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Abstract

Recent studies have provided both empirical and theoretical evidence illustrating
that heavy tails can emerge in stochastic gradient descent (SGD) in various scenar-
ios. Such heavy tails potentially result in iterates with diverging variance, which
hinders the use of conventional convergence analysis techniques that rely on the
existence of the second-order moments. In this paper, we provide convergence
guarantees for SGD under a state-dependent and heavy-tailed noise with a poten-
tially infinite variance, for a class of strongly convex objectives. In the case where
the p-th moment of the noise exists for some p € [1, 2), we first identify a condition
on the Hessian, coined ‘p-positive (semi-)definiteness’, that leads to an interesting
interpolation between the positive semi-definite cone (p = 2) and the cone of
diagonally dominant matrices with non-negative diagonal entries (p = 1). Under
this condition, we provide a convergence rate for the distance to the global optimum
in LP. Furthermore, we provide a generalized central limit theorem, which shows
that the properly scaled Polyak-Ruppert averaging converges weakly to a multi-
variate a-stable random vector. Our results indicate that even under heavy-tailed
noise with infinite variance, SGD can converge to the global optimum without
necessitating any modification neither to the loss function nor to the algorithm
itself, as typically required in robust statistics. We demonstrate the implications of
our results over misspecified models, in the presence of heavy-tailed data.

1 Introduction

We consider the unconstrained minimization problem

S 11

minimize f(x), (1.1)
using the stochastic gradient descent (SGD) algorithm. Initialized at g € R"”, the SGD algorithm is
given by the iterations,

@1 =2 — Y1 (V@) + & (21)), £=0,1,2,... (1.2)

where {v; }:cn+ denotes the step-size sequence, and {&, };cn+ is a martingale difference sequence
adapted to a filtration {F; }+cn, characterizing the noise in the gradient (the sequence {x; }:cn is also
adapted to the same filtration, if we assume xq is Fy-measurable). Our focus is on the case where the
noise is state dependent, and its variance is infinite, i.e., E[||€,]|3] = cc.

*Work partially conducted while affiliated with the Vector Institute.
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Many problems in modern statistical learning can be written in the form (1.1), where f(x) typically
corresponds to the population risk, that is, f(x) := E,.,[¢(z, z)] for a given loss function £ and an
unknown data distribution v. In practice, one observes independent and identically distributed (i.i.d.)
samples z; ~ v for i € [n], and estimates the population gradient V f(x) with a noisy gradient at
each iteration, which is based on an empirical average over a subset of the samples {z;};c[,). Due to
its simplicity, superior generalization performance, and well-understood theoretical guarantees, SGD
has been the method of choice for minimization problems arising in statistical machine learning.

Starting from the pioneering works of Robbins and Monro [1951], Chung [1954], Sacks [1958],
Fabian [1968], Ruppert [1988], Shapiro [1989], Polyak and Juditsky [1992], theoretical properties of
the SGD algorithm and its variants have been receiving a growing attention under different scenarios.
Recent works, for example Tripuraneni et al. [2018], Su and Zhu [2018], Duchi and Ruan [2021],
Toulis and Airoldi [2017], Fang et al. [2018], Anastasiou et al. [2019], Yu et al. [2020] established
convergence rates for SGD in various settings. By building on the analysis of Polyak and Juditsky
[1992] to prove a central limit theorem (CLT) for the Polyak-Ruppert averaging, these works led to
novel methodologies to compute confidence intervals using SGD. However, a recurring assumption in
this line of work is the finite noise variance, which may be violated frequently in modern frameworks.

Heavy-tailed behavior in statistical methodology may naturally arise from the underlying model,
or through the iterative optimization algorithm used during model training. In robust statistics,
one often encounters heavy-tailed noise behavior in data, which in conjunction with standard loss
functions leads to infinite noise variance in SGD. Very recently, heavy-tailed behavior is shown
to emerge from the multiplicative noise in SGD, when the step-size is large and/or the batch-size
is small [Hodgkinson and Mahoney, 2021, Giirbtizbalaban et al., 2021]. On the other hand, there
is strong empirical evidence in modern machine learning that the gradient noise often exhibits
a heavy-tailed behavior, which indicates an infinite variance. For example, this is observed in
fully connected and convolutional neural networks [Simgekli et al., 2019, Giirbiizbalaban and Hu,
2021] as well as recurrent neural networks [Zhang et al., 2020]. Thus, understanding the behavior
of SGD under infinite noise variance becomes extremely important for at least two reasons. A
computational complexity reason: modern machine learning and robust statistics frameworks lead
to heavy-tailed behavior in SGD; thus, understanding the performance of this algorithm in terms of
precise convergence rates as well as the required conditions on the step-size sequence as a function of
the ‘heaviness’ of the tail become crucial in this setup. A statistical reason: many inference methods
that rely on Polyak-Ruppert averaging utilize a CLT which holds under finite noise variance (see e.g.
online bootstrap and variance estimation approaches [Fang et al., 2018, Su and Zhu, 2018, Chen et al.,
2020]). Using the same methodology in the aforementioned modern frameworks (under heavy-tailed
noise) will ultimately result in incorrect confidence intervals, jeopardizing the statistical procedure.
Thus, establishing the limit distribution in this setting is of great importance.

