
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND CHUNKS AND GRAPHS: RETRIEVAL-
AUGMENTED GENERATION THROUGH TRIPLET-
DRIVEN THINKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) is critical for reducing hallucinations and
incorporating external knowledge into Large Language Models (LLMs). How-
ever, advanced RAG systems face a trade-off between performance and efficiency.
Multi-round RAG approaches achieve strong reasoning but incur excessive LLM
calls and token costs, while Graph RAG methods suffer from computationally
expensive, error-prone graph construction and retrieval redundancy. To address
these challenges, we propose T2RAG, a novel framework that operates on a sim-
ple, graph-free knowledge base of atomic triplets. T2RAG leverages an LLM
to decompose questions into searchable triplets with placeholders, which it then
iteratively resolves by retrieving evidence from the triplet database. Empirical
results show that T2RAG significantly outperforms state-of-the-art multi-round and
Graph RAG methods, achieving an average performance gain of up to 11% across
six datasets while reducing retrieval costs by up to 45%. Our code is available at
https://anonymous.4open.science/r/T2RAG-DF75.

1 INTRODUCTION

Large Language Models (LLMs) have become central to open-domain question answering (QA)
systems, owing to their vast stores of parametric knowledge and remarkable instruction-following
capabilities (Yue, 2025; Gu et al., 2024b). However, their effectiveness is often undermined by
critical challenges such as catastrophic forgetting and hallucination, particularly when addressing
questions that require access to evolving, real-world knowledge (Gu et al., 2024a; Huang et al.,
2025; Zhong et al., 2023). Consequently, Retrieval-Augmented Generation (RAG) has emerged as a
robust paradigm to mitigate these issues (Lewis et al., 2020; Gao et al., 2023) by retrieving relevant
documents from an external knowledge corpus.

However, standard RAG systems, which rank document chunks by query similarity (Karpukhin
et al., 2020; Sawarkar et al., 2024; Khattab & Zaharia, 2020), are effective for simple questions but
fail on complex ones that require multi-hop reasoning (Tang & Yang, 2024). This failure occurs
because queries often lack the necessary intermediate entities to connect information across different
chunks (Shen et al., 2024), and important details can be lost in the compression loss of long chunk
embeddings (Zhang et al., 2024b).

To address these issues, two primary research directions have emerged, each with its own challenges.
Multi-Round RAG leverages the LLM’s reasoning abilities by decomposing complex questions
into sequential sub-queries. While effective at traversing multi-hop knowledge paths, it is time and
token-consuming, often requiring numerous (3-6) LLM calls in each round (Trivedi et al., 2023; Xu
et al., 2025; Shen et al., 2024), and up to around 8 rounds in total (Trivedi et al., 2023). Additionally,
it also faces the challenge of compression loss. On the other hand, Graph RAG (Edge et al., 2024;
Han et al., 2024; Peng et al., 2024) structures the corpus into a knowledge graph to retrieve logically
connected information. However, this approach is hindered by an expensive and error-prone graph
construction process due to entity ambiguity issue (Hoffart et al., 2014), redundancy in retrieval from
high-degree nodes (Peng et al., 2024), and the difficulty LLMs face when understanding the graph
structures (Chai et al., 2023). The challenges of the above two lines of work lead to a question:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Multi-round RAG

(b) Graph RAG

(c) Triplet-driven Thinking RAG (Ours)

Question: Which film has the director born earlier, God’s Gift To Women or Aldri Annet Enn Brak?

I need to find the birth years of
the directors of both films:

Michael Curtiz for "God's Gift
to Women" and Edith Carlmar

for "Aldri annet enn bråk....

LLM Reasoning LLM Evaluation

No

If the information is
enough to answer?

Yes +
Answer

Director, Birthday, Born,
God’s Gift To Women,

Aldri Annet Enn Brak
Query Entity/Relation
extraction

Aldri annet enn
bråk\nAldri annet

enn bråk is a
1954 film...

Corpus Entity/Relation extraction KG Construction

God’s Gift To Women, is directed by, ?DirectorA
Aldri Annet Enn Brak, is directed by, ?DirectorB

?DirectorA, was born in, ?birthYearA
?DirectorB, was born in, ?birthYearB

LLM Reasoning

Aldri annet enn
bråk\nAldri annet

enn bråk is a
1954 film...

Corpus Entity/Relation extraction

Chunk
Vector
DB

Triplet
Vector
DB

PageRank/Shortest
path/neighbor expansion…

Target subgraph

Answer

Chunk
Vector
DB

Combine raw chunks

LLM Resolving
Michael Curtiz, was born in, ?birthYearA
Edith Carlmar, was born in, ?birthYearB

…

Answer

Stop until all
triplets solved

…

Entity
Vector
DB

Relation
Vector
DB

Retrieve from DB
Control flow

Entity Ambiguity

Compression Loss

Token Consuming

Redundancy

Figure 1: A comparison of three RAG paradigms, with their primary challenges highlighted in red.
(a) Multi-round RAG employs an iterative loop to retrieve large text chunks, but is hampered by
compression loss from vector embeddings and high token consumption during reasoning. (b) Graph
RAG constructs a knowledge graph to retrieve answers, but is vulnerable to entity ambiguity during
creation and retrieval redundancy from high-degree nodes. (c) T2RAG decomposes a query into
triplets with “?” placeholders and iteratively resolves them by retrieving evidence from a triplet
database (DB) until all of them are resolved.

Can we directly use the triplets as the fundamental unit of RAG, thus avoid the entity’ ambiguity
caused by entity level and compression loss caused by chunks level?

Motivated by this question, we propose T2RAG (Triplet-driven Thinking for Retrieval-Augmented
Generation), a novel framework that fundamentally re-architects the RAG pipeline and moves beyond
traditional chunk-based or graph-based retrieval by operating directly on atomic knowledge triplets.
Unlike Graph RAG, it completely sidesteps the costly, time-consuming, and error-prone process
of offline knowledge graph construction. Instead of building an explicit graph, T2RAG operates
on a graph-free knowledge base of atomic propositions, thus avoiding the high indexing costs and
potential for retrieval errors caused by inaccurate graph links. Simultaneously, it tackles the excessive
token consumption and latency that plagues Multi-round RAG systems. Rather than generating
verbose, natural language reasoning chains at each step, T2RAG leverages the LLM to think in a
more structured, efficient manner. It expands complex questions into “searchable triplets” containing
specific placeholders for unknown entities. The system then iteratively retrieves context to resolve
these triplets. This design maintains a lean, structured state transition between iterations, passing only
compact triplets instead of verbose text. This triplet-centric design ensures a tight coupling between
retrieval and reasoning, retaining powerful multi-hop capabilities while dramatically reducing token
overhead and enhancing performance. Our main contributions are as follows:

• We introduce a novel RAG framework that directly leverages triplets as the fundamental unit for
indexing, retrieval, and reasoning, moving beyond the limitations of chunk-based and explicit
graph-based approaches.

• We demonstrate that our method achieves state-of-the-art performance on various types of QA
benchmarks, outperforming leading models in both the Multi-Round RAG and Graph RAG.

• We also significantly improve the efficiency. Our method reduces inference time and token
consumption by up to 45% compared to other multi-round methods and even achieves an efficiency
comparable to that of single-round approaches.

2 PRELIMINARIES

The task of open-domain question answering (ODQA) was formally introduced in the 1999 Text
REtrieval Conference (TREC) QA track (Voorhees & Tice, 2000). Initially, it was defined as a factoid

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

QA task: Given a large corpus of unstructured documents, the goal was to extract a small text snippet
containing the correct answer to a factual question. While the scope of ODQA has since expanded
to include summarization and open-ended (Reja et al., 2003) tasks (Edge et al., 2024; Xiang et al.,
2025), factoid QA remains a significant challenge, evidenced by poor performance (below 50%) on
complex, multi-hop datasets like MusiQue (Trivedi et al., 2023). Consequently, this paper focuses on
advancing the state-of-the-art in factoid QA.

Factoid QA Task. Assume our collection contains D documents d1, d2, . . . , dD. We split each docu-
ment into passages of equal token length or applying expert split if it exists, yielding M total chunks
C = {c1, c2, . . . , cM}, where each chunk ci can be viewed as a token sequence (w(i)

1 , w
(i)
2 , . . . , w

(i)
|ci|).

