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ABSTRACT

Post-training has emerged as a crucial paradigm for adapting large-scale pre-
trained models to various tasks, whose effects are fully reflected by delta pa-
rameters (i.e., the disparity between post-trained and pre-trained parameters).
While numerous studies have explored delta parameter properties via operations
like pruning, quantization, low-rank approximation, and extrapolation, a unified
framework for systematically examining these characteristics has been lacking. In
this paper, we propose a novel perspective based on Riemann sum approximation
of the loss function to elucidate delta parameter editing operations. Our analysis
categorizes existing methods into three classes based on their post-editing perfor-
mance: competitive, decreased, and improved, explaining how they are expressed
by the Riemann sum approximation term and how they alter the model perfor-
mance. Extensive experiments on both visual and language models, including
ViT, LLaMA 3, and Mistral, corroborate our theoretical findings. Furthermore, we
introduce extensions to existing techniques like DARE and BitDelta, highlighting
their limitations in leveraging the properties of delta parameters and reorganizing
them into general expressions to enhance the applicability and effectiveness of
delta parameter editing in post-trained models.

1 INTRODUCTION

With the remarkable success of large-scale pre-trained models, post-training has emerged as the
de facto standard paradigm for effective adaptations to various tasks (Han et al., 2024; Xin et al.,
2024; Dodge et al., 2020; Zhao et al., 2023). Conceptually, post-training optimizes the parameters
of pre-trained backbone on task-specific data, endowing models with diverse abilities like visual
recognition (Chen et al., 2022; Sandler et al., 2022), instruction following (Rafailov et al., 2023;
Ethayarajh et al., 2024), and mathematical reasoning (Luo et al., 2023; Tong et al., 2024). It has
been noted that the impact of post-training is fully manifested in the delta parameters, which are
defined as the difference between parameters of pre-trained and post-trained models (Ilharco et al.,
2023; Yu et al., 2024).

Due to the inherent correlations between delta parameters and post-training, significant efforts have
been made to investigate the properties of delta parameters through various editing operations in
recent years. For instance, studies like DARE (Yu et al., 2024) and DELLA-Merging (Deep et al.,
2024) showed that models can achieve comparable performance with only a small fraction of delta
parameters, highlighting their extreme redundancy. BitDelta (Liu et al., 2024) demonstrated that
delta parameters could be quantized to 1 bit with modest performance compromise. Twin-Merging
(Lu et al., 2024) and TIES-Merging (Yadav et al., 2023) discovered that most of the benefits of post-
training can be retained after executing singular value decomposition and magnitude-based pruning
on delta parameters. EXPO (Zheng et al., 2024) observed that cheaply extrapolating delta param-
eters with a suitable scaling factor can even enhance the performance. However, a comprehensive
framework for systematically discussing delta parameter characteristics and theoretically explaining
how different operations impact model performance remains lacking.

In this work, we make a pioneering effort to provide a unified view of delta parameter editing in
post-trained large-scale models. We formulate the editing operations of delta parameters based on
Riemann sum approximation of the loss of the edited model. By mathematically representing ex-
isting editing operations with the approximation term, we elucidate why certain operations result in
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competitive, decreased, or improved performance. Specifically, we verify that: 1) methods such as
DARE and DELLA-Merging can well keep the approximation term to zero through the random drop
and rescale processes, ensuring equal loss between the edited and post-trained models and achiev-
ing competitive performance. 2) techniques including BitDelta, Twin-Merging, and TIES-Merging
often result in decreased performance due to a positive approximation term introduced by quanti-
zation, low-rank approximation, and magnitude-based pruning; 3) EXPO-like methods can restrict
the loss of the edited model to be less than that of the post-trained model by yielding a negative
approximation term. To validate our theoretical analysis, extensive experiments are conducted on
large-scale visual models (ViT (Radford et al., 2021)) and language models (LLaMA 3 (Dubey et al.,
2024), and Mistral (Jiang et al., 2023)), and the results strongly support our analysis.

Besides understanding existing delta parameter editing techniques in the proposed view, we further
present several extensions to provide more general formats. Firstly, we introduce a factor to handle
the dropped parameters in DARE, effectively expanding methods like DARE. Secondly, we extend
the scope of quantification-based methods like BitDelta, identifying a broader area for effective
quantification beyond solely utilizing the average sum of delta parameters. Finally, we identify that
extrapolation is not the key to the success of EXPO-like methods. Instead, we should determine
whether to use extrapolation or interpolation based on the direction of the approximation term.
Experimental results also demonstrate the effectiveness of the proposed extensions.