In this work, we study the behavior of the SGD algorithm with diminishing step-sizes for a class of
strongly convex problems when the noise variance is infinite. We establish the convergence rates of
the SGD iterates towards the global minimum, and identify a sufficient condition on the Hessian of
f, which interpolates between the positive semi-definite cone and the cone of diagonally dominant
matrices (with non-negative diagonal entries). We further study the Polyak-Ruppert averaging of
the SGD iterates, and show that the limit distribution is a multivariate «-stable distribution. We
illustrate our theory on linear regression and generalized linear models, demonstrating how to verify
the conditions of our theorems. Perhaps surprisingly, our results show that even under heavy-tailed
noise with infinite variance, SGD with diminishing step-sizes can converge to the global optimum
without requiring any modification neither to the loss function nor to the algorithm itself, as opposed
to the conventional techniques used in robust statistics [Huber, 2004]. Finally, we argue that our work
has potential implications in constructing confidence intervals in the infinite noise variance setting.

2 Preliminaries and Technical Background

Notational Conventions. By N, N* and R we denote the set of non-negative integers, positive
integers, and real numbers, respectively. For m € NT, we define [m] = {1,...,m}. We use italic
letters (e.g. x, ) to denote scalars and scalar-valued functions, sign(z) to denote the sign of z, bold
face italic letters (e.g. x, &) to denote vectors and vector-valued functions, and bold face upper case
letters (e.g. A) to denote matrices. We use || and ||z||, to denote the 2-norm and p-norm of a
vector x; |A| and ||A[|, the operator 2-norm and operator p-norm of a matrix A. The transpose



of a matrix A and a vector x (viewed as a matrix with 1 column) are denoted by AT and . If

{A;}ien is a sequence of matrices and k > ¢, the empty product Hf: A is understood to be the
identity matrix I. For two sequences of real numbers {a:}ten, {bt }ren, we write a; = O(by) if
lim sup,_, o |a:|/]b] < 00, ar = o(by) if lim sup,_, o |a:|/]bs] = 0, ax = O(by) if both a;, = O(b;)
and b; = O(a¢) hold, and a; < by if lim;_, o |a¢|/|bt| exists and is in (0, 00). If a; = O(b:t°) for
any € > 0, we say a; = O(b;). Sufficiently large or sufficiently small positive constants whose values
do not matter are written as C, Cy, C1, . . ., sometimes without prior introduction. If X1, X, ... is
a sequence of random vectors taking value in R™ and y is a probability measure on R, we write

D . e
X, oM if {X ¢ }1en+ converges in distribution (also called ‘weak convergence’) to p.
— 00

Stochastic Approximation. In the SGD recursion (1.2), we can replace V f with an arbitrary
continuous function R : R™ — R"”, and consider the same iterations that stochastically approximate
the zero x* of R,

Tip1 = Ty — %+1(R(wt) + §t+1($t))~ 2.1
This is called the stochastic approximation process [Robbins and Monro, 1951], which is a predecessor
of stochastic gradient descent (SGD) and describes a larger family of iterative algorithms (see e.g.
[Kushner and Yin, 2003, Chapters 2 and 3]). Theoretical investigation of the recursion (2.1) has been
active ever since its invention, especially under finite noise variance assumption: Robbins and Monro
[1951] prove that the recursion (2.1) can lead to the L? convergence lim;_,, E[|z; — z*|?] = 0;
Chung [1954] further calculates an exact convergence rate (see (3.6) in Section 3); Blum [1954]
presents an elegant proof that the convergence of x; to * can hold almost surely. The asymptotic
distribution of (2.1) can be attributed to [Chung, 1954, Theorem 6], which states that the expression
Y 1 Q(xt — x*) converges weakly to a normal distribution. In their seminal works, Polyak and
Juditsky [1992] and Ruppert [1988] independently introduce the concept of ‘averaging the iterates’,
_ Lo+ ...+ T
Tt = ————F

t

showing the striking result that \/#(; —x*) converges weakly to a fixed normal distribution regardless
of the choice of the step-size {7V }+en+ as long as it satisfies mild conditions. Recently, optimization
algorithms that can handle heavy-tailed noise sequence {&, };cn+ have been proposed [Davis et al.,
2019, Nazin et al., 2019, Gorbunov et al., 2020]; however, they still rely on a uniformly bounded
variance assumption, hence do not cover our setting.