Given a question q, the goal is to find a combination of tokens (w(j)
cm , . . . , w

(j)
cm+k) drawn from multiple

chunks that collectively contain the information necessary to answer q while minimizing irrelevant
noise to avoid hallucination. The answer must be exact one entity in our setting, such as persons,
organizations, or locations or yes/no. Typically, a retriever R : (q, C)→ CF is a function that takes
a question q and the corpus C as input and returns a much smaller set of chunks CF ⊂ C, where
|CF | = k ≪ |C|. For a fixed k, a retriever can be evaluated in isolation using top-k retrieval accuracy
with respect to labeled golden chunks.

Retrieval Granularity. The preceding formulation assumes the retrieval unit is the chunk, which
is a common setting (Karpukhin et al., 2020). However, recent works especially Guo et al. (2024);
Fan et al. (2025) argue that chunks often contain a mix of relevant and irrelevant details, and a finer
granularity is needed for complex queries (Zhang et al., 2024b). Inspired by work in Knowledge
Graphs (KGs) (Ji et al., 2021), the fundamental unit of retrieval can be refined to more atomic
elements:

• Entities (e(i)1 , e
(i)
2 , . . . , e

(i)
|ci|): Named entities such as persons, organizations, or locations.

• Triplets (t(i)1 , t
(i)
2 , . . . , t

(i)
|ci|): Structured facts represented as a (subject,predicate,object) tuple.

• Propositions (p(i)1 , p
(i)
2 , . . . , p

(i)
|ci|): Atomic statements or facts, often by converting triplets into

natural language sentences.

Propositions, which encapsulate a complete fact in a single sentence, are often considered to have
greater semantic utility for modern embedding models compared to isolated entities or structured
triplets (Zhang et al., 2024b). Our work explores leveraging this fine-grained units for improved
retrieval and reasoning.

3 RELATED WORK

We group recent RAG efforts intomulti-round, and graph-enhanced RAG, each adding more interac-
tion or structured reasoning and paving the way for the fine-grained design of T2RAG.

Multi-round RAG. Due to missing intermediate entities problem we mentioned in Section 1 more
and more works follow a multi-round paradigm, which enables the LLMs infer the intermediate
information thus better retrieve the final answer. Some works focus on the query side. Khot et al.
(2023) decompose multi-hop questions into single-hop sub-queries that are solved sequentially. Yao
et al. (2023) propose ReAct, interleaving chain-of-thought (CoT) (Wei et al., 2022) steps with search
actions issued by the LLM. Similarly, Query2Doc (Wang et al., 2023b) expanding queries into concise
triplets to cut token usage while preserving recall. Another line of works relies on the generated
intermediate results for next iteration. Beam Retrieval (Zhang et al., 2024a) jointly training an
encoder and classifiers to keep multiple passage hypotheses across hops. FLARE (Jiang et al., 2023)
forecasts upcoming sentences to decide when fresh retrieval is needed during long-form generation.
IRCoT (Trivedi et al., 2023) and ITER-RETGEN (Shao et al., 2023), alternately expanding a CoT
and fetching new evidence to answer multi-step questions. Adaptive QA (Xie et al., 2023) create an
adaptive framework that picks the simplest effective retrieval strategy according to query complexity.
Despite these advances, few efforts explicitly aim to reduce token costs or number of LLM calls
during multi-round RAG. Previous methods expand query or generates CoT with long sentences in
each round. In contrast, our work minimizes token consumption by formulating query expansions as
triplets and simplifying reasoning steps as triplets resolving.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Graph RAG. One major line of research addresses complex QA by structuring knowledge into graphs.
Originating in Knowledge Graph QA (KGQA), early methods focused on decomposing queries or
performing multi-round, LLM-evaluated traversals from seed nodes (Luo et al., 2024; Sun et al., 2024;
Cheng et al., 2024; Mavromatis & Karypis, 2022). Semi-Structured CoT addresses ODQA by merging
IRCoT and KGQA to generate reasoning chains that feature a single, fixed placeholder resolved by
KG techniques (Su et al., 2024). The application of this paradigm to general ODQA was popularized
by systems named GraphRAG (Edge et al., 2024) that construct a knowledge graph entirely with
LLMs and use community detection for hierarchical summarization and retrieval. Subsequent
work has aimed to make this process more efficient. For instance, LightRAG (Guo et al., 2024)
introduces a dual-level retrieval system combining graph structures with vector search to improve
knowledge discovery. Targeting resource-constrained scenarios, MiniRAG (Fan et al., 2025) builds a
heterogeneous graph of text chunks and named entities, enabling lightweight retrieval suitable for
Small Language Models. To tackle the common challenge of entity merging, HippoRAG (Gutiérrez
et al., 2025a) and HippoRAG2 (Gutiérrez et al., 2025b) create synonym links between similar entity
nodes and employs a PageRank (Haveliwala, 1999) algorithm for final node selection. Despite these
advances, a central challenge for Graph RAG remains the costly and error-prone nature of graph
construction from unstructured text.

Our method, T2RAG, skips the costly and error-prone graph construction required by Graph RAG
while retains the multi-hop reasoning power by Multi-round RAG. It also dramatically reduces token
overhead by constraining both query expansion and intermediate generation. Besides, some works in
ODQA such as GEAR (Shen et al., 2024) also employ a triplet search component. These methods
typically rely on neighbor expansion, which involves retrieving all other triplets that share a head or
tail entity. A key drawback of this approach is that accurately identifying and linking the same entity
across different contexts is often inaccurate and computationally expensive.

4 METHODOLOGY

4.1 OVERVIEW

Our proposed method, T2RAG (Triplet-driven Thinking RAG), is a novel paradigm for resolving
complex, multi-hop, factoid QA tasks. Unlike conventional RAG systems that operate on coarser
document chunks or complex graph structures, T2RAG is designed to operate directly on atomic
knowledge propositions derived from triplets, fostering an intrinsic alignment between knowledge
representation and LLM reasoning. This framework operates in two stages: an offline indexing
focused on systematic knowledge distillation, and an online retrieval characterized by iterative,
adaptive triplet resolution. This principled design ensures both fine-grained retrieval for accuracy and
a lean, efficient reasoning process.

4.2 OFFLINE INDEXING: CONSTRUCTING A GRAPH-FREE KNOWLEDGE BASE

The goal of the offline stage is to transform a raw text corpus C into a efficiently searchable knowledge
base of atomic propositions. The motivation for adopting proposition level granularity is two fold:
1) Compared to the entity level, each proposition encodes an entire, unambiguous fact. 2) Compared
to the chunk level, it also avoids the compression loss hindering the retrieval of details.

Canonical Triplet Generation. For each document chunk ci ∈ C, we employ an information
extraction model, LLMIE(·), to identify key facts. This model performs Open Information Extraction
(OpenIE) (Martinez-Rodriguez et al., 2018) to extract a set of knowledge triplets Ti = {t(i)1 , t

(i)
2 , . . . }.

Each triplet t(i)j is formalized as a canonical knowledge triplet (subject, predicate, object) that
represents a single factual statement. All extracted triplets are then aggregated into a global set for the
entire corpus Ttotal =

⋃M
i=1 Ti, where M is the total number of extracted triplets. To demonstrate the

power of using triplets as a foundational unit, we employ an off-the-shelf triplet generation method.
While developing a more accurate and comprehensive extraction technique is outside the scope of
this work, we provide a detailed error analysis of the method used in the Appendix B.6

Triplet Embedding. To render these canonical triplets semantically actionable for dense retrieval,
we are inspired by verbalization techniques (Oguz et al., 2020; Baek et al., 2023) to convert each
triplet t ∈ Ttotal into a natural language sentence, termed a proposition p, simply by concatenating

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

its components (e.g., “subject predicate object”). This seemingly straightforward verbalization is
a deliberate design choice: it maximizes the semantic utility for embedding models, facilitating
effective and contextually rich retrieval compared to isolated entities.
Triplet Vector DB Construction. The resulting flat list of propositions Ptotal = {p1, p2, . . . , pM} is
then encoded into dense vector representations using a high-performance embedding model E(·). For
efficient real-time access, these vectors can be subsequently indexed using a highly optimized vector
search library (FAISS) (Douze et al., 2024), creating an index I that enables rapid similarity search
across all propositions in the corpus. This vector DB is still called Triplet Vector DB as it keeps
original text of triplets. We also save the mapping from those propositions to their source chunks
because the original text is proved necessary in most of Graph RAG works (Guo et al., 2024; Fan
et al., 2025). This pre-computation creates a fine-grained, semantically enriched knowledge index
without the overhead of explicit graph structures.

