
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE POTENTIAL OF SECOND-ORDER OPTIMIZATION
FOR LLMS: A STUDY WITH FULL GAUSS-NEWTON

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent efforts to accelerate LLM pretraining have focused on computationally-
efficient approximations that exploit second-order structure. This raises a key
question for large-scale training: how much performance is forfeited by these
approximations? To probe this question, we establish a practical upper bound
on iteration complexity by applying full Gauss-Newton (GN) preconditioning to
transformer models of up to 150M parameters. Our experiments show that full
GN updates yield substantial gains over existing optimizers, achieving a 5.4x re-
duction in training iterations compared to strong baselines like SOAP and Muon.
Furthermore, we find that a precise layerwise GN preconditioner, which ignores
cross-layer information, nearly matches the performance of the full GN method.
Collectively, our results suggest: (1) the GN approximation is highly effective for
preconditioning, implying higher-order loss terms may not be critical for conver-
gence speed; (2) the layerwise Hessian structure contains sufficient information to
achieve most of these potential gains; and (3) a significant performance gap exists
between current approximate methods and an idealized layerwise oracle.

1 INTRODUCTION

With rising compute requirements for training large language models (LLMs), improving optimiza-
tion methods has become a central strategy for improving training efficiency. Better optimizers can
directly reduce the serial runtime to train an LLM, which is crucial for large-scale models that train
from days to months. Optimization for LLMs has traditionally leveraged first-order methods such as
SGD and Adam (Kingma & Ba, 2017). However, recent research in optimization has started explor-
ing the use of second-order optimizers for large-scale models, motivated by the faster convergence
rates known from theory (Nesterov, 2018) and potential to scale to larger batch sizes (Zhang et al.,
2019) – two ways of reducing serial runtime.

Some recent popular second-order methods include Shampoo (Gupta et al., 2018), SOAP (Vyas
et al., 2025) and Muon (Jordan et al., 2024b). Shampoo won the recent optimization algorithms
benchmark called AlgoPerf (Kasimbeg et al., 2025), outperforming Adam by a margin of 28%.
SOAP, a recent generalization of the Shampoo algorithm, has shown impressive performance on
language modeling benchmarks, and has been used for training physics-informed neural networks
(PINNs) (Wang et al., 2025). Muon has been extensively optimized on the nanoGPT benchmark
(Jordan et al., 2024a), and was also recently scaled up to 16B LLMs, showing 50% improvements
over AdamW (Liu et al., 2025).

However, these methods do not use complete second-order information, instead focusing on
memory- and computationally-efficient approximations of the Hessian. Indeed, precisely storing or
computing the Hessian required for second-order methods such as Newton’s method is prohibitively
expensive for modern LLMs that have billions of parameters. To remain practical, these methods
leverage computationally-efficient estimators for the layerwise Hessian of neural networks.

The success of current methods motivates a better understanding of the potential of second-order
optimizers. Towards this goal, our work is guided by one central question:

What are the fundamental performance limits of second-order optimization for
LLMs, and what structural properties of the Hessian are essential for achieving
them?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To answer this question, we first establish the performance limits of an idealized second-order
method. We measure performance in terms of iteration complexity—the number of steps to

10 50 300 1000 3000
Step

3.25

3.75

4.25

4.75

Lo
ss

AdamW
Gauss-Newton

Muon
Layerwise GN

SOAP

Figure 1: Training step versus validation loss until
loss 3.25 when each method is beyond its critical
batch size. Gauss-Newton and Layerwise Gauss-
Newton reach the target loss in 54 and 78 steps
respectively, compared to 292 steps for SOAP.

reach a target loss—which serves as a prac-
tical lower bound for any second-order ap-
proach. Further, we analyze how this ideal-
ized method affects the critical batch size (Mc-
Candlish et al., 2018; Shallue et al., 2019; Jain
et al., 2018b), a key measure of how much train-
ing can be parallelized to reduce serial runtime
without sacrificing sample efficiency. Next, to
determine the essential structural properties, we
compare the full Gauss-Newton method to a
purely layerwise variant, thereby isolating the
importance of cross-layer curvature. Finally,
we contrast our second-order approach with an
iterative linearization method to investigate the
role of higher-order loss terms.

Note that, while we avoid storing the Hessian
in memory, this method is still highly compute
intensive and is meant to test the bounds of
second-order methods rather than offer a prac-
tical method itself. This study serves as an ide-
alized second-order setting to test existentially
what gains are possible with full Gauss-Newton
preconditioning. Our main contributions are
summarized as follows:

• We find that the full Gauss-Newton preconditioner substantially improves upon existing
second-order methods at large batch size, with 5.4x gain over SOAP in terms of iteration
complexity (See Figures 1 and 2).

• We find that the Gauss-Newton method extends the critical batch size beyond that of the
existing methods (Figure 2), displaying a near optimal trend through batch size of 12M
tokens.

• We compare the Gauss-Newton method to two variations: one iterative linearization
method and one limited to per-layer second-order information, and we find that these meth-
ods achieve similar performance. We discuss implications for these findings for future
directions of optimization research.

Paper organization In Section 2, we cover related work and in Section 3 we provide background
on existing optimization methods. In Section 4, we introduce the setting for full second order opti-
mization and the Gauss-Newton matrix. In Section 5 we provide the set-up for our main experiments
and in Section 6 we discuss our results on iteration complexity and critical batch size of the full
second-order method. In Section 7.1 we compare the Gauss-Newton method to a layerwise variation
and in Section 7.2 we compare to a related iterative linearization method. Finally, in Section 8 we
discuss the implications as well as limitations of our work.