Compared with the copious collection of theoretical studies on stochastic approximation algorithms
with finite variance as mentioned above, papers that study stochastic approximation under infinite
noise variance are extremely scarce; we shall summarize only a few papers known to us. Krasulina
[1969] is the first to consider such problems, proving almost sure and LP convergence for the
one-dimensional stochastic approximation process without variance. The weak convergence of the
iterates (without averaging) ¢/ *(x; — x*) is also considered by Krasulina [1969], but only for
the fastest-decaying step-size v; = 1/t. Goodsell and Hanson [1976] discuss how x; — x* in
probability can imply ; — «* almost surely, when no finite variance is assumed, and Li [1994]
provides a necessary and sufficient condition for almost sure convergence of x; — x*, stating that
faster-decaying step-size v; = o(t~1/P) is required when moments of lower orders E[|£,|P] are not in
place. Anantharam and Borkar [2012] show that although step-size that decays slower than ¢t~ /7
cannot yield almost sure convergence, LP convergence can still hold under what they call the ‘stability
assumption’, but their analysis technique provides no convergence rate. Recently, Simgekli et al.
[2019] and Zhang et al. [2020] considered SGD with heavy-tailed noise &, having uniformly bounded
p-th order moments. Besides not being able to handle state-dependent noise due to this uniform
moment condition, Simsekli et al. [2019] imposed further conditions on R = V f such as global
Holder continuity for a non-convex f, whereas Zhang et al. [2020] modified SGD with ‘gradient
clipping’, in order to be able to compensate the effects of the heavy-tailed noise.

Finally, we shall mention that a class of stochastic recursions similar to (2.1) have been considered in
the dynamical systems theory [Mirek, 2011, Buraczewski et al., 2012, 2016], for which generalized
central limit theorems with a-stable limits have been established. However, such techniques typically
require R to be (asymptotically) linear and the step-sizes to be constant as they heavily rely on the
theory of time-homogeneous Markov processes. Hence, their approach does not readily generalize to
the setting of our interest, i.e., non-linear R and diminishing step-sizes, where the latter is crucial for
ensuring convergence towards the global optimum.



Stable Distributions. In probability theory, a random variable X is stable if its distribution is
non-degenerate and satisfies the following property: Let X; and X» be independent copies of X.
Then, for any constants a, b > 0, the random variable a X7 + bX5 has the same distribution as cX +d
for some constants ¢ > 0 and d (see e.g. [Samorodnitsky and Taqqu, 1994]). The stable distribution is
also referred to as the a-stable distribution, first proposed by Lévy [1937], where o € (0, 2] denoting
the stability parameter. The case o = 2 corresponds to the normal distribution, and the variance under
this distribution is undefined for any a@ < 2. The multivariate a-stable distribution dates back to
Feldheim [1937], which is a multivariate generalization of the univariate «-stable distribution, which
is also uniquely characterized by its characteristic function. In particular, an R"-valued random vector
X has a multivariate a-stable distribution, denoted as X ~ S(o, A, §) if the joint characteristic
function of X is given by

E[exp(iuTX)] = exp{ —/

(|u"s|* + iv(u"s,a))A(ds) + iuTé},

sESs
for any u € R™, and 0 < « < 2. Here, « is the tail-index, A is a finite measure on Ss known as
the spectral measure, § € R” is a shift vector, and v(y, a) := —sign(y) tan(mwo/2)|y|* for o # 1

and v(y, o) := (2/m)ylog |y| for a« = 1 for any y € R, and S5 denotes the unit sphere in R"; i.e.
S = {s € R™ : |s| = 1}. Stable distribution also emerges as the limit distribution in the Generalized
Central Limit Theorem (GCLT) [Gnedenko and Kolmogorov, 1954], which states that for a sequence
of i.i.d. random variables whose distributions have a power-law tail with index 0 < a < 2, the
normalized sum converges to an a-stable distribution as the number of summands go to co.