The constructed proposition index, while offering significant advantages in terms of cost and construc-
tion fidelity, introduces a critical challenge: how to effectively navigate complex, multi-hop questions
that typically rely on graph traversals? In the subsequent subsection, we introduce our novel online
retrieval stage, where the LLM’s triplet-driven thinking and adaptive iterative resolution strategically
compensate for the graph traversals and the path-based reasoning.

4.3 ONLINE RETRIEVAL: ITERATIVE TRIPLETS RESOLUTION

The online retrieval stage is an iterative process that dynamically builds the context containing both
the triplets and chunks needed to answer user queries. The overall retrieval process is shown in
Figure 2.

Step 1: Structured Query Decomposition. Given an initial query q, we first use an LLM to perform
a structured decomposition where the LLM identifies the specific, atomic knowledge Triplets (denoted
as Tq) that must be answered to address the overall query. Critically, these derived triplets contain
explicit placeholders (‘?’) for unknown entities. Based on the precise number of these placeholders,
we categorize these initial triplets into three types:

• Resolved Triplets (Tresolved): Triplets with zero placeholders, representing fully known facts that
require no further search.

• Searchable Triplets (Tsearchable): Triplets with exactly one placeholder. This specificity, with two
known elements, facilitates focused and accurate searches.

• Fuzzy Triplets (Tfuzzy): Triplets with two or more placeholders. These are inherently too ambiguous
for search with the at most one element. It requires resolution in subsequent iterations to upgrade
to searchable or resolved.

This explicit categorization ensures that later retrieval efforts are always focused and efficient.

Question

Resolved Triplets
(with no“?”)

Step 1: Structured Query
Decomposition

Step 2: Multi-round
Triplet Resolution
with Triplet Retrieval

Searchable Triplets
(with one“?”)

Fuzzy Triplets
(with two or more “?”)

Total Resolved Triplets Answer
Step 3: Final Answering

Triplet
Vector
DB

Question+

Searchable Triplets

Resolve

Resolved Triplets

OR

Resolved Triplets

Resolve
Triplet
Vector
DB

Figure 2: Online retrieval stage.

Step 2: Multi-Round Triplet Resolution with Triplet
Retrieval. In this step, we will resolve the query triplets,
i.e., try to eliminate all "?" placeholders step by step by
RAG. Considering different complexity of queries and
their triplets, we adopt an adaptive retrieval strategy in-
stead of a fixed top-k. We also observed most of multi-hop
questions cannot be specifically retrieved by the query
itself as illustrated in Figure 1, which necessitate the multi-
round paradigm.

Step 2.1: Triplet-Based Adaptive Retrieval. The current
set of searchable triplets T (l)

searchable are first converted into
query propositions by simply concatenating the elements
without the placeholder. These propositions are then embedded, using the same embedding model
E(·) in the indexing stage, and used to query the proposition index I. Unlike prior methods that
retrieve a fixed top-k of propositions or triplets (Baek et al., 2023; Guo et al., 2024), our retrieval
process is critically adaptive in two synergistic ways to ensure both relevance and informational
diversity: First, our method retrieves with the triplets while constrain the process by chunks. More
specifically, the retrieval dynamically continues until context from k unique source chunks of triplets
has been retrieved. Second, we aggregate retrieval candidates from all query propositions into a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

unified pool, ranking them globally by similarity scores, rather than allocating separate budgets to
each proposition. These adaptive strategies ensure robustness to varying query complexity, allowing
difficult questions to naturally draw from a wider range of propositions. Finally, the retrieval process
returns the set of retrieved propositions P(l)

retrieved and their corresponding source chunks C(l)retrieved. The
necessity of reading original chunks to complete details missing from triplets is widely acknowledged
in the field (Fan et al., 2025; Guo et al., 2024).

Step 2.2: Resolving Triplets with Retrieved Context. This step leverages the retrieved content
to advance the query’s resolution. We prompt the LLM to populate the placeholders within these
triplets using the provided context. The retrieved propositions (P(l)

retrieved) and and their source chunks
(C(l)retrieved) serve as context for an LLM call. This is designed to either upgrade a searchable triplet
to a fully resolved one by filling in its single placeholder, or to transform a fuzzy triplet into a
searchable or directly to a resolved one by filling in one or more of its multiple placeholders. This
resolution process reduces the ambiguity of existing triplets and makes it suitable for subsequent
targeted retrieval. The process is shown in Figure 2 and a detailed example is in Appendix E.

Step 2.3: State Update and Ending Condition. Following the triplet resolution step, the system’s
state is updated for the next iteration, l + 1. The set of resolved triplets is monotonically augmented
with any newly resolved ones: T (l+1)

resolved = T (l)
resolved ∪ T

(new)
resolved. Crucially, only the newly searchable

triplets are used for the subsequent retrieval step: T (l+1)
searchable = T (new)

searchable. Any fuzzy triplets that
remain unsolved are carried over to the next round’s prompt. This set is updated by removing any
triplets that were just resolved or became searchable: T (l+1)

fuzzy = T (l)
fuzzy \ (T

(new)
resolved ∪ T

(new)
searchable). At the

end of each iteration, similar to IRCoT (Trivedi et al., 2023), we check for an early stopping condition.
Instead of using an LLM call, our method simply terminates if there are no unresolved triplets left.
Formally, the iteration continues as long as there are any searchable or fuzzy triplets remaining or
maximum iterations N reaches: |T (l+1)

searchable ∪ T
(l+1)

fuzzy | > 0. This highly structured state transition is
key to our method’s efficiency. By passing compact triplets between iterations, rather than the verbose
CoT reasoning used by approaches like IRCoT, we dramatically reduce token overhead. Furthermore,
this triplet-centric design creates a powerful synergy: the LLM generates reasoning gaps in the same
format,i.e., triplets, ensuring strong semantic alignment between the resolution and retrieval stages.

Step 3: Synthesizing the Final Answer. Once the iterative loop terminates after K rounds, all fully
resolved triplets are aggregated into a final set, Ttotal_solved = T (K)

resolved. A final LLM call is then made
to generate the answer, conditioned on how the process ended:

(a) Successful Resolution: If the loop terminated because all triplets were resolved, the LLM is
prompted with the original query (q) and this precise set of structured knowledge to generate a concise
answer a: a = LLMAnswer(q, Ttotal_solved).

(b) Maximum Iterations Reached: If the loop stopped because it reached the maximum number
of iterations, any remaining searchable triplets are included with the resolved facts to form the best
possible context: a = LLMAnswer(q, Ttotal_solved ∪ T (K)

searchable). By providing the LLM primarily with
the verified facts in Ttotal_solved instead of raw retrieved chunks, this method minimizes token costs
and reduces the risk of hallucination.

5 EXPERIMENTS

5.1 DATASETS

To ensure a comprehensive evaluation, we select representative datasets for three distinct Open-
Domain Question Answering (ODQA) categories: Simple QA, Multi-hop QA, and Domain-specific
QA. For the first two categories, we follow the experimental setup from HippoRAG2 (Gutiérrez et al.,
2025b). We use PopQA (Mallen et al., 2023) for simple questions. For multi-hop questions, we use
2Wiki-MultihopQA (2Wiki) (Ho et al., 2020), MuSiQue (Trivedi et al., 2022), and HotpotQA (Yang
et al., 2018). For each of these datasets, we use the same sample of 1,000 questions as the prior
work (Gutiérrez et al., 2025b). For domain-specific evaluation, we adapt two datasets from the
GraphRAG-Bench (Xiang et al., 2025). We isolate the factoid questions from the two datasets, Story

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main performance comparison on various types of QA datasets, showing Exact Match / F1
scores ×100. The best result in each column is in bold, and the second best is underlined. Bootstrap
testing is used to assess significance with 5,000 times repeat. The dagger symbol (†) indicates that our
method significantly outperforms the best baseline (IRCoT under Gemini-2.5-flash and HippoRAG2
under GPT-4o-mini) with a p-value less than 0.05.