2 RELATED WORK

2.1 POST-TRAINING OF LARGE-SCALE MODELS

In recent years, with the rapid development of large-scale models, post-training has become an
essential process for adapting the pre-trained backbone to a variety of tasks (Xin et al., 2024; Dodge
et al., 2020; Zhao et al., 2023). Post-training realizes the adaptation via adjusting the pre-trained
backbone’s parameters through full fine-tuning (Dosovitskiy et al., 2021; Liu et al., 2021; Devlin
et al., 2019; Radford et al., 2018) or parameter-efficient fine-tuning (He et al., 2023; Houlsby et al.,
2019; Li & Liang, 2021; Hu et al., 2022; Han et al., 2024) algorithms. It is straightforward to
conclude that the effectiveness of post-training can be perfectly denoted by the delta parameters,
which represent the difference between post-trained and pre-trained parameters (Ilharco et al., 2023;
Yu et al., 2024). Given the close correlations between delta parameters and the post-training process,
investigating the properties of delta parameters becomes particularly important. In this paper, we
present a novel perspective to illustrate delta parameter characteristics of post-trained models.

2.2 DELTA PARAMETER EDITING FOR POST-TRAINED MODELS

Existing delta parameter editing techniques can be generally categorized as three aspects according
to their post-editing performance, including competitive, decreased, and improved performance.

Delta Parameter Editing with Competitive Performance. DARE (Yu et al., 2024) is a widely
used approach to edit delta parameters without compromising the model performance. Technically,
DARE can eliminate most (90% or even 99%) of the delta parameters with the random drop and
rescale operations. Inspired by DARE, DELLA-Merging (Deep et al., 2024) presented a magnitude-
aware drop to replace the random drop for achieving better performance, which ranks delta param-
eters by their magnitude and assigns higher dropout probabilities to those with lower ranks (i.e.,
corresponding to lower magnitudes). Yu et al. (2024) and Deep et al. (2024) explained that DARE
and DELLA-Merging can work because they are able to approximate the original embeddings based
on only a small fraction of delta parameters, thus maintaining the model performance.

Delta Parameter Editing with Decreased Performance. BitDelta (Liu et al., 2024) quantized delta
parameters to only 1 bit according to the average magnitude scalar and sign bits. Twin-Merging (Lu
et al., 2024) applied singular value decomposition (Klema & Laub, 1980) on delta parameters to
extract exclusive knowledge for each specific task. TIES-Merging (Yadav et al., 2023) retained
delta parameters with the largest magnitudes for reducing redundancy. All the above methods yield
slightly worse results after executing the corresponding quantization, low-rank approximation, or
pruning operations.
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Delta Parameter Editing with Improved Performance. EXPO (Zheng et al., 2024) extrapolated
delta parameters calculated by two relatively weaker models with an appropriate scaling factor to
construct a stronger model, which can enhance the model performance.

It can be concluded that current approaches utilizes distinct operations for editing delta parameter,
lacking a comprehensive analysis of whether these editing operations are suitable and why different
operations cause various influence on the model performance. In this work, we make the first attempt
to introduce a unified view of delta parameter editing in post-training, which is supported both
theoretically and empirically.

3 PRELIMINARIES

3.1 NOTATIONS

Delta Parameters During Post-Training. Let WPRE ∈ Rd×k denote the parameters of a pre-
trained model, where d and k represent the output and input dimensions. A post-trained model with
parameters WPOST ∈ Rd×k can be derived from the pre-trained backbone, yielding delta parameters
∆W = WPOST −WPRE ∈ Rd×k. As delta parameters denote the alterations of parameters during
the post-training process, investigating the characteristics of delta parameters can provide a deeper
understanding of post-training.

Delta Parameter Editing. Let f(∆W) represent the delta parameter editing function. The edited
parameters ∆W̃Edit = f(∆W) is then combined with WPRE to obtain the final edited parame-
ter WEdit = WPRE + ∆W̃Edit. Existing delta parameter editing methods can be categorized into
three types based on their effects on model performance, i.e., competitive, decreased, and im-
proved performance. These methods employ various techniques including pruning, quantization,
low-rank approximation, and extrapolation. Notable works in this field include DARE, BitDelta,
Twin-MERGING, TIES-Merging, and EXPO, which are investigated in this paper.

