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ABSTRACT

As generative models rapidly evolve, the realism of AI-generated videos has
reached new levels, posing significant challenges for detecting the authenticity of
videos. Existing deepfake detection techniques generally rely on training datasets
with limited generation methods and content diversity, which limits their general-
ization ability on more realistic content, particularly that produced by the latest
generative models. Recently, large multimodal models (LMMs) have demon-
strated remarkable zero-shot performance across a variety of vision tasks. Yet,
their ability to discern deepfake videos remains largely untested. To this end, we
propose FVBench, a comprehensive deepfake video benchmark designed to ad-
vance video deepfake detection. It includes: (i) extensive content diversity, with
over 120K videos covering real, AI-edited, and fully AI-generated categories, (ii)
comprehensive model coverage, with fake videos generated and edited by 42 of
the state-of-the-art video synthesis and editing models, and (iii) deepfake video
detection benchmark for LMMs, which is a comprehensive benchmark for explor-
ing the deepfake video detection capabilities of LMMs. The FVBench dataset and
evaluation code will be publicly available upon publication, offering a valuable
resource for advancing deepfake detection.

1 INTRODUCTION

The rapid evolution of generative models has substantially increased the realism of AI-generated
videos, posing critical challenges for detecting digital content authenticity (Wang et al., 2025c;
Zhang et al., 2024d; Hou et al., 2024). Traditional deepfake detection techniques typically rely on
datasets with a limited number of generative models and relatively narrow content diversity (Chen
et al., 2024b; Bai et al., 2024). As a result, these models are often trained to detect artifacts specific
to a small set of manipulations. However, as the complexity and realism of AI-generated content
continue to grow (Wang et al., 2025b;d; Chen et al., 2024d), traditional models struggle to keep
up, leading to a decline in their ability to effectively detect modern deepfakes. Moreover, many of
the datasets used for training detection models are often outdated and no longer reflective of the
state-of-the-art generative capabilities (Khalid et al., 2021; Kuckreja et al., 2024; Yan et al., 2024),
making these models less reliable in real-world scenarios. Large Multimodal Models (LMMs) have
demonstrated impressive zero-shot capabilities across a wide range of vision tasks, such as face
recognition, object detection, and video captioning (Yang et al., 2025; Wang et al., 2025e; Xu et al.,
2025). These models have shown great potential to generalize across various tasks without the
need for task-specific fine-tuning (Bai et al., 2025; Li et al., 2024a;b). However, their potential for
deepfake detection remains largely unexplored.

Current deepfake video detection atasets and benchmarks for deepfake video detection suffer from
several critical shortcomings that limit their practical utility and generalization: (1) Limited content
diversity: most existing datasets concentrate primarily on facial forgeries, neglecting the growing
risk of non-facial manipulations (Kuckreja et al., 2024; Felouat et al., 2024; Yan et al., 2024). Fur-
thermore, many datasets are constructed under a binary real-or-fake paradigm (Hou et al., 2024;
Khalid et al., 2021; Zhang et al., 2024a), which lack partially AI-edited content where specific re-
gions are manipulated (Zhang et al., 2024c; Feng et al., 2024; Cohen et al., 2024). Additionally,
real videos often lack the natural distortions (e.g., compression artifacts, motion blur) commonly
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Figure 1: We present the FVBench, the large dataset for benchmarking deepfake video detection
capabilities. (a) 60K real videos are collected from 8 sources. (b) 4K AI-edited videos using 12
editing models. (c) 60K fake videos are generated using 30 state-of-the-art generation models.

found in real-world scenarios (Hosu et al., 2017; Sinno & Bovik, 2018; Duan et al., 2025), which
could improve robustness and generalization in detection models. (2) Narrow model coverage:
existing datasets rely on a small number of generative models (Xie et al., 2022; Hou et al., 2024;
Khalid et al., 2021), resulting in detection models learning model-specific artifacts rather than gen-
eralizable features indicative of manipulation. Additionally, older generative models often produce
visible distortions, unnatural textures, or structural inconsistencies, making detection easier but hin-
dering generalization to newer, more complex fakes generated by state-of-the-art models (Ma et al.,
2025; Wang et al., 2025a; Team, 2024a;e). (3) Restricted evaluation targets: current benchmarks
mainly assess specialized deepfake detection models, overlooking the emerging potential of LMMs
in deepfake detection (Zhang et al., 2024d;a).

To this end, we introduce FVBench, a comprehensive deepfake video benchmark designed to over-
come the limitations of existing datasets through three key contributions: (1) enhanced content
diversity: FVBench includes not only fully synthetic, but also partially manipulated videos where
only specific regions are edited. Furthermore, real videos incorporate natural distortions to enhance
model robustness under realistic conditions. (2) expanded model coverage: fake videos include AI-
generation videos using 30 models and partial-AI videos edited by 12 AI-editing models, covering
a wide range of generation contents. (3) comprehensive evaluation framework: FVBench supports
the evaluation of both the detection ability of conventional detectors and the LMMs. As illustrated in
Figure 1, FVBench contains particularly deceptive examples that challenge deepfake detection mod-
els. In addition, Table 1 emphasizes the benchmark’s strengths in terms of dataset size, diversity,
and the comprehensiveness of its evaluation framework when compared to existing resources.

In summary, our main contributions are:

• We introduce FVBench, the largest benchmark for deepfake video detection, including
generation videos from 30 models, AI-edited videos from 12 models, and 8 real sources.

• We explore LMMs for deepfake video detection, conducting comprehensive benchmarks
that assess their performance in detecting deepfakes across various video generation meth-
ods and content types.

• Through comprehensive experiments, we find the main challenge in current detection sys-
tems is the zero-shot generalization ability on previously unseen generation models.
While detection models can achieve high performance on known generation models, the
ability to generalize to unseen models remains a significant challenge.

2 RELATED WORK

A variety of datasets have been developed to advance deepfake video detection. Early efforts such as
UADFV (Yang et al., 2019) and FaceForensics++ (Rossler et al., 2019) focused on facial forgeries.
VFHQ (Xie et al., 2022), INDIFACE (Kuckreja et al., 2024), and FakeHumanVid (Zhang et al.,
2024a) target “human-centric” forgeries, covering high-quality face swapping, specific ethnic faces,
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Table 1: An overview of deepfake video detection datasets.
Dataset Video

Content
AI Generation Category Public

Availability
Database
Real Sources

AI
Models

Fake
Videos

Total
VideosFully AI Partial AI

UADFV (Yang et al., 2019) Face ✓ ✗ ✓ YouTube 1 252 493
FaceForensics++ (Rossler et al., 2019) Face ✗ ✓ ✓ YouTube 4 4000 5000
VFHQ (Xie et al., 2022) Face ✗ ✓ ✓ FFHQ Dataset 1 8000 16,000
INDIFACE (Kuckreja et al., 2024) Face (Indian) ✓ ✗ ✓ YouTube 2 1,668 2,072
eKYC-DF (Felouat et al., 2024) Face ✓ ✗ ✓ Private (Volunteers) 3 12,000 228,000
DF40 (Yan et al., 2024) Face ✓ ✗ ✓ YouTube Unknown 400,000 800,000
VIDEOSHAM (Mittal et al., 2022) General ✗ ✓ ✓ Hollywood movies - 413 826
PolyGlotFake (Hou et al., 2024) Multimodal ✓ ✗ ✓ VoxCeleb 2 1 14,472 15,238
FakeAVCeleb (Khalid et al., 2021) Multimodal ✓ ✗ ✓ VoxCeleb2 1 19,500 20,000
FakeHumanVid (Zhang et al., 2024a) Human-centric ✓ ✗ ✓ TikTok, HDTF 9 7,600 15,000
IVY-FAKE (Zhang et al., 2024d) General ✓ ✓ ✓ GenVideo, LOKI, YouTube 22 40,000 73,667
FVBench (Ours) General ✓ ✓ ✓ 8 Datasets 42 62,357 121,902

and full-body generation. FakeAVCeleb (Khalid et al., 2021) and PolyGlotFake (Hou et al., 2024)
extend the challenge to multimodal domains by exploring audio-visual and multilingual forgeries,
while IVY-FAKE (Zhang et al., 2024d) introduces a unified benchmark for explainable detection.
Yet, critical gaps persist in existing benchmarks. Many datasets rely on a small or out-of-date set
of generative models, making it difficult to generalize to more advanced model generation contents.
Most benchmarks also focus on completely fake videos, ignoring the common issue of partially AI-
edited content. Their collections of real videos are often pristine, lacking the natural distortions of
real-world content and thus limiting the robustness of detection models. FVBench stands out for
its scale, diversity, and balanced inclusion of real, AI-edited, and fully AI-generated videos from
state-of-the-art models.

3 DATABASE CONSTRUCTION

3.1 REAL VIDEO COLLECTION

To ensure content diversity and realism, FVBench incorporates real videos from eight well-known
public natural video datasets. These datasets are widely recognized for their diverse content and
high-quality annotations, providing a solid foundation for deepfake detection across a broad range
of scenarios. The MSRVTT (Xu et al., 2016) dataset includes 10,000 videos spanning various ac-
tivities and is typically used for video-to-text tasks, while KonVid (Hosu et al., 2017) focuses on
video quality assessment with 1,200 clips that capture various video distortions. FineVD (Duan
et al., 2025) provides 5,074 videos with fine-grained annotations of distortions like noise and com-
pression artifacts, ideal for training models on video quality degradation. The WebVid (Bain et al.,
2021) dataset is scraped from the web, covering diverse content types like user-generated videos
and news, making it perfect for video retrieval and action recognition tasks. LSVQ (Ying et al.,
2021), with 10,759 video clips, offers real-world content for perceptual quality assessment, while
LIVEVQC (Sinno & Bovik, 2018) focuses on videos impacted by network distortions in streaming
scenarios. Additionally, YouTubeUGC (Wang et al., 2019) contributes 1,147 user-generated videos
from the YouTube platform, covering a wide range of genres and providing rich content for scene
detection and video quality tasks. Lastly, the LIVE-YT-Gaming (Yu et al., 2023) dataset, consist-
ing of 600 gaming videos, caters to the gaming content genre. Collectively, these datasets ensure
that FVBench includes a diverse mix of real-world videos, capturing a broad spectrum of quality,
distortions, and content types to challenge deepfake detection models.