2 RELATED WORK

We mention a few of the most related works here and provide additional related work in Appendix B;
work on specific optimizers for LLMs is discussed in Section 3. Most related to our work is Hessian-
free optimization, which avoids explicit Hessian formation by leveraging Hessian-vector products
(Martens, 2010). This approach serves as an alternative to layerwise approximation methods of the
Hessian as discussed in Section 3. Specifically, prior work on Hessian-free optimizers use the con-
jugate gradient (CG) to solve an incomplete (unconverged) optimization of the Newton step rather
than storing an approximation to the Hessian. This is introduced by Martens (2010) on classification
and auto-encoder tasks, and extended to additional settings such as recurrent neural networks by
Martens & Sutskever (2011a) and Cho et al. (2015). Garcia et al. (2023) amortizes the CG steps in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hessian-free optimization for deep linear and auto-encoder models. In contrast, our work focuses
on the setting of LLMs, and we leverage optimizers that are specifically designed for LLMs (e.g.
Adam and Muon) rather than CG to apply the Gauss-Newton step.

3 BACKGROUND ON EXISTING OPTIMIZERS

We will denote the weight matrix of a model layer at timestep t by Wt ∈ Rm×n and the correspond-
ing gradient by Gt. We use η to denote the learning rate.

The most widely used optimizer for LLMs is Adam (Kingma & Ba, 2017). Adam maintains matrices
for the first and second moment of the gradient Gt, denoted Mt and Vt respectively. Adam performs
the element-wise update

Wt+1 := Wt − η
Mt√
Vt

AdaGrad (Duchi et al., 2011) maintains an accumulator over the vectorized gradient gt = vec(Gt) ∈
Rmn. The preconditioner Ht and vectorized weights wt at timestep t are updated as

Ht := Ht−1 + gtg
⊤
t ; wt := wt−1 − ηH

−1/2
t gt

Shampoo (Gupta et al., 2018) was originally motivated by AdaGrad, but can be viewed as an ap-
proximation of the Gauss-Newton component of the Hessian (Anil et al., 2021; Osawa et al., 2023;
Morwani et al., 2024). These methods leverage computationally efficient approximations of the lay-
erwise Hessian to precondition the gradient update. Shampoo maintains a separate preconditioner
for each dimension of the weight matrix: For weight matrix W ∈ Rm×n, Shampoo maintains a left
matrix Lt ∈ Rm×m and a right matrix Rt ∈ Rn×n. The update rule is as follows:

Lt := Lt−1 +GtG
⊤
t ; Rt := Rt−1 +G⊤

t Gt; Wt := Wt−1 − η L
−1/4
t GtR

−1/4
t

SOAP (Vyas et al., 2025) is a recent variant of Shampoo that runs AdamW (Loshchilov & Hutter,
2019) in the eigenbasis provided by Shampoo.

Muon (Jordan et al., 2024b) tracks the first moment of the gradient, denoted Mt, and performs an
orthonormal update:

Ot := NS(Mt) Wt+1 := Wt − ηOt

where NS denotes a Newton-Schulz orthogonalization procedure. (See Jordan et al. (2024b) for
further description of the Newton-Schulz method). Muon without momentum can be seen as a
version of Shampoo without preconditioner accumulation (Bernstein & Newhouse, 2024).

These second-order methods1 improve on convergence rates when compared to popular first-order
methods such as AdamW (Loshchilov & Hutter, 2019) and have been shown to scale effectively to
larger batch sizes (Zhang et al., 2019; Vyas et al., 2025), but are restricted by the need for computa-
tionally efficient per-layer preconditioners given the high computational and memory requirements
for computing the full Gauss-Newton matrix.

4 FULL SECOND-ORDER OPTIMIZATION

4.1 NOTATION

Let f(θ, x) denote the model with parameters θ and input x. Let L(f(θ, x), y) denote the loss
function which takes the model output and the true labels y. We will use either ∇θ or g to denote
the gradient with respect to θ, ∇f to denote the derivative of L with respect to f and H := ∇2

θL
to denote the Hessian. We will use f (1)(θ; θ0) and L(2)(θ; θ0) := L(2)((f(θ, x), y); θ0) to denote
the first-order Taylor expansion of f around θ0 and the second-order Taylor expansion of L around
θ0 respectively. Similarly, we will also use L(θ) := L(f(θ;x); y)) when x and y are clear from
context. For simplicity, we will assume that we are working with cross-entropy loss throughout this
work, however, the discussion holds for any general convex loss function.

1We refer to diagonal preconditioners as first-order and non-diagonal as second-order.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.2 NEWTON’S METHOD & THE GAUSS-NEWTON MATRIX

Full second-order optimization requires full access to the Hessian H , which can be used to precon-
dition the gradient in each parameter update. This is known as Newton’s method, and results in the
following update rule:

θ∗ = θ −H−1g

In practice, for neural networks, the Hessian is not guaranteed to be positive semi-definite (PSD),
and therefore Newton’s method does not guarantee that the loss decreases in each iteration or even
converges. As a consequence, it is common to instead use the Gauss-Newton matrix.

The Gauss-Newton matrix is defined to be the first term of the following decomposition of the
Hessian, where z := f(x) denotes the pre-softmax outputs of the model f and a goes over the
output dimensions of f :

∇2
θL(θ) = ∇θf(θ)

T∇2
zL(θ)∇θf(θ)︸ ︷︷ ︸

Gauss-Newton matrix

+
∑
a

δL
δza
∇2

θ [f(θ)]a

That is, the Gauss-Newton matrix is defined as G := ∇θf(θ)
T∇2

zL(θ)∇θf(θ). Intuitively, the
Gauss-Newton captures the curvature of the loss function, but drops the curvature of the model.
Unlike the Hessian, the Gauss-Newton matrix is PSD for MSE and cross-entropy loss (Martens,
2020). This avoids untrustworthy updates as negative curvature implies unbounded decrease in loss
(Martens, 2020). Indeed, methods using the Gauss-Newton matrix rather than the full Hessian have
been found to lead to better optimization (Martens, 2010; Martens & Sutskever, 2012; Vinyals &
Povey, 2012).

