting action a ∈ A from state x ∈ X ; R : X × A → R is the reward function, where R(x, a)64
denotes the reward received after performing action a from state x. An agent’s behavior is quantified65
by a policy π : X → ∆(A), where π(a | x) denotes the probability of selecting action a when in66
state x. The estimated returns of a policy π from state x are quantified via the (recursive) value67
function V π(x) := Ea∼π(·|x)

[
R(x, a) + γEx′∼P(·|x,a)V

π(x′)
]
, where γ ∈ [0, 1) is a discount68

factor that discourages waiting too long before obtaining rewards. We can define the state-action69
value function Qπ(x, a), which quantifies the value of taking an arbitrary action a from state x, and70
then following π afterwards: Qπ(x, a) := R(x, a) + γEx′∼P(·|x,a)V

π(x′). One can easily see that71
V π(x) = Ea∼π(·|x)Q

π(x, a). The goal of RL is to find an optimal policy π∗ which maximizes72
returns, in the sense that V π∗ ≥ V π for all π. There are a number of techniques for learning73
optimal policies, most of which alternate between policy evaluation and policy improvement. Policy74
evaluation seeks to estimate the value function of a policy π, which is primarily done by minimizing75
temporal-difference (TD) errors:76

TDπ(x, a, x′) = |Qπ(x, a)− (R(x, a) + γV π(x′))|. (1)

Policy improvement then follows by directly maximizing this Q function, either via a standard arg-77
max over actions or gradient ascent. Actor-critic methods operate by maintaining separate estimates78
of πθ (the actor) and Qϕ (the critic), which are used in each of the learning objectives; in deep RL,79
these functions are approximated by neural networks, parameterized by θ and ϕ, respectively. Given80
a dataset D of transitions (often stored in a replay buffer), Soft Actor-Critic (SAC; Haarnoja et al.,81
2018a;b) optimizes the actor and critic by minimizing the following losses:82

JQ(ϕ) = Ex,a,x′∼D

[
1

2

(
Qϕ(x, a)−

(
R(x, a) + γVϕ̄(x

′)
))2]

(2)

Jπ(θ) = Ex∼D
[
Ea∼πθ(·|x) [α log πθ(a | x)−Qϕ(x, a)]

]
(3)
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In eq. (2), Vϕ̄ is the value function computed from Qϕ via Vϕ̄(x) =83
Ea∼πθ(·|x)

[
Qϕ̄(x, a)− α log πθ(a | x)

]
, where ϕ̄ are delayed target parameters (Mnih et al.,84

2015), and α is a learned Lagrange multiplier (we exclude its parameterization for simplic-85
ity of exposition). In their practical implementation, Haarnoja et al. (2018b) use two Q86
value estimates with parameters ϕ1 and ϕ2, trained independently, and take their minimum87
in the update terms in equations 2 and 3, resulting in the following updated losses, with88
Vϕ̄(x) = Ea∼πθ(·|x)

[
mini∈{1,2} Qϕ̄i

(x, a)− α log πθ(a | x)
]
:89

JQ(ϕi) = Ex,a,x′∼D

[
1

2

(
Qϕi(x, a)−

(
R(x, a) + γVϕ̄(x

′)
))2]

(4)

Jπ(θ) = Ex∼D

[
Ea∼πθ(·|x)

[
α log πθ(a | x)− min

i∈{1,2}
Qϕi

(x, a)

]]
(5)

It is important to note the interconnectedness of these losses: the actor influences the critic via the90
(soft) value function Vϕ̄ used in eqs. (2) and (4), while the critic influences the actor via Qϕ in91
eqs. (3) and (5). Additionally, the actor influences the training dynamics of both given that it is in92
charge of data collection. Finally, note the use of the TD-error term in eqs. (2) and (4).93

2.1 Experimental setup94

We run our experiments on the DeepMind Control suite (DMC; Tassa et al., 2018; Tunyasuvunakool95
et al., 2020), a suite of continuous control tasks that have been a staple of continuous-action rein-96
forcement learning research. For any of the tasks, DMC can provide either low-dimensional features97
or pixel observations to the agents, while keeping the underlying transition and reward dynamics un-98
changed. Pixel-based observations are generally more challenging, as the MDP is partially observed99
(Kaelbling et al., 1998; Yarats et al., 2020), but investigating both provides richer insights into the100
dynamics of the examined learning algorithms.101