3.2 AI-EDITING VIDEO COLLECTION

We collect 180 base videos from Kinetics-400 (Kay et al., 2017) and DAVIS (Pont-Tuset et al.,
2018) (50% human actions, 15% animal behaviors, 35% other). Editing prompts are generated us-
ing DeepSeek-R1 (DeepSeek-AI, 2025), covering five key tasks: color, action, background, object
operation, and style change (e.g., oil painting, ink-style). These prompts were engineered to main-
tain 60% of the original content’s semantics, ensuring focused edits. We then use 12 open-source,
diffusion-based video editing models including Tune-A-Video (Wu et al., 2023), TokenFlow (Qu
et al., 2023), CCEdit (Feng et al., 2024), ControlVideo (Zhang et al., 2024c), FateZero (Qi et al.,
2023), FLATTEN (Cong et al., 2024), FRESCO (Yang et al., 2024a), Pix2Video (Ceylan et al.,
2023), RAVE (Kara et al., 2024), SlicEdit (Cohen et al., 2024), and Vid2Vid-Zero (Wang et al.,
2024). Finally, we obtained 3,857 valid AI-edited videos.
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Figure 2: Visualization of video frames in the FVBench dataset.

(c)(b)(a)

Figure 3: Feature distribution of the FVBench. (a) Feature distribution of real videos. (b) Feature
distribution of AI-edited videos. (c) Feature distribution of AI-generated videos.

3.3 FAKE VIDEO GENERATION

To construct a diverse and challenging set of fake videos, we utilize 30 state-of-the-art video genera-
tion models, including 18 open-source generation models: Pyramid (Jin et al., 2024), Wan2.1 (Wang
et al., 2025a), Allegro (Zhou et al., 2024), VideoCrafter2 (Chen et al., 2024a), CogVideo X1.5 (Yang
et al., 2024b), Animate (Xu et al., 2024), Lavie (Wang et al., 2023b), Hotshot-XL (Mullan et al.,
2023), Latte (Ma et al., 2025), VideoCrafter1 (Chen et al., 2023), Text2Video-Zero (Khachatryan
et al., 2023), ModelScope (Wang et al., 2023a), Tune-A-Video (Wu et al., 2023), LTX (HaCohen
et al., 2024), LVDM (He et al., 2022), ZeroScope (Team, 2024h), and LWM (Liu et al., 2024a) and
12 close-source generation models: Pixverse (AI, 2024), Wanxiang (Cloud, 2024), Hailuo (Team,
2024d), Jimeng (Team, 2024a), Hunyuan (Li et al., 2024c), Sora (Team, 2024e), Vidu1.5 (Team,
2024f), Gen3 (Runway, 2024), Kling (Team, 2024c), Genmo (Team, 2024b), ChatGLM (GLM et al.,
2024), and Xunfei (Team, 2024g). To guarantee fairness, all generative models are used with their
official default weights, with no additional adaptation or tuning.

The video prompts are mostly obtained from 8 existing open-domain text-video pair datasets, with
some being refined using DeepSeek R1 (Guo et al., 2025) to ensure clarity and diversity. We use
2,750 distinct prompts in the training set; each prompt is processed by 18 open-source models. The
test set includes 300 distinct prompts created by all 30 models. This approach generates 58,500
videos from 3,050 distinct prompts (2,750 prompts x 18 open-source models + 300 prompts x 30
models). The imbalance between the training and testing sets is due to two factors: (1) producing
videos using close-source tools is expensive, and (2) we want to test the scalability of evaluation
metrics on training-set unseen generation models. Figure 7 shows that all 30 models are given
the same set of prompts based on real-world video captions. Some close-source models, such as
Kling (Team, 2024c) and Hailuo (Team, 2024d), can provide highly detailed outputs that even sur-
pass the real source.

3.4 DATABASE ANALYSIS

As shown in Figure 3, we analyze the feature distribution of real, AI-edited, and AI-generated videos
in the FVBench dataset across five video quality-related features: colorfulness, brightness, con-
trast, spatial information (SI), and temporal information (TI). The analysis reveals that AI-generated
videos display the highest values for SI and TI, indicating their rich spatial and temporal detail. In
contrast, real videos exhibit greater colorfulness. AI-edited videos, which combine both authentic
and manipulated content, show feature values that lie between the real and fake videos.
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Table 2: Performance benchmark on AI-generated video subsets. ♡Conventional deepfake de-
tection models, ⋆open-source and △close-source LMMs. ♦* refers to finetuned models. We bold
the best results.