Simple QA Multi-Hop QA Domain-Specific QA Average
Method PopQA 2Wiki MuSiQue HotpotQA Story Medical EM F1

Gemini-2.5-flash
NOR 32.4 / 35.7 48.1 / 55.6 16.3 / 26.5 40.5 / 52.3 10.3 / 17.1 23.1 / 46.0 28.4 38.9
BM25 50.2 / 55.6 28.2 / 30.7 7.9 / 10.7 40.8 / 49.3 26.2 / 35.3 22.2 / 37.8 29.3 36.6
Standard 51.8 / 59.5 33.1 / 39.0 28.1 / 36.2 52.1 / 63.1 31.0 / 42.2 19.4 / 41.5 35.9 46.9
HippoRAG2 52.1 / 60.1 44.3 / 51.2 29.1 / 38.3 52.1 / 64.1 33.1 / 44.1 27.8 / 58.2 39.8 52.7
RAPTOR 52.3 / 56.8 36.3 / 41.1 31.8 / 39.7 60.9 / 72.7 46.2 / 59.0 34.2 / 58.1 43.6 54.6
IRCoT 51.2 / 58.7 61.6 / 71.7 39.7 / 49.8 61.2 / 77.3 40.3 / 57.3 26.1 / 56.1 46.7 61.8

T2RAG 56.6† / 62.4† 69.3† / 77.5† 39.1 / 49.1 62.3 / 73.2 46.7† / 59.5† 36.0† / 61.4† 51.7 63.9
GPT-4o-mini

NOR 28.7 / 31.4 28.0 / 34.1 10.2 / 20.3 28.8 / 38.6 11.5 / 18.9 19.3 / 44.2 21.1 31.3
BM25 47.6 / 54.8 42.9 / 48.2 15.3 / 21.1 47.2 / 57.6 29.0 / 38.5 25.9 / 43.6 34.7 44.0
Standard 51.9 / 60.0 53.1 / 60.2 31.2 / 44.3 58.0 / 71.1 27.3 / 60.1 27.0 / 59.9 41.4 59.3
HippoRAG2 52.2 / 60.2 59.6 / 69.3 34.1 / 48.1 58.1 / 71.1 41.2 / 58.3 28.1 / 59.4 45.6 61.1
RAPTOR 54.6 / 60.1 38.2 / 49.0 28.6 / 40.8 57.9 / 71.4 44.8 / 59.6 36.7 / 63.7 43.5 57.4
IRCoT 45.3 / 54.7 60.7 / 74.3 34.1 / 47.6 55.7 / 71.2 36.1 / 51.8 25.1 / 52.9 42.8 58.8

T2RAG 55.8† / 63.2† 66.7† / 74.4† 34.3 / 45.6 54.2 / 67.3 38.7 / 50.1 33.5† / 60.4 47.2 60.2

and Medical, and use an LLM to shorten the ground-truth answers, enabling more precise evaluation.
Detailed statistics for all datasets are provided in Table 3.

5.2 BASELINES AND IMPLEMENTATION DETAILS

To evaluate our approach, we select three strong baselines representing state-of-the-art methods
across major RAG categories. For Graph RAG, we choose HippoRAG2 (Gutiérrez et al., 2025b) for
its recognized efficiency and effectiveness. For summarization-based RAG, we use Raptor (Sarthi
et al., 2024), a pioneering method that outperforms most Graph RAG approaches in recent bench-
marks (Zhou et al., 2025). Lastly, for Multi-Round RAG, we include the prominent IRCoT (Trivedi
et al., 2023) method. NOR method means the non-retrieval method that directly answers the question.
Standard RAG retrieves chunks with an embedding model and uses them to generate an answer.

To ensure a fair comparison, all methods are configured with the same foundational models: NV-
Embed-v2 (Lee et al., 2024) for embeddings and either Gemini-2.5-flash or GPT-4o-mini as the
LLM for all offline indexing and online retrieval stages. For datasets lacking expert annotations,
we employ a standard chunking strategy of 1200 tokens with a 100-token overlap. For the top-k of
chunk retrieval, we set k = 5 for all methods. For the multi-round methods (T2RAG and IRCoT),
we set a maximum of N = 3 iterations and keeps the k = 5 in each iteration. Following standard
practices (Trivedi et al., 2023), we evaluate end-to-end QA performance using Exact Match (EM) and
F1 scores. We focus specifically on these end-to-end QA metrics, as retrieval performance is difficult
to compare directly when the number of retrieved passages is adaptive. Except for the performance
comparisons, all results presented in the subsequent sections are obtained using GPT-4o-mini. Further
experimental details are available in Appendix B.

5.3 RESULTS

We unfold our analysis of experimental results by answering Research Questions (RQ) below.

RQ1: How does T2RAG perform against baselines? As shown Table 1, T2RAG achieves state-of-
the-art performance, stems from several key advantages. First, our method achieves state-of-the-art
overall performance, leading in both average EM and F1 scores across the two LLM backbones,
except for the second place in F1 by GPT-4o-mini. Notably, its advantage in EM is particularly
pronounced, a strength we attribute to the precision of our triplet-based retrieval, which excels at
identifying the exact entities required for factoid QA. This adaptability is further demonstrated by its
consistently strong results on domain-specific datasets, underscoring the universality of the underlying
reasoning framework. Second, its superiority is most pronounced on Multi-hop QA datasets like

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2Wiki. It not only surpasses all single-round baselines by a large margin but also outperforms the
multi-round baseline, IRCoT, by over 7.7% and 5.4% in EM with Gemini-2.5-flash and GPT-4o-mini,
respectively. This highlights the effectiveness of its triplet-driven mechanism for complex reasoning.
Finally, the method demonstrates a powerful synergy with reasoning LLMs. Its performance is
significantly higher when paired with Gemini-2.5-flash compared to GPT-4o-mini. As shown in
Figure 8, we extend the experiments on 2 reasoning LLMs (Gemini-2.5-flash and Gemini-2.5-pro)
and 2 non-reasoning LLMs (GPT-40ø-mini and Qwen3-Next-Instruct (Yang et al., 2025)). We
compare the averaged EM and F1 score on PopQA dataset. The results suggest that our method
can uniquely leverage the advanced reasoning capabilities of such models through its step-by-step
guidance. Conversely, certain methods such as HippoRAG2 exhibit a decrease in performance when
employing reasoning LLMs. We hypothesize this occurs because relegating the LLM to a simple
filtering task does not fully harness its reasoning capabilities. Results on more datasets can be found
in Appendix B.3.

RQ2: What is the impact of the triplet resolution module? To validate the effectiveness of our
core "triplet-driven thinking" design, we analyze the final performance based on whether a query’s
underlying triplets are fully resolved. Figure 4 reveals a significant performance delta between these
two outcomes. Across all three datasets, there is a strong correlation between successful triplet
resolution and high performance. For instance, on the 2Wiki dataset, the F1 score for unresolved
questions drops to 53% from 76%, with a similar sharp decline observed in EM scores. This result
confirms that resolving all triplets is the key to success. We also use LLM to do an error analysis of the
incorrect answer. Results shows the missing retrieval leads the reason of error and the hallucination
is as low as 2%. The details are in Appendix B.7.

Qwen3-Next-Instruct GPT-4o-mini Gemini 2.5 Flash Gemini 2.5 Pro0.45

0.50

0.55

0.60

Av
er

ag
e

Sc
or

e
(E

M
 &

 F
1)

0.535

0.559 0.556
0.551

0.540

0.562 0.560

0.547

0.518

0.500

0.549
0.5410.542

0.595 0.595

0.583

Standard
HippoRAG2
IRCoT
T2RAG

Figure 3: Performance on PopQA across differ-
ent LLMs. Reasoning LLMs are in bold.

PopQA 2Wiki MuSiQue0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

fo
rm

an
ce

0.56

0.69

0.35

0.62

0.76

0.47
0.41 0.42

0.20

0.45

0.53

0.32

EM (Resolved)
F1 (Resolved)
EM (Unresolved)
F1 (Unresolved)

Figure 4: Performance vs. final resolution status
across three datasets.