Due to computational limitations, the bulk of our analyses will be on feature-based tasks. For these,102
we use as baseline the default set up and parameters for DMC (Haarnoja et al., 2018b). This consists103
of one actor network, two critic networks, and two critic target networks. The critic and target104
networks consist of two hidden layers of size 256 and output a one dimensional Q value estimate.105
By default, the actor consists of hidden layers of size 256, with two output layers that parameterize106
the mean and standard deviation of a Gaussian distribution squashed by a tanh function. The critic107
and actor networks are decoupled, in the sense that they share no parameters.108

For pixel observations we use DrQ, which enhances SAC’s performance via data augmentation109
(Yarats et al., 2021). We replace the standard DrQ architecture of Yarats et al. (2021) with a larger110
one recommended for faster learning (Nikishin et al., 2022; Kostrikov, 2021), which consists of an111
encoder followed by two MLPs for the actor and two critics. The encoder consists of four con-112
volutional layers with output feature maps {32, 64, 128, 256} and strides {2, 2, 2, 2}, respectively,113
followed by a linear projection to a 50-dimensional output, layer normalization (Ba et al., 2016), and114
then a tanh activation; the MLPs consist of two dense 256-dimensional layers, with output layers115
defined exactly as is done above with SAC. As in SAC, we use decoupled architectures for both the116
actor and the critics, unlike the original baseline, in which the encoder is shared.117

3 The impact of small actors118

We begin by evaluating the impact on performance resulting from reduced actors. We use default119
hyperparameters (Haarnoja et al., 2018b) and keep the critic architecture fixed, but explore reducing120
the dimensionality of the actor. We denote by r (for regular) the default dimensionality discussed121
above and use the following labels to indicate the dimensionality of the two dense hidden layers122
in SAC: m: 128; s: 32; xs: 8. The latter correspond to network weight numbers that are 32%,123
5%, and 1% that of the default actor, respectively. In DrQ, we follow the same procedure as with124
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Figure 1: Decreasing the size of the actor in SAC decreases performance (top row) and in-
creases overfitting in the critics, as measured by oϕ (Nauman et al., 2024, middle row) and dor-
mant neurons (Sokar et al., 2023, bottom row). In the top row, the y-axis is kept fixed to show the
relative performance impacts across environments; this becomes impractical for the metrics in the
middle and bottom row. We report the final performance, where the solid lines indicate the mean,
while the shaded area represents the 95% confidence interval, as computed from 10 seeds. In all
rows we report values relative to the default baseline.

SAC when modifying the projection MLPs, which leads to a corresponding parameter reduction as125
mentioned earlier in the MLPs. However, to further reduce expressivity, we also reduce the number126
of convolutional layers as follows: m: {32, 64, 128}; s: {32, 64}; xs: {32}. This results in more127
overall parameters for the DrQ actors, but this increase is at the encoder representation level, not at128
the direct policy level. To quantify the impact of the reduced actors, we report values relative to the129
baseline values. For instance, for a measure Xs obtained with the s actor, we report Xs−Xr

Xr
, where130

Xr is the value obtained with the default actor.131

In the top row of fig. 1 we evaluate the impact on performance when reducing the size of these132
layers and can see a clear degradation in performance across all environments. We additionally133
measure oϕ on the critics, introduced by Nauman et al. (2024) as a measure of overfitting, defined134

as oϕ :=
EDV

TDϕ

EDTDϕ
. Here, DV is a validation dataset of size 11, 000, containing data sampled from135

a training run with a regular unmodified SAC agent, trained with a different random seed, and TDϕ136
is the temporal difference error. Higher values of oϕ are indicative of overfitting which, as seen in137
the middle row of fig. 1, are inversely correlated with the size of the actor. Finally, we report the138
fraction of dormant neurons, defined as the proportion of neurons that are 0 for every data point in139
the validation buffer, where higher levels of dormancy is associated with a loss of plasticity (Sokar140
et al., 2023; Lyle et al., 2024; Klein et al., 2024). In the bottom row of fig. 1 we see that the fraction141
of dormant neurons tends to be inversely correlated with actor size and performance, particularly for142
the environments where the performance loss is greatest, although to a lesser extent than oϕ.143

Figure 8 illustrates the impact of actor reduction in DrQ, where in the pixel-based case we focus144
on evaluation return and critic overfitting as measured by oϕ. As with SAC, we see a decrease in145
performance with smaller actors, as well as a general increase in oϕ.146
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Figure 2: Evaluating the impact of data quality collecting by actors of varying sizes. Top row:
the black bars denote training regularly-sized πr on data collected by one of the smaller actors,
while the colored bars indicate each actor trained on its own data. Bottom row: the smallest (xs)
actor trained on data from the largest (r) actor, for varying fractions of training length. In both rows
we report the final performance, where the bars indicate the mean, while the error bars represent the
95% confidence intervals, as computed from 10 independent seeds.