Methods / Datasets Genmo Hailuo T2V-Zero Tune-A-Video LVDM LWM LTX ZeroScope Jimeng VCrafter2
♡Swin3D T 74.00% 76.33% 67.67% 56.67% 66.00% 53.67% 61.00% 36.67% 68.67% 68.67%
♡ResNet3D 18 82.00% 93.00% 95.00% 72.67% 73.00% 98.33% 78.67% 77.67% 92.33% 85.67%
♡AIGVDet 83.74% 66.82% 91.49% 88.65% 62.78% 71.85% 59.32% 57.56% 48.56% 54.28%
♡DeMamba 4.33% 0.33% 0.00% 2.00% 0.00% 10.67% 6.33% 2.67% 0.00% 0.33%
⋆Llava-one-vision (0.5B) 49.00% 41.00% 48.33% 47.67% 51.00% 48.67% 50.00% 48.00% 40.67% 49.00%
⋆InternVL2.5 (1B) 54.33% 50.33% 57.33% 58.00% 59.67% 59.00% 48.33% 49.00% 47.33% 51.67%
⋆InternVL3 (1B) 70.00% 56.00% 70.00% 65.67% 65.33% 67.33% 64.67% 63.33% 60.00% 62.33%
⋆Qwen2.5-VL (3B) 95.00% 98.33% 82.67% 87.00% 79.33% 80.67% 78.33% 79.00% 93.67% 87.00%
⋆VideoLlava (7B) 50.67% 49.00% 49.67% 50.00% 48.00% 46.33% 51.00% 50.33% 45.67% 49.00%
⋆Llava-one-vision (7B) 75.33% 38.00% 42.33% 60.33% 76.67% 63.67% 51.67% 48.00% 25.33% 36.33%
⋆mPLUG-Owl3 (7B) 86.67% 77.00% 74.00% 76.33% 94.33% 94.00% 83.33% 84.33% 51.00% 80.00%
⋆Qwen2.5-VL (7B) 89.33% 86.67% 82.00% 77.00% 64.67% 64.00% 62.33% 65.33% 77.67% 60.67%
⋆InternLM-XComposer2.5 (7B) 95.67% 95.67% 90.33% 94.00% 95.00% 89.67% 94.67% 97.67% 88.33% 94.67%
⋆VideoLlama3 (8B) 85.00% 78.33% 71.00% 48.33% 67.33% 61.67% 77.00% 68.33% 78.00% 59.00%
⋆LLaVA-NeXT-Video (8B) 53.33% 54.33% 53.67% 54.67% 66.00% 70.67% 62.67% 67.00% 43.00% 51.00%
⋆InternVL2.5 (8B) 88.00% 90.33% 75.00% 80.00% 69.67% 71.67% 72.00% 75.67% 79.33% 76.00%
⋆InternVL3 (9B) 89.00% 83.67% 77.00% 81.00% 78.33% 74.33% 80.00% 73.67% 81.67% 76.00%
⋆Llama3.2-Vision (11B 84.00% 79.00% 79.00% 71.67% 76.33% 66.33% 77.33% 73.67% 74.33% 82.33%
⋆InternVL2.5 (26B) 60.67% 72.67% 61.33% 63.67% 69.33% 64.33% 63.33% 64.00% 60.00% 60.33%
⋆Qwen2.5-VL (32B) 76.67% 80.33% 71.67% 69.00% 45.33% 56.00% 54.00% 65.67% 70.67% 65.33%
⋆InternVL2.5 (38B) 70.67% 67.33% 67.67% 69.67% 62.00% 69.67% 63.00% 64.67% 60.33% 62.00%
⋆InternVL3 (38B) 81.00% 84.33% 80.67% 79.33% 74.00% 74.33% 70.67% 67.67% 81.67% 64.33%
⋆Qwen2.5-VL (72B) 93.00% 93.00% 80.33% 71.33% 51.33% 54.33% 51.33% 52.33% 79.33% 57.00%
⋆InternVL3 (78B) 69.00% 80.00% 72.00% 76.00% 66.67% 72.67% 63.67% 54.67% 68.00% 57.33%
△Gemini1.5-pro 98.33% 81.67% 98.33% 98.33% 95.00% 81.67% 75.00% 66.67% 95.00% 91.67%
△GPT4o 100.0% 65.00% 86.67% 88.33% 71.67% 76.67% 68.33% 46.67% 46.67% 93.33%
Model Average (Zero-shot) 73.35% 70.49% 68.34% 66.69% 65.09% 65.99% 63.53% 61.95% 63.15% 62.09%
♦Swin3D T* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦ResNet3D 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL2.5 (8B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL3 (9B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Methods / Datasets Xunfei Hotshot Hunyuan CogVideo NOVA VCrafter1 Sora ChatGLM Wan2.1 Animate
♡Swin3D T 83.67% 52.33% 73.00% 60.00% 63.67% 58.00% 64.67% 61.00% 61.33% 66.33%
♡ResNet3D 18 86.00% 71.00% 74.00% 84.67% 78.67% 97.33% 85.33% 89.67% 89.67% 86.67%
♡AIGVDet 49.45% 53.24% 71.51% 21.57% 72.48% 21.30% 76.45% 46.67% 74.35% 23.81%
♡DeMamba 0.67% 8.33% 0.33% 13.67% 13.67% 0.00% 0.67% 0.00% 1.00% 16.67%
⋆Llava-one-vision (0.5B) 48.33% 48.00% 42.33% 47.33% 47.67% 48.33% 45.67% 46.33% 45.67% 46.67%
⋆InternVL2.5 (1B) 52.67% 49.33% 42.33% 51.67% 45.33% 56.33% 49.33% 48.00% 48.00% 48.67%
⋆InternVL3 (1B) 58.33% 62.67% 51.67% 58.00% 55.67% 57.00% 59.00% 59.67% 57.33% 56.67%
⋆Qwen2.5-VL (3B) 83.33% 71.00% 82.67% 72.67% 68.33% 64.00% 70.33% 66.67% 75.67% 47.33%
⋆VideoLlava (7B) 45.67% 47.33% 46.00% 50.00% 48.67% 48.00% 48.67% 48.33% 46.33% 48.33%
⋆Llava-one-vision (7B) 23.33% 32.00% 16.00% 30.67% 36.33% 35.67% 20.00% 30.33% 19.67% 23.00%
⋆mPLUG-Owl3 (7B) 59.33% 68.67% 51.67% 62.67% 71.67% 72.33% 45.67% 52.67% 42.33% 54.33%
⋆Qwen2.5-VL (7B) 52.33% 41.00% 48.67% 45.67% 38.33% 40.33% 50.00% 42.00% 43.67% 32.33%
⋆InternLM-XComposer2.5 (7B) 90.33% 99.00% 84.00% 95.33% 96.33% 95.67% 93.67% 90.67% 92.00% 93.00%
⋆VideoLlama3 (8B) 64.33% 60.67% 78.00% 67.00% 63.67% 55.33% 68.00% 65.67% 63.33% 58.33%
⋆LLaVA-NeXT-Video (8B) 46.67% 51.67% 44.67% 51.67% 51.33% 56.33% 47.67% 46.33% 43.00% 44.33%
⋆InternVL2.5 (8B) 67.67% 63.67% 78.33% 63.33% 63.67% 53.33% 61.33% 62.33% 61.33% 62.33%
⋆InternVL3 (9B) 68.33% 69.00% 70.00% 71.67% 70.00% 67.00% 64.67% 66.67% 68.67% 58.00%
⋆Llama3.2-Vision (11B) 81.00% 77.00% 72.67% 74.67% 73.33% 79.33% 77.67% 83.67% 79.67% 67.33%
⋆InternVL2.5 (26B) 50.33% 56.67% 59.33% 56.33% 58.67% 63.00% 47.33% 49.33% 48.33% 57.00%
⋆Qwen2.5-VL (32B) 64.33% 46.33% 48.67% 39.67% 37.00% 47.33% 52.33% 39.00% 44.67% 31.67%
⋆InternVL2.5 (38B) 48.00% 51.33% 53.00% 53.00% 50.00% 41.33% 39.67% 47.00% 47.67% 44.00%
⋆InternVL3 (38B) 66.67% 64.33% 64.67% 63.67% 65.33% 53.67% 59.33% 62.00% 64.67% 52.00%
⋆Qwen2.5-VL (72B) 41.00% 41.67% 50.33% 34.00% 33.67% 35.00% 59.33% 35.67% 43.67% 27.00%
⋆InternVL3 (78B) 47.00% 49.00% 55.00% 50.67% 44.67% 49.33% 42.00% 49.00% 44.00% 41.00%
△Gemini1.5-pro 58.33% 68.33% 83.33% 43.33% 66.67% 73.33% 85.00% 35.00% 46.67% 25.00%
△GPT4o 45.00% 30.00% 26.67% 30.00% 46.67% 36.67% 16.67% 26.67% 35.00% 15.00%
Model Average (Zero-shot) 57.45% 55.64% 56.62% 54.98% 56.17% 53.97% 55.37% 50.39% 54.42% 49.45%
♦Swin3D T* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦ResNet3D 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL2.5 (8B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL3 (9B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Methods / Datasets Wanxiang Allegro Pyramid Vidu1.5 Lavie Kling Pixverse Latte MScope Gen3 Overall
♡Swin3D T 75.33% 73.00% 78.33% 75.33% 58.33% 66.33% 68.67% 58.33% 53.67% 70.52% 65.04%
♡ResNet3D 18 80.67% 85.33% 83.00% 79.33% 82.00% 81.33% 85.00% 79.67% 72.00% 85.01% 80.85%
♡AIGVDet 39.23% 91.07% 0.00% 42.45% 48.97% 46.32% 53.45% 68.95% 59.56% 67.59% 57.12%
♡DeMamba 0.33% 3.00% 2.33% 0.67% 3.00% 1.33% 0.33% 6.00% 0.00% 0.40% 3.30%
⋆Llava-one-vision (0.5B)) 48.00% 48.00% 47.33% 49.00% 46.00% 47.33% 47.00% 48.00% 50.33% 47.41% 47.27%
⋆InternVL2.5 (1B) 44.67% 41.67% 46.67% 47.33% 53.67% 43.33% 49.00% 52.33% 57.00% 50.00% 50.41%
⋆InternVL3 (1B) 57.67% 63.00% 58.00% 59.00% 67.00% 53.00% 55.67% 59.00% 67.33% 59.36% 60.66%
⋆Qwen2.5-VL (3B) 97.33% 87.67% 85.00% 87.00% 72.00% 92.00% 76.67% 71.33% 71.33% 86.65% 79.67%
⋆VideoLlava (7B) 47.67% 50.33% 46.33% 46.00% 52.67% 49.00% 42.00% 47.67% 48.33% 49.80% 48.23%
⋆Llava-one-vision (7B) 23.00% 33.33% 32.00% 36.67% 38.67% 22.00% 22.00% 27.33% 36.67% 20.12% 35.88%
⋆mPLUG-Owl3 (7B) 66.00% 75.33% 61.00% 77.67% 61.00% 61.67% 66.67% 64.33% 75.67% 49.20% 68.03%
⋆Qwen2.5-VL (7B) 55.33% 64.00% 67.00% 62.00% 53.33% 52.67% 51.67% 49.67% 38.67% 54.58% 57.10%
⋆InternLM-XComposer2.5 (7B) 89.67% 93.00% 93.67% 93.33% 93.00% 90.00% 91.67% 91.00% 94.00% 94.42% 92.98%
⋆VideoLlama3 (8B) 75.00% 69.67% 66.67% 70.67% 65.00% 75.33% 65.00% 66.33% 58.00% 60.16% 67.01%
⋆LLaVA-NeXT-Video (8B) 47.00% 53.33% 46.67% 49.00% 53.00% 44.67% 46.33% 49.00% 59.67% 49.80% 51.95%
⋆InternVL2.5 (8B) 85.67% 73.33% 65.33% 76.33% 68.00% 81.33% 70.00% 67.00% 61.67% 65.34% 70.97%
⋆InternVL3 (9B) 81.00% 70.00% 73.00% 79.67% 72.00% 78.33% 72.33% 74.00% 74.00% 70.72% 73.79%
⋆Llama3.2-Vision (11B) 77.00% 78.33% 77.33% 79.33% 78.33% 78.67% 82.33% 79.00% 77.67% 74.30% 77.09%
⋆InternVL2.5 (26B) 57.33% 56.00% 59.33% 59.00% 59.33% 57.00% 50.33% 57.67% 54.00% 52.39% 58.28%
⋆Qwen2.5-VL (32B) 59.00% 58.33% 68.67% 50.00% 57.33% 41.00% 64.67% 48.67% 44.67% 59.36% 55.25%
⋆InternVL2.5 (38B) 64.00% 54.00% 51.33% 54.67% 54.00% 52.00% 52.33% 54.33% 58.00% 44.82% 55.72%
⋆InternVL3 (38B) 70.67% 73.33% 75.33% 62.00% 62.33% 65.33% 64.00% 62.33% 64.00% 65.74% 67.98%
⋆Qwen2.5-VL (72B) 62.33% 55.00% 65.00% 50.00% 50.00% 58.33% 58.67% 50.33% 32.33% 57.57% 54.14%
⋆InternVL3 (78B) 57.00% 57.67% 62.33% 59.00% 60.00% 53.67% 51.67% 54.33% 49.33% 53.78% 57.02%
△Gemini1.5-pro 90.00% 58.33% 76.67% 85.00% 71.67% 98.33% 58.33% 58.33% 70.00% 38.33% 71.15%
△GPT4o 36.67% 43.33% 70.00% 38.33% 53.33% 50.00% 50.00% 53.33% 46.67% 28.33% 49.86%
Model Average (Zero-shot) 60.87% 62.82% 58.82% 60.23% 58.71% 58.00% 57.81% 57.78% 56.58% 57.88% 59.82%
♦Swin3D T* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦ResNet3D 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL2.5 (8B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
♦InternVL3 (9B)* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Table 3: Performance benchmark on real video subsets. ♡Conventional deepfake detection mod-
els, ⋆open-source and △close-source LMMs. ♦* refers to finetuned models. We bold the best
results.

Methods / Datasets MSRVTT KoNViD FineVD WebVid LSVQ LIVEVQC YouTubeUGC LIVE-YT-Gaming Overall
♡Swin3D T 58.95% 54.58% 67.83% 70.97% 55.86% 63.25% 73.25% 80.00% 65.47%
♡ResNet3D 18 84.45% 85.83% 86.78% 94.12% 82.85% 90.60% 89.04% 82.50% 89.56%
♡AIGVDet 100.0% 98.75% 93.97% 89.86% 93.12% 93.16% 84.84% 89.17% 92.74%
♡DeMamba 99.90% 98.75% 99.41% 99.95% 84.34% 100.0% 100.0% 98.33% 97.03%
⋆Llava-one-vision (0.5B)) 59.35% 62.50% 55.91% 50.25% 58.32% 60.68% 57.89% 50.00% 56.86%
⋆InternVL2.5 (1B) 68.80% 59.17% 49.90% 67.60% 58.27% 54.70% 59.21% 54.17% 58.98%
⋆InternVL3 (1B) 47.80% 45.42% 46.46% 51.41% 46.33% 51.28% 43.42% 52.50% 48.08%
⋆Qwen2.5-VL (3B) 53.00% 79.58% 27.85% 58.66% 72.15% 82.91% 52.19% 45.00% 58.92%
⋆VideoLlava (7B) 59.30% 57.92% 48.72% 56.67% 60.69% 54.82% 54.45% 35.00% 53.45%
⋆Llava-one-vision (7B) 80.25% 96.25% 62.40% 86.67% 91.03% 100.00% 69.74% 45.00% 78.92%
⋆mPLUG-Owl3 (7B) 47.35% 78.33% 19.98% 78.32% 78.39% 91.45% 48.68% 2.50% 55.63%
⋆Qwen2.5-VL (7B) 70.80% 93.75% 49.21% 62.78% 88.29% 63.16% 83.43% 15.83% 65.91%
⋆InternLM-XComposer2.5 (7B) 65.75% 76.67% 51.87% 62.73% 72.58% 65.81% 45.61% 55.83% 62.11%
⋆VideoLlama3 (8B) 50.45% 59.17% 29.63% 41.67% 57.48% 39.04% 50.23% 30.00% 44.71%
⋆LLaVA-NeXT-Video (8B) 53.65% 65.00% 44.00% 42.67% 59.34% 61.54% 50.00% 39.17% 51.92%
⋆InternVL2.5 (8B) 52.55% 71.67% 38.48% 57.93% 67.01% 78.63% 49.56% 34.17% 56.25%
⋆InternVL3 (9B) 44.20% 63.75% 29.63% 51.31% 56.51% 69.23% 41.67% 22.50% 47.35%
⋆Llama3.2-Vision (11B) 24.05% 38.33% 20.47% 25.79% 33.04% 50.43% 25.44% 14.17% 28.97%
⋆InternVL2.5 (26B) 65.40% 62.92% 46.75% 51.15% 67.47% 73.50% 60.96% 38.33% 58.31%
⋆Qwen2.5-VL (32B) 70.05% 96.25% 56.89% 85.02% 89.50% 99.15% 72.90% 30.83% 75.07%
⋆InternVL2.5 (38B) 68.50% 80.42% 47.15% 74.06% 80.81% 90.60% 61.84% 24.17% 65.94%
⋆InternVL3 (38B) 68.60% 84.58% 39.96% 77.98% 79.04% 91.45% 60.53% 12.50% 64.33%
⋆Qwen2.5-VL (72B) 83.10% 97.08% 68.90% 86.62% 92.57% 100.00% 77.34% 39.17% 80.60%
⋆InternVL3 (78B) 75.70% 93.33% 57.09% 75.71% 87.50% 97.44% 72.81% 33.33% 74.11%
△Gemini1.5-pro 90.00% 100.0% 80.00% 76.67% 93.10% 100.0% 69.57% 50.88% 79.91%
△GPT-4o 90.00% 96.67% 75.00% 88.14% 93.22% 100.0% 78.26% 63.33% 72.10%
Model Average (Zero-shot) 64.66% 75.00% 51.62% 66.72% 71.36% 75.95% 61.86% 42.67% 63.84%
♦Swin3D T* 94.25% 65.62% 82.27% 96.93% 75.42% 67.74% 86.96% 92.71% 86.03%
♦ResNet3D 18* 99.88% 100.0% 98.65% 100.0% 98.78% 100.0% 100.0% 100.0% 99.41%
♦InternVL2.5 (8B)* 100.0% 98.44% 99.38% 100.0% 99.30% 100.0% 97.83% 100.0% 99.62%
♦InternVL3 (9B)* 99.69% 97.40% 97.41% 86.63% 98.19% 99.98% 86.96% 100.0% 95.23%

