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Abstract

We present a novel empirical approach toward measuring the Probability Density Function
(PDF) of the deep features of Convolutional Neural Networks (CNNs). Measurement of the
deep feature PDF is a valuable problem for several reasons. Notably, a. Understanding the
deep feature PDF yields new insight into deep representations. b. Feature density methods
are important for tasks such as anomaly detection which can improve the robustness of
deep learning models in the wild. Interpretable measurement of the deep feature PDF is
challenging due to the Curse of Dimensionality (CoD), and the Spatial intuition Limitation.
Our novel measurement technique combines copula analysis with the Method of Orthogo-
nal Moments (MOM), in order to directly measure the Generalized Characteristic Function
(GCF) of the multivariate deep feature PDF. We find that, surprisingly, the one-dimensional
marginals of non-negative deep CNN features after major blocks are not well approximated
by a Gaussian distribution, and that these features increasingly approximate an exponential
distribution with increasing network depth. Furthermore, we observe that deep features
become increasingly independent with increasing network depth within their typical ranges.
However, we surprisingly also observe that many deep features exhibit strong dependence
(either correlation or anti-correlation) with other extremely strong detections, even if these
features are independent within typical ranges. We elaborate on these findings in our discus-
sion, where we propose a new hypothesis that exponentially infrequent large valued features
correspond to strong computer vision detections of semantic targets, which would imply
that these large-valued features are not outliers but rather an important detection signal.

1 Introduction

Convolutional Neural Networks (CNN) have revolutionized the performance of image analysis tasks including
image classification, semantic segmentation, object detection, and image and video synthesis (Yuan & Zhang;,
2016; |Goodfellow et al., 2020; Hao et al.| [2020; Xing et al.;|2023). At the time of writing, CNNs continue to
play a domenent role as image feature encoders for state-of-the-art techniques including several prominent
Vision-Language Models (VLMs) (Long} 2024} Radford et al., [2021} |Li et al.l 2021)) as well as diffusion models
for image generation (Rombach et al., [2022; |Yang et al.l 2023]). Nevertheless, the extraordinary complexity
of CNNs has coined the nick-name of black-box, that learns an uninterpretable and high-dimensional feature
representation. This work contributes toward improving our understanding of the learned representation by
measuring the statistical characteristics of deep CNN features through high-dimensional statistical analysis
techniques including copula analysis, and the Method of Orthogonal Moments (MOM) to obtain the Gener-
alized Characteristic Function (GCF). Our approach is unique because it provides a novel and interpretable
probability density estimate of CNN features, without making any rigid parametric assumptions that may
be unjustified, and without altering the CNN feature representation which may reduce accuracy. Further-
more, as an empirical technique, we can gain greater insight by plotting and analyzing the marginal and
interdependence components of the feature copula density PDF which can lead to improved understanding
of the statistical behavior of the native CNN feature space. We want to measure and observe the probability
density of deep features for popular CNN architectures, as we believe that this will lay the groundwork for
future feature-density analysis methods that can identify stronger parametric assumptions, thereby leading
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to improved understanding of the feature space as well as improved probability density estimation of the
distribution of deep CNN features.

Measuring the probability density of deep CNN features has many practical applications including Out-of-
Distribution detection (Lee et al., [2018} Liu et al., 2020; Zhu et al., 2022} |Jiang et al., 2023} |Le Lan & Dinh
2021), adversarial detection (Lee et al., |2018; [Le Lan & Dinh, 2021), domain generalization (Chen et al.
2024), and federated learning (Sun et al., |2023)). It is anticipated that if one knows the density distribution
of deep features, that it would be possible to use outlier detection to statistically distinguish legitimate
inlier data from anomalous outlier data, thereby providing a greater level of model robustness to data that
is out of model scope (Guérin et all [2023; |Lee et all 2018} [Liu et all 2020)). Furthermore, methods that
can model both the conditional as well as the joint distribution meet the technical definition of generative
methods rather than purely discrimination methods (Kingmay, 2013; Caterini et al., [2021} Kingma et al., 2016;
[Rezende & Mohamed, 2015). Generative methods have many theoretical advantages because they enable
complex inferencing tasks regarding the distribution of unlabeled samples in addition to performing basic
discrimination tasks.

Several works have attempted to construct deep generative architectures with explicit feature representations
that enable exact or approximate PDF estimates (Kingma, 2013; (Caterini et al.l [2021; Kingma et al., |2016}
[Rezende & Mohamed, 2015). Such techniques include variational auto-encoders (Kingma, 2013), as well
as autoregressive and normalizing flows (Caterini et al., [2021; Kingma et al., [2016; Rezende & Mohamed)
. Nevertheless, open questions remain regarding the applicability of deep generative PDFs for anomaly
detection for several reasons including the often unaccounted for effects of reparameterization
and class-imbalance (Jiang et al| 2023), as well as questions regarding the empirical validity
of the underlying ’typical set’ hypothesis [Zhang et al| (2021) stating that there is a discernible difference
between the statistical properties of typical valued in-distribution and out-of-distribution features (Lee et al.

[2018} [Liu et al., 2020} |Zhu et all 2022). We believe that further empirical analysis, including alternate ways
of obtaining density estimates will be valuable toward studying these observed phenomena.