3.2 A UNIFIED VIEW OF DELTA PARAMETER EDITING

In this work, we introduce a unified view of delta parameter editing during the post-training process
based on Riemann sum approximation. Specifically, we represent the changes caused by existing
editing methods by ∆W̃ and aim to investigate their effects on performance via analyzing the Rie-
mann sum approximation term, which corresponds to the difference in loss made by the editing
operation as follows,

∆L = L(WPOST +∆W̃ )− L(WPOST) =

∫ 1

0

∇L(WPOST + t∆W̃ ) ·∆W̃ dt

≈ 1

C

C−1∑
c=0

⟨∇L(WPOST +
c

C
∆W̃ ),∆W̃ ⟩ = 1

C

C−1∑
c=0

⟨∇Lc,∆W̃ ⟩,
(1)

where L(W ) : Rd×k → R denotes the loss function of a model with parameters W ∈ Rd×k,
∇L(W ) is the gradient of the loss function at W , and ⟨·, ·⟩ denotes the Frobenius inner product.
C denotes the number of subdivisions of the interval [0, 1]. This expansion provides a linear ap-
proximation of the loss function in the neighborhood of WPOST, allowing the analysis of the impact
of parameter changes on the model performance. In most cases, the loss difference can reflect the
influence on performance, with a positive value indicating deterioration, zero indicating stability,
and a negative value indicating improvement. In section 4, section 5, and section 6, we respectively
discuss editing operations that cause competitive, decreased, and improved performance, and derive
the format of these operations when organizing them into the proposed unified paradigm.

To validate our theoretical analysis and the proposed extensions, we conducted experiments on
LLaMA-3-8B-Instruct (Dubey et al., 2024), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), and ViT-B-
32 (Radford et al., 2021). We evaluate text models on 8 tasks: 25-shot ARC Challenge (Clark et al.,
2018), 5-shot GSM8K (Cobbe et al., 2021), 10-shot HellaSwag (Zellers et al., 2019), zero-shot Hu-
manEval (Chen et al., 2021), zero-shot IFEval (Zhou et al., 2023), 5-shot MMLU (Hendrycks et al.,
2020), zero-shot TruthfulQA (Lin et al., 2021), and zero-shot Winogrande (Sakaguchi et al., 2021),
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and evaluate vision models on 3 tasks: DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019),
and GTSRB (Stallkamp et al., 2011).

4 UNIFYING EDITING OPERATIONS WITH COMPETITIVE PERFORMANCE

Figure 1: Validation of our theoretical derivation of
DARE. The rightmost part labeled ”w/o rescaling” rep-
resents the baseline.

As a widely-used approach for delta pa-
rameter editing, DARE (Yu et al., 2024)
presents the random drop and rescale pro-
cess to remove 90% or even 99% delta pa-
rameters without compromising the model
performance. Following this line, many
follow-up works have been proposed. For
example, DELLA-Merging (Deep et al.,
2024) modifies the drop operation in
DARE from random to magnitude-aware.
In this section, we select DARE for anal-
ysis because it is the most representative
method among those that can retain the
original model performance after editing
delta parameters.

4.1 EXPRESS DARE WITH APPROXIMATION TERM

Mathematically, the editing process of delta parameters in DARE is denoted by

WDARE = WPOST +∆W̃DARE = WPRE +∆W +∆W̃DARE

= WPRE + 0 ·M ⊙∆W +
1

1− p
· (1−M)⊙∆W = WPRE +

1

1− p
· (1−M)⊙∆W ,

(2)

where p ∈ R represents the drop rate and ⊙ denotes the element-wise Hadamard product. M ∼
Bernoulli(p,∆W ) ∈ Rd×k is a mask matrix sampled from Bernoulli distribution according to p,
whose shape is identical to that of ∆W . From Equation (2), we can derive that

∆W̃DARE =
p−M

1− p
⊙∆W . (3)

Referring to Equation (1), we obtain

∆L ≈ 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

p−Mij

1− p
·∆Wij · ∇Lc

ij

=
1

C

C−1∑
c=0

 p

1− p
·
∑

Mij=0

∆Wij · ∇Lc
ij −

∑
Mij=1

∆Wij · ∇Lc
ij

 .