Domains of Normal Attraction of Stable Distributions. Let X, X5, ..., X be ani.i.d. sequence
of random vectors in R” with a common distribution function F'(x). If there exists some constant
a > 0 and a sequence b; € R™ such that

X1+ + Xy D
e T Tt (22)
then F'(x) is said to belong to the domain of normal attraction of the law i, and « is the characteristic
exponent of x4 [Gnedenko and Kolmogorov, 1954, page 181]. If i is an a-stable distribution, then we
say F'(x) belongs to the domain of normal attraction of an «-stable distribution. For example, the
Pareto distribution belongs to the domain of normal attraction of an a-stable law. In Section C in the
supplementary document, we provide more details as well as a sufficient and necessary conditions for
being in the domain of normal attraction of an a-stable law.

3 Convergence of SGD under Heavy-tailed Gradient Noise

In this section, we identify sufficient conditions for the convergence of SGD under heavy-tailed
gradient noise, and derive explicit rate estimates. In the standard setting when the noise variance is
finite, it is sufficient to assume Hessian is uniformly positive definite in order to achieve contraction
in the subsequent SGD iterations (see for example Polyak and Juditsky [1992], Tripuraneni et al.
[2018], Su and Zhu [2018], Duchi and Ruan [2021], Toulis and Airoldi [2017], Fang et al. [2018],
Anastasiou et al. [2019]). When the noise variance is infinite with a finite p-th moment for p € [1, 2),
a stronger notion of positive definiteness is required in our analysis to achieve such a contraction,
which leads to an interesting interpolation between the positive semi-definite cone (as p — 2), and
the cone of diagonally dominant matrices with non-negative diagonal entries (p = 1).

3.1 p-Positive Definiteness

First, we introduce the signed power of vectors which will be used to define a family of matrices.

For a vector v = (v!,...,v")T € R™ and q > 0, the signed power of v is defined as

T
vl? = (sign(vl) . ,sign(v”)|v"|q) : (3.1

Denoting the n-dimensional ¢,, unit sphere with S, = {v € R™ : ||v||, = 1}, and the set of n X n

symmetric matrices with S, we now define the following subset of S.

Definition 1 (p-positive definiteness). Let p > 1 and Q be a symmetric matrix. We say that Q is

p-positive definite if for all v € S, we have vTQuP=1) > 0. Similarly, we say that Q is p-positive
semi-definite if for all v € Sy, we have vTQuir—1 > 0.




It is not hard to see that the set of p-positive semi-definite
matrices (p-PSD) defines a closed pointed cone, which we
denote by S”_, with interior as the set of p-positive definite
matrices (p-PD), denoted by S*. . We are mainly interested
in the case 1 < p < 2. Note that Si coincides with the
standard PSD cone, and we show in Section A.2 that Si is
exactly the cone of diagonally dominant matrices with non-
negative diagonal entries, denoted by D, . For any p € [1, 2],

these cones satisfy the following D cone: p=1
D, = S}k C Si C Si' p-PSD cone: pe (1,2)

PSD cone: p=2

SE cones

Figure 1 is a hypothetical illustration of the inclusion rela-
tionship between these cones. Figure 1: Geometry of p-PSD matrices.

. . .. . . . . D4 cone refers to the cone of diagonally
Similar to the uniform PD condition on the Hessian, which is = 4 000 o0 oo with non-negative di-

commonly used in classical analysis (i.e. strong convexity), agonal entries. Their inclusion relation-
we also define a uniform version of Definition 1. We recall ship is given in Propositions 13 and 14.
that every operator norm || - ||, induces the same topology

on the set of n-dimensional matrices, which is just the usual topology on R™*™. Further, the set of
symmetric matrices S, as the set of zeros of the continuous function X — X — XT . is aclosed set.
Hence for a set M C S, denoting its topological closure with M, we also have M C S. We are
interested in the case where M is a bounded set.

Definition 2 (uniform p-PD). Let p > 1 and M C S be a non-empty set of symmetric matrices. We
say that M is uniformly p-PD if for all Q € M, we have Q € S",__.

Notice that M is uniformly 2-PD if and only if the eigenvalues of the symmetric matrices in the set
M are all lower bounded by a positive real number. Notice also that a finite subset of symmetric
matrices is uniformly p-PD if and only if each element of the set is p-PD.

p-PSD cone emerges naturally when analyzing SGD algorithm in the heavy-tailed setting, interpolat-
ing between the standard PSD cone to the cone of diagonally dominant matrices with non-negative
diagonal entries. To the best of our knowledge, we are the first to study such families of matrices and
their application in stochastic optimization. For further details about these cones, we refer interested
reader to Section A.2 in the supplementary document.