We take a purely empirical approach toward accurate estimation of deep CNN feature density. An important
contribution of our approach is that we do so without unverified parametric or linearity assumptions, and
without altering the CNN architecture or feature representation which may reduce accuracy. Several prior
works have assumed the CNN features follow a Multi-Variate Gaussian (MVG) (Majurski et al., 2024; [Zhu|
let all |2022; Lee et al., 2018; Rippel et al. 2021; Zhu et al.l [2022). But the motivation for MVG traces
back to a handful of histogram plots of the penultimate critic features in the supplemental materials of
. There has never been a verification that MVG is suitable to the deeper intermediate features
(non-penultimate), which is especially important because in most architectures, deep features undergo ReLU
activation which deactivates (zeros out) any negative valued features, thereby enforcing non-negativity. Max-
pooling moreover retains the strongest positive features, throwing away weaker less-positive detections. Thus
it is important to look at and measure the distribution of non-negative features as these are the only features
that have an impact on subsequent activations. We observe that these non-negative deep features are highly
non-Gaussian, and increasingly approximate an exponential distribution with increasing network depth. We
furthermore show that at adequate network depth, many deep features exhibit non-linear dependence, with
typical feature values showing statistical independence for typical (non-extreme) values, but strong statistical
dependence of extreme values. In other words, we observe that two deep features may be uncorrelated within
their typical ranges, but if one feature is extremely large or small, then other features may show strong
correlation or anti-correlation in their extreme values.

This work also contributes to an active and growing body of ongoing empirical work toward improved
CNN feature understanding (Allen-Zhu & Li, 2023; |Chen et al., 2024; Giraldo & Schwartz, 2019; [Hermann|
|& Lampinen, 2020; Qiu et all 2024; Shwartz-Ziv & Tishby, 2017). Several recent works have attempted
to visualize CNN features, in order to determine under what circumstances a model may learn or retain
features that are spurious (correlated) versus invariant (causal) to semantic meaning (Chen et al.l [2024;
let al., 12024} [Shwartz-Ziv & Tishbyl 2017)). We do not distinguish spurious versus invariant features in this
work, however we do observe strong correspondence between extreme-valued features, suggesting that many
deep features within intermediate representations may be learning correlated (or anti-correlated) semantic
concepts with a statistical backdrop of uncorrelated detection noise. |Allen-Zhu & Lil (2023) propose a multi-
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view hypothesis that intermediate deep CNN features may learn to detect specific views of target objects.
Based on our results, we propose a follow-on hypothesis which we coin the exponential view hypothesis. That
is, at adequate network depth, the distribution of feature detections for any given semantic target view follows
exponential distribution. That is, prevalent small-value features correspond to a lack of detection of their
respective target view, whereas rare large-value features correspond to a strong detection of the target view. As
the actual target often corresponds to only a small portion of the image frame, the strong-valued detections are
statistically rare occurrences but represent important computer vision signal, whereas the lack of detection,
although more statistically prevalent, is primarily a noise signal. Our ezxponential view hypothesis offers a
new perspective on the possible empirical shortcomings of the typical set hypothesis. It logically follows
that the typical set may be accidentally eliminating the most important computer vision signal by excluding
the extreme-value features from consideration in the typical set. We discuss this hypothesis further in the
discussion section.

2 Methodology

Our primary goal is to measure, assess, and interpret the statistical distribution of CNN features without
making unnecessary and unverified assumptions such as parametric or independence assumptions. The
Curse of Dimensionality, as well as the Spatial intuition Limitation complicate this evaluation. In order to
measure the distribution under this context, we present a novel approach that combines copula analysis with
the Method of Orthogonal Moments. To the best of our knowledge neither of these techniques has been
previously applied toward measuring the distribution of CNN features, but they provide a general assumption
free way of looking at the high-dimensional interdependence of features and separating this interdepedence
from the univariate marginal feature distributions.

2.1 Copula Analysis

In high-dimensional statistics, copula analysis is a powerful method that allows one to completely separate
the marginal distribution of the random variables from their interdependence. Given a set of random
variables (X1, Xs, ..., Xp) and marginal cumulative distribution functions (Fy, Fs, ..., Fp), one can perform
a probability integral transform as follows,

(Y1, Yo, ..., Yp) = (Fi(X1), F5(X2), ... ,Fp(Xp)) (1)

The copula C is defined as the cumulative distribution function of the probability integral transform of the
random variables as follows,

C(ylv Y2, - 7yD) = Pr[Yigth&Sy27 7YDSyD] (2)
Moreover the copula density is the probability density function ¢ (y1, yo, ... ,yp ) associated with cumula-
tive copula distribution C (y1, y2, ... ,yp ) as follows,
ocC Yi, Y2, --- YD
cW) =l v e sy ) = 2! ) Q

0y1 0y2 ... Oyp

Typically the probability integral transform converts a marginal distribution into a uniform distribution
on the interval (0,1). However, in our approach, we carry out our analysis using a re-scaled version of
the probability integral transform to a uniform the interval (—1,1). This is because many well-known
orthogonal functions are designed for this interval, and these orthogonal functions allow us to measure the
copula density term in greater detail without parametric assumptions. This modified probability integral
transform is defined as follows,

Fi(z)=2Pr[X; <z]-1 (4)
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2.2 Method of Orthogonal Moments (MOM)