(4)

Due to the randomness of the drop operation in DARE, it is straightforward to deduce that

∑
Mij=0

∆Wij · ∇Lc
ij = (1− p) ·

d∑
i=1

k∑
j=1

∆Wij · ∇Lc
ij ,

∑
Mij=1

∆Wij · ∇Lc
ij = p ·

d∑
i=1

k∑
j=1

∆Wij · ∇Lc
ij .

(5)

Substituting Equation (5) into Equation (4), we derive

∆L ≈ (
p

1− p
· (1− p)− p) · 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

∆Wij · ∇Lc
ij = 0. (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To this end, we can conclude that after editing delta parameters with DARE, the loss L(WDARE)
remains identical to L(WPOST), explaining why DARE can achieve competitive performance even
most delta parameters are eliminated.

To verify the above analysis, we used the DARE method to construct models on LLaMA3-8B-
Instruct and computed the approximation term on the GSM8K dataset. The results are shown in
Figure 1. We used the scenario where 50% of the delta parameters were masked without rescaling
as a reference (the rightmost part of the figure). As can be seen, models with DARE constructed
consistently achieved lower average loss, and with a smaller drop rate, the approximation term cal-
culated across different parts of the model remained relatively small. This validates our theoretical
derivation above.

4.2 EXTENSION OF DARE

We further present a more general format of delta parameter editing operations that can achieve
competitive performance. In particular, instead of dropping delta parameters, we introduce a term k
to adjust them and rescale the remaining ones with (1− k · p)/(1− p). Similar to the deduction in
Equation (2) to Equation (6), we obtain

WCOMP =WPRE +∆W +∆W̃COMP = WPRE + k ·M ⊙∆W +
1− k · p
1− p

· (1−M)⊙∆W ,

∆W̃COMP =
(k − 1)(M − p)

1− p
⊙∆W ,

∆L ≈ 1

C

C−1∑
c=0

p · (1− k)

1− p
·
∑

Mij=0

∆Wij · ∇Lc
ij + (k − 1) ·

∑
Mij=1

∆Wij · ∇Lc
ij


=

(
p · (1− k)

1− p
· (1− p) + (k − 1) · p

)
· 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

∆Wij · ∇Lc
ij = 0.

Figure 2: The performance of LLaMA3-8B-Instruct on the GSM8K, TruthfulQA, and HumanEval
datasets under varying p and k.

It has been verified that ⟨∇L(WPOST),∆W̃COMP⟩ equals 0, which indicates the validity of the pro-
posed format. Note that in DARE, the drop operation can be realized by setting k to 0. Thus, our
format is an extension of DARE with broader settings of k.

We conducted validation experiments for the extension of DARE on LLaMA3-8B-Instruct and ViT-
B-32. The results are shown in Figure 2 and Figure 3. Specifically, on four representative text
datasets—GSM8K, TruthfulQA, and HumanEval, when both the rescale rate k and sign change
rate kp are small (e.g., less than 0.5), the performance of our adjusted model is very close to that
of the original post-trained model and significantly outperforms the pre-trained model. Regarding
the weight scalar k introduced in our extension, we observed that, compared to the setting where
k = 0 (which reverts to the original DARE configuration), using k ̸= 0 generally yields competitive
performance across different datasets. This demonstrates the effectiveness of our extension. For
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Figure 3: The performance of ViT-B-32 on the DTD, EuroSAT, and GTSRB datasets under varying
p and k.
the ViT model, the results on the DTD, EuroSAT, and GTSRB datasets are more consistent with
our expectations. Regardless of the rescale and sign change rates, the performance of the adjusted
model is almost identical to that of the original post-trained model.

4.3 FURTHER DISCUSSIONS ON DARE

Yu et al. (2024) and Deep et al. (2024) claim that DARE and DELLA-Merging are effective
because the random drop of delta parameters ensures an approximation of the original embed-
dings, thereby preserving model performance. However, according to our established view, we
argue that random drop of delta parameters is a sufficient but not necessary condition for main-
taining model performance. Furthermore, we contend that ensuring randomness in the element-
wise product of delta parameters and approximation term is the necessary and sufficient condition.

k Random Biased ∆W Biased ∆W · ∇L

0.5 76.35 74.15 0.0
0.7 75.89 75.36 0.0
0.9 76.19 76.04 26.76
1.1 75.89 75.59 0.15
1.3 75.36 74.91 0.0
1.5 75.59 74.83 0.0

Table 1: Validation of the discussion on DARE. The left-
most column shows the random drop in DARE. The middle
column illustrates the approach of multiplying all negative
delta parameters by k and all positive delta parameters by
1−k·p
1−p . The rightmost column demonstrates the method of

first calculating the product of delta parameters and gradi-
ents, and then multiplying all negative products by k and all
positive products by 1−k·p

1−p .