We make the following uniform smoothness and curvature assumptions on the objective function.

Assumption 1. The set of matrices {V*f(x) : € R™} is bounded and uniformly p-PD.

3.2 Rate of Convergence in L”

We fix a probability space (€2, F,P) with filtration {F; }+cn, and we let &y be Fp-measurable. We
make the following assumption on the gradient noise sequence.

Assumption 2. The gradient noise sequence {&,};cn+ admits the following decomposition

i) = mypi(y) + Copns (3.2)

where {C, }ien+ is an i.i.d. sequence with E[,] = 0, and E[|(,|P] < oo for some p, and {m; };en+
is a martingale difference sequence, and both sequences are adapted to the filtration {F; }1en.

Further, the state dependent component of the noise satisfies, for some K > 0,

E[|mt+1(wt)\2 | ]-'t] <K(1+ |zf). (3.3)

We call my the state-dependent component of the gradient noise, which naturally has a state-dependent
conditional second moment. The variance of this component can be arbitrarily large depending on the
state «;. The heavy-tailed noise behavior is due to ¢,, which may have an infinite variance for p < 2
(i.e., the second moment is undefined). Compared to recent works on SGD with heavy-tailed noise,
our noise model in Assumption 2 is significantly more general. For instance, the noise model in the
recent work Zhang et al. [2020] assumes E[|€,,, (x)|?] < o for all z, where o does not depend on
x. Therefore, this noise model cannot handle state-dependent noise, and does not even hold in the



linear regression example given in Section 5 (as the moments of the noise must scale with the norm of
x). On the contrary, in many instances of stochastic approximation methods subject to heavy-tailed
noise with long-range dependencies, one can verify that the noise admits the decomposition (3.2).
‘We shall show in Section 5 that the noise model (3.2) arises in practical applications such as linear
regression and generalized linear models subject to heavy-tailed data (see also Anantharam and
Borkar [2012] for a detailed discussion on this noise model).

In our first result, assuming that the objective function f has a uniformly p-PD Hessian and the
noise sequence {&, };en+ has infinite variance but satisfies Assumption 2, we establish an asymptotic
convergence rate in LP for the SGD algorithm to the unique minimizer x*.

Theorem 3. Suppose Assumptions 1 and 2 hold for some 1 < p < 2. For step-size satisfying
v¢ <X tP with p € (0,1), the error of the SGD iterates {x; }+cn from the minimizer x* satisfies

Eﬂwr—wﬂﬂ::0<fmw_n). (3.4)
Consequently, we have sup,cy+ E[|€,[P] < oo.

The proof of Theorem 3 is provided in Section B in the supplementary document. We observe that
the convergence rate of SGD depends on the highest order finite moment p of the noise sequence,
and faster rates are achieved for larger values of p. The fastest convergence rate implied by our result
is near O(t*pﬂ), which is achieved for p =~ 1. However, SGD converges even for very slowly
decaying step-size sequences as p gets closer to 0.

If the noise sequence has further integrability properties with a finite p-th moment for all p € [g, «)
for some 1 < ¢ < « and if uniform p-PD condition (i.e. Assumption 1) holds, then faster rates are
achievable. In particular, the following result is an interesting consequence of Theorem 3, and its
proof is provided in Section B in the supplementary document.

Corollary 4. For constants q, « satisfying 1 < q < « < 2, suppose that Assumptions 1 and 2 hold
for every p € [q, «). For step-size satisfying v, < t=° with p € (0, 1), the error of the SGD iterates
{x+ }ren from the minimizer x* satisfies

Mmrqﬂﬂ:@@ﬂﬂﬁ) 3.5)

Remark. The additional integrability assumption yields faster rates for any feasible step-size
sequence since p(av — 1) /a > p — 1 forp € (1,2].

Let us briefly compare our results stated above to those in the setting where the noise sequence has a
finite variance. A classical convergence result that goes back to Chung [1954, Theorem 5] states that

Ellz, — z*|"] = @(t—mﬁ), (3.6)

where r > 2 is an integer such that the r-th moment exists for the stochastic approximation process,
and this is achieved for strongly convex objective functions in one dimension (whose second derivative
{f"(x) : ¢ € R} satisfies the uniformly 2-PD property) with a step-size choice ; < ¢~ for some
p € (1/2,1). We point out that our rate (3.5) recovers the rate implied by (3.6) when r = 2, and
extends it further to the case 1 < r < 2.