The method of moments are a way of fully describing the shape of a probability distribution through the use
of consistent estimators, which asymptotically share sample and population statistics. Assume that x is a
finite sample of n elements drawn from infinite population X, then a series of well-behaved sample statistics
[ should very closely approximate their population statistics p; as follows,

[~ py  where pp = E(¢¢(x)) and iy = %Z@(%) (5)
i=1

The original method of moments simply defines basis functions as ¢; as the power functions ¢;(z) = = for t =
1,2,3,4.... In this case, the zero-mean samples would correspond to the mean, variance, skewness, kurtosis,
etc. But these basis functions have the disadvantage of being non-orthogonal, and thereby duplicating some
shape information. It is more powerful to choose ¢; to represent an orthogonal basis set, such as the Fourier
series ¢y = €™ or one of the orthogonal polynomial sets such as the Legendre or Chebyshev polynomials
thereby representing the Method of Orthogonal Moments (MOM).

We use the MOM to analyze the copula interdependence Y7, ... ,Yp of deep features separately from the
marginals f(X1), ... , f(Xp). As such, we must measure the interdependence between multiple random
variables by defining multivariate moments in terms of the expected product of univariate basis statistics
in the copula space. If we define T' as a D dimensional vector of integers where T, represent the desired
moment of the d*® random variable Yy, then the joint moment jur corresponds to inner product of basis
vectors as follows,

S|

D n D
pr =E <H o, (yd)> pr=-3" ( o, (yd)> (6)
d=1 d=1

i=1 \d=
For our analysis, we specifically define ¢, as either the real-valued Fourier series or the normalized Legendre
polynomial series because in addition to being orthogonal over the rescaled copula interval of (—1,1), these
basis functions also have the additional property that all non-constant basis terms exhibit zero integral over
(=1, 1), which is useful for our Generalized Characteristic Independence (GCI) metric. The specific forms of
these series that we propose also exhibit the property of having unit Lo norm over the target interval (—1,1).
The Legendre polynomials also have the advantage that, like the power series, mean and covariance are part
of the basic shape descriptors, which are highly familiar concepts thereby aiding in practical interpretation.

2.3 Generalized Characteristic Function

A useful property of the MOM, is that it allows one to recover the actual copula probability density function
¢(y) in high-dimensions completely non-parametrically, and without any overly-rigid assumptions on the
shape of this distribution by means of the Generalized Characteristic Function (GCF). The original Char-
acteristic Function refers to the observation that if one defines the basis set as the Fourier series, then the
population moments resembles the Fourier transform of the PDF as follows,

o0

iy = E (d(4)) = / e(y) ¢y )

— 00

As such, one can recover the copula density by means of an inverse discrete Fourier transform of the pop-
ulation moments p. If this process is performed using the sample moments /i then one recovers the sample
estimate of the copula density function ¢ as follows,

K K
cy) =Y m de(y) y) =Y fu de(y) (8)
t=1 t=1
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Figure 1: Comparison of orthogonal basis functions over the uniform interval (-1, 1). (a) Real-valued Fourier
series (b) Normalized Legendre polynomials (c¢) Legendre polynomials without normalization (d) Chebyshev
polynomials.

The GCF refers to the straightforward extension of this technique to non-Fourier orthogonal moments.
Analogously, one can recover the full copula density using an discrete inverse Fourier-like transform for any
orthogonal basis set. Nevertheless, it is highly desirable to select basis functions that exhibit the following
properties,

e Orthogonal over unit interval (—1,1)
o Real valued, exhibiting even and odd harmonics
e Unit length Ly norm over interval (—1,1)

o All non-constant moments exhibit zero integral over (—1,1)

In order to adhere to these properties, we propose to employ a specific normalized form of the Legendre
polynomials, as well as a real-valued form of the Fourier series as we describe in further detail.

2.4 Normalized Legendre Polynomials

The Legendre Polynomials (figure 7c) are a set of real-valued orthogonal basis functions over the target
interval (—1,1) with several desirable properties. Unlike the Chebyshev polynomials (figure )7 the Legen-
dre polynomials (figure ) exhibit zero integral over the interval (—1,1), except trivially for the constant
polynomial Py. This zero-integral property is highly-desirable for our resultant GCF. The polynomials can
be generated efficiently using Bonnet’s recurrence as follows,

Py(y) =1
Pi(y) =y (9)
2n+1 n
Pn+1(y) = nt+1 P, (y) — mpn—l(y)

The Legendre polynomials in this form do not exhibit unit-length Lo norm over the interval (—1, 1), as such,
we propose normalizing the Legendre polynomials based on their Ly norm in order to obtain unit-length
orthogonal moments as in (figure ) This normalized form is obtained as follows,

) P2(y) dy (10)

P,
W) here [P = /

(bt(y): ||Pt||2 8
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2.4.1 Real-valued Fourier Series

As our sample is real-valued, one can equivalently represent the Fourier series as a sum of real-valued cos
(even) and sin (odd) harmonic terms. Moreover, it is possible to simplify this to only cos terms if one makes
use of the trigonometric phase identity as follows,

sin(y) = cos(y — g + 27t) for integer ¢ (11)

As such, one can present both even and odd real-valued Fourier basis functions using an elegant and simplified
form as follows,

bo(y) =
P(y) = cos (tg(y - 1))

[

(12)

The real-valued Fourier basis functions in this form are shown in (figure [1p). One can see that these
basis functions correspond analogously one-to-one with the Legendre and Chebyshev polynomials, with ¢;
exhibiting exactly ¢ roots over the target interval (—1,1). This form of the Fourier series also exhibits our
desired properties, as the non-constant basis functions have zero integral over the target interval (—1,1).
Moreover, for all basis functions the Lo norm over the target interval is exactly equal to 1 when presented
in this form.