4 BENCHMARK AND EVALUATION

We benchmark and evaluate both the in-domain performance and cross-generator generalization of
various deepfake detection models across three subsets: real, AI-edited, and AI-generated videos.

4.1 EXPERIMENT SETUP

We evaluate the models’ ability to classify real and fake videos using two standard metrics: accuracy
(Acc) and F1-score. Accuracy is calculated as the proportion of correctly classified real or fake
videos out of all relevant samples in the dataset.

To provide a more balanced evaluation that accounts for both precision and recall, we also compute
the F1-score, which is the harmonic mean of precision and recall:

F1 =
2× Precision × Recall

Precision + Recall
(1)

where precision and recall are:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(2)

where TP (True Positives) represents the number of real or fake videos correctly identified by the
model, and FN (False Negatives) indicates the number of videos incorrectly classified as the op-
posite category. We directly use publicly available pre-trained weights to conduct inference on the
test datasets. For large multimodal models (LMMs), we perform inference using a prompt-based
question-answering approach. To minimize any bias in the responses, we alternate between the fol-
lowing two instructions: (1) “Is this a real video or a generated video? Just answer with A or B. A:
real or B: generated.” and (2) “Is this a generated video or a real video? Just answer with A or B.
A: generated or B: real.” Additionally, we fine-tune two of the LMMs with LoRA (Hu et al., 2022)
(r=16), using the same 4:1 training and testing split. The fine-tuning process is conducted over 5
epochs. The models are implemented in PyTorch and trained on a 40GB NVIDIA RTX A6000 GPU
with a batch size of 4. The initial learning rate is set to 1e-5 and is adjusted using a cosine annealing
strategy.

4.2 IN-DOMAIN PERFORMANCE ON FVBENCH

We benchmark model performance on AI-generated video subsets, as shown in Table 2. We can ob-
serve that traditional deep learning-based detection models, such as DeMamba (Chen et al., 2024b)
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Table 4: Performance benchmark on AI-edit video subsets, including five editing types. ♦*
refers to finetuned models.

Dimension Background Style Change Color Change Action Edit Object Operation Overall
Methods / Metrics Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑
♡Swin3D T 59.42 0.745 53.03 0.693 52.10 0.685 61.76 0.764 45.76 0.628 53.18 0.694
♡ResNet3D 18 86.78 0.929 85.71 0.923 87.80 0.935 85.12 0.92 86.46 0.927 86.53 0.928
♡AIGVDet 82.95 0.820 84.39 0.827 73.36 0.771 82.02 0.816 76.44 0.787 79.83 0.804
♡DeMamba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
⋆Llava-one-vision (0.5B)) 51.24 0.678 48.12 0.650 49.76 0.664 42.98 0.601 46.88 0.638 47.93 0.611
⋆InternVL2.5 (1B) 58.68 0.740 58.65 0.739 52.20 0.686 52.07 0.685 52.08 0.685 54.27 0.659
⋆InternVL3 (1B) 57.02 0.726 68.42 0.813 67.80 0.808 60.33 0.753 71.88 0.836 66.06 0.740
⋆Qwen2.5-VL (3B) 84.30 0.915 85.71 0.923 87.80 0.935 68.60 0.814 82.29 0.903 82.51 0.847
⋆VideoLlava (7B) 48.76 0.656 42.86 0.600 52.68 0.690 38.02 0.551 46.35 0.633 46.50 0.594
⋆Llava-one-vision (7B) 57.85 0.733 76.69 0.868 61.46 0.761 38.02 0.551 60.94 0.757 59.72 0.727
⋆mPLUG-Owl3 (7B) 73.55 0.848 81.95 0.901 83.90 0.912 58.68 0.740 77.60 0.874 76.42 0.829
⋆Qwen2.5-VL (7B) 71.07 0.831 76.69 0.868 81.95 0.901 42.98 0.601 72.92 0.843 70.98 0.790
⋆InternLM-XComposer2.5 (7B) 94.21 0.970 96.24 0.981 94.15 0.970 96.69 0.983 96.88 0.984 95.60 0.958
⋆VideoLlama3 (8B) 70.25 0.825 82.71 0.905 82.44 0.904 59.50 0.746 76.56 0.867 75.52 0.799
⋆LLaVA-NeXT-Video (8B) 57.02 0.726 55.64 0.715 60.49 0.754 48.76 0.656 55.73 0.716 56.09 0.677
⋆InternVL2.5 (8B) 65.29 0.790 81.95 0.901 82.93 0.907 57.02 0.726 73.96 0.850 73.70 0.789
⋆InternVL3 (9B) 77.69 0.874 84.96 0.919 80.98 0.895 61.16 0.759 77.08 0.871 77.07 0.812
⋆Llama3.2-Vision (11B) 80.17 0.890 86.47 0.927 84.88 0.918 77.69 0.874 78.12 0.877 81.61 0.826
⋆InternVL2.5 (26B) 52.89 0.692 65.41 0.791 60.49 0.754 55.37 0.713 58.33 0.737 58.81 0.700
⋆Qwen2.5-VL (32B) 61.16 0.759 73.68 0.848 82.93 0.907 44.63 0.617 74.48 0.854 69.82 0.780
⋆InternVL2.5 (38B) 55.37 0.713 68.42 0.813 70.73 0.829 43.80 0.609 64.06 0.781 62.05 0.732
⋆InternVL3 (38B) 73.55 0.848 78.20 0.878 80.98 0.895 54.55 0.706 79.69 0.887 74.87 0.815
⋆Qwen2.5-VL (72B) 61.16 0.759 75.94 0.863 76.10 0.864 41.32 0.585 68.75 0.815 66.45 0.760
⋆InternVL3 (78B) 58.68 0.740 74.44 0.853 72.20 0.839 45.45 0.625 66.67 0.800 64.90 0.755
△Gemini1.5-pro 87.37 0.933 93.64 0.967 93.33 0.966 85.57 0.922 94.00 0.969 91.41 0.955
△GPT4o 83.16 0.908 90.91 0.952 92.12 0.959 73.20 0.845 89.33 0.944 86.87 0.930
Model Average (Zero-shot) 64.11 0.759 70.43 0.802 70.31 0.802 54.41 0.680 66.20 0.774 65.87 0.735
♦Swin3D T* 65.26 0.790 77.27 0.872 83.03 0.907 70.10 0.824 76.67 0.868 75.69 0.862
♦ResNet3D 18* 100.0 1.000 99.09 0.995 98.79 0.994 97.94 0.990 98.67 0.993 98.87 0.994
♦InternVL2.5 (8B)* 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000
♦InternVL3 (9B)* 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000

Figure 4: Deepfake video detection performance comparison of the open-source LMMs. We report
zero-shot overall accuracy.

and AIGVDet (Bai et al., 2024), which are trained on specific deepfake datasets, show limited zero-
shot generalization. The detection models trained on earlier deepfake datasets perform well on
known fakes but struggle when exposed to new generative models that are not part of the train-
ing data. This limitation arises because these models often learn artifacts specific to the training
dataset, leading to poor performance on unseen data. In contrast, LMMs, despite lacking task-
specific training for real-fake discrimination, demonstrate relatively robust zero-shot detection per-
formance. These models, such as InternLM-XComposer2.5 (7B), show impressive results even
without fine-tuning specifically for deepfake detection tasks. However, once fine-tuned for the task,
both traditional deep learning-based models and LMMs achieve 100% accuracy on detection tasks.
Therefore, the ability to generalize in a zero-shot setting is more critical for deepfake detection, as
unseen generative models are constantly evolving.

We also launch benchmarks on the real video subsets. From Table 3, we can observe that models
exhibit variable performance across different datasets, excelling on more structured datasets such as
LIVEVQC and LSVQ but struggling on LIVE-YT-Gaming. This highlights the sensitivity of some
models to content type. DeMamba performs the best on real datasets but the worst on AI-generated
datasets, indicating that it is biased towards real data and struggle to generalize to AI-generated
content. Qwen2.5-VL (72B) and Gemini1.5-pro exhibit high zero-shot accuracy, demonstrating
their strong ability to generalize across different real video datasets without any task-specific fine-
tuning. Similarly, once fine-tuned for the specific task of deepfake detection, both traditional deep
learning models and LMMs achieve near-perfect accuracy, with detection rates approaching 100%.
While fine-tuning enhances the performance of traditional deep-learning-based models, LMMs offer
greater flexibility, as they are able to perform well without specific task training.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Results of cross-generator validation on different training and testing subsets using
Swin3D T.