In the presence of heavy-tailed noise, the folklore is to modify SGD (e.g., clipped gradients) in order
to tame the heavy-tails, which considerably simplifies the problem and makes it amenable to classical
analysis tools. For instance, to motivate modifying SGD in this regime, in [Zhang et al., 2020,
Remark 1] authors prove that E[|V f(x;)|?] = oo for vanilla SGD and argue that SGD diverges in
this setting. On the contrary, our results show that, without any modifications, SGD can still converge
to the optimum in LP, even when it does not converge in L? since the second moment is not defined.

4 Stable Limits for the Polyak-Ruppert Averaging

In this section, we establish the limit distribution of the Polyak-Ruppert averaging under infinite noise
variance, extending the asymptotic normality result given by Polyak and Juditsky [1992] to a-stable
distributions. Let us fix an o € (1, 2] and assume the following throughout this subsection.

2This result, like many other similar studies in the 1950s, concerns only the one-dimensional case. But they
generalize easily to higher dimensions.



Assumption 3. The gradient noise sequence {&,};cn+ admits the following decomposition

£t+1(wt) =my1(xy) + Ct+17 4.1)

where {C,; }1en+ is an i.i.d. sequence with E[(,] = 0, which is in the domain of normal attraction of
an n-dimensional symmetric a-stable distribution y, i.e.,

C1+--'+Ct D

tl/a t—o00

4.2)

The state dependent component {m }cn+ is a martingale difference sequence with a second-moment
satisfying (3.3), and both sequences are adapted to the filtration {F;}ten.

The above assumption is arguably more stringent than Assumption 2, and it implies that E[|{,|?] < oo
for all p € [1, «); thus, Assumption 2 is satisfied for any p € [1, «). The condition (4.2) is a special
case of (2.2) which holds if, for example, ¢,’s have power-law tails (i.e. Paretian tail) with index «.

Denoting the Polyak-Ruppert averaging by =; = %(wo + ... + ®4_1), we are interested in the
asymptotic behavior of

To+ ...+ xTpoq) — ta*
tl/«a

tl_l/a(ft—$*) _ ( ,
for o € (1, 2]. In the special case when v = 2, it is known that this limit converges to a multivariate
normal distribution (which is a 2-stable distribution), a result proven in the seminal work by Polyak
and Juditsky [1992]. Similarly, we begin with a result that considers a quadratic objective where the
function V f(x) is linear in &, and then building on this result, we establish the limit distribution of
Polyak-Ruppert averaging also in the more general non-linear case.

Theorem 5 (linear case). Suppose the function V f(x) is affine, i.e. V f(x) = Az — b for a real
matrix A € R"*" and a real vector b € R™ and there exist scalars p, p satisfying

max(o‘”‘p,ap) <p<a,
1+ap

such that A is p-PD and p € (0,1). If the noise sequence satisfies Assumption 3 for the same
parameter o, then for the step-size satisfying v, =< t~", the normalized average t*~'/ (&, — x*)
converges weakly to an n-dimensional a-stable distribution.

The above theorem states that Polyak-Ruppert averaging for any step-size sequence with index
p € (0, 1] converges weakly to an a-stable limit. Thus, in the linear case, the size of this feasible
interval is the same in both heavy- and light-tailed noise settings (see e.g. Polyak and Juditsky [1992]
and Ruppert [1988]). Notably, a-stable limit of the averaged iterates does not depend on the index p,
i.e., limit distribution does not depend on how fast the step-size decays as long as p € (0, 1].

The next result generalizes Theorem 5 to the setting where V f () is non-linear.

Theorem 6 (non-linear case). Let 1 < 1/p < q < « and suppose Assumption 1 holds for every
p € [q, ). Assume further that the gradient V f(x) can be approximated using the Hessian matrix
V2 f(x*) around the minimizer x* as

Vi) - V?f(z*)(z—z")| < K|z — z*|". 4.3)

If the noise sequence satisfies Assumption 3, for the step-size satisfying v < t~°, the normalized
average t'=1/ (T — x*) converges weakly to an n-dimensional a-stable distribution.