4.3 MEMORY-FEASIBLE GAUSS-NEWTON IMPLEMENTATION

To test the limits of second-order optimizers, we want to apply the full Gauss-Newton term as the
preconditioner. Formally, for gradient g, Gauss-Newton matrix G and current parameters θ, the
Gauss-Newton update is

θ∗ = θ −G−1g (1)

However, given that computing the Gauss-Newton matrix directly is infeasible, we instead run
a functionally equivalent method that leverages Jacobian-vector products (JVPs) to avoid explic-
itly storing the Hessian. Specifically, we optimize the second-order Taylor approximation of the
loss function L with a first-order Taylor approximation of the model f . The minimization of the
loss in this setting is equivalent to using the Gauss-Newton matrix as a preconditioner (Martens &
Sutskever, 2011b). The proof is provided in Appendix A.

We are now ready to define our Gauss-Newton method. Let h(θ; θ0) := L(f (1)(θ; θ0), y) be the
loss function on the first-order Taylor expansion of f around current parameters θ0. Let h(2)(θ; θ0)
denote the second-order Taylor expansion of h around θ0.

Given current parameters θ0, we define the Gauss-Newton update as

θ∗ = argminθ h
(2)(θ; θ0)

With this definition, there remains the problem of finding the minimizing θ∗. As it is difficult to
solve for the minimum directly, we instead use a separate optimizer to minimize h(2)(θ; θ0). In
our experiments we use Muon (Jordan et al., 2024b) as this “inner optimizer” as we found it to
outperform AdamW. More details on this inner optimization procedure are given in Section 5.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 EXPERIMENT DETAILS

Algorithm 1 Gauss-Newton method
Input: θ0, Init: θinit0 := θ0
for t = 0, 1, . . . , T − 1 do

Linearize model: f (1)((θ, x); θt) := f(θt, x) +∇f(θt;x)⊤(θ − θt)
Taylor-expand loss: L(2)(f (1)(θ, x), y; θt) := L(θt)+∇L(θt)⊤(θ−θt)+ 1

2 (θ−θt)
⊤G(θt)(θ−

θt)

Initialize inner iterate: θ̂ ← θinitt

for i = 1, . . . , N do
Sample (x(1:B), y(1:B))
Compute gradients: g ← ∇L(2)(f (1)(θ, x), y; θt)

Update: θ̂ ← update(θ̂; g)

Save θinitt+1 ← θ̂

Line search: θt+1 ← θt + αt(θ̂ − θt)

Training details We train 45M and 150M parameter LLaMA models (Touvron et al., 2023) on
the C4 dataset (Raffel et al., 2020). Full details on models and hyperparameter sweeps are given in
Appendix D and Appendix G respectively.

Baselines We run AdamW (Loshchilov & Hutter, 2019), Muon (Jordan et al., 2024b), and SOAP
(Vyas et al., 2025) as baselines. For 45M models, for each method at each batch size, we run a
hyperparameter sweep over learning rate, weight decay, and weight averaging decay if applicable.
We additionally sweep the β2 parameter for Adam, the µ parameter for Muon, and (β1, β2) for
SOAP. For 150M parameter models we run a more limited hyperparameter sweep over learning rate
and β and µ parameters. To make sure runs are well-initialized, we start all runs after an AdamW
warmup consisting of 5% of the Chinchilla-optimal number of tokens (Hoffmann et al., 2022). More
details on hyperparameter tuning are given in Appendix G.

Gauss-Newton For each training step, we take a first-order Taylor approximation of the model
around the current parameters. We initialize the parameters of the Taylor approximation (θ̂) to be
the pre-linesearch parameters from the previous iteration (see Section 5.1). We then take a second-
order Taylor approximation around the cross-entropy loss on the Taylorized model, also around the
current model parameters. We use Muon (Jordan et al., 2024b) with batch size B to minimize the
Taylorized loss. We take N steps of Muon and then update the model parameters using a line search.
We refer to the global batch size (in number of sequences) as N ×B since this is the total amount of
data seen per parameter update on the true model. We use B = 32 for the 45M models and B = 128
for the 150M models with sequence length 1024, and vary N to control the overall batch size. We
start all runs from the same AdamW post-warmup checkpoint. To compute the necessary Taylor
approximations we use the neural-tangents library from Novak et al. (2020). See Algorithm
1 for details.

Upper bound for Gauss-Newton method In our experiments, we use Muon (Jordan et al., 2024b)
with batch size B to optimize the inner loop of Algorithm 1. Therefore, Muon with batch size B
trained on the true model and loss marks the upper bound for the Gauss-Newton method: since
Muon in our method optimizes over the respective Taylor approximations, it is upper bounded by
the performance of Muon with the same batch size on the true model and loss. We include results
for Muon with batch size B in order to judge the relative performance of the Gauss-Newton method.

5.1 OPTIMIZATION STRATEGIES

We perform extensive hyperparameter sweeps, learning rate scheduling strategies, and regularization
strategies to test the limits of the Gauss-Newton method.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Learning rate schedules We experiment with three learning rate schedules for Gauss-Newton
runs, which we refer to as “global cosine,” “global+inner cosine,” and “constant+inner cosine.” We
depict each learning rate schedule in Figure 4.

Regularization We experiment with several types of regularization strategies to improve the sta-
bility of the Gauss-Newton runs at high learning rate. These fall into two categories of inner op-
timization and outer optimization regularization strategies. For inner optimization strategies (regu-
larization involving the inner optimization loop before the parameter update on the actual model),
we add weight decay to the optimizer as well as a weight decay term to the loss, which adds reg-
ularization on the ℓ2 norm of the magnitude of the parameter update. For outer optimization, we
experiment with line search to control the size of the parameter update.