Testing Subset Training Subset Avg
AccAlle Anim CogV Hot LTX LVDM LWM Latt Lavi MS NOVA T2VZ Pyra TAV VC1 VC2 Wan ZS

Allegro 99.3 88.7 7.0 31.3 2.3 0.0 8.7 25.3 37.7 0.7 73.0 59.3 1.3 4.7 0.3 22.0 52.3 0.0 28.6
Animate 74.3 94.0 17.7 43.3 4.3 0.3 28.7 33.7 49.3 1.0 73.7 57.7 1.0 2.3 1.7 17.3 48.0 0.0 30.5

CogVideo 54.0 68.7 96.7 68.7 13.7 0.0 13.3 30.3 69.0 0.7 72.0 45.3 0.0 0.0 4.7 19.0 53.7 3.0 34.0
Hotshot-XL 32.3 42.0 13.7 98.3 5.0 0.3 20.0 37.7 27.0 5.7 86.0 24.7 6.7 5.3 11.0 53.0 27.7 19.7 28.7

LTX 34.0 44.3 6.7 44.7 99.7 0.0 17.3 30.3 42.3 1.7 66.0 28.0 0.7 11.3 6.3 22.7 44.7 2.3 27.9
LVDM 16.0 15.0 0.7 8.0 0.0 99.7 89.3 33.3 43.7 98.7 21.0 8.0 13.3 20.3 50.0 44.3 15.7 0.0 32.1
LWM 29.7 35.3 2.3 38.0 1.7 1.0 99.3 41.3 22.3 18.0 60.0 19.7 4.7 8.7 3.0 25.3 19.3 0.7 23.9
Latte 62.3 63.3 12.7 42.0 6.3 1.7 56.0 81.3 63.7 2.0 73.0 41.7 6.0 17.7 4.7 47.0 52.0 2.0 35.3
Lavie 58.0 66.7 14.0 49.0 8.0 1.0 26.0 44.7 92.7 1.7 74.3 45.7 6.7 8.0 1.3 43.0 58.0 1.7 33.4

ModelScope 7.7 17.0 0.7 50.7 0.0 75.7 95.0 59.3 14.3 99.0 47.0 1.7 2.3 28.0 84.7 54.3 11.0 12.3 36.7
NOVA 70.0 80.7 22.3 87.0 4.3 0.0 21.7 39.3 50.0 0.3 97.7 57.0 1.3 2.0 2.7 43.3 51.7 4.3 35.3

Pyramid 96.0 86.3 15.7 46.7 5.3 0.3 22.7 38.7 80.3 1.3 85.3 98.7 5.3 8.0 1.0 63.3 70.0 0.7 40.3
T2V-Zero 44.3 32.0 0.0 10.3 0.7 0.0 46.3 53.3 75.0 0.3 40.0 36.7 99.3 38.7 1.7 71.7 10.0 0.0 31.1

Tune-A-Video 19.7 18.7 0.3 3.3 1.0 0.0 24.0 45.3 26.3 1.7 8.3 9.0 6.0 88.7 5.0 30.0 20.3 2.3 17.2
VideoCrafer1 15.7 31.0 0.7 69.0 0.0 55.0 19.0 30.3 24.0 86.3 49.3 7.3 2.0 22.7 99.7 75.3 18.7 22.7 34.9
VideoCrafer2 73.0 72.0 8.0 77.0 2.3 1.7 37.7 37.7 78.7 2.0 84.7 60.3 11.3 28.7 10.7 99.3 66.7 5.3 42.1

Wan2.1 79.3 78.7 12.3 38.3 2.0 0.0 8.7 38.7 81.0 1.3 73.3 61.0 0.3 4.7 4.3 44.7 96.3 0.0 34.7
ZeroScope 18.0 43.7 0.7 84.0 1.0 0.0 12.7 18.7 13.3 3.0 51.0 21.3 7.3 27.3 57.3 75.3 13.0 92.0 30.0
ChatGLM 43.3 50.7 11.7 28.0 2.3 0.7 3.0 9.3 74.3 0.7 60.3 35.3 5.3 3.0 8.3 19.7 35.0 0.7 21.8

Gen3 56.0 61.4 1.6 22.5 0.6 0.0 11.0 22.5 60.6 0.0 54.2 41.8 5.4 11.6 1.6 29.7 36.7 1.2 23.2
Genmo 78.3 55.3 2.0 55.7 0.7 0.0 6.0 24.3 38.7 2.3 73.7 67.0 12.3 4.3 5.7 50.7 41.7 4.3 29.1

Hunyuan 47.7 34.0 3.7 34.0 0.3 0.0 4.3 6.0 31.3 2.3 47.7 35.0 3.0 5.0 3.0 28.7 43.0 0.0 18.3
Hailuo 42.7 30.0 2.0 15.0 0.3 0.0 1.0 4.7 31.0 0.7 25.7 30.7 3.0 7.7 0.3 17.0 38.3 0.3 13.9
Jimeng 38.7 28.7 2.7 29.3 0.3 0.3 0.3 2.3 22.3 0.3 28.0 25.7 2.7 3.3 3.7 19.7 29.0 0.0 13.2
Kling 37.0 35.3 3.3 44.0 2.0 0.0 4.7 6.3 16.7 1.3 60.7 30.3 3.7 10.3 5.3 34.0 31.3 12.3 18.8

Pixverse 57.7 55.3 3.0 49.3 1.7 0.7 11.3 9.3 33.0 1.3 58.7 46.3 2.3 5.0 3.3 46.0 35.7 1.7 23.4
Sora 40.0 40.3 2.7 25.0 0.7 0.0 1.0 10.0 30.0 1.0 29.7 25.3 3.3 13.7 4.3 28.3 37.7 1.7 16.4

Vidu1.5 62.0 48.0 2.7 10.3 0.0 1.0 9.0 6.3 42.7 2.3 37.7 42.3 5.0 3.0 4.3 35.3 41.0 0.0 19.6
Wanxiang 62.7 57.0 3.3 42.7 3.7 0.7 3.3 13.7 25.3 1.3 61.3 46.3 3.3 5.7 1.7 25.7 45.0 0.0 22.4

Xunfei 66.0 58.0 8.3 60.3 0.7 0.7 6.3 12.7 13.0 2.0 65.7 50.3 0.3 1.7 1.3 30.7 36.3 3.7 23.2
Avg Acc 50.5 51.1 9.3 43.5 5.7 8.0 23.6 28.2 43.7 11.4 58.0 38.6 7.5 13.4 13.1 40.5 39.3 6.5 27.3

Table 6: Results of cross-generator validation on different training and testing subsets using In-
ternVL2.5 (8B).

Testing Subset Training Subset Avg
AccAlle Anim CogV Hot LTX LVDM LWM Latt Lavi MS NOVA T2VZ Pyra TAV VC1 VC2 Wan ZS

Allegro 100.0 58.9 44.3 4.7 66.3 0.0 0.0 24.3 8.0 0.0 90.7 83.3 30.1 23.1 4.7 12.7 96.6 19.7 37.1
Animate 46.7 100.0 34.0 55.7 74.7 0.3 7.3 33.7 24.7 0.0 44.0 30.3 3.6 3.4 15.3 52.8 58.8 26.3 34.0

CogVideo 53.3 45.6 100.0 10.0 52.0 0.3 1.3 25.0 35.0 0.0 47.3 42.3 14.4 10.9 34.0 25.0 74.7 40.8 34.0
Hotshot-XL 52.7 58.6 67.0 100.0 95.7 0.0 7.7 64.0 17.7 0.3 34.0 25.0 17.7 24.8 76.3 65.2 80.1 92.8 48.9

LTX 44.7 77.8 26.0 18.3 100.0 0.0 1.3 60.7 4.0 0.0 41.3 27.7 3.6 24.3 53.0 51.5 64.7 67.1 37.0
LVDM 0.0 3.0 0.0 0.0 2.3 100.0 100.0 93.0 0.3 100.0 0.0 0.0 82.0 27.7 7.0 79.7 1.1 10.8 33.7
LWM 3.0 28.3 1.3 0.0 10.0 6.7 100.0 98.7 3.7 38.0 6.7 5.3 17.6 50.0 16.7 30.9 7.2 19.0 24.6
Latte 37.0 69.0 41.3 1.3 57.0 0.0 18.3 100.0 56.0 0.3 42.0 27.3 49.8 83.5 22.7 71.2 68.9 37.6 43.5
Lavie 24.7 70.1 50.0 1.7 20.0 0.7 0.7 86.0 100.0 0.0 47.3 43.7 23.7 14.3 28.0 75.0 74.7 40.1 38.9

ModelScope 2.0 17.6 4.0 5.7 37.7 88.7 100.0 91.7 0.3 100.0 1.0 0.0 22.3 32.1 32.3 60.4 8.8 61.9 37.0
NOVA 70.7 70.5 63.0 15.3 86.7 0.0 0.0 30.7 13.7 0.0 100.0 40.7 3.3 12.7 32.7 52.9 79.7 52.0 37.9

Pyramid 100.0 20.2 72.7 3.3 31.7 0.0 0.0 9.0 31.3 0.0 100.0 100.0 68.9 41.9 9.0 3.9 98.9 18.5 39.4
T2V-Zero 75.7 35.3 18.0 2.0 8.7 1.0 1.3 100.0 89.3 0.0 81.7 79.0 100.0 100.0 9.7 49.3 92.0 29.6 48.5

Tune-A-Video 28.0 8.6 1.0 1.0 8.3 1.0 6.3 99.3 38.0 1.0 30.7 21.7 62.3 100.0 15.3 53.9 71.9 38.2 32.6
VideoCrafer1 0.0 36.7 7.7 4.7 53.0 77.7 0.7 52.7 3.3 61.7 0.0 0.0 0.0 1.3 100.0 96.0 0.7 85.9 30.5
VideoCrafer2 20.7 84.7 32.0 2.0 37.7 0.3 0.3 97.3 88.3 0.0 34.7 26.3 11.6 22.0 74.3 100.0 37.5 86.4 42.0