The condition (4.3) is standard (see e.g. Polyak and Juditsky [1992, Assumption 3.2]), which simply
imposes a local linearity condition on the gradient of the objective function f, with an order-q
polynomial error term. This assumption holds, for example, whenever the Hessian is Lipschitz
continuous. We notice that the size of the feasible interval is p € (1/c, 1), which is smaller this time
compared to the light tailed case; Polyak and Juditsky [1992, Theorem 2] allows p € (1/2,1).

The above theorem establishes that, when the noise has diverging variance, the Polyak-Ruppert
averaging admits an c-stable limit rather than a standard CLT. This result has potential implications in
statistical inference in the presence of heavy-tailed data. Inference procedures that take into account
the computational part of the training procedure (instead of drawing conclusions for the minimizer



of the empirical risk) rely typically on variations of Polyak-Ruppert averaging and the CLT they
admit [Fang et al., 2018, Su and Zhu, 2018, Chen et al., 2020]. The above theorem simply states
this CLT does not hold under heavy-tailed gradient noise. Therefore, many of these procedures
require further adaptation, if the gradient has undefined variance. Finally, it is well-known that
Polyak-Ruppert averaging achieves the Cramér-Rao lower bound [Polyak and Juditsky, 1992, Gadat
and Panloup, 2017], which is a lower bound on the variance of an unbiased estimator. However, it is
not clear what this type of optimality means when the variance is not defined. These are important
directions that require thorough investigations, and they will be studied elsewhere.

5 Examples in the Presence of Heavy-tailed Noise

In this section, we demonstrate how the stochastic approximation framework discussed in our
paper covers several interesting examples. More specifically, we verify the assumptions required
for Theorems 3, 5, and 6, for linear regression and generalized linear models (GLMs), where the
heavy-tailed noise behavior may naturally arise due to heavy-tailed data.

5.1 Ordinary Least Squares

Let us first consider the following linear model,
y = ZT/BO + 67

where 3, € R" is the true coefficients, y € R is the response, the random vector z € R™ denotes the
covariates with a positive-definite covariance 0 < E[z2zT] and a finite fourth moment E[|z|*] < oo,
and € is the noise with zero conditional mean E[e|z] = 0. In the classical setting, the noise € is
assumed to be Gaussian whose variance is well-defined. In this case, the population version of the
maximum likelihood estimation (MLE) problem corresponds to minimizing

1 2
f(@) = SE|(y - ="=2)’), .1)
(where the expectation is over the (y, z) pair), or equivalently solving the following normal equations
Vf(z) =E[zz"|z — E[zy] = 0. (5.2)

We easily observe that the true coefficients 3, is the unique zero of the above equation, i.e., x* = 3.

Now, suppose we are given access to a stream of i.i.d. drawn instances of the pair (y, z), denoted
by {ys, 2t }ren+- In large-scale settings, one generally runs the following stochastic approximation
process, which is simply online SGD on the population MLE objective f(x):

Ty =T—1 — Ve (th;rwtfl - ztyt). (5.3)

Manifestly, (5.3) is a special case of (2.1), where the gradient noise admitting the decomposition
& = ¢, + my, for an i.i.d. component ¢, and a state-dependent component m; (cf. (4.1)),

¢ = Elzy] — z4us,
{mt = (ztth - E[zzﬂ)wt,l. 4

In the presence of heavy-tailed noise, for example when the noise € has infinite variance, the population
MLE objective f(x) may not be even finite, and one should resort to methods from M-estimation and
choose a suitable loss function within robust statistics framework [Huber, 2004, Van der Vaart, 2000].
However, the iterations (5.3) may still be employed to estimate the true coefficients 3, (potentially
due to model misspecification), as we demonstrate below. Note that in this case, iterations (5.3)
should be seen as solving the root-finding problem (5.2) via stochastic approximation (2.1), rather
than a minimization problem stated in (5.1).

First, we verify Assumption 2. We observe from the decomposition given in (5.4) that the i.i.d.
component {¢, }+cn exhibits the heavy-tailed behavior since it contains y; = z[ 3, + ¢;. Assume
that this component has the highest order finite moment p satisfying 1 < p < 2, i.e., E[|{,|"] < oo.
Further, the state dependent component m; defines a martingale difference sequence, and the
condition (3.3) is met since the covariates z have finite fourth moment, i.e.,

]E[|mt|2 | mt—l] g C|$13t_1|2.



Hence, Assumption 2 is satisfied. Next, assuming that the second moment of the covariates
V2f () = E[2zT] is p-PD, one can guarantee that Assumption 1 is satisfied. Therefore, the
convergence results of our theorems hold. Finally, we note that p-PD assumption is always satisfied
if E[z2 "] is diagonally dominant, but the condition for p > 1 is weaker.