Inner optimizer We note that the choice of inner optimizer has a significant impact on the upper
bound of the Gauss-Newton method; we consider our results with respect to the performance of the
inner optimizer. Regardless, we find that Muon outperforms AdamW as the inner optimizer for the
Gauss-Newton runs.

Takeaways from optimization strategies We found that learning rate schedule and line search
had major impact on the stability of training. As for learning rate schedules, we find that the global
cosine schedule outperforms the global+inner cosine schedule at small to medium batch size, but
the constant+inner cosine schedule can be helpful for runs at large batch size for Gauss-Newton.
Additionally, we found line search to be essential for stable convergence for Gauss-Newton runs.
However, we found that when using line search, it helps to set the initial parameters for the next
inner minimization to be the pre-linesearch parameters from the previous step (See Algorithm 1).
These findings coincide with those of Martens (2010), which finds that sharing information across
iterations and backtracking improve performance of a conjugate gradient-based Hessian-free opti-
mization strategy. The importance of inner optimizer and sharing information across iterations seem
to imply that we are not finding the precise Gauss-Newton update at each step – it is possible that
with further optimization the Gauss-Newton method could achieve even better performance.

6 GAUSS-NEWTON EXPERIMENTS

6.1 ITERATION COMPLEXITY

We measure the iteration complexity of each method by measuring the number of steps it takes
to reach loss 3.25 with extremely large batch size. Specifically, for each method, we use a batch
size significantly beyond that method’s critical batch size (McCandlish et al., 2018; Shallue et al.,
2019) such that further increasing batch size does not reduce the number of training steps needed
to achieve a given performance.2 Following our critical batch size findings in Section 6.2, we use a
batch size of 40M tokens for AdamW and Muon as gains disappear almost completely beyond this
amount, and a batch size of 240M tokens for SOAP and Gauss-Newton. We choose this threshold
and these batch sizes to enter the regime in which additional batch size increases no longer reduce
the required steps, while keeping runs feasible.

We find that the Gauss-Newton method can make fast progress in the large batch size regime, par-
ticularly in the first few steps of training. After 10 steps, the loss for the Gauss-Newton model is
below 3.75, while other methods have made marginal progress from the starting loss. The optimal
learning rates for AdamW, Muon, and SOAP lead to initial instability but faster convergence overall
– see Appendix G for details on choosing hyperparameters. The Gauss-Newton method is able to
reach loss 3.25 in 54 steps, a 5.4x gain over SOAP and 16x gain over Muon. The results are shown
in Figure 1.

6.2 BATCH SIZE SCALING

While iteration complexity captures a purely sequential perspective of training efficiency, it is also
important to consider the sample efficiency. In an ideal setting, the number of samples seen at each

2Since batch sizes are increased using gradient accumulation in our experiments, we choose batch size based
on each method’s critical batch size to save compute.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.2M4M12M40M120M
Batch size

3.2

3.4

3.6

3.8

4.0
4.2
4.4

Fin
al

 L
os

s

Batch Size vs Loss

1.2M 4M 12M 40M
Batch size

6
7
8
9

10
11
12

lo
g 2

(#
 S

te
ps

)

Target Loss 3.4

AdamW
Gauss-Newton

Muon
SOAP

GN Upper bound
Optimal

Figure 2: Left: Batch size vs final validation loss for models trained for Chinchilla-optimal number
of tokens. The dotted line marks the loss achieved by a model trained with Muon with batch size
128k. This represents the upper bound of performance for our Gauss-Newton method. Right: Crit-
ical batch size scaling. The dotted line marks the optimal scaling trend, where no sample efficiency
is lost as batch size increases.

step would vary proportionally to the number of steps, such that there is always a constant number
of samples required overall. However, it is known that sample efficiency is lost once the batch size
is scaled past a given method’s critical batch size (McCandlish et al., 2018; Shallue et al., 2019).
That is, the total number of samples needed to achieve a given loss will grow once the critical
batch size is exceeded. Therefore, we study the batch size scaling behavior of the Gauss-Newton
method to understand how much we lose in sample and computational efficiency when we minimize
the number of sequential iterations. We run experiments in two settings: first, we train models for a
fixed amount of data over a range of batch sizes and measure the final loss. Second, we measure how
the number of steps to achieve a given loss changes with increasing batch size. We run experiments
for 45M- and 150M-parameter models; see Appendix F for results at 45M-parameter scale.

6.2.1 TRAINING FOR FIXED TOKEN COUNT

We train 150M-parameter models for 3B tokens following Chinchilla-optimal scaling laws (Hoff-
mann et al., 2022), ranging batch size from 1.2M to 120M tokens. We observe similar performance
between SOAP and Gauss-Newton up to batch size 4M, while substantial gains are achieved by
Gauss-Newton for larger batch size (Figure 2). Of existing methods, SOAP performs best, followed
by Muon and then AdamW. Especially noteworthy is the performance of the Gauss-Newton method
at batch size 120M, which uses only 20 steps of optimization. Here we are able to achieve loss 3.45
with Gauss-Newton. For comparison, AdamW achieves loss 3.4 with batch size 1.2M, and degrades
to loss above 4.4 with batch size 120M.