Figure 5: Ablation results
PopQA 2Wiki MuSiQue

Method EM F1 EM F1 EM F1
T2RAG 56.0 63.0 66.0 74.0 33.0 45.0

- single round 54.8 60.5 51.0 59.0 15.0 24.0
↓2.1% ↓4.0% ↓22.7% ↓20.3% ↓54.5% ↓46.7%

- w/o chunk 41.1 44.7 62.0 68.0 21.6 29.9
↓26.6% ↓29.0% ↓6.1% ↓8.1% ↓34.5% ↓33.6%

RQ3: Which components of T2RAG are im-
portant? We conducted an ablation study to
quantify the contribution of its two key compo-
nents. The results in Table 5 reveal that both the
iterative process and the use of chunks are im-
portant. The iterative reasoning module proves
to be a critical component. Removing it (- single
round) causes a significant performance degrada-
tion, particularly on multi-hop QA. For instance,
F1 score on MuSiQue drops by a remarkable
54.5%. This demonstrates that the multi-round retrieval and resolution is essential for decomposing
and solving complex problems. Similarly, removing the raw chunk text during the iteration, i.e, (- w/o
chunk), is also substantially harms performance, confirming that the raw text complement missing
details of triplets. This observation is aligned with Fan et al. (2025).

RQ4: How does T2RAG compare in terms of computational efficiency? This analysis compares
the computational cost of T2RAG with baselines during both the one-time offline indexing and online
retrieval phases. To better visualize the online costs, the token and time values for the retrieval stage
in Figure 6 are aggregated over 1,000 queries, assuming they are processed sequentially. Figure 6
illustrates a strategic trade-off. During indexing stage, T2RAG’s token consumption appears high
because it processes the entire corpus into triplets. However, this processing is merely the first
step for many advanced Graph RAG methods (Edge et al., 2024; Guo et al., 2024; Fan et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2025). Their subsequent graph construction steps are far more costly. For example, LightRAG and
GraphRAG require around 6× and 10× the token consumption of the initial triplet extraction phase,
respectively (Gutiérrez et al., 2025b). T2RAG’s indexing overhead remains highly competitive within
this category. At the retrieval stage, T2RAG is remarkably more efficient in both tokens and latency
than the multi-round baseline, IRCoT. More notably, its efficiency is even comparable to single-round
methods. This is because HippoRAG2 also invokes multiple LLM calls for filtering, while Raptor
retrieves longer summaries than chunks. T2RAG’s efficiency stems from its design, which focuses
on targeted search for triplets rather than processing large, noisy text chunks. In summary, T2RAG
achieves an acceptable indexing cost to deliver a highly efficient online system.

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT

Lig
htR

AG
*

Grap
hR

AG
*0

1

2

3

To
ke

n
Co

ns
um

pt
io

n

×108 HotpotQA

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

1

2

3

×107 Medical

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT

Lig
htR

AG
*

Grap
hR

AG
*0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(s

)

×105

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

2

4

6

8
×103

Indexing Stage Retrieval Stage

Figure 6: Comparison of token consumption
and time. Token consumption equals to (in-
put + 4×output). Results of LightRAG and
GraphRAG are from Zhou et al. (2025).

2 3 4 5 6 7 8 9 10
Effective Top-k

0.50

0.55

0.60

0.65

0.70

0.75

Av
er

ag
ed

 E
M

 &
 F

1

Standard
HippoRAG2
T2RAG
IRCoT

Figure 7: Performance on 2Wiki vs. top-k.
Multi-round methods are calibrated by k× aver-
age number of iterations.

RQ5: How does performance scale with the amount of retrieved context? To investigate how
T2RAG’s performance scales with context size, we compare it against other multi-round methods
while varying the number of retrieved documents (top-k). Traditional RAG methods often rely on
retrieving more context to find the correct answer, which can be inefficient. The trend in Figure 7
shows T2RAG’s performance is consistently high and robust to the value of top-k. It achieves the
plateau (0.7) faster than other methods. In contrast, baselines like IRCoT and HippoRAG2 exhibit
a strong dependence on a larger context window. This observation demonstrates its effectiveness
does not rely on scaling up the volume of retrieved text but a more precise and specific triplet-based
retrieval.

6 CONCLUSION

In this work, we proposed the Triplet-driven Thinking RAG (T2RAG), a novel framework that
embeds reasoning directly into the retrieval process. By decomposing complex queries into atomic
triplets and resolving them step-by-step against a triplet knowledge base, our method consistently
outperforms more complexly designed RAG systems. Our extensive experiments demonstrate that
T2RAG establishes a new state-of-the-art in factoid QA tasks, particularly on challenging multi-hop
QA. This superior performance is achieved with remarkable online efficiency; the retrieval stage
has significantly lower time and token consumption compared to other multi-round methods and
maintains a comparable overhead to even single-round approaches. Furthermore, our results reveal
a powerful synergy between T2RAG’s structured thinking process and the capabilities of advanced
reasoning LLMs, highlighting a new path to unlock their full potential in this area. Looking forward,
T2RAG paves the way for more accurate and efficient RAG systems by shifting the paradigm from
retrieving and generating unstructured contexts towards a more deliberate, reasoning-driven synthesis
of atomic facts. Our method has several limitations. Experimentally, our evaluation is constrained
by a fixed number of iterations, a narrow selection of components like embeddings and re-rankers,
and a black-box setup that lacks fine-grained interpretability. Methodologically, the approach’s
performance is contingent on the quality of triplet extraction, which may not adequately capture
complex, many-to-many knowledge. Finally, regarding scalability, while initial index creation from
a large corpus is token-intensive, this is a one-time cost offset by the method’s efficiency with
pre-existing databases and its inherent support for incremental updates.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

STATEMENTS

ETHICS STATEMENT

Our work focuses on developing a high-efficiency method for Retrieval-Augmented Generation
(RAG) systems. The primary ethical benefit of this research is the potential reduction in energy
consumption associated with these models, contributing to more sustainable computational practices.
Furthermore, by increasing the speed at which accurate results are delivered, our method aims to
improve user access to information. Our experimental methodology is designed to be robust and
comprehensive, utilizing six datasets from diverse domains to ensure the generalizability of our
findings. We verify the statistical significance of our results through p-value testing. To mitigate the
risk of generating harmful or discriminatory content, the large language models (LLMs) used in our
system have content filters in place. We are committed to transparency; full implementation details
are provided in Appendix B.1. Our paper includes an extensive review of related literature to properly
acknowledge and build upon previous work. The datasets used are all open-source and derived from
public knowledge bases like Wikipedia, minimizing concerns related to privacy and confidential data.

REPRODUCIBILITY STATEMENT

Our full implementation, along with instructions to reproduce all experimental results, is available at
an anonymized code repository: https://anonymous.4open.science/r/T2RAG-DF75.

The datasets used in our experiments are sourced from public repositories. Specifically, the 2Wiki-
MultihopQA, MusiQue, and HotpotQA datasets were obtained from the HippoRAG repository1. The
PopQA dataset was downloaded from Hugging Face2 and reformatted using a custom Python script to
align with the other datasets. From each of these five datasets, we randomly sampled 1000 questions
to construct our evaluation benchmark.

The Story and Medical datasets were sourced from the GraphRAG-Bench repository3. It is noted that
the Story dataset is referred to as Novel in the source repository. For these, we selected only the "Fact
Retrieval" level questions. To align the data with our factoid question-answering task, we employed
an LLM to simplify the ground-truth answers using the following prompt:

Instruction: You are an assistant for data processing. Your task is to
simplify a given answer into a direct, concise response to the question.
Follow these rules:

1. For yes/no questions, the simplified answer must be only "Yes" or "No",
without any explanation.

2. For "wh-" questions (who, what, where, etc.), the simplified answer
must be the specific entity or value requested.

[Input] "question": "Does older age influence the risk of basal cell
carcinoma?", "answer": "Older age is associated with higher risk of BCC."

[Output] "answer": "Yes"

USE OF LLMS

During the preparation of this manuscript, we utilized a large language model (LLM) to assist with
improving grammar, clarity, and overall readability. The authors reviewed, edited, and take full
responsibility for the final content, including the accuracy of all technical claims and citations.