2.5 Generalized Characteristic Distance and Independence

Given a set of orthogonal population moments p; and v; for probability distributions P and @ respectively,
the Generalized Characteristic Distance (GCD) fully describes the difference in shape between probability
distribution as the Manhattan distance of the Fourier-like transforms of the PDFs. This is calculated by
taking the Manhattan distance between the moments as follows,

K
Dcha’r(P7Q) = Z ‘,U/t - Vt‘ (13)

t=1
In the event that a set of features are completely independent, then the copula density ¢ (y1, ... yp) cor-

responds to the uniform distribution on the hypercube y; € (—1,1). As such, we new define a Generalized
Characteristic Interdependence (GCI) metric Hepqr(c) as the GCD between the copula distribution ¢ and
the ideal uniform copula density Qunif. Hcnar is exactly zero when variables y1, ... ,yp are statistically in-
dependent, and nonzero when these variables show some statistical dependence along one or more orthogonal
moments. Hpq-(c) is defined as follows,

Hchar(c) = Dchar(cv Qunzf) (14)

The real-valued Fourier and normalized Legendre series have the convenient property that all basis functions
integrate to zero over (—1,1) (except trivially the constant basis function ¢g). As such, it is straightforward
to show that the ideal uniform distribution @Qun:y has all zero moments. Therefore, for the Fourier and
Legendre moments, the GCI simplifies to L.1 norm as follows,

Hepar(c) = ||pll; for Fourier and Legendre moments (15)
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3 Experimental Setup

For our experiments we evaluate three CNN architectures resnetl8, resnet50, and vggl9 across four image
classification datasets mnist, cifar10, cifar100, and imagenette2 (Deng, |2012; Krizhevsky et al.l 2009; Deng
et al.,|2009; Howard} |2019; He et al.,|2016; |[Simonyan & Zisserman),|2014)). Imagenette2 is a subset of Imagenet
exhibiting 10 classes with the full resolution images that are center-cropped to 224 x 224 pixels.

Figure [2 shows the extracted feature spaces from the resnet and vgg architectures. For each image, after
every major convolutional block, we obtain a tensor of size [N, g4, filters, rows, cols]. Due to the self-similarity
of features in each row and column, we evaluate the distribution for each of the filters over the entire training
or test set. Thus we have a sample of N = N;,,4, x rows x cols for every filter for each block.

As we perform copula analysis, we separately analyze the marginal and the copula interdependence terms.
This means that we have separate results and separate analysis for the univariate marginal density, versus
the multivariate interdependence. For the marginals, we evaluate 1D probability density functions for each
feature. For the copula we analyze the independence of pairs and groups of features. Our exploratory plots of
copula interdependence are evaluated for pairs of features. Nevertheless, our method is capable of measuring
the density of higher dimensional groups of features which we validate by a task of predicting the distribution
of groups of test features given the set of training features.

For imagenette2, we used the pre-trained versions of resnet18, resnet50, and vggl9 as included with PyTorch,
with a custom trained final linear classification layer. For mnist, cifar10, and cifar100 the standard versions of
resnet and vgg are not designed to work with such small resolution images, and thus we used the small-image
optimized versions of these architectures by Kuang| (2017). This small-image optimized version is widely
used, often without attribution, in papers that achieve high accuracy on these datasets. The small-image
resnet and vgg architectures were trained from scratch using a learning rate of 0.01, momentum 0.09, and
the SGD optimizer.

Rectified Linear (ReLU) is a very common activation function in CNNs, and both resnet and vgg employ
ReLU in order to introduce non-linearity. ReLU also has the additional effect of forcing all-features to be
non-negative. As such, the CNN features after major convolutional blocks such as those shown in figure[2] are
always non-negative and entirely reside in the positive quadrant of the feature space. For the 1D analysis,
we measure the marginal distribution by first measuring the percentage of non-negative features, as well as
fitting the observed univariate distribution of non-negative features. The combination of these measurements
fully describes the univariate marginal term. For the multivariate copula interdependence term, we add an
infinitesimal random jitter to the zero-valued features in order to ensure a statistically independent ordering
of zero valued features for the copula interdependence. We present and describe plots of the copula density
in two dimensions, and further analyze the goodness of fit of high-dimensional feature copula through a
KL-divergence task.

4 Results

As we are performing copula analysis, we present separate analysis of the univariate marginal distribution,
and of the multivariate copula interdependence terms. The analysis of marginals shows the distribution of
feature density including the percentage of non-zero features as well as the distribution of non-zero features.
The copula density interdependence term shows the interdependence of the features with the marginal
distribution removed by means of a probability integral transform. The interdependence is modeled by
measuring the GCF using the MOM. We present results showing qualitative description of the feature
distribution as well as quantitative goodness of fit using KL-divergence and/or cross entropy loss.