6.2.2 TRAINING TO REACH A TARGET VALIDATION LOSS

Following the methodology of Zhang et al. (2025), we plot the number of steps required for each
optimization method to reach the target validation loss of 3.4 as a function of batch size. The point
at which the curve for each model plateaus defines its respective critical batch size (McCandlish
et al., 2018; Shallue et al., 2019). We find that AdamW levels off near batch size of 4M with
little further reduction. SOAP and Muon continue to decrease up to batch size of 12M but with
diminishing reductions, and show little additional decrease by 40M. Meanwhile, the Gauss-Newton
method continues to decrease through 40M, indicating better sample efficiency at large batch sizes.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

12M40M120M
Batch size

3.2

3.4

3.6
Fin

al
 L

os
s

Layerwise GN

1.2M4M12M40M120M
Batch size

Linearized model

SOAP
Gauss-Newton

Linearized model
Layerwise GN

Upper bound

Figure 3: Left: Comparison of Gauss-Newton to the layerwise implementation for Chinchilla-
optimal token count for 150M parameter models. The layerwise method achieves almost matching
performance to that of the full Gauss-Newton. Right: The Gauss-Newton update closely matches
the linearized model method that has access to higher order loss terms.

7 ABLATION STUDIES

7.1 LAYERWISE GAUSS-NEWTON

Many existing second-order optimizers use layerwise approximations of the Hessian for computa-
tional and memory feasibility. This prompts a further study on whether the full Hessian is necessary
to achieve the performance gains discussed in Section 5. Specifically, we want to understand the
importance of the cross-layer Hessian information.

We define a layerwise version of our Gauss-Newton method, in which we take a Taylor expansion
around each model layer and optimize the second-order Taylor expansion of the loss separately for
each layer.

Formally, let θl,t be the set of parameters at time t for layer l of the network. For layer l, define
f
(1)
l (θl; θl,t) as the first-order Taylor expansion of f with respect to only the parameters θl, expanded

around the current parameters θl,t, while keeping the parameters of all other layers fixed at their
current values.

At each timestep t, take h
(2)
l to be the second-order Taylor expansion of the loss on f

(1)
l (· ; θl,t).

Then for each layer, we solve for

θl,t+1 = argminθl
h
(2)
l (θl; θl,t)

After independently computing updates for each layer, we merge the updated layer parameters. We
then apply a line search over the merged parameter set to obtain the final parameter update at step t.

Due to compute costs, we train 150M parameter layerwise Gauss-Newton models only for the largest
three batch sizes. We follow the same training setting for fixed token count as specified in Sec-
tion 6.2.1. For layerwise experiments we set hyperparameters to match those of the best Gauss-
Newton configuration at each batch size. However, we include smaller step size options for the line
search as we find this is necessary for stable convergence. We find that the layerwise Gauss-Newton
method also achieves comparable performance through batch size of 40M tokens (Figure 3). We
additionally train a layerwise Gauss-Newton model with batch size of 120M tokens to loss 3.25
to compare its iteration complexity to that of full Gauss-Newton (See Sec 6.1). We find that the
layerwise Gauss-Newton takes only 1.4x more steps to reach the target loss compared to the full
Gauss-Newton method and provides a 3.4x gain over SOAP (Figure 1).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

7.2 LINEARIZED MODEL METHOD

We define a variation of our method that corresponds to another convex problem that retains the full
loss function on the linearized model instead of using the second-order approximation. This method
follows the same procedure as the Gauss-Newton method in Section 4 but directly minimizes the
loss on the linearized model, denoted by h:

θ∗ = argminθ h(θ; θ0)

See Algorithm 2 for details. Note that for any convex loss function (including cross-entropy loss),
the above optimization problem is still convex. Moreover, this problem is related to the richly stud-
ied literature of kernelized classification (Shalev-Shwartz & Ben-David, 2014) (albeit with cross-
entropy loss, instead of the max-margin loss). This method is notably not a second-order method.
Rather, it allows us to study the effect of the higher order terms of the loss as compared to the
Gauss-Newton update rule.

Algorithm 2 Linearized model method
Input: θ0
for t = 0, 1, . . . , T − 1 do

Linearize model: f (1)((θ, x); θt) := f(θt, x) +∇f(θt, x)⊤(θ − θt)

Initialize inner iterate: θ̂ ← θt

for i = 1, . . . , N do
Sample (x(1:B), y(1:B))

Compute gradients: g ← ∇L(f (1)(θ̂, x), y)

Update: θ̂ ← update(θ̂; g)

Update parameters: θt+1 ← θ̂

We train in the same Chinchilla-optimal setting on 150M parameter models and perform the same
hyperparameter sweeps as for Gauss-Newton (See Appendix G). We find that the inclusion of higher
order loss terms has little effect on performance as compared to Gauss-Newton; results are shown
in Figure 3. However, unlike Gauss-Newton, we found that the global cosine schedule for the
inner optimizer outperformed the constant+inner cosine schedule. Additionally, line search was not
necessary for linearized model method.

8 DISCUSSION AND CONCLUSION

In this work, we study whether full second-order optimization – specifically, using the full Gauss-
Newton matrix as a preconditioner – can offer further benefits for training large language models as
compared to existing methods. In particular, we focus on the large batch size regime, following Jain
et al. (2018a) and Zhang et al. (2019) which show that the benefits of preconditioning may not appear
at small batch size. While our method is not practical for large-scale training, our results indicate
that further development in second-order methods could lead to substantial benefits in convergence
and ability to scale to larger batch size.

While we perform extensive hyperparameter sweeps and regularization strategies, we acknowledge
that there could be other optimization strategies to further improve the performance of the Gauss-
Newton method. In addition, our work is limited to applying the inverse of the Gauss-Newton matrix
as the preconditioner (G−1). There may be better ways to apply full second-order optimization for
large language models. We encourage future work in this area and hope our findings are informative.