Wan2.1 79.3 78.7 12.3 38.3 2.0 0.0 8.7 38.7 81.0 1.3 73.3 61.0 0.3 4.7 4.3 44.7 100.0 0.0 34.7
ZeroScope 7.3 61.0 26.0 29.0 78.3 0.0 1.3 11.3 9.0 3.0 3.3 2.0 0.8 10.0 100.0 68.7 14.2 100.0 29.2
ChatGLM 45.3 2.7 54.0 0.3 6.3 0.3 0.0 2.7 10.3 0.0 50.7 43.3 11.6 8.8 5.0 1.7 80.9 13.8 18.8

Gen3 87.3 17.7 26.7 1.0 8.7 0.0 0.3 8.0 21.3 0.0 86.3 81.3 38.8 36.4 7.7 6.5 98.6 18.2 30.3
Genmo 89.0 39.6 63.3 1.7 22.3 0.0 0.0 13.0 17.3 0.0 92.3 86.7 36.3 23.4 12.7 21.0 91.9 44.7 36.4

Hunyuan 25.0 0.0 30.3 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.7 6.0 0.0 0.8 0.0 0.0 13.3 6.8 4.8
Hailuo 85.3 3.1 29.7 0.7 5.0 0.0 0.0 0.7 2.0 0.0 84.7 75.0 18.6 16.2 3.0 0.0 97.5 14.6 24.2
Jimeng 42.3 0.0 30.3 0.0 0.7 0.0 0.0 0.7 0.3 0.0 26.7 31.0 0.4 13.1 0.0 0.0 65.9 6.9 12.1
Kling 42.0 2.8 35.0 0.7 10.0 0.0 0.0 1.0 0.0 0.0 39.0 30.3 0.8 2.9 9.7 7.8 64.1 21.3 14.9

Pixverse 52.3 70.8 26.0 5.0 52.7 0.0 0.0 6.0 14.0 0.0 60.0 38.3 1.6 5.0 39.7 73.8 62.0 71.4 32.1
Sora 78.0 13.6 23.0 1.7 12.7 0.0 0.0 3.7 6.3 0.0 74.7 64.0 26.5 22.5 6.0 8.6 98.9 18.9 25.5

Vidu1.5 33.0 88.8 15.7 1.3 32.3 0.0 0.0 19.7 14.3 0.0 51.7 30.0 2.3 4.5 9.3 41.7 45.2 24.2 23.0
Wanxiang 29.0 2.9 38.7 0.0 1.7 0.0 0.0 0.7 0.0 0.0 3.3 7.0 0.4 1.6 0.0 2.4 8.3 19.2 6.4

Xunfei 82.0 48.8 49.7 2.0 25.3 0.0 0.0 25.7 4.3 0.0 75.7 60.7 4.9 14.0 15.3 52.1 76.9 60.9 33.2
Avg Acc 48.0 38.6 35.6 9.1 34.1 9.2 11.6 39.2 21.5 10.1 46.6 39.6 22.9 25.0 23.7 38.9 61.1 38.7 30.8

We further evaluate the performance of different detection models on AI-edit video subsets, as shown
in Table 4. The AI-edit video subsets consist of five video-editing categories: background, object
operation, style change, color change, and action edit, each posing different challenges for detection
models. Among these, models achieve the highest average accuracy on style change and the lowest
on the action edit category, which involves subtle modifications to the appearance of individual
objects. These results suggest that subtle changes at the object level are more difficult for detection
models to identify compared to style changes. Models show significant improvements after fine-
tuning, especially LMMs outperform conventional deep-learning-based networks, highlighting the
effectiveness of LMMs in deepfake detection tasks.

We summarize the overall in-domain performance across the three subsets in Figure 4. Models
such as Qwen2.5-VL (7B) and VideoLlama3 (8B) consistently perform well on fully fake and AI-
edited videos; however, their performance slightly declines on real videos. This suggests that while
these models are effective at identifying manipulated content, they struggle more with real videos
containing natural distortions or quality degradation. Furthermore, the average accuracy trend (black
curve) indicates that although most models excel on real content, their overall accuracy decreases
when evaluated on fake videos. This drop may be attributed to the unique and often sophisticated
characteristics of deepfake content, which can deceive most detectors.
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4.3 CROSS-GENERATOR VIDEO DETECTION

Table 7: Results of cross-generator valida-
tion on 18 open-source generators’ training
and 12 unseen generators’ testing subsets us-
ing Swin3D T and ResNet3D 18. ♡Open-
source lab T2V models. ♠Close-source
commercial T2V models.

Testing models Training methods Avg
AccSwin3D T ResNet3D 18

♡Allegro 100% 99.7% 99.9%
♡Animate 98.7% 96.0% 97.4%
♡CogVideo 99.3% 100% 99.7%
♡Hotshot-XL 99.3% 99.0% 99.2%
♡LTX 99.7% 98.3% 99.0%
♡LVDM 100% 100% 100%
♡LWM 98.3% 99.0% 98.7%
♡Latte 100% 100% 100%
♡Lavie 99.3% 99.0% 99.2%
♡ModelScope 100% 100% 100%
♡NOVA 100% 100% 100%
♡Pyramid 100% 99.7% 99.9%
♡T2V-Zero 99.3% 100% 99.7%
♡Tune-A-Video 98.7% 97.3% 98.0%
♡VideoCrafer1 100% 100% 100%
♡VideoCrafer2 100% 100% 100%
♡Wan2.1 99.0% 100% 99.5%
♡ZeroScope 100% 100% 100%
♠ChatGLM 98.0% 98.3% 98.2%
♠Gen3 95.2% 96.0% 95.6%
♠Genmo 97.0% 98.7% 97.9%
♠Hunyuan 84.0% 88.3% 86.2%
♠Hailuo 87.3% 89.3% 88.3%
♠Jimeng 71.0% 82.0% 76.5%
♠Kling 87.0% 89.0% 88.0%
♠Pixverse 96.3% 97.7% 97.0%
♠Sora 91.7% 92.3% 92.0%
♠Vidu1.5 90.0% 91.0% 90.5%
♠Wanxiang 93.7% 96.0% 94.9%
♠Xunfei 97.3% 85.0% 91.2%
Avg Acc 96.0% 96.4% 96.2%

From Table 5 and Table 6, we evaluate the per-
formance of deepfake detection models trained and
evaluated across different video generation models.
The detection model is trained on a specific genera-
tor and then tested on a variety of other generators.
This setup allows us to assess how well the mod-
els generalize across different generators, which is
crucial for real-world applications where deepfake
detection systems may encounter novel generative
techniques that are not part of the training data.

We train the Swin3D T and Intern2.5 (8B) on 18
open-source video generation models and then eval-
uate them on the test set of 30 video generation mod-
els, including both open-source and closed-source
generators. The results show that models exhibit
nearly perfect accuracy close to 100% on genera-
tors they have seen during training, as indicated by
the bolded diagonal values in the table. This in-
dicates that these models are highly specialized in
detecting fakes from the specific generator they are
trained on. However, the performance significantly
drops when the models are tested on generators they
haven’t encountered before, indicating that while de-
tection models can perform exceptionally well on
known generative models, their ability to general-
ize to new and unseen generative techniques remains
limited. This underscores the importance of ensur-
ing that deepfake detection systems can generalize
effectively, especially as generative models continue
to evolve rapidly. It highlights a key challenge for fu-
ture research in improving the robustness and adapt-
ability of these systems to more advanced video generation models.

To further evaluate the generalization ability of our models across diverse generative sources, we
train models on a dataset composed of 18 open-source video generation models and tested them on
a held-out set of 12 unseen commercial (closed-source) generators. This setting enables a rigorous
cross-generator validation, reflecting the model’s ability to generalize to previously unseen gener-
ative distributions. As shown in Table 7, both Swin3D T and ResNet3D 18 achieve near-perfect
accuracy on the seen open-source generators, indicating strong discriminative capability within the
training domain. However, their performance degrades to a certain extent on the unseen commercial
generators. These results underscore the importance of model scalability and architectural robust-
ness in cross-domain generalization, particularly when handling distribution shifts between training
and testing generators.

5 CONCLUSION

In this paper, we present FVBench, a comprehensive benchmark designed to overcome the limita-
tions of existing datasets for deepfake video detection. FVBench consists of 120K videos spanning
real, AI-edited, and fully AI-generated content, with an emphasis on enhancing both content variety
and generative model diversity. We conduct one of the first in-depth studies exploring the potential
of LMMs in deepfake video detection. Our results highlight that, while fine-tuned deepfake detec-
tion models excel at detecting known fakes, their performance significantly drops when confronted
with previously unseen generation models. This underscores the importance of zero-shot general-
ization in future detection systems, which is crucial as generative contents continue to become more
realistic. We hope FVBench serves as a catalyst for the development of next-generation detection
methods and inspires further research into scalable and adaptive content authenticity solutions.
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A APPENDIX

We clarify the use of LLM in section B, the detail information of T2V models in section C, de-
tail information of the LMMs in section D, more result comparisons in section E and the training
hyperparameters in section F.

B USE OF LLM

During the drafting of this manuscript, LLM (GPT4o) was employed to enhance the text’s fluency,
rectify grammatical inaccuracies, and improve the precision of phrasing. However, the central ideas,
experimental design, and final conclusions are generated without AI contribution.

C DETAILED INFORMATION OF T2V MODELS

Pyramid Jin et al. (2024) introduces a novel pyramidal flow matching strategy for video generation,
which progressively aligns data distributions at multiple scales. This enables high-quality synthesis
while potentially reducing computational demand.

Wan2.1 Wang et al. (2025a) is an open-source large-scale video generation model developed under
the “Wan” initiative. It is optimized for high-fidelity video creation and aims to enhance accessibility
and transparency in advanced generative AI research.

Allegro Zhou et al. (2024) aims to replicate commercial-grade video synthesis within a transparent
framework. Its goal is to demystify the ”black box” nature of high-end video models while striving
for comparable visual quality.

VideoCrafter2 Chen et al. (2024a) addresses the lack of high-quality video training data by sepa-
rating motion and appearance at the data level. It utilizes low-resolution videos for learning motion
and high-quality images for preserving appearance.

CogVideo X1.5 Yang et al. (2024b) is a diffusion-based text-to-video model featuring an Expert
Transformer, designed to improve efficiency, scalability, and specialization in complex video syn-
thesis.

Animate Xu et al. (2024) proposes a transformer-based method for generating long-form videos
with temporal consistency, focusing on modeling long-range dependencies to preserve narrative
coherence.

Lavie Wang et al. (2023b) adopts a cascaded latent diffusion architecture, generating and refining
video content in stages within the latent space. This design improves detail and coherence in high-
resolution video generation.