5.2 Generalized Linear Models

Generalized linear models (GLMs) play a crucial role in numerous problems in statistics, and provide
a miscellaneous framework for many regression and classification tasks, with many applications [Mc-
Cullagh and Nelder, 1989, Nelder and Wedderburn, 1972]. In this section, we consider minimizing
the objective function arising from GLMs, for which there are many methods available (see e.g.
Erdogdu [2015, 2016] and the references therein). However, we restrict ourselves to the misspecified
and online setting. That is, the minimization problem corresponds to a GLM, but the model is
misspecified so that the response can be heavy-tailed.

For a response y € R and random covariates z € R", the population version of an ¢s-regularized
MLE problem in the canonical GLM framework reads

minimize f(x) = ]E{w (x72) - waz} + %|:c|2 for A >0. (5.5)

Here, ¢ : R — R is referred to as the cumulant generating function (CGF), and it is convex. Notable
examples include 1) (x) = x?/2 yielding linear regression, ¢(x) = log(1 + %) yielding logistic
regression, and ¢ (x) = e” yielding Poisson regression. Gradient of the objective (5.5) is given by

Vf(z) = E[w’ (sz)} — E[zy] + \e. (5.6)

We define the unique solution of the population GLM problem as the unique zero of (5.6), which we
denote by x*. To reiterate, we do not assume a model on data, allowing for model misspecification;
we simply consider the resulting optimization problem similar to Erdogdu et al. [2016, 2019]. As in
the previous section, we assume that the covariates have finite fourth moment and the response y; is
contaminated with heavy-tailed noise with infinite variance. In this setting, the objective function is
always well-defined, even if the response has infinite variance.

We are given access to a stream of i.i.d. drawn instances of the pair (y, z), denoted by {y, 2+ }yen+,
and we solve the above non-linear problem using the following stochastic process,

Ty =Ti—1—MNt (th/<thmt_1) — ZtYt + )\mt—1),

with gradient noise admitting the decomposition &, = ¢, + m; where

{Ct = El[zy] — z1ys,

m; = z1) (zza:t_l) - E[ztw’(zzxt_l)].

In what follows, we verify our assumptions for a CGF satisfying |¢'(z)| < C(1 + |z|), ¥"(z) > 0,
and |’ (z)| < L for all € R. These assumptions can be easily verified for any second-order
smooth CGF that grows at most quadratically (e.g. if the misspecified model is binomial with &
number of trials, we have ¢)(x) = klog(1 + e*)). ¢,’s are i.i.d. and contain the entire heavy-tailed
part of the gradient noise. Assume that this component has the highest defined moment order
1 < p < 2ie, E[|¢;/?’] < oo. Further observe that the state dependent component defines a
martingale difference sequence and satisfies the condition (3.3) since the covariates z have finite
fourth moment, and |¢/’| grows at most linearly. Therefore, Assumption 2 is satisfied.

We note that the Hessian of the objective f is given as
Vf(z) =E[zz"¢" (z"z)] + AL

Since 9" () > 0, V2 f(x) is clearly PD for all A > 0. For sufficiently large )\, this matrix can also
be made diagonally dominant, which implies the p-PD condition for any p > 1, further implying
Assumption 1. We further note that if V() is Lipshitz (e.g. for the binomail CGF), then (4.3)
holds for ¢ = 2 globally; thus it holds for any ¢ < 2 locally. Therefore, for an appropriate step-size
sequence, our convergence results on the SGD can be applied to this framework.



6 Conclusion

In this paper, we considered SGD subject to state-dependent and heavy-tailed noise with potentially
infinite variance, when the objective belongs to a class of strongly convex functions (termed as p-PD
condition). We provided asymptotic LP convergence rates for vanilla SGD, demonstrating that SGD
without any modifications can be still used in the presence of heavy-tailed noise. Furthermore, we
provided a generalized central limit theorem for the Polyak-Ruppert averaging, i.e., we proved that
the averaged iterates converge to a multivariate a-stable distribution.

We emphasize that p-PD condition is a sufficient condition, and further investigation is needed to see
if this condition can be replaced with the standard strong convexity assumption. We also highlight that
non-asymptotic L? rates in the current setting should be achievable, which will be studied elsewhere.
Finally, while we leave it for a future study, we emphasized the importance of adapting existing
statistical inference techniques that rely on the averaged SGD iterates when the gradient noise is
heavy-tailed, which arises naturally in modern statistical learning applications.
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