We also compare Gauss-Newton to an iterative linearization method to study whether there is benefit
to including higher order loss terms beyond second-order. Our results suggest that Gauss-Newton
can achieve performance similar to this method, indicating that higher-order loss terms are not neces-
sary to achieve gains in performance over current methods. In addition, our layerwise Gauss-Newton
experiments suggest that better approximations to the per-layer Hessian may be sufficient to achieve
substantial performance benefits over current methods. We encourage future work in developing
computationally efficient and practical optimization methods in this direction.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Towards practical second
order optimization for deep learning, 2021. URL https://openreview.net/forum?id=
Sc8cY4Jpi3s.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024. URL
https://arxiv.org/abs/2409.20325.

Minhyung Cho, Chandra Dhir, and Jaehyung Lee. Hessian-free optimization for learning deep
multidimensional recurrent neural networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/
paper/2015/file/a86c450b76fb8c371afead6410d55534-Paper.pdf.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Jezabel R Garcia, Federica Freddi, Stathi Fotiadis, Maolin Li, Sattar Vakili, Alberto Bernacchia,
and Guillaume Hennequin. Fisher-legendre (fishleg) optimization of deep neural networks. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=c9lAOPvQHS.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization, 2018. URL https://arxiv.org/abs/1802.09568.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Acceler-
ating stochastic gradient descent for least squares regression, 2018a. URL https://arxiv.
org/abs/1704.08227.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: mini-batching, averaging, and model
misspecification. Journal of machine learning research, 18(223):1–42, 2018b.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Ji-
acheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrun-
ning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama Sastry,
Mark Saroufim, Feng Boyuan, Less Wright, Edward Z. Yang, Zachary Nado, Sourabh Medapati,
Philipp Hennig, Michael Rabbat, and George E. Dahl. Accelerating neural network training: An
analysis of the AlgoPerf competition. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=CtM5xjRSfm.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training, 2024. URL https://arxiv.org/
abs/2305.14342.

10

https://openreview.net/forum?id=Sc8cY4Jpi3s
https://openreview.net/forum?id=Sc8cY4Jpi3s
https://arxiv.org/abs/2409.20325
https://proceedings.neurips.cc/paper_files/paper/2015/file/a86c450b76fb8c371afead6410d55534-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/a86c450b76fb8c371afead6410d55534-Paper.pdf
http://jmlr.org/papers/v12/duchi11a.html
https://openreview.net/forum?id=c9lAOPvQHS
https://openreview.net/forum?id=c9lAOPvQHS
https://arxiv.org/abs/1802.09568
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/1704.08227
https://arxiv.org/abs/1704.08227
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://openreview.net/forum?id=CtM5xjRSfm
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2305.14342
https://arxiv.org/abs/2305.14342


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for llm training, 2025. URL https://arxiv.org/abs/2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 735–742,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

James Martens. New insights and perspectives on the natural gradient method. Journal of Ma-
chine Learning Research, 21(146):1–76, 2020. URL http://jmlr.org/papers/v21/
17-678.html.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free opti-
mization. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, pp. 1033–1040, Madison, WI, USA, 2011a. Omnipress. ISBN
9781450306195.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free opti-
mization. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, pp. 1033–1040, Madison, WI, USA, 2011b. Omnipress. ISBN
9781450306195.

James Martens and Ilya Sutskever. Training deep and recurrent networks with hessian-free opti-
mization. In Neural Networks: Tricks of the Trade: Second Edition, pp. 479–535. Springer, 2012.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training, 2018. URL https://arxiv.org/abs/1812.06162.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner, 2024. URL https://arxiv.org/abs/2406.
17748.

Yurii Nesterov. Lectures on Convex Optimization, volume 137 of Springer Optimization and Its
Applications. Springer, 2018. ISBN 978-3-319-91577-7. doi: 10.1007/978-3-319-91578-4.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
International Conference on Learning Representations, 2020. URL https://github.com/
google/neural-tangents.

Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten Hoefler. Asdl: A unified
interface for gradient preconditioning in pytorch, 2023. URL https://arxiv.org/abs/
2305.04684.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014. ISBN 1107057132.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E. Dahl. Measuring the effects of data parallelism on neural network training, 2019. URL
https://arxiv.org/abs/1811.03600.

11

https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
http://jmlr.org/papers/v21/17-678.html
http://jmlr.org/papers/v21/17-678.html
https://arxiv.org/abs/1812.06162
https://arxiv.org/abs/2406.17748
https://arxiv.org/abs/2406.17748
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents
https://arxiv.org/abs/2305.04684
https://arxiv.org/abs/2305.04684
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1811.03600


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In Artificial intelligence
and statistics, pp. 1261–1268. PMLR, 2012.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam, 2025. URL
https://arxiv.org/abs/2409.11321.

Sifan Wang, Ananyae Kumar Bhartari, Bowen Li, and Paris Perdikaris. Gradient alignment
in physics-informed neural networks: A second-order optimization perspective, 2025. URL
https://arxiv.org/abs/2502.00604.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W. Mahoney.
Adahessian: An adaptive second order optimizer for machine learning, 2021. URL https:
//arxiv.org/abs/2006.00719.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger Grosse. Which algorithmic choices matter at which batch
sizes? insights from a noisy quadratic model, 2019. URL https://arxiv.org/abs/
1907.04164.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham Kakade. How does critical batch size scale in pre-training?, 2025. URL https:
//arxiv.org/abs/2410.21676.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models, 2025. URL https://arxiv.org/
abs/2407.07972.

12

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2409.11321
https://arxiv.org/abs/2502.00604
https://arxiv.org/abs/2006.00719
https://arxiv.org/abs/2006.00719
https://arxiv.org/abs/1907.04164
https://arxiv.org/abs/1907.04164
https://arxiv.org/abs/2410.21676
https://arxiv.org/abs/2410.21676
https://arxiv.org/abs/2407.07972
https://arxiv.org/abs/2407.07972


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF EQUIVALENCE TO GAUSS-NEWTON METHOD

In our method, we compute the Gauss-Newton update by minimizing the second-order Taylor ap-
proximation of the loss around the first-order Taylor approximation of the function.