To verify the above analysis, we con-
duct two experiments on GSM8K
dataset. First, we disrupt the random-
ness of the delta parameter drop oper-
ation by multiplying all negative delta
parameters by k and all positive delta
parameters by (1 − k · p)/(1 − p).
The results are shown in the middle
column of Table 1, illustrating that
the model performance remains in-
tact. This validates that the random-
ness of the delta parameter dropout
operation is a sufficient but not neces-
sary condition for maintaining model
performance. Furthermore, we dis-
rupt the randomness of the dropout
operation on the approximation term
by multiplying all negative products
by k and all positive products by (1−
k · p)/(1 − p). The results, as depicted in the rightmost of Table 1, show a significant decline in
model performance. This validates that the randomness of the dropout operation on the product
of delta parameters and approximation term is a necessary and sufficient condition for maintaining
model performance.

5 UNIFYING EDITING OPERATIONS WITH DECREASED PERFORMANCE

This section discusses three delta parameter editing operations that incur reduced results, including
quantization, low-rank approximation, and pruning. We respectively choose BitDelta (Liu et al.,
2024), Twin-Merging (Lu et al., 2024), and TIES-Merging (Yadav et al., 2023) as typical works.
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5.1 EXPRESS BITDELTA WITH APPROXIMATION TERM

BitDelta quantizes delta parameters down to 1 bit, utilizing the sign bit matrix and a high-precision
scalar, where the latter is computed by the average magnitude of delta parameters. Specifically,
BitDelta can be represented by

WBitDelta = WPOST +∆W̃BitDelta = WPRE +∆W +∆W̃BitDelta

= WPRE+
1

d · k

d∑
i=1

k∑
j=1

|∆Wij | · Sign(∆W ) = WPRE + AVG(|∆W |) · Sign(∆W ),
(7)

where | · | denotes the operation of taking magnitudes. AVG(|∆W |) represents the average magni-
tude of ∆W . Since ∆W = |∆W | ⊙ Sign(∆W ), based on Equation (7), we can further obtain

∆W̃BitDelta = (AVG(|∆W |)− |∆W |)⊙ Sign(∆W ). (8)

Based on Equation (1), we get

∆L ≈ 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

(AVG(|∆W |)− |∆Wij |) · Sign(∆Wij) · ∇Lc
ij . (9)

Though
d∑

i=1

k∑
j=1

((AVG(|∆W |) − |∆Wij |) = d · k · AVG(|∆W |) −
d∑

i=1

k∑
j=1

|∆Wij | = 0, it is hard

to conclude that Equation (9) equals 0 due to the multiplication of Sign(∆Wij) · ∇Lc
ij .

5.2 EXPRESS TWIN-MERGING AND TIES-MERGING WITH APPROXIMATION TERM

Twin-Merging employs singular value decomposition on delta parameters to derive task-specific
knowledge. TIES-Merging preserves delta parameters with the highest magnitudes to minimize
redundancy. Their computation processes are

WTwin = WPOST +∆W̃Twin = WPRE +∆W +∆W̃Twin = WPRE +UrΣrV
T
r ,

WTIES = WPOST +∆W̃TIES = WPRE +∆W +∆W̃TIES = WPRE +M ⊙∆W ,
(10)

where rank r ≤ min(d, k) denotes the number of linearly independent columns (or rows) in ∆W =
UΣV T . Ur ∈ Rd×r consists of the first r columns of U (whose columns are the left singular
vectors of ∆W ). Σr is the r × r diagonal matrix containing the top r singular values. Vr ∈ Rk×r

includes the first r columns of V (whose columns are the right singular vectors of ∆W ). M ∈
Rd×k is a binary mask matrix where an entry of 1 indicates that the corresponding delta parameter
is among the top-n percent in magnitude. n is the proportion of delta parameters to be retained.
According to Equation (10), we derive

∆W̃Twin = UrΣrV
T
r −∆W ,

∆W̃TIES = M ⊙∆W −∆W = −¬M ⊙∆W ,
(11)

where ¬M is the element-wise NOT operation. Based on Equation (1), we get

∆LTwin ≈ 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

(UrΣrV
T
r ij −∆Wij) · ∇Lc

ij ,

∆LTIES ≈ − 1

C

C−1∑
c=0

d∑
i=1

k∑
j=1

¬Mij ·∆Wij · ∇Lc
ij .