3.1 Smaller actors collect worse data147

Training overparameterized neural networks on small datasets is a common cause for overfitting.148
Given that the actor is in charge of data collection and reducing its expressivity results in overfit149
critics, we continue our investigation by evaluating the quality of the data gathered by differently-150
sized actors. For this, we evaluate training on data collected by separate, and differently-sized,151
actors. Specifically, we train the regularly-sized actor πr with data provided by one of the smaller152
actors, where the data collection exactly mimics that obtained by the smaller actor during training.153
This is depicted by the black bars in the top row of fig. 2, where we can see the performance to be154
clearly correlated with actor size.155

Nikishin et al. (2022) demonstrated the tendency of RL agents to overfit to early experience, affect-156
ing their plasticity and downstream performance. It is thus worth considering whether the quality of157
the training data on an actor is most important in the early stages of training. To evaluate this, in the158
bottom row of fig. 2 we explore training the smallest actor (πxs) on data provided by the πr actor,159
again matching the data collection of the smaller actor. Our analyses here explore using the data160
from πr for only a fraction of training, and then switching to data collected by πxs itself. As more161
data is collected from the bigger actor πr, the performance of πxs generally improves. We note that162
using all of the data from πr (i.e. at 100%) sometimes results in degraded performance; we hypoth-163
esize that this may be due to the tandem effect observed by Ostrovski et al. (2021). Overall, we see164
an improvement in performance in the environments most impacted by reducing the size of the actor165
for SAC. With DrQ, we do not see a pronounced effect when training the smallest actor on data from166
a regular-sized actor (see fig. 9), but similarly, a small trend may be observed for environments with167
the biggest degradation in performance with reduced actor sizes.168

3.2 Smaller actors result in critic underestimation169

The reduction in the quality of data gathered by small actors can possibly be attributed to under-170
exploration of the state space. This can often be a consequence of an overly-conservative critic171
which under-estimates values, as well as a low-entropy actor with low diversity in action selection.172
In fig. 3 we compare the average critic validation Q-values (computed on the same validation dataset)173
as well as the entropy of the actor’s action distribution π of the smaller actors relative to the regularly-174
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Figure 3: Decreasing the size of the actor results in Q-value underestimation and reduced
policy entropy. In the top row we estimate the average Q-values on a batch of data gathered during
evaluation, and plot the values relative to the baseline r. In the bottom row we compute the entropy
of the policy π and plot the values relative to the entropy of the baseline r. In both cases we report
the values obtained at the end of training, where the solid line represents the mean with shaded areas
indicating 95% confidence intervals, computed over 10 independent seeds.

sized actor, and confirm that smaller actors result in Q-value underestimation, as well as a reduction175
in entropy during training (see fig. 11 for the same comparison throughout training). The observed176
underestimation is interesting, given that it stands in contrast to the over-estimation that’s commonly177
addressed in many popular algorithms (Hasselt, 2010; Hasselt et al., 2016; Fujimoto et al., 2018).178

4 Empowering small actors179

The results from the last section suggest that the performance reduction resulting from the use of180
small actors is largely due to poor data collection, which in turn appears to be a consequence of181
value underestimation and low action variability. In this section we explore a variety of approaches182
for strengthening small actors.183

4.1 Average and maximal critics184

We begin by a simple modification to the original SAC losses to directly address the observed value185
underestimation. Specifically, we replace the minimization of the two independent Q estimates in186
equations 4 and 5 with either their mean (avg(Qϕ1 , Qϕ2)) or their maximum (max(Qϕ1 , Qϕ2)). As187
can be seen in the top and middle rows of fig. 4 and the top row of fig. 5, this approach can be quite188
effective at boosting the performance of small actors in SAC, sometimes even improving over the189
minimization approach with the regular sized model (e.g. hopper-hop). The bottom row of fig. 5190
confirms that this technique does increase the validation value estimates. As can be seen in fig. 13,191
we find that the mean and the max approaches also improve several overfitting and plasticity metrics192
in the critics, most notably oϕ and the rank of the last hidden layer (Kumar et al., 2021; Nauman193
et al., 2024). However, they do not appear to have a notable impact on these metrics in the actor194
(see fig. 14). The results on the smallest actor on DrQ (bottom row of fig. 4) display a similar195
performance trend, although the results are less pronounced. We also observe a corresponding trend196
with an increase in validation Q values with the mean and max approaches in DrQ in fig. 10.197