Taking the first-order Taylor approximation of f around θ0,

f (1)((θ, x); θ0) := f(θ0, x) +∇θf(θ0, x)
T(θ − θ0)

Let h(θ) := L(f (1)(((θ, x), y)); θ0) be the loss function on the Taylor expansion of f around θ0.

Then the second-order Taylor approximation of h(θ) around θ0 gives

h(2)(θ; θ0) := h(θ0) +∇θh(θ0)
T(θ − θ0) +

1

2
(θ − θ0)

T∇2
θh(θ0)(θ − θ0)

Applying the chain rule for the gradients, we have

∇θh(θ) = L′(f (1)(θ, x), y)∇θf
(1)(θ, x)

∇2
θh(θ) = L′′(f (1)(θ, x), y)∇θf

(1)(θ, x)∇θf
(1)(θ, x)⊤

Then substituting and evaluating at θ0:

∇θh(θ)|θ=θ0 = L′(f(θ0, x), y)∇θf(θ0, x)

∇2
θh(θ)|θ=θ0 = L′′(f(θ0, x), y)∇θf(θ0, x)∇θf(θ0, x)

⊤

Then

h(2)(θ; θ0) = L(f(θ0, x), y) + L′(f(θ0, x), y)∇θf(θ0, x)
T(θ − θ0)

+
1

2
(θ − θ0)

TL′′(f(θ0, x), y)∇θf(θ0, x)∇θf(θ0, x)
T(θ − θ0)

Let g denote the gradient of the loss at θ0, i.e. ∇θh(θ)|θ=θ0 = L′(f(θ0, x), y)∇θf(θ0, x). Let G
denote the Gauss-Newton term L′′(f(θ0, x), y)∇θf(θ0, x)∇θf(θ0, x)

T. Then we can write

h(2)(θ; θ0) = L(f(θ0, x), y) + g(θ − θ0) +
1

2
(θ − θ0)

TG(θ − θ0)

Since the Gauss-Newton matrix is PSD, we can find θ∗ to minimize h(2) by setting its gradient to
zero:

g + (θ∗ − θ0)G = 0

which results in the update rule
θ∗ = θ0 −G−1g

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B ADDITIONAL RELATED WORK

Also related to our work are optimizers that leverage diagonal approximations to the Hessian, such
as AdaHessian (Yao et al., 2021) and Sophia (Liu et al., 2024). These propose lightweight approx-
imations to the diagonal Hessian rather than layerwise approximations as in Shampoo and SOAP.
However, Zhao et al. (2025) show that Sophia performs comparably to AdamW, suggesting the need
to go beyond the diagonal Hessian.

C ADDITIONAL DETAILS ON OPTIMIZATION STRATEGIES

C.1 LEARNING RATE SCHEDULES

1 2 3 4 5 6 7 8 9 1011121314151617181920
Outer Step

0.000

0.002

0.004

0.006

0.008

0.010

Le
ar

ni
ng

 R
at

e

Global Cosine Schedule

1 2 3 4 5 6 7 8 9 1011121314151617181920
Outer Step

Global + Inner Cosine

1 2 3 4 5 6 7 8 9 1011121314151617181920
Outer Step

Constant + Inner Cosine

Figure 4: Three learning rate schedules used for the Gauss-Newton and Linearized model runs.
From left to right: global cosine, global+inner cosine, and constant+inner cosine. Each inner cosine
period lasts the duration of the optimization over the current Taylor expansion; outer step refers to
each parameter update on the model.

We experiment with three learning rate schedules: “global cosine,” “global+inner cosine,” and “con-
stant+inner cosine.” From preliminary experiments we find that global+inner cosine did not gener-
ally outperform the global cosine and constant+inner cosine options, so we do not use global+inner
cosine in our main experiments.

D MODEL DETAILS

Configuration 45M Model 150M Model
Hidden Size 512 768
Intermediate Size 2048 3072
Number of Layers 4 12
Attention Heads 8 16
Key/Value Heads 8 16

Table 1: Model configurations for the 45M and 150M parameter LLaMA-based models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E COMPUTE RESOURCES

All 45M parameter model runs are trained on 1 Nvidia 80GB H100. 45M runs for AdamW, Muon,
and SOAP trained for 2-3 hours and Gauss-Newton and Linearized model trained for 1-2 days. 150M
parameter model runs for batch size scaling experiments for AdamW, Muon, and SOAP are each
trained using 1 H100 for roughly 6-20 hours. 150M parameter model runs for batch size scaling
experiments for Gauss-Newton and Linearized model are each trained for 1-3 days with 4 80GB
Nvidia H100s using distributed data parallel (DDP). Layerwise Gauss-Newton runs each trained for
3-7 days with 4 H100s. Iteration complexity runs trained for 2-3 days for AdamW and Muon and
15-30 days for SOAP, Gauss-Newton, and Layerwise Gauss-Newton.