4.1 Analysis of Copula Marginals

The marginals describe the univariate distribution of CNN features, and are an important component of the
copula analysis. ReLU has the effect of zeroing out (deactivating) any negative-valued features such that
they have no further impact on the intermediate calculations. In order to fully and adequately describe the
1D marginal distribution post-activation, we must separately model the zero-valued and non-zero features
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Figure 2: Tllustration of resnetl8 (top) and vggl9 (bottom) deep feature layers selected for probability

density analysis using copula. Orange shaded regions represent deep feature layers after major architectural

blocks that were selected for density analysis. Resnet50 diagram is not shown, but is similar to the resnet18
diagram shown (top).
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Table 1: Percent of nonzero features per layer.

resnet18 resnetd0 vggl9
INET CF10 CF100 MNST | INET CF10 CF100 MNST | INET CF10 CF100 MNST
Layer 0 | 87.7 66.4 67.2 74.8 91.0 61.3 748 86.0 43.2 419 43.2 58.0
Layer 1 | 77.0 68.1 79.6 66.7 80.1 83.9 81.6 90.8 29.6 21.1 238 324
Layer 2 | 50.3 43.7 50.9 529 55.8 68.0 85.2 90.8 14.8 22.0 13.2 233
Layer 3 | 46.1 24.0 356 384 29.9 21.7 49.6 58.5 9.9 79.1 513 521
Layer 4 | 52.2 46.8 55.0 41.3 53.9 84.9 579 89.6 9.0 306 25.8 215

Percent of non-zero features

resnetls resnets0 vggl9
100 100 100
—— Imagenette2
80 1 80 80 1 Cifar1o
—— Cifar100
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c B c c B
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& 401 & 40 \// & a0
20 20 20 4
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] 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Layer Layer Layer

Figure 3: Percent of nonzero features per layer.

as the combination of these distributions describes the overall marginal density. The percentage of non-zero
features is shown in figure [3| and also in tablular form in table[l] The percent of nonzero features varies for
each architecture (resnet18, resnet50, vggl9) as well as for each dataset (imagenette2, cifarl0, cifar100, and
mnist). We see however a general trend amongst all models that the percent of nonzero features is quite high
in layer 0, and tends to decrease in subsequent layers until layer 3 (resnetl8, resnet50) or layer 2 (vggl9)
before increasing slightly in subsequent layers. One primary exception to this overall shape is shown in vgg19
over imagenette2, in which the percent of nonzero features appears to decrease monotonically all the way to
layer 4. The resnet models tend to start with 70 — 90% of nonzero features in layer 0, decreasing to around
50% of nonzero features by layer 4 with the exception of resnet50 mnist, which exhibits 89.6% nonzero
features in layer 4. The vggl9 architectures exhibit greater sparsity than the resnetl8 architectures with
40 — 60% non-zero features in layer 0 decreasing to 9 — 31% non-zero features in layer 4. Overall these results
exhibit an increase in feature sparsity (percent zeros) with network depth, although this trend is somewhat
noisy often showing an uptick in nonzero percentage in the deepest layers. The magnitude and scale of these
percentages are dataset dependent with vggl9 showing greater sparsity than resnet architectures.

Figure [4] shows a histogram of the non-zero portion of the marginal density for resnet18 on imagenette2 for
filters 0, 1, and 2. Additional plots of the non-zero marginals for resnet18, resnet50, and vggl9 are available
in supplemental materials. We see in figure {f that filters 0 (left), 1 (middle), and 2 (right) show similar
shape characteristics that depend on the network depth. Importantly, we observe an interesting phenomenon,
where the early layers show a more complicated univariate shape, whereas the later layers appear to more
closely resemble an exponential distribution shape. The complicated shape seen in layers 0 and 1 is most
likely due to contamination of the input pixel distribution into the marginal feature distribution, as these
are early shallow layers in the network. In the early layers, the model is unable to transform the input pixel
space very much, so we still observe remnants of this pixel distribution. However, we see in the deeper layers
such as layer 3 and 4 a very clear exponential distribution of the non-zero features. We observed a similar
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exponential distribution consistently across other architectures and datasets with additional similar figures
in supplemental materials.

We now quantitatively compare the goodness of fit of four parametric distributions to the marginals of the
non-zero features. The distributions that we compare are the uniform distribution, the Gaussian distribution,
the gamma distribution, and the Weibull distribution. The optimal parameters of these distributions are
determined using the method of simulated annealing, and the goodness of fit of each of the distributions is
compared using KL-divergence. Figure [5|shows the plots (with 1o uncertainty) of each of the distributions
tested over all of the architectures and datasets in our analysis. As these are 1o confidence intervals,
overlapping intervals represent an insignificant difference, whereas non-overlapping intervals represent a
statistically significant difference in the goodness-of-fit. In order to prevent overfitting, the parametric
distribution is fit to the training data features, whereas the KL-divergence measures the goodness of fit to
the test distribution.