(12)

We exploit the value of the approximation term through experiments. Models were constructed
using LLaMA3-8B-Instruct, and the approximation term was calculated on the GSM8K dataset. As
shown in Figure 4, the approximation losses are consistently greater than zero, which aligns with
the observed performance degradation on the GSM8K dataset.

5.3 EXTENSION OF BITDELTA
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Figure 4: Validation of our theoretical analysis on op-
erations with decreased performance.

We also extend the applicability of Bit-
Delta by offering a more general form.
Firstly, in addition to selecting the signs of
delta parameters, we hypothesize that the
effectiveness of BitDelta may stem from
its choice of a holistic statistic that re-
flects the properties of the delta param-
eters. Specifically, BitDelta utilizes the
average magnitude of delta parameters to
achieve the best approximation error in the
L2 norm. To validate this, we conduct
an experiment where we alter the holis-
tic statistic selected by BitDelta, introduc-
ing varying degrees of noise to the aver-
age value. As illustrated in the ”Degener-
ate” line of Figure 6, using the true aver-
age magnitude of the delta parameters (represented by the star marker in Figure 6, corresponding
to BitDelta) yields nearly optimal performance on GSM8K. However, the performance on IFEval is
somewhat anomalous, which may caused by the difficulty of instruction-following tasks and we will
address this in future work. The performance changes along the degenerate line are quite steep, and
slight modifications to this average value may result in a degradation of model performance.

Figure 5: Effectiveness of increasing the number of bits
in BitDelta. The left subplot shows the performance of
LLaMA3-8B-Instruct and Mistral-7B-Instruct-v0.3 on
the GSM8K dataset as the number of bits increases.
The right subplot shows the performance on the Truth-
fulQA dataset. In each subplot, we use the dashed
line to represent the performance of the original post-
trained model.

Secondly, instead of using a single value,
we sample delta parameter magnitude ma-
trices from both standard normal and uni-
form distributions, with the average mag-
nitude serving as the mean. The exper-
imental results, as depicted in Figure 6,
demonstrate that even when these param-
eters are randomly sampled from distribu-
tions, the model performance remains on
par with a statistic value used in BitDelta.
This further underscores the significance
of selecting an appropriate holistic statis-
tic for the delta parameters.

Finally, while preserving the relative mag-
nitude relationships of delta parameters,
we enhance the effectiveness of BitDelta
by employing multiple bits. Specifically,
we divide the delta parameters into M
blocks based on their magnitude, from
smallest to largest. Each block is then rep-
resented by the average value of the delta
parameters within that block. When M = 1, this approach corresponds to BitDelta, and when
M equals the total number of parameters in the model, it degenerates to the original post-trained
model. The number of bits used is given by log2 M . As shown in Figure 5, increasing the number of
bits significantly improves the model performance. When the number of bits is 4, the performance
already surpasses that of the original post-trained model. This again highlights the redundancy in
the delta parameters and demonstrates the potential for further advancements by expanding the bit
representation in BitDelta.

6 UNIFYING EDITING OPERATIONS WITH IMPROVED PERFORMANCE

EXPO (Zheng et al., 2024) is a recent method to extrapolate delta parameters, which can boost
LLMs’ alignment. This section chooses EXPO as the representative approach for illustration.
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Figure 6: Validation of the extension of BitDelta. The stars indicate the mean value of the delta
parameters and the corresponding performance for the original BitDelta.

6.1 EXPRESS EXPO WITH APPROXIMATION TERM

Technically, EXPO first computes delta parameters between an aligned model and its initial fine-
tuning checkpoints, and then extrapolates delta parameters with a suitable scaling factor for obtain-
ing a better-aligned model. The calculation procedure is

WEXPO = WPOST +∆W̃EXPO = WPRE +∆W +∆W̃EXPO = WPRE +∆W + α∆W , (13)
where α controls the extrapolation length. Based on Equation (13), we derive

∆W̃EXPO = α∆W . (14)
Referring to Equation (1), we obtain

∆LEXPO ≈ α

C
·
C−1∑
c=0

d∑
i=1

k∑
j=1

∆Wij · ∇Lc
ij . (15)

Figure 7: Validation of our theoretical analysis of EXPO. we can observe that the approximation
term first decreases and then increases as alpha changes, indicating that optimal performance is
achieved at the trough.