1https://github.com/OSU-NLP-Group/HippoRAG/tree/main/reproduce/dataset
2https://huggingface.co/datasets/akariasai/PopQA
3https://huggingface.co/datasets/GraphRAG-Bench/GraphRAG-Bench

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and Sung Ju Hwang. Direct Fact Retrieval from
Knowledge Graphs without Entity Linking. arxiv, May 2023. doi: 10.48550/arXiv.2305.12416.
URL http://arxiv.org/abs/2305.12416. arXiv:2305.12416 [cs].

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Sitao Cheng, Ziyuan Zhuang, Yong Xu, Fangkai Yang, Chaoyun Zhang, Xiaoting Qin, Xiang
Huang, Ling Chen, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Call
me when necessary: LLMs can efficiently and faithfully reason over structured environments.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 4275–4295, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.254. URL
https://aclanthology.org/2024.findings-acl.254/.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Tru-
itt, and Jonathan Larson. From Local to Global: A Graph RAG Approach to Query-Focused
Summarization. April 2024. URL http://arxiv.org/abs/2404.16130. arXiv:2404.16130.

Tianyu Fan, Jingyuan Wang, Xubin Ren, and Chao Huang. MiniRAG: Towards Extremely Simple
Retrieval-Augmented Generation. January 2025. doi: 10.48550/arXiv.2501.06713. URL http:
//arxiv.org/abs/2501.06713.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Ralph Grishman. Information extraction. IEEE Intelligent Systems, 30(5):8–15, 2015.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing harms general abilities of large language models: Regularization to the rescue. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 16801–16819, Miami, Florida, USA,
November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
934. URL https://aclanthology.org/2024.emnlp-main.934/.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024b.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. LightRAG: Simple and Fast
Retrieval-Augmented Generation. November 2024. URL http://arxiv.org/abs/2410.05779.
arXiv:2410.05779.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. HippoRAG:
Neurobiologically Inspired Long-Term Memory for Large Language Models. January 2025a. doi:
10.48550/arXiv.2405.14831. URL http://arxiv.org/abs/2405.14831.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From RAG to Memory:
Non-Parametric Continual Learning for Large Language Models. February 2025b. doi: 10.48550/
arXiv.2502.14802. URL http://arxiv.org/abs/2502.14802. arXiv:2502.14802 [cs].

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar,
Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented generation with
graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Taher Haveliwala. Efficient computation of pagerank. Technical report, Stanford, 1999.

Sven Hertling and Heiko Paulheim. Dbkwik: A consolidated knowledge graph from thousands of
wikis. In 2018 IEEE International Conference on Big Knowledge (ICBK), pp. 17–24. IEEE, 2018.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Johannes Hoffart, Yasemin Altun, and Gerhard Weikum. Discovering emerging entities with ambigu-
ous names. In Proceedings of the 23rd international conference on World wide web, pp. 385–396,
2014.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE transactions on neural networks and
learning systems, 33(2):494–514, 2021.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 39–48, 2020.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Haoran Luo, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin, Yu Feng, Zemin
Kuang, Meina Song, Yifan Zhu, et al. Hypergraphrag: Retrieval-augmented generation via
hypergraph-structured knowledge representation. arXiv preprint arXiv:2503.21322, 2025.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful and
Interpretable Large Language Model Reasoning. February 2024. doi: 10.48550/arXiv.2310.01061.
URL http://arxiv.org/abs/2310.01061.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.546. URL https://aclanthology.org/2023.acl-long.546/.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jose L Martinez-Rodriguez, Ivan López-Arévalo, and Ana B Rios-Alvarado. Openie-based approach
for knowledge graph construction from text. Expert Systems with Applications, 113:339–355,
2018.

Costas Mavromatis and George Karypis. ReaRev: Adaptive Reasoning for Question Answering
over Knowledge Graphs. arxiv, October 2022. doi: 10.48550/arXiv.2210.13650. URL http:
//arxiv.org/abs/2210.13650.

Yixin Nie, Songhe Wang, and Mohit Bansal. Revealing the importance of semantic retrieval for
machine reading at scale. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 2553–2566, 2019.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. Unik-qa: Unified representations
of structured and unstructured knowledge for open-domain question answering. arXiv preprint
arXiv:2012.14610, 2020.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921, 2024.

Urša Reja, Katja Lozar Manfreda, Valentina Hlebec, and Vasja Vehovar. Open-ended vs. close-ended
questions in web questionnaires. Developments in applied statistics, 19(1):159–177, 2003.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj Solanki. Blended rag: Improving rag (retriever-
augmented generation) accuracy with semantic search and hybrid query-based retrievers. In 2024
IEEE 7th international conference on multimedia information processing and retrieval (MIPR), pp.
155–161. IEEE, 2024.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 9248–9274, 2023.

Zhili Shen, Chenxin Diao, Pavlos Vougiouklis, Pascual Merita, Shriram Piramanayagam, Damien
Graux, Dandan Tu, Zeren Jiang, Ruofei Lai, Yang Ren, et al. Gear: Graph-enhanced agent for
retrieval-augmented generation. arXiv preprint arXiv:2412.18431, 2024.

Xin Su, Tiep Le, Steven Bethard, and Phillip Howard. Semi-structured chain-of-thought: Integrating
multiple sources of knowledge for improved language model reasoning. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 8589–8605, 2024.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M. Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-Graph: Deep and Responsible Reasoning of Large
Language Model on Knowledge Graph. March 2024. doi: 10.48550/arXiv.2307.07697. URL
http://arxiv.org/abs/2307.07697.

Yixuan Tang and Yi Yang. MultiHop-RAG: Benchmarking Retrieval-Augmented Gener- ation for
Multi-Hop Queries. arxiv, 2024.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving Retrieval
with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 10014–10037, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
557. URL https://aclanthology.org/2023.acl-long.557/.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ellen M. Voorhees and Dawn M. Tice. The TREC-8 question answering track. In M. Gavrilidou,
G. Carayannis, S. Markantonatou, S. Piperidis, and G. Stainhauer (eds.), Proceedings of the Second
International Conference on Language Resources and Evaluation (LREC’00), Athens, Greece,
May 2000. European Language Resources Association (ELRA). URL https://aclanthology.
org/L00-1018/.

Liang Wang, Ivano Lauriola, and Alessandro Moschitti. Accurate training of web-based question
answering systems with feedback from ranked users. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 5: Industry Track), pp. 660–667, 2023a.

Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query Expansion with Large Language Models.
October 2023b. doi: 10.48550/arXiv.2303.07678. URL http://arxiv.org/abs/2303.07678.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yike Wu, Nan Hu, Sheng Bi, Guilin Qi, Jie Ren, Anhuan Xie, and Wei Song. Retrieve-Rewrite-
Answer: A KG-to-Text Enhanced LLMs Framework for Knowledge Graph Question Answering.
September 2023. doi: 10.48550/arXiv.2309.11206. URL http://arxiv.org/abs/2309.11206.

Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, and
Jinsong Su. When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-
Augmented Generation. arXiv, June 2025. doi: 10.48550/arXiv.2506.05690. URL http://arxiv.
org/abs/2506.05690.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn
sloth: Revealing the behavior of large language models in knowledge conflicts. In The Twelfth
International Conference on Learning Representations, 2023.

Derong Xu, Xinhang Li, Ziheng Zhang, Zhenxi Lin, Zhihong Zhu, Zhi Zheng, Xian Wu, Xiangyu
Zhao, Tong Xu, and Enhong Chen. Harnessing Large Language Models for Knowledge Graph
Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation. January 2025. doi:
10.48550/arXiv.2412.18537. URL http://arxiv.org/abs/2412.18537.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy
Lin. End-to-end open-domain question answering with bertserini. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pp. 72–77, 2019.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Murong Yue. A survey of large language model agents for question answering. arXiv preprint
arXiv:2503.19213, 2025.