Hotshot-XL Mullan et al. (2023) is a text-to-GIF model adapted for video output by converting
GIFs to MP4 format. It is built on Stable Diffusion XL and employs default settings from its official
implementation.

Latte Ma et al. (2025) is a latent diffusion video model based on a Transformer backbone. It encodes
videos via a pretrained VAE and processes spatial-temporal tokens using four architectural variants
for efficient and expressive synthesis.

VideoCrafter1 Chen et al. (2023) presents two diffusion models: one for text-to-video and an-
other for image-to-video generation. By incorporating temporal attention, it enhances consistency
in videos generated from large-scale datasets.

NOVA Deng et al. (2024) reframes video generation as an autoregressive prediction task across time
and space. This design allows efficient frame-by-frame synthesis and supports flexible, zero-shot
generative capabilities.

ModelScope Wang et al. (2023a) proposes a decomposed diffusion approach that separates base
and residual noise across frames. This improves spatial-temporal consistency while benefiting from
pretrained generative modules.
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Text2Video-Zero Khachatryan et al. (2023) is a zero-shot text-to-video model that requires no fine-
tuning. It introduces motion dynamics between latent codes and uses cross-frame attention to ensure
temporal coherence.

Tune-A-Video Wu et al. (2023) is a one-shot text-to-video generation model employing sparse
spatio-temporal attention. It can generate coherent videos from a single example and supports con-
ditional or personalized inputs.

LTX HaCohen et al. (2024) is a real-time video generation model based on latent diffusion. Its key
strength lies in reducing generation latency, allowing interactive video synthesis without compro-
mising quality.

LVDM He et al. (2022) leverages a hierarchical diffusion design in latent space to extend generation
length and reduce computational cost. It includes conditional perturbation and guidance to maintain
quality across extended durations.

ZeroScope Team (2024h) serves as a specialized upscaler for outputs generated with zero-
scope v2 576w. By converting low-resolution previews to high-resolution videos, it enables faster
iteration with high visual fidelity.

LWM Liu et al. (2024a) is a multimodal autoregressive model that uses RingAttention to handle
long sequences efficiently. It supports strong video-language understanding and generation with a
context window of up to 1M tokens.

Pixverse AI (2024) is an all-in-one AI video tool that supports viral effects, video-to-video restyling,
lip-sync, and AI-based video extension. It’s beginner-friendly yet powerful enough for advanced
users, making it ideal for both casual and professional video creation.

Wanxiang Cloud (2024), developed by Alibaba DAMO Academy, is a multimodal large model
capable of cross-modal generation and understanding across text, video, and audio. It supports tasks
such as text-to-video and visual question answering.

Hailuo Team (2024d), by MiniMax, enables text-to-video and video editing through simple prompts.
It offers an accessible platform for generating high-quality videos in marketing, education, and
entertainment.

Jimeng Team (2024a), from Faceu Technology, is a text-to-video model focused on generating
short, realistic video clips with precise prompt interpretation.

Sora Team (2024e) excels in prompt understanding, generating emotionally expressive characters,
multi-shot videos, and complex scenes with consistent motion and detail.

Hunyuan Li et al. (2024c) is a 13B-parameter open-source text-to-video model that produces videos
with strong physical realism and scene consistency, supporting creative visual generation.

Vidu 1.5 Team (2024f) introduces Multiple-Entity Consistency, allowing unrelated characters, ob-
jects, and environments to be seamlessly combined into visually coherent videos, even with complex
inputs.

Gen3 Runway (2024) marks a new generation of foundation models from Runway, built on a fresh
large-scale multimodal training infrastructure. Trained jointly on video data, Gen-3 Alpha powers a
range of tools including text-to-video, video-to-video, and motion editing modes like motion brush
and director mode, while also supporting upcoming features for finer control over structure, style,
and motion.

Kling Team (2024c), developed by Kuaishou’s Large Model Algorithm Team, represents a new
class of AI creativity tools, offering rich capabilities for generating and editing AI-generated video
content with high controllability.

Genmo Team (2024b) is an AI creation assistant designed for video generation and editing. Users
can create animations and stylized videos from text or images, as well as restyle existing footage,
making it a versatile platform for creative exploration.

ChatGLM GLM et al. (2024), from Zhipu AI and Tsinghua University’s KEG lab, is a bilingual
large language model family ranging from GLM-130B to the advanced GLM-4. The latest ver-
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Table 8: An overview and URLs of the adopted 30 T2V generation models. ♡Open-source lab T2V
models. ♠Close-source commercial T2V models. †Representative variable and optional.

Models Frames FPS Resolution URL

♡Pyramid Jin et al. (2024) 121 24 1280×768 https://github.com/jy0205/Pyramid-Flow

♡Wan2.1 Wang et al. (2025a) 81† 16† 832×480† https://github.com/FoundationVision/LlamaGen

♡Allegro Zhou et al. (2024) 88 15 1280×720 https://github.com/rhymes-ai/Allegro

♡VideoCrafter2 Chen et al. (2024a) 16 10 512×320 https://github.com/AILab-CVC/VideoCrafter

♡CogVideo X1.5 Yang et al. (2024b) 32 8 1360×768 https://github.com/THUDM/CogVideo

♡Animate Xu et al. (2024) 49 8 672×384 https://github.com/aigc-apps/EasyAnimate

♡Lavie Wang et al. (2023b) 16 8 512×320 https://github.com/Vchitect/LaVie

♡Hotshot-XL Mullan et al. (2023) 8 8 672×384 https://github.com/hotshotco/Hotshot-XL

♡Latte Ma et al. (2025) 16 8 512×512 https://github.com/Vchitect/Latte

♡VideoCrafter1 Chen et al. (2023) 16† 10† 512×320† https://github.com/AILab-CVC/VideoCrafter

♡Text2Video-Zero Khachatryan et al. (2023) 8 4 512×512 https://github.com/Picsart-AI-Research/Text2Video-Zero

♡NOVA Deng et al. (2024) 33 12 768×480 https://github.com/baaivision/NOVA

♡ModelScope Wang et al. (2023a) 16 8 256×256 https://github.com/modelscope/modelscope

♡Tune-A-Video Wu et al. (2023) 8 8 512×512 https://github.com/showlab/Tune-A-Video

♡LTX HaCohen et al. (2024) 121 25 704×480 https://github.com/Lightricks/LTX-Video

♡LVDM He et al. (2022) 16 8 256×256 https://github.com/YingqingHe/LVDM

♡ZeroScope Team (2024h) 36 8 576×320 https://huggingface.co/cerspense/zeroscope_v2_XL

♡LWM Liu et al. (2024a) 8 4 256×256 https://github.com/LargeWorldModel/LWM

♠Pixverse AI (2024) 161† 30† 640×360† https://pixverse.ai/

♠Wanxiang Cloud (2024) 161† 30† 1280×720† https://tongyi.aliyun.com/wanxiang/

♠Hailuo Team (2024d) 141† 25† 1280×720† https://hailuoai.video/

♠Jimeng Team (2024a) 12†1 24† 1472×832† https://jimeng.jianying.com/

♠Sora Team (2024e) 150† 30† 854×480† https://openai.com/research/video-generation-models-as-world-simulators

♠Hunyuan Li et al. (2024c) 129† 24† 1280×720† https://aivideo.hunyuan.tencent.com/

♠Vidu1.5 Team (2024f) 60† 16† 688×384† https://www.vidu.studio/zh

♠Gen3 Runway (2024) 128† 24† 1280×768† https://runwayml.com/research/introducing-gen-3-alpha

♠Kling Team (2024c) 153† 30† 1280×720† https://klingai.io/

♠Genmo Team (2024b) 60† 15† 1728×1728† https://www.genmo.ai

♠ChatGLM GLM et al. (2024) 151† 30† 1280×720† https://chatglm.cn/video?lang=zh

♠Xunfei Team (2024g) 145† 24† 1024×576† https://typemovie.art/

sion integrates an “All Tools” framework, enabling enhanced interaction with external modules for
complex tasks.

Xunfei Team (2024g), by iFlytek, offers an AI-driven platform for quickly turning text into video.
It simplifies video creation by providing a variety of styles and templates suited for producing short-
form visual content efficiently.

D DETAILED INFORMATION OF THE LMMS

LLaVA-NeXT-Video Li et al. (2024b) boosts video input resolution and enhances fine-grained per-
ception capabilities, including OCR, visual reasoning, and factual knowledge grounding. It retains
a compact training setup, relying on fewer than one million instruction-tuning samples to achieve
high efficiency and broad generalization.

VideoLLaVA Liu et al. (2024b) presents a unified framework that bridges visual input with language
representations by aligning visual features before projecting them into the language space. This
approach empowers large language models to jointly reason over both images and video content
within a shared architecture.

InternVL2.5 Chen et al. (2024c) demonstrates strong multimodal capabilities across benchmarks
involving cross-domain reasoning, document comprehension, and video analysis. It benefits from
enhanced vision encoders, a larger training corpus, and optimized inference strategies, resulting in
improved generalization and hallucination mitigation.

InternVL3 Chen et al. (2024c) pushes the boundaries of multimodal LLMs by supporting a wider
range of applications, including tool use, GUI interaction, industrial visual tasks, and 3D scene
understanding. By unifying vision-language learning into a single-stage framework, it eliminates
the need for additional adapters or fusion modules, streamlining training and improving scalability.

VideoLlama3 Yao et al. (2024) adopts a four-stage training pipeline for vision-language modeling.
It introduces innovations such as Rotary Position Embedding (RoPE) for adaptive image resolution
handling and video token compression for efficient temporal representation, yielding strong perfor-
mance across visual understanding tasks in both image and video modalities.
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Table 9: Performance benchmark on AI-generated video subsets as a supplement to the Table
2 in the main paper. ♦* refers to finetuned models.

Methods / Datasets Genmo Hailuo T2V-Zero Tune-A-Video LVDM LWM LTX ZeroScope Jimeng VCrafter2
♦AIGVDet* 100.0% 100.0% 100.0% 100.0% 96.43% 93.12% 100.0% 100.0% 100.0% 100.0%

♦MC3 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Methods / Datasets Xunfei Hotshot Hunyuan CogVideo NOVA VCrafter1 Sora ChatGLM Wan2.1 Animate
♦AIGVDet* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

♦MC3 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Methods / Datasets Wanxiang Allegro Pyramid Vidu1.5 Lavie Kling Pixverse Latte MScope Gen3 Overall
♦AIGVDet* 100.0% 100.0% 98.24% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.59%

♦MC3 18* 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Table 10: Performance benchmark on real video subsets as a supplement to the Table 3 in the
main paper. ♡refers to model zero-shot results. ♦* refers to finetuned models.