As we see from figure 5] the gamma and Weibull distributions show a significantly better fit to the feature
marginals than the uniform and Gaussian distributions. The exponential distribution can be seen as having
performance in-between the Gaussian and Weibull distribution. Notably, we observe that the exponential
distribution increasingly approximates the observed features as we look at deeper network depth. It is
important to note that the gamma and Weibull distributions generalize the exponential distribution, and
thus it is not possible for the exponential to achieve a statistically better fit than the gamma and Weibull
distributions. Nevertheless, the exponential distribution is highly interpretable and exhibits a very good fit
to the non-zero features that significantly outperforms the Gaussian and uniform distributions, while coming
close to the gamma and Weibull goodness of fit particularly for the deeper layers.

4.2 Analysis of Copula Interdependence

Figure [6] shows the copula interdependence term of the probability density for resnet18 over imagenette2 for
select pairwise features. Additional plots for other architectures and datasets are available in supplemental
materials. Figure [f] also shows the reconstructed copula interdependence using three different methods, the
GCF with normalized Legendre polynomials (left), the GCF with real-valued Fourier series (middle) and 2D
histograms as a control (right). We see that all three functions appear to show very good agreement with
very similar pairwise density plots for all of the feature pairs shown in figure [6]

We observe that the early layers show much more complicated interdependence with greater variation,
whereas later layers tend to show a similar structure for most feature pairs that we observed. Similar to our
analysis of the marginals, we believe that the variation in the pairwise interdependence seen in the shallow
layers (layer 0 and layer 1) is very likely due to the contamination of the input pixel and texture distribution
into the shallow features. As these are early layers in the network, the network architecture is unable to
fully remove the contribution of the initial pixel distribution. The later layers however show very similar
pairwise interdependence. We observe a very interesting phenomenon, in which the deep features in layers
2,3 and 4 (rows 3-5 in figure @ appear to be uncorrelated for typical values, but show a strong statistical
dependence for extremely large valued features. This strong statistical dependence can be observed by the
prevalence of very high density in the upper right corner of the interdependence plot (yellow), with much
lower density along the top and right edges of the plot (blue). The apparent statistical independence of
the terms over typical values (green) is also clearly apparent in the pairwise interdependence plots. We also
observed (shown in supplemental materials) the prevalence of deep features showing a strong anti-correlation
of the extreme values, with high density (yellow) along the top left and bottom right, but low density in
the upper right hand corner (blue), again with independence for the typical valued features (green). This
prevalence of uncorrelated features, except in the event of extreme-valued detections, is a new observation
with profound implications regarding the distribution of deep CNN features, we discuss this result further
in our discussion section.

In order to evaluate the goodness-of-fit of the copula independence term, we perform a supervised evaluation
using cross entropy loss. Our task is to fit the copula interdependence to the training features using our
method, and then we evaluate how well this describes the interdependence of the test features. For this
experiment, we calculated the goodness of fit for resnet18 features for random groups of four features at a
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Figure 4: Histogram of marginal density for pre-trained resnetl8 on imagenette2 for features 0,1,2, for

each of five convolutional layers. In early layers, features show some influence of original pixel distribution.

Layer 0 also exhibits a few dead features (e.x. Feature 2). Deeper layers appear to exhibit an exponential
distribution.
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Figure 5: Quantitative goodness-of-fit of five standard distributions to the feature marginals for cifarl0,
cifar100, imagenette2, and mnist, across three models resnet18, resnet50, and vggl9. Shaded region shows

lo confidence interval for goodness of fit. We see that exponential, gamma and Weibull are substantially
and significantly better fit than uniform and Gaussian for most layers across all models and datasets, with

gamma and Weibull showing the best fit but these distributions generalize the exponential distribution which
shows increasingly good fit in the deeper layers of the network.
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Figure 6: Select copula interdependence for pairwise features for 5 layers of resnet18 over Imagenett2. Top
to bottom: Layers 0 through 4. Left: Legendre pdf. Middle: Fourier pdf. Right: Histogram pdf.
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Table 2: Goodness of fit of copula interdependence term for random subsets of four features on imagenette2
with resnetl8. Evaluation criteria is cross entropy loss, 1o confidence intervals are shown in parentheses.

Bold shows significantly best method for each layer task.

Legendre Fourier Histogram
Layer 0 1.9793 (1.9587, 1.9998) 2.0036 (1.9864, 2.0207) 1.7521 (1.7209, 1.7833)
Layer 1 2.6303 (2.6299, 2.6308) 2.6290 (2.6285, 2.6295) 2.6172 (2.6164, 2.6179)
Layer 2 | 2.7183 (2.7182, 2.7184) 2.7192 (2.7192, 2.7193) 2.7215 (2.7214, 2.7216)
Layer 3 2.7489 (2.7486, 2.7492) 2.7435 (2.7434, 2.7435) 2.7440 (2.7439, 2.7440)
Layer 4 | 2.7170 (2.7170, 2.7171) 2.7192 (2.7191, 2.7192) 2.7323 (2.7322, 2.7323)

Table 3: Goodness of fit of copula interdependence term for random subsets of four features on cifarl0 with
resnet18. Evaluation criteria is cross entropy loss, 1o confidence intervals are shown in parentheses. Bold
shows significantly best method for each layer task.