4.2 Critic regularization198

Prior work has shown that resetting or regularizing the critic in particular improves plasticity (Ma199
et al., 2023; Nikishin et al., 2022; Liu et al., 2021) and can help mitigate value-estimation issues, par-200
ticularly in the case of layer normalization, (Nauman et al., 2024), albeit with overestimation. Given201

6



Optimistic critics can empower small actors

0.0 0.5 1.0 1.5 2.0
1e6

0

200

400

600

800

Ev
al

ua
te

d 
Re

tu
rn

cheetah-run

0.0 0.5 1.0 1.5 2.0
1e6

0

50

100

150

200

250

300

hopper-hop

0.0 0.5 1.0 1.5 2.0
1e6

0

200

400

600

800

pendulum-swingup

0.0 0.5 1.0 1.5 2.0
1e6

0

200

400

600

800

1000
reacher-hard

full-sized
min
mean
max

Figure 4: Taking the mean or max of the two critics can empower smaller actors in SAC (top and
middle rows) and on the smallest actor in DrQ (bottom row). Replacing the minimums in equations 4
and 5 with mean and max can help reduce Q-value underestimation and boost performance. The top
row displays final performance while the bottom two rows display performance throughout training,
with solid lines indicating average over 10 seeds, and shaded areas 95% confidence intervals. In
DrQ, the performance over the non-full-sized settings is computed using 20 seeds to account for
higher observed variance.

both the increased overfitting observed in the critics, and how much value estimation is affected by202
smaller actors (see fig. 3), we investigate whether critic regularization alone can be effective miti-203
gating this impact by applying a number of regularization techniques, focusing on SAC: (a) Layer204
Normalization (Ba et al., 2016); (b) Spectral Normalization (Miyato et al., 2018); (c) weight205
decay (van Laarhoven, 2017), with a regularization value of 0.01 (Li et al., 2023a); (d) L2 dis-206
tance from initialization (Kumar et al., 2024): with a value of 1 × 10−7 after tuning on the range207
[5 × 10−8, 1 × 10−4] in increments of 0.5 with quadruped-run; and (e) Network resets: resetting208
neural network layers during training (Nikishin et al., 2022). We apply layer normalization and209
spectral normalization to the second hidden layer in the critics, and we reset only the output layer210
of the critics every 50K steps. Although many of these methods do appear to help with mitigating211
value under-estimation (bottom row of fig. 5), they do not appear to help much with performance212
(top row of fig. 5 and fig. 12). For DrQ, we investigate resetting the MLP of the critics (Nikishin213
et al., 2022) for the smallest actors, and similarly do not see a notable rescue effect (see fig. 10).214

4.3 Addressing bias in the critic via actor representations215

In asymmetric actor-critics methods, imbalances in information received by the critic versus the ac-216
tor can lead to biased gradients that may negatively impact performance; Baisero & Amato (2022)217
and Lyu et al. (2022) propose to alleviate this by giving the (limited) information received by the218
actor as additional input into the critic. In our case, the critics do not received privileged information219
over the actor, but we theorize that a similar effect may be occurring within the policy network due to220
potentially impacted information flow through the smaller actors. We attempt a similar bias correc-221
tion by concatenating the latent state of the final hidden layer of the actor as input to the final hidden222
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Figure 5: Impact of attempted modifications on the final performance (top), mean entropy
of the actor’s action distribution (middle), and validation Q-value estimation (bottom) of the
smallest actor in SAC. The values are relative to the smallest actor in unmodified SAC. Bars indi-
cate mean with error bars denoting 95% confidence intervals, computed over 10 independent seeds.

layer of the critics. The latent state is first projected through an untrained neural network layer to223
a size of 8 to maintain consistency across actor sizes. As shown in the top row of fig. 5 and the224
bottom row of fig. 12, the bias correction performs similarly to other attempted critic regularization225
methods in SAC.226

5 Discussion227

Real-world problems are often subject to constraints such as latency, model size, and interpretability,228
which are largely absent in the academic benchmarks where machine learning solutions are devel-229
oped. As such, it is imperative that we develop the necessary techniques for training reinforcement230
learning agents under such limitations. The use of small actors can help reduce latency, memory, and231
inference costs, and can help improve interpretability; these are all practical considerations, as ulti-232
mately it is a trained actor which will be deployed for action selection. Our work demonstrates that233
naïvely shrinking the actor can result in value underestimation, poor data collection, and ultimately234
degradated performance. We evaluated a number of approaches for mitigating this deterioration235
and found the most effective to be simply replacing the min operation with a mean or max when236
combining the values of the two critics (section 4.1).237