F EXPERIMENTS ON 45M PARAMETER MODELS

1.2m4m12m40m
Batch size

3.6

3.8

4.0

4.2

4.4
4.6
4.8
5.0

Fin
al

 L
os

s

Batch Size vs Loss

400k 1.2m 4m 12m
Batch size

6

7

8

9

10

11

12

lo
g 2

(#
 S

te
ps

)

Target Loss 3.7

Optimal

AdamW
Gauss-Newton

Muon
Linearized model

SOAP
GN & LM Upper bound

Figure 5: Left: Batch size vs final validation loss for 45M parameter models. All models are trained
for 900M tokens on the C4 dataset (Raffel et al., 2020) following Chinchilla scaling laws (Hoffmann
et al., 2022). The dotted line marks the loss achieved by a model trained with Muon with a batch
size of 32k tokens. This represents the upper bound of performance for our Gauss-Newton and
Linearized model methods as we use Muon with batch size of 32k tokens as the inner optimizer to
compute the parameter update in each step. Right: Critical batch size scaling for 45M parameter
models. The dotted line marks the optimal scaling trend, where no sample efficiency is lost as batch
size increases.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

G DETAILS ON HYPERPARAMETER TUNING

Shared Hyperparameters
Model Size 45M
Batch Size 400k, 1.2m, 4m, 12m, 40m
Context Length 1024

AdamW
Learning Rate 0.001, 0.003, 0.01, 0.03
Weight Decay 0, (0.001, 0.01)
Additional Warmup Fraction 0, (0.1)
Momentum β1 0.9
Adam β2 0.95, 0.99, 0.999
LR Scheduler constant+EWA, cosine
EWA Decay Rate τ 0.9, 0.99

Muon
Learning Rate 0.03, 0.1, (0.3)
Additional Warmup Fraction 0
Momentum µ 0.9, 0.95, 0.99
LR Scheduler constant+EWA, cosine
EWA Decay Rate τ (0.3), 0.5, 0.7, (0.9)

SOAP
Preconditioning Frequency 1
Learning Rate 0.01, 0.03, (0.1)
Additional Warmup Fraction 0
Momentum β1 0.7, 0.8, 0.9
Adam β2 0.7, 0.8, 0.9
LR Scheduler constant+EWA, cosine
EWA Decay Rate τ (0.5), 0.7, 0.8, (0.9)

Gauss-Newton
Learning Rate (0.001), 0.003, 0.01, 0.03, (0.1)
Inner Loop Warmup Fraction 0, (0.2)
Global Warmup Fraction 0, (0.2)
Momentum µ 0.95
Optimizer weight decay (0), 0.001
Loss weight decay 0, 0.01, (0.1)
Parameter weight decay 0, (0.01, 0.03, 0.1)
LR Scheduler constant+inner cosine, global cosine
Linesearch True, False
EWA Decay Rate τ (0.99), 0.999

Table 2: Hyperparameter configurations used for 45M models. Values in parentheses were not used
for every sweep. For the critical batch size plot (Figure 5 right) only the constant+EWA learning rate
schedule was used. We start each run after an AdamW warmup of 5% for 45M parameter models;
additional warmup refers to warmup starting from this checkpoint. For baselines, weight averaging
is used only with the constant schedule. All Gauss-Newton runs without line search use weight
averaging; runs with line search use no weight averaging. Inner loop warmup applies only to the
constant+inner cosine schedule.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Shared Hyperparameters
Model Size 150M
Batch Size 1.2m, 4m, 12m, 40m, 120m
Context Length 1024

AdamW
Learning Rate 0.001, 0.003, 0.01
Weight Decay 0.001, 0.1
Additional Warmup Fraction 0, (0.1)
Momentum β1 0.9
Adam β2 0.95, 0.99
LR Scheduler cosine

Muon
Learning Rate 0.01, 0.03, 0.1
Weight Decay 0
Additional Warmup Fraction 0
Momentum µ 0.9, 0.95, 0.99
LR Scheduler cosine, (constant+EWA)
EWA Decay Rate τ 0.7, 0.9

SOAP
Preconditioning Frequency 1
Learning Rate 0.01, 0.03, 0.1
Weight Decay 0
Additional Warmup Fraction 0
Momentum β1 (0.7), 0.9, (0.95)
Adam β2 0.7, 0.9, 0.95
LR Scheduler cosine, (constant+EWA)
EWA Decay Rate τ 0.7, 0.9

Gauss-Newton
Inner Loop Learning Rate 0.003, 0.01, 0.03, 0.1
Inner Loop Warmup Fraction 0, 0.2
Global Warmup Fraction 0
Inner Loop Weight Decay 0, 0.01, 0.1
Optimizer Weight Decay 0.001
Momentum µ 0.95
LR Scheduler constant+inner cosine, global cosine
Linesearch True, False
EWA Decay Rate τ (0.9, 0.99), 0.999

Table 3: Hyperparameter configurations used for 150M models for batch size scaling experiments
(Section 6.2). For Muon, constant+EWA learning rate schedule was included in the sweep for the
three largest batch sizes. For Gauss-Newton, due to high compute costs we hand-tune over the range
of provided values rather than conducting the entire sweep at each batch size. Inner loop warmup
applies only to the constant+inner cosine schedule. We start each run after an AdamW warmup of
5% for 150M parameter models; additional warmup refers to warmup starting from this checkpoint.
For baselines, weight averaging is used only with the constant schedule. All Gauss-Newton runs
without line search use weight averaging with τ = 0.999; runs with line search are default to
no weight averaging or are swept with lower values of τ . For iteration complexity experiments
(Section 6.1): For AdamW and Muon we take the best hyperparameters from sweeps at 40M batch
size in the batch size experiments. For SOAP and Gauss-Newton we use the best hyperparameters
from sweeps at 120M batch size and run a limited sweep over learning rate.

17


	Introduction
	Related work
	Background on existing optimizers
	Full second-order optimization
	Notation
	Newton's method & the Gauss-Newton matrix
	Memory-feasible Gauss-Newton implementation

	Experiment details
	Optimization strategies

	Gauss-Newton experiments
	Iteration complexity
	Batch size scaling
	Training for fixed token count
	Training to reach a target validation loss


	Ablation Studies
	Layerwise Gauss-Newton
	Linearized model method

	Discussion and Conclusion
	Proof of equivalence to Gauss-Newton method
	Additional related work
	Additional details on optimization strategies
	Learning rate schedules

	Model details
	Compute resources
	Experiments on 45M parameter models
	Details on hyperparameter tuning