Legendre Fourier Histogram
Layer 0 2.2306 (2.2174, 2.2438) 2.2359 (2.2229, 2.2490) 2.1850 (2.1712, 2.1989)
Layer 1 2.5844 (2.5830, 2.5859) 2.5812 (2.5797, 2.5827) 2.5578 (2.5548, 2.5608)
Layer 2 | 2.6834 (2.6828, 2.6841) 2.6852 (2.6846, 2.6858) 2.6865 (2.6858, 2.6873)
Layer 3 | 2.7442 (2.7440, 2.7444) 2.7461 (2.7459, 2.7463) 2.7493 (2.7491, 2.7495)
Layer 4 2.1568 (2.1502, 2.1634) 2.1268 (2.1204, 2.1332) 2.0399 (2.0339, 2.0459)

Table 4: Goodness of fit of copula interdependence term for random subsets of four features on cifar100 with
resnet18. Evaluation criteria is cross entropy loss, 1o confidence intervals are shown in parentheses. Bold
shows significantly best method for each layer task.

Legendre Fourier Histogram
Layer 0 | 2.2020 (2.1812, 2.2227) 2.2085 (2.1883, 2.2288) 2.0857 (2.0644, 2.1070)
Layer 1 2.5588 (2.5571, 2.5605) 2.5600 (2.5583, 2.5618) 2.5242 (2.5219, 2.5264)
Layer 2 | 2.6794 (2.6788, 2.6800) 2.6806 (2.6800, 2.6812) 2.6829 (2.6822, 2.6835)
Layer 3 | 2.7414 (2.7414, 2.7414) 2.7415 (2.7415, 2.7415) 2.7449 (2.7449, 2.7450)
Layer 4 | 2.7200 (2.7198, 2.7202) 2.7220 (2.7218, 2.7222) 2.7303 (2.7301, 2.7304)

Table 5: Goodness of fit of copula interdependence term for random subsets of four features on mnist with
resnet18. Evaluation criteria is cross entropy loss, 1o confidence intervals are shown in parentheses. Bold
shows significantly best method for each layer task.

Legendre Fourier Histogram
Layer 0 -3.3750 (-3.6474, -3.1025) -2.7168 (-2.8623, -2.5714) -3.6498 (-3.9232, -3.3764)
Layer 1 1.3320 (1.2504, 1.4137) 1.2019 (1.1019, 1.3019) 0.5817 (0.3903, 0.7730)
Layer 2 2.1437 (2.1295, 2.1579) 2.1298 (2.1136, 2.1460) 1.8885 (1.8526, 1.9244)
Layer 3 | 2.6451 (2.6444, 2.6458) 2.6551 (2.6545, 2.6557) 2.6481 (2.6472, 2.6489)
Layer 4 2.1646 (2.1467, 2.1824) 2.1572 (2.1376, 2.1768) 2.0449 (2.0147, 2.0751)
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time for the imagenette2, cifarl0, cifar100 and mnist dataset. We performed 30 rounds per experiment, and
calculated the copula interdependence using 3 methods, Legendre GCF, Fourier GCF, and Histograms. The
interdependence of four randomly selected features within the same layer is calculated, and compared with
the sample interdependence of the test features using cross entropy loss as the evaluation criteria.

For resnetl8 on cifarl0, Legendre GCF works better for layers 2 and 3; however, for the latest layer, the
Histogram method performs the best. Table [4 demonstrates that on cifar100, Legendre GCF performs well
across all layers except layer 1, where the Histogram approach outperforms due to pixels still being contam-
inated by the input image. On mnist (table , the Histogram method is the best for all layers except layer
3, where Legendre GCF outperforms. This is because mnist is essentially a binary dataset with most pixels
being either black or white. This binary input pixel distribution contaminates the deep feature distributions,
causing a discreet quantization which can be better modeled by the discreet Histogram approach. For the
other datasets (imagenette2, cifar10, cifar100) with more continuous input pixel distributions, we observe in
tables that the GCF methods significantly outperform the Histogram methods for layers 2,3 and 4, with
the two exceptions being layer 3 for imagenette2 dataset, and layer 4 for the cifar10 dataset. The Histogram
approach is particularly sensitive to the CoD, because with D dimensions and B bins per dimension, the
average number of samples per bin is N/BP. Due to max-pooling, the deeper layers exhibit fewer samples
relative to the shallow layers, and one would expect the GCF methods to outperform the histogram methods
particularly in the situations of higher dimensionality as well as smaller sample sizes, which is consistent
with our results in tables 2H4l