It is often necessary to provide the actor with less information than the critic, as was employed238
by Vasco et al. (2024) to better match the inputs used by humans. In fig. 6 we explore whether239
this additional type of limitation on the actor may have a similar effect to what we observe when240
decreasing the size of the actor. To test this, we zero out two-thirds of the actor inputs in SAC241
(retaining every third dimension) and find that taking the mean of the two critics - rather than the242
minimum - alleviates performance loss here as well. Of note, the alleviation is more pronounced243
in the same environments where underestimation mitigation helped the most with smaller actors244
(fig. 4). This suggests that addressing underestimation in SAC can additionally help mitigate the245
challenges arising from partial observability.246
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Figure 6: Taking the mean of the two critics can help deal with partial observability in the
actor. We zero-out 2/3 of the inputs into the actor and compare the performance when using the min
or mean of the two critics.

Figure 14 suggest that smaller actors result in larger parameters and reduced effective rank, which247
are often tied to optimization difficulties; figure 13 suggests that these effects are less pronounced on248
the critics. Interestingly, the most effective technique we found for mitigating value underestimation249
seems to have little impact on the actor’s parameter norms and effective rank, but does seem to play250
an important role on the critics.251

In general, developing a greater understanding between optimization, exploration, expressivity, and252
estimation accuracy will lead to more robust and reliable reinforcement learning agents. While our253
work has focused on the case of small actors, the insights provided help strengthen our collective254
understanding of these learning dynamics. Addressing overestimation in AC methods by taking the255
minimum of estimated Q values has been a continuing trend - for example, with Deep Deterministic256
Policy Gradient (DDPG; Lillicrap et al., 2016) being followed by Twin-Delayed DDPG (TD3; Fuji-257
moto et al., 2018). However, our work contributes to findings showing that this approach contributes258
to underestimation, which warrants further consideration particularly in settings where data collec-259
tion is more challenging (Ciosek et al., 2019; Li et al., 2023b; He & Hou, 2020). Further, all these260
considerations are aligned with the continued relevance of the exploration-exploration dilemma (Li261
et al., 2023b; Sutton & Barto, 2018).262

Limitations Our empirical investigations were mostly focused on SAC evaluated on DMC with263
feature-based observations. Although we did conduct subsets of our analyses on DrQ with the more264
challenging pixel-based observations, further evaluations on different benchmarks and agents would265
be necessary to strengthen the generality of our claims. For consistency and computational consider-266
ations, in our work we used the default hyper-parameters of the baseline models for all experiments;267
however, RL agents can often be sensitive to hyper-parameter choices (Ceron et al., 2024), so ideally268
one would perform a hyper-parameter search for each the various settings considered, although this269
can be computationally prohibitive.270

Broader impact statement271

This paper presents work whose goal is to advance the field of Reinforcement Learning. There272
are many potential societal consequences of our work, none which we feel must be specifically273
highlighted here.274
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The following content was not necessarily subject to peer review.450
451

6 Extra results452

We include extra results that support the claims made in the main sections, but are not necessary to453
properly follow the paper.454
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Figure 11: Decreasing the size of the actor results in Q-value underestimation and reduced
policy entropy. In the top row we estimate the average Q-values on a batch of data gathered during
evaluation, and plot the values relative to the baseline r. In the bottom row we compute the entropy
of the policy π and plot the values relative to the entropy of the baseline r. In both cases the solid
line represents the mean with shaded areas indicating 95% confidence intervals, computed over 10
independent seeds.

Figure 12: Impact of critic regularizations on downstream performance with actors of varying
sizes. Each table row corresponds to one of the normalization mechanisms explored, each column
indicates the actor size used, and the value in each cell denotes the change relative to the unnor-
malized version (top row). In most environments there is little change, although in humanoid-walk
some regularization techniques do appear to mitigate the performance loss from smaller actors.
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Optimistic critics can empower small actors
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Figure 13: The impact of small actors on a number of metrics related to plasticity as measured
on the critics. We also evaluate these metrics when using the mean and max of the two critics, as
discussed in section 4.1.
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Figure 14: The impact of small actors on a number of metrics related to plasticity as measured
on the actor. We also evaluate these metrics when using the mean and max of the two critics, as
discussed in section 4.1. We define oϕ on the actor as oϕ := EDH

EDV
H , where H is the entropy of the

actor’s action distribution, and DV is a validation dataset.
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