Fangyuan Zhang, Zhengjun Huang, Yingli Zhou, Qintian Guo, Zhixun Li, Wensheng Luo, Di Jiang,
Yixiang Fang, and Xiaofang Zhou. EraRAG: Efficient and Incremental Retrieval Augmented
Generation for Growing Corpora. June 2025. doi: 10.48550/arXiv.2506.20963. URL http:
//arxiv.org/abs/2506.20963.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Yong Liu, and Shen Huang. End-to-End Beam
Retrieval for Multi-Hop Question Answering. April 2024a. doi: 10.48550/arXiv.2308.08973. URL
http://arxiv.org/abs/2308.08973.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Nan Zhang, Prafulla Kumar Choubey, Alexander Fabbri, Gabriel Bernadett-Shapiro, Rui Zhang,
Prasenjit Mitra, Caiming Xiong, and Chien-Sheng Wu. SiReRAG: Indexing Similar and Related
Information for Multihop Reasoning. December 2024b. doi: 10.48550/arXiv.2412.06206. URL
http://arxiv.org/abs/2412.06206.

Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen. MQuAKE:
Assessing knowledge editing in language models via multi-hop questions. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 15686–15702, Singapore, December 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL https:
//aclanthology.org/2023.emnlp-main.971/.

Yingli Zhou, Yaodong Su, Youran Sun, Shu Wang, Taotao Wang, Runyuan He, Yongwei Zhang,
Sicong Liang, Xilin Liu, Yuchi Ma, et al. In-depth analysis of graph-based rag in a unified
framework. arXiv preprint arXiv:2503.04338, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 T2RAG: Online Iterative Triplet Resolution (Main Process)
Input: Query q, Triplet DB Index I, LLM, Max Iterations K, Target unique chunks k, Triplet-
to-Chunk-MapMchunk
Output: Final answer a

1: ▷ Step 1: Structured Query Decomposition
2: Tresolved, Tsearchable, Tfuzzy ← LLMDecompose(q)

3: ▷ Step 2: Multi-Round Triplet Resolving Loop
4: for l = 1→ K do
5: if |Tsearchable ∪ Tfuzzy| = 0 then
6: break
7: end if

8: ▷ Step 2.1: Call the Adaptive Retrieval (see Algorithm 2)
9: Pretrieved, Cretrieved ← ADAPTIVERETRIEVE(Tsearchable, I, k,Mchunk)

10: ▷ Step 2.2: LLM-based Triplets Resolution
11: T (new)

resolved, T
(new)

searchable ← LLMResolve(Tsearchable, Tfuzzy,Pretrieved, Cretrieved)

12: ▷ Step 2.3: State Update
13: Tresolved ← Tresolved ∪ T (new)

resolved; Tsearchable ← T (new)
searchable; Tfuzzy ← Tfuzzy \ (T (new)

resolved ∪ T
(new)

searchable)
14: end for

15: ▷ Step 3: Final Answering
16: if |Tsearchable ∪ Tfuzzy| = 0 then
17: Tcontext ← Tresolved
18: else
19: Tcontext ← Tresolved ∪ Tsearchable
20: end if
21: a← LLMAnswer(q, Tcontext)
22: return a

A METHODOLOGY

As the T2RAG consists of several steps with clear control flow, we illustrate it by the following
pseudo algorithm.

B EXPERIMENTS

B.1 DETAILED IMPLEMENTATIONS

For all experiments, we set the Large Language Model (LLM) temperature to 0 to ensure deterministic
and reproducible outputs. Local embedding generation was performed on a single NVIDIA L40S
GPU.

A key aspect of our benchmark is the standardization of the final answer format. We modified the
prompt for all methods to include a specific format template, which yielded a significant performance
boost compared to baseline implementations in other studies (Gutiérrez et al., 2025a; Xiang et al.,
2025). In those works, methods such as RAPTOR and IRCOT consistently performed about 10%
lower than graph-based RAG approaches. Furthermore, in our implementation of the RAPTOR, we
replaced the original Gaussian Mixture Model (GMM) for clustering with K-Means. This decision
was based on the superior computational efficiency of K-Means, which has been demonstrated to
produce results of similar quality for this type of task (Zhou et al., 2025). The cluster size is set to 10
and level is set to 3 following the benchmark (Zhou et al., 2025). Our implementation of IRCoT

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Adaptive Triplet Retrieval
Require: Searchable triplets Tsearchable, Index I, Target chunks k, MapMchunk
Ensure: Retrieved propositions Pretrieved, Retrieved chunks Cretrieved

1: function ADAPTIVERETRIEVE(Tsearchable, I, k,Mchunk)
2: Pcandidates ← ∅
3: for t ∈ Tsearchable do
4: query_prop← Concatenate(t)
5: query_vec← E(query_prop)
6: Pcandidates ← Pcandidates ∪ Search(I, query_vec, N)
7: end for
8: Sort Pcandidates globally by similarity score

9: Pretrieved ← ∅; unique_chunk_ids← ∅
10: for p ∈ sorted Pcandidates do
11: if |unique_chunk_ids| ≥ kchunks then
12: break
13: end if
14: Pretrieved ← Pretrieved ∪ {p}
15: chunk_id←Mchunk[p]
16: unique_chunk_ids← unique_chunk_ids ∪ {chunk_id}
17: end for
18: Cretrieved ← GetChunksFromIDs(unique_chunk_ids)
19: return Pretrieved, Cretrieved
20: end function

strictly follows the official code and procedures released by its authors (Zhang et al., 2024b). IRCoT
operates on an iterative cycle where the model first generates a reasoning step (a “thought”) and then
acts upon it. The core of its multi-hop reasoning is guided by the following Chain-of-Thought (CoT)
prompt, which instructs the model to generate one reasoning step at a time:

You serve as an intelligent assistant, adept at facilitating users through
complex, multi-hop reasoning across multiple documents. This task is
illustrated through demonstrations, each consisting of a document set
paired with a relevant question and its multi-hop reasoning thoughts.
Your task is to generate one thought for current step, DON’T generate the
whole thoughts at once! If you reach what you believe to be the final
step, start with "So the answer is:".

For HippoRAG2, we utilized the official program released by the authors and followed their recom-
mended default hyperparameter settings. This approach builds a knowledge graph from the text, uses
Personalized PageRank (PPR) for entity-aware retrieval, and then filters the retrieved facts before the
final answer generation. The key hyperparameters, which govern the graph construction and retrieval
process, are detailed in Table 2.

Table 2: Hyperparameters for the HippoRAG2 baseline.
Hyperparameter Value Description
Synonym Threshold 0.8 The cosine similarity threshold for merging entity synonyms.
Damping Factor (PPR) 0.5 The damping factor for the Personalized PageRank algorithm.
Temperature 0.0 The generation temperature (0.0 ensures deterministic output).

After retrieving candidate facts, HippoRAG2 employs a filtering step to select the most relevant
information. This is guided by the following prompt:

You are a critical component of a high-stakes question-answering system...
Your task is to filter facts based on their relevance to a given query...
You must select up to 4 relevant facts from the provided candidate list

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

that have a strong connection to the query... The output should be in JSON
format, e.g., {"fact": [["s1", "p1", "o1"], ...]}, and if no facts are
relevant, return an empty list, {"fact": []}...

B.2 A NOTE ON HYPERPARAMETERS

One of the practical advantages of T2RAG is its simplicity and robustness, as it is largely free of
the complex hyperparameter tuning required by other methods. For instance, HippoRAG2 requires
careful setting of graph-related parameters (e.g., Synonym Threshold, Damping Factor), and other
graph-based methods like Raptor require tuning of clustering parameters. The design of T2RAG
avoids such model-specific tuning, making it easier to deploy and more generalizable across different
domains without extensive optimization.

Table 3: Dataset Statistics
Dataset PopQA 2Wiki Musique HotpotQA Story Medical
questions 1000 1000 1000 1000 794 564
chunks 33,595 6119 11,656 9811 1266 268
tokens 2,768,270 454,715 964,203 914,956 915,484 189,271
extracted triplets 398,924 65,028 127,640 124,722 22,812 5256

B.3 MORE PERFORMANCE RESULTS

A.1 EXPERIMENT SETTING

To provide a robust evaluation of our proposed method, T²RAG, we extend the analysis to all six
datasets presented in the main content. For each model and method combination, we calculate the
averaged Exact Match (EM) and F1 scores, which are further averaged across all six datasets to
produce a single, unified performance score. These methods were evaluated across four powerful
language models known for their reasoning capabilities: GPT-4o-mini, Gemini-2.5-flash, Qwen-3-
Next-Instruct, and Gemini-2.5-pro.