5 Conclusion

We present an empirical analysis of the density distribution of deep CNN features through direct measure-
ment of the GCF using a novel non-parametric approach that combines copula analysis with the MOM. We
demonstrate that our approach is able to model the marginal and interdependence terms of feature density
after each major Conv+ReLU block of resnetl18, resnet50, and vggl9. Moreover, as a non-parametric tech-
nique, we do not introduce overly-restrictive assumptions as to the shape of the marginal or interdependence
terms. We report empirical findings on the observed marginal distributions and copula density interdepen-
dence terms as a function of network depth. In our analysis of marginals, we observe that features after major
Conv+ReLU blocks exhibit both zero and non-zero features. Furthermore, we demonstrate through hypoth-
esis testing that the non-zero features for the deeper layers of the network more closely fit the Weibull or
gamma distribution versus the Gaussian or uniform distribution. Weibull and gamma distributions general-
ize the exponential distribution which also significantly outperforms the Gaussian and uniform distributions
in the deeper layers. Our analysis of the copula interdependence shows that pairs of features in the deeper
layers of the network also exhibit an unusual form of statistical dependence, for which these features are
highly independent throughout their typical value ranges, yet become strongly dependent (either correlated
or anti-correlated) for extremely large feature values. We observe that the Legendre and Fourier GCF tech-
niques are able to better model the copula interdependence density relative to the histogram technique for
groups of four features with resnetl8 over imagenette2, cifarlQ and cifarl00 for the deeper layers of the
network. Our approach is the first purely empirical technique to model the multivariate probability density
distribution of deep CNN features. We believe that empirical analysis of the feature density distribution
will lead to a better understanding of CNN feature representations. Moreover empirical feature density has
the potential to lead to a new branch of generative methods that model the full joint distribution of the
native CNN feature space, thereby enabling off-the-shelf CNN architectures to attain all of the benefits of
generative techniques.

6 Discussion

One of our key findings is that the exponential distribution is a surprisingly good fit for the non-zero features
of the marginals for the deeper layers of the network. This result has many implications for applications of
feature density techniques, and also leads to several new questions regarding the reason why an exponential
distribution fits these deeper non-zero marginals so well.
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One possible explanation is that the exponential distribution is the maximum entropy distribution for random
variables on the interval [0, 00). As such, the complex composition of functions with the restriction of non-
negativity (as enforced by ReLU) are likely to tend toward the exponential distribution. This explanation
would also explain why the exponential distribution does not well fit the feature marginals that arise in
the shallow early layers, because the shallow features will have direct more influence from the input pixel
distribution and will not have sufficiently deep composition to adequately tend toward the exponential
distribution.

An additional explanation for the exponential distribution of marginals in the deeper layers arises from the
computer vision perspective. In the deeper layers, features correspond to increasingly expressive semantic
concepts. If the features represent presence of a discriminative target of interest, then most of the scene does
not usually contain the target. For example, given a face in a cluttered scene, the vast majority of the scene
does not contain the face (and would exhibit a small-value for face detection). A small portion of the scene
however does present a face, and a face detector would present a strong finding. It is possible that in the
deeper layers, features correspond to detectors of semantic concepts, in which case each large valued feature
would correspond to a strong concept detection.

The observation that deep CNN features are particularly sensitive to specific views of known targets is a
relatively new finding (Allen-Zhu & Li, 2023). As such we believe that the observation of an exponential
distribution of strong non-zero feature detections is highly compatible with this observation that features
correspond to specific target views, because a given target view, if it is present in an image, will only typically
take up a small portion of the image thereby leading to a large number of non-detections, with a small
number of actual strong detections of the target view.

We observed a very peculiar phenomenon where pairs of deep CNN features at adequate network depth show
very little dependence for typical values, whereas they exhibit very strong dependence (either correlation or
anticorrelation) for extremely strong detections. We conjecture that this distribution that we see is highly
related to our exponential view hypothesis, in that the typical values of the features correspond to a lack
of detection of the target view, whereas the extremely large values correspond to a strong detection of the
target view. As such, it may be the case that the typical values are uncorrelated because they do not
represent discriminative foreground features, but instead represent background variability especially as most
images have a large number of background pixels relative to foreground pixels. The rarity of discriminative
foreground features would therefore be a reason for CNN models to produce very large detections in order
to overcome the more prevalent background signal.

If one believes in this exponential view hypothesis, then the strong statistical dependence of extremely large
feature values would imply that in fact deep CNN features are more correlated than they appear in the
presence of actual foreground target detection signal, even if they are uncorrelated over the background.
This is very possible and we plan to investigate this hypothesis further as part of future work.

Moreover, the uncorrelated nature of typical value features, yet strong correlation of extreme value features,
would suggest that future work should revisit the assumption that the typical set is in fact the most descriptive
set of features for a given image, as modeling of feature density has overwhelmingly emphasized evaluation
of the density distribution of typical valued features. We believe that modeling of the distribution of extreme
valued features may also be highly important. Moreover, given the assumption of an exponential distribution,
the removal of outlier features under the assumption of an MVG has the potential to accidentally eliminate
strong computer vision signals of foreground target detection which would be an unwanted side effect.

Our approach toward modeling the distribution of features by measuring the GCF with the MOM has a
notable advantage that the entire training set is used to measure each sample moment, leading to high
certainty in estimation. This is a major inherent advantage in modeling the density distribution of high-
dimensional feature spaces, versus other techniques that run into low-sample sizes in high dimensions due
to the CoD. Nevertheless, this technique also has limitations. Notably, the number of moments increases
exponentially with the number of features under consideration at once. Not all moments are inherently
important, and future work would involve the extension of this method to find a set of sparse moments, in
order to reduce the computational burden of modeling the copula interdependence for a large number of
features within one subset group. An additional limitation of this methodology is the error-of-approximation

16



Under review as submission to TMLR

that comes from reconstructing the density using sample moments rather than population moments. We
infer that this error-of-approximation is reasonably small by looking at the cross entropy goodness of fit
between the train and test distributions. However, in future work, we would like to statistically model the
uncertainty of the moment estimates, as this would allow us to quantify the uncertainty of the empirical
probability density estimate.
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