An intuitive explanation for the improvements that EXPO achieves is that the DPO/RLHF training
process of these models is suboptimal, which leads to the direction of loss reduction (the nega-
tive gradient) still aligning with the direction of the delta parameters, causing Equation (15) to
be negative. Consequently, the loss of the edited model is lower than that of the original post-
training model, resulting in enhanced performance. We validated the aforementioned hypothesis on
Zephyr-7B. Specifically, we conducted experiments using the EXPO-trained Zephyr-7B-DPO-Full
and Zephyr-0.4 models. We calculated the gradient of the models using DPO loss on the evaluation
set of UltraFeedback (Cui et al., 2024). As shown in Figure 7, when α is relatively small, the value
of the loss approximation term gradually decreases, reflecting that the model is indeed suboptimal.
Moving further in this direction decreases the loss and improves performance accordingly. However,
as α increases, the loss term gradually increases until it exceeds zero, which is consistent with the
observation in EXPO that there is an optimal value for α.

6.2 FUTHER DISCUSSIONS ON EXPO

9
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Figure 8: Comparison of Extrapolation and Interpola-
tion Performance on LLaMA3-8B-Instruct. The per-
formance gap represents the difference between the
model’s performance after extrapolation or interpola-
tion and the original performance.

EXPO claims that extrapolating delta pa-
rameters leads to better models. How-
ever, based on the derivation in Equation
(15), we believe that whether to use ex-
trapolation or interpolation primarily de-
pends on the direction of the approxima-
tion term (which is influenced by the spe-
cific data). Specifically, for LLaMA3-8B-
Instruct, we uniformly selected α in the
range of -1.0 to 1.0 at intervals of 0.1,
performing both interpolation and extrap-
olation of the model’s delta parameters.
As show in Figure 8, on most datasets,
interpolation outperformed extrapolation,
except for the IFEval dataset, where ex-
trapolation significantly improved perfor-
mance. This confirms that whether to in-
terpolate or extrapolate is not a fixed for-
mula but depends on the specific data.

7 CONCLUSION AND DISCUSSIONS

Post-training is a core step in the training of large models. In recent years, significant efforts have
been directed towards editing the delta parameters of post-training to achieve improvements in either
performance or efficiency. However, while previous work has shown some effectiveness, the com-
plexity of large model parameters has led to a fragmented understanding of delta parameter editing,
with different studies focusing on different aspects of its effectiveness, lacking a unified perspective.

In this paper, we provide a unified perspective on the previous work related to post-training delta
parameter editing using Riemann sum approximation. We find that the changes in model capability
after altering the delta parameters essentially depend on the changes in the approximation term of
Riemann sum approximation. Specifically, when the approximation term remains unchanged, the
overall loss of the model remains stable, and thus the overall performance of the model also remains
largely unchanged. When the approximation term decreases, the model’s performance improves,
and when the approximation term increases, the model’s performance degrades.

Our work offers a concise, unified, and powerful explanation for almost all previous work in the field
of post-training delta parameter editing. We validate our hypothesis through numerical experiments.
From our conclusions, several potential applications emerge for future work in this direction: (1)
Model Quantization: By finding an edit that sets the approximation term to zero while using lower
precision, we can achieve nearly lossless compression of the model. (2) Model Enhancement: By
directly controlling the approximation term, we can enhance the model’s capabilities without ad-
ditional training data. (3) Post-training Mechanism Analysis: Since the model’s capability remains
almost unchanged when the approximation term is zero, we can construct more concise post-training
delta parameters. This simplifies the parameter changes during the post-training phase, enabling a
more effective analysis of the parameter mechanisms in this stage.

Additionally, our work highlights a critical observation: the analysis of parameter changes during
the post-training phase should not be limited to specific parameters, such as knowledge neurons,
but should consider the overall distribution of parameters. This is because the key constraint of
the approximation term being zero does not depend on the changes in a specific parameter during
post-training but requires a comprehensive consideration of all parameter deltas. This suggests that
trying to infer the impact on the global model parameters from changes in a single or a few local
parameters is likely futile.

REPRODUCIBILITY STATEMENT

We guarantee the reproducibility of our algorithm by providing the implementation code for down-
load in the supplementary materials.
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