The radar chart in Figure 8 visualizes the aggregated performance across all six datasets, offering
compelling evidence to support the central argument presented in our paper.

T²RAG, consistently forms the outermost perimeter of the radar chart. This visually demonstrates
that our method achieves the highest average EM and F1 score across all four tested language models,
from the more compact GPT-4o-mini to the highly capable Gemini-2.5-pro. The performance gap
between T²RAG and other methods is substantial and uniform, highlighting its robustness and state-of-
the-art performance. Our main argument posits that T²RAG’s strength lies in its ability to effectively
harness the advanced reasoning capabilities of modern LLMs. The chart strongly validates this claim
when we compare T²RAG with other methods. For instance, IRCoT (purple line), another method
that encourages reasoning, is the second-best performer, closely trailing T²RAG. This suggests that
methods explicitly designed to guide the LLM’s reasoning process are particularly effective with
these models. The hypothesis is further solidified by observing the performance of HippoRAG2
(pink line). As argued in the main content, methods that relegate the LLM to simpler tasks like
filtering may fail to unlock its full potential. The chart shows that HippoRAG2’s performance is
significantly lower than T²RAG and IRCoT, and is often comparable to or only slightly better than the
standard RAG baseline. This underperformance across a suite of powerful reasoning models supports
our hypothesis that its architecture creates a bottleneck, preventing the effective utilization of the
LLM’s core reasoning strengths. In summary, the aggregated results visualized in the radar chart
provide unequivocal support for our central claim. The consistent, chart-topping performance of
T²RAG across multiple powerful models and diverse datasets confirms that its step-by-step guidance
mechanism is uniquely suited to leveraging the sophisticated reasoning abilities inherent in the next
generation of large language models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Gemini-2.5-flash

GPT-4o-mini

Gemini-2.5-pro

Qwen-3-Next-Instruct

0.1
0.2

0.3
0.4

0.5
0.6

0.7

NOR
BM25
Standard
HippoRAG2
IRCoT
T2RAG

Figure 8: Performance comparison across different LLMs. Reasoning models are in bold.

B.4 MORE EFFICIENCY RESULTS

This section provides a detailed analysis of the time and token consumption of various Retrieval-
Augmented Generation (RAG) methods, as illustrated in Figure 9 and Figure 10. The primary goal is
to evaluate the computational efficiency of our proposed method, T2RAG, against other established
baselines across different stages of the RAG pipeline. The y-axis represents the wall-clock time in
seconds required for the indexing and retrieval stages. The retrieval stage time has been scaled by a
factor of 1000 to ensure visibility on the chart alongside the much larger indexing times. The y-axis
represents the total number of LLM tokens consumed. This is a weighted sum calculated using the
formula: Token Consumption = (#input tokens) + 4 × (#output tokens). This weighting reflects
the common pricing models of LLM APIs, where generation (output) is typically priced significantly
higher (by a factor of 4) than processing (input). As with the time consumption chart, the retrieval
stage consumption is scaled by 1000. The x-axis in both figures shows the performance of four
methods (T2RAG, HippoRAG2, RAPTOR, and IRCoT) across six distinct datasets.

B.4.1 INDEXING STAGE ANALYSIS

The indexing stage is a one-time, offline process, but its cost can be substantial and even prohibitive
for very large corpora. As seen in Figure 9 and Figure 10, datasets like PopQA, 2Wiki, and MuSiQue
demand a considerable amount of time and token resources for indexing across all methods. The
consumption patterns reveal that indexing costs are not simply proportional to the raw size of
the document corpus. For instance, the token consumption for RAPTOR’s summarization and the
triplet extraction for T2RAG and HippoRAG2 do not scale linearly with the number of documents.
This variability likely stems from the informativeness and density of the source documents. A
document rich with distinct facts will lead to more triplets or more detailed summaries, increasing
the computational load, whereas a sparse document will be processed more quickly. This makes the
exact indexing cost unpredictable without analyzing the content itself.

B.4.2 RETRIEVAL STAGE ANALYSIS

The retrieval stage is an online process that occurs for every query, making its efficiency critical for
user-facing applications. Our analysis shows that T2RAG is as efficient as HippoRAG2 during
the retrieval stage. Both methods exhibit similar time and token consumption profiles across all
datasets. This is expected, as their retrieval mechanisms are conceptually similar, operating over the
graph structures built during indexing.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

2

4 ×104 PopQA

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

0.5

1.0
×104 2Wiki

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

0.5

1.0

×104 MuSiQue

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

0.5

1.0

×104 HotpotQA

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

2.5

5.0

7.5

×103 Medical

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

2.5

5.0

7.5

×103 Story

Ti
m

e
(s

)

Indexing Stage Retrieval Stage (x1000)

Figure 9: Time consumption at indexing and retrieval stages across all datasets.

More importantly, T2RAG demonstrates a substantial efficiency gain over multi-round RAG
methods like IRCoT. As seen in Figure 10, T2RAG consistently consumes fewer tokens during
retrieval than IRCoT across all tested datasets. In some cases, such as the Medical and Story datasets,
the reduction in token consumption is over 45%. This efficiency stems from T2RAG’s ability to
synthesize a direct answer from the retrieved triplets in a single round, avoiding the compounding
token costs associated with the iterative query refinement process in multi-round architectures.

Remarkably, T2RAG often achieves lower, or at least comparable, token consumption than even
single-round methods like RAPTOR. This is particularly evident in datasets like PopQA, Medical,
and Story. We attribute this advantage to the nature of the final answer generation. T2RAG generates
a concise answer directly from the structured triplets, which minimizes the number of output tokens.
Since output tokens are heavily weighted in our consumption metric (multiplied by 4), this concise,
triplet-formulated output provides a significant efficiency advantage, leading to an overall reduction
in computational cost.

B.5 MORE ITERATION RESULTS

This analysis examines the average number of retrieval iterations required by T²RAG and IRCoT to
answer a query on the 2Wiki dataset, varying the number of retrieved chunks (top-k) per iteration.

Table 4: Average Number of Retrieval Iterations vs. top-k on the 2Wiki Dataset.
topk T²RAG IRCoT

2 1.54 1.85
3 1.56 1.83
4 1.73 1.70
5 1.70 1.46
6 1.56 1.40

A key observation from the data is that T²RAG consistently saves on the number of retrieval
iterations compared to IRCoT, particularly when retrieving fewer documents per step (k = 2 or
3). For instance, with k = 2, T²RAG requires an average of only 1.54 iterations, whereas IRCoT
needs 1.85 iterations—a reduction of approximately 17%. This suggests that T²RAG’s method of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

0.5

1.0
×108 PopQA

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0.0

0.5

1.0

1.5

×107 2Wiki

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

1

2
×107 MuSiQue

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

1

2

3

×107 HotpotQA

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

1

2

3
×107 Medical

T2 RAG

Hipp
oR

AG
2

RA
PT

OR
IRC

oT
0

1

2

3

×107 Story

To
ke

n
Co

ns
um

pt
io

n
(#

in
pu

t
+

 4
 *

 #
ou

tp
ut

)

Indexing Stage Retrieval Stage (x1000)

Figure 10: Token consumption at indexing and retrieval stages across all datasets.

decomposing a query into structured triplets allows for a more direct and efficient path to resolving
the query, requiring fewer rounds of retrieval to gather the necessary context.

The results challenge the simple assumption that retrieving fewer chunks per iteration (a smaller k)
would necessarily lead to a higher number of total iterations. For T²RAG, the number of iterations
remains relatively stable and low, fluctuating between 1.54 and 1.73 without a clear trend. For IRCoT,
the relationship is even more complex; as k increases from 4 to 6, the number of iterations surprisingly
decreases significantly. This indicates that the effectiveness of the retrieved chunks is more important
than the sheer quantity. T²RAG’s focused retrieval, guided by placeholders in triplets, appears to
acquire high-quality context more reliably, making it less dependent on the k value and more efficient
overall.

B.6 TRIPLET QUALITY ANALYSIS

B.6.1 OVERALL PERFORMANCE

We conducted a detailed manual analysis on a set of 50 randomly sampled documents from 