Methods / Datasets MSRVTT KoNViD FineVD WebVid LSVQ LIVEVQC YouTubeUGC LIVE-YT-Gaming Overall
♡MM-Det 0.20% 2.08% 3.59% 4.51% 7.25% 13.68% 0.44% 0.0% 3.97%
♦AIGVDet* 99.43% 97.81% 98.32% 100.0% 96.89% 99.42% 100.0% 99.17% 98.88%
♦MC3 18* 99.75% 99.48% 98.77% 99.67% 97.56% 97.85% 100.0% 100.0% 98.91%

LLaMA3.2-Vision Meta (2024) excels in video-based reasoning tasks, including understanding
complex documents, interpreting data visualizations, and performing visual grounding. The model
is capable of interpreting structured content such as charts and maps, while generating descriptive
and context-aware captions for visual inputs.

mPLUG-Owl3 Ye et al. (2024) is a robust multimodal model designed for understanding extended
video sequences and interleaved video-text content. It features a novel Hyper Attention mechanism
that fuses visual and textual signals into a shared embedding space, enabling effective processing of
long-form and multi-video inputs.

Qwen2.5-VL Bai et al. (2025) represents the latest evolution of the Qwen vision-language family.
It enhances recognition and localization capabilities, supports document-level reasoning, and im-
proves long-video understanding through dynamic resolution scaling, absolute temporal encoding,
and optimized inference via window-based attention mechanisms.

LLaVA-One-Vision Li et al. (2024a) is an open-source multimodal model designed for scalable
visual-language learning across single images, image sequences, and video data. It features a cost-
efficient architecture that links vision encoders with language models, enabling effective knowledge
transfer from image to video tasks.

InternLM-XComposer-2.5 Zhang et al. (2024b) is a powerful vision-language model built on
InternLM2-7B, supporting long-context inputs up to 96K tokens. It also enables webpage gener-
ation and text-image article composition. It offers a strong open-source alternative for both vision-
language understanding and content generation.

E MORE RESULT COMPARISONS

To further support the results presented in the main paper, we extend the experiments in the original
tables by including additional models for training and evaluation, as shown in Tables 9- 12.

F TRAINING HYPERPARAMETERS

The following hyperparameters were consistently used across the training stages:

• Dataset Split: The dataset was partitioned into training and testing sets using a 4:1 ratio.
• Learning Rate: 4× 10−5 (i.e., 4e-5).
• Batch Size: 4.
• LoRA Configuration:
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Table 11: Performance benchmark on AI-edit video subsets, including five editing types as a
supplement to the Table 4 in the main paper. ♡refers to model zero-shot results. ♦* refers to
finetuned models.

Dimension Background Style Change Color Change Action Edit Object Operation Overall
Methods / Metrics Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑ Acc(%)↑ F1↑
♡MM-Det 95.10 0.935 100.00 1.000 97.67 0.947 96.94 0.960 98.82 1.000 97.85 0.837
♦AIGVDet* 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1.000 100.0 1. 000
♦MC3 18* 87.37 0.933 95.45 0.977 96.36 0.981 92.78 0.963 92.67 0.962 93.35 0.966

Table 12: Results of cross-generator validation on different training and testing subsets using
ResNet3D 18.

Testing Subset
Training Subset Avg

AccAlle Anim CogV Hot LTX LVDM LWM Latt Lavi MS NOVA T2VZ Pyra TAV VC1 VC2 Wan ZS
Allegro 99.3 83.7 3.0 17.0 23.0 0.0 13.0 46.7 44.3 0.3 33.3 79.0 1.0 5.7 0.0 34.0 81.7 3.0 31.6
Animate 49.3 94.7 13.3 26.3 30.0 0.0 34.7 56.3 47.0 1.7 32.0 60.7 0.3 4.7 2.0 19.0 61.0 4.3 29.9

CogVideo 49.7 63.3 99.3 40.0 47.7 0.0 25.7 59.7 66.0 0.3 48.0 40.3 0.0 1.7 1.0 13.7 42.7 3.3 33.5
Hotshot-XL 21.7 47.0 3.7 98.3 46.7 5.7 54.0 73.7 72.0 25.0 67.0 18.0 3.7 4.7 24.7 46.7 18.0 46.0 37.6

LTX 24.0 43.7 4.3 25.7 98.7 0.3 38.0 60.0 34.7 7.3 20.0 27.3 0.7 14.0 2.3 12.3 30.0 4.3 24.9
LVDM 24.0 5.7 0.0 14.3 1.3 100 92.0 83.7 65.0 98.7 11.3 25.7 30.7 24.7 88.3 61.0 31.7 1.3 42.2
LWM 5.7 14.0 0.7 23.3 12.3 18.3 99.7 64.0 15.3 28.0 13.3 14.0 9.7 23.7 10.3 17.7 13.0 1.7 21.4
Latte 41.3 61.3 8.7 27.3 36.7 1.0 59.3 98.7 64.7 9.3 37.0 45.3 5.3 17.3 2.3 41.7 61.7 6.0 34.7
Lavie 55.0 70.0 6.0 32.7 28.7 5.3 44.3 80.0 99.0 4.7 31.0 59.7 3.3 6.0 2.3 49.0 72.3 2.7 36.2

ModelScope 10.0 7.0 0.0 40.0 8.0 81.7 92.7 81.7 28.0 100 28.3 6.3 7.3 12.0 91.7 42.3 12.0 41.3 38.4
NOVA 51.3 68.3 5.7 71.0 54.0 2.3 70.3 71.7 55.3 4.7 99.0 61.0 0.3 3.3 8.7 42.3 34.3 12.7 39.8

Pyramid 96.0 93.0 11.7 27.7 47.3 0.7 19.7 73.3 89.3 0.7 66.0 99.3 3.0 15.0 3.3 72.0 88.0 5.7 45.1
T2V-Zero 30.3 13.0 0.0 3.7 1.7 26.3 76.0 84.3 77.7 26.0 1.0 64.3 98.7 77.0 4.3 52.3 38.7 0.7 37.6

Tune-A-Video 5.7 7.0 0.0 3.0 2.0 4.3 56.7 64.3 20.3 25.3 0.7 32.0 18.0 98.0 7.7 13.3 29.0 6.3 21.9
VideoCrafer1 20.7 30.0 0.0 55.0 23.0 66.0 65.3 62.7 56.7 97.7 53.0 9.7 1.7 9.0 99.3 68.0 25.3 61.0 44.7
VideoCrafer2 59.0 80.0 1.0 75.7 39.3 23.0 72.0 93.7 96.0 26.3 66.3 69.7 9.7 25.7 50.0 99.3 77.3 31.0 55.3

Wan2.1 66.0 82.0 11.3 14.0 24.3 0.3 17.3 67.7 78.3 1.3 19.3 64.0 0.7 8.3 0.3 40.3 98.3 4.3 33.2
ZeroScope 39.3 48.7 1.3 48.7 33.7 0.3 25.0 36.0 44.7 34.0 36.7 24.7 8.7 23.3 52.7 43.7 23 99.3 34.7
ChatGLM 50.7 59.0 4.3 16.0 24.0 1.0 13.7 51.0 65.7 0.3 33.3 53.0 0.0 0.7 3.0 20.0 59.0 2.3 25.4

Gen3 58.0 60.0 0.8 12.2 9.6 0.4 19.5 52.6 50.0 1.0 12.9 67.9 4.0 12.9 1.6 31.5 64.5 1.8 25.6
Genmo 75.7 82.7 1.3 39.0 31.0 1.0 20.7 70.3 75.3 2.0 55.7 81.3 4 8.3 9.0 67.0 75.3 23.7 40.2

Hunyuan 46.7 55.3 1.7 11.3 13.7 0.0 11.3 37.3 44.0 1.0 11.0 50.0 1.0 3.3 0.0 35.3 67.3 2.7 21.8
Hailuo 48.3 47.3 2.3 9.0 7.7 0.3 17.0 27.7 41.7 0.3 7.0 55.7 3.3 7.7 1.0 28.3 64.0 0.7 20.5
Jimeng 51.3 34.3 0.0 10.7 4.3 0.0 3.0 15.3 19.0 0.0 4.0 46.7 1.0 4.0 1.7 16.3 41.7 2.3 14.2
Kling 38.3 45.0 2.3 23.3 19.0 0.7 15.0 33.3 40.7 2.0 18.0 49.0 1.0 5.3 2.7 31.0 52.0 24.7 22.4

Pixverse 65.7 57.3 1.0 23.3 20.7 0.7 14.0 29.0 50.3 2.3 20.0 75.3 1.0 7.7 3.3 52.3 56.0 9.3 27.2
Sora 47.3 40.0 1.3 14.3 11.7 0.7 12.3 29.0 35.3 1.3 10.7 43.7 1.7 9.0 2.7 20.7 67.7 6.0 19.7

Vidu1.5 60.7 54.7 2.0 4.7 10.3 2.0 14.3 38.0 45.3 1.3 11.3 63.7 1.7 11.3 4.0 44.0 57.7 1.7 23.8
Wanxiang 60.7 72.7 4.0 19.7 19.7 0.3 25.3 53.0 54.0 1.0 26.3 65.3 1.0 7.7 0.7 43.7 81.3 1.7 29.9

Xunfei 58.7 41.3 1.7 22.0 15.0 0.0 6.0 23.3 23.3 0.0 26.3 61.0 0.0 2.3 1.3 31.3 28.7 5.0 19.3
Avg Acc 47.0 52.1 6.4 28.3 24.8 11.4 37.6 57.3 53.3 16.8 30.0 50.5 7.4 15.1 16.1 39.7 51.8 13.9 31.1

– LoRA Rank (lora rank): 16
– LoRA Alpha (lora alpha): 16

• Optimizer Settings:
– Weight Decay (weight decay): 0.01
– Warmup Ratio (warmup ratio): 0.03.
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Figure 5: Visualization of the fake video frames in the FVBench dataset generated by different text-
to-video generation models with the prompt “two dogs walk across a busy street”.
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Figure 6: Visualization of the fake video frames in the FVBench dataset generated by different text-
to-video generation models with the prompt “two dogs walk across a busy street”.
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Figure 7: Visualization of the fake video frames in the FVBench dataset generated by different text-
to-video generation models with the prompt “two dogs walk across a busy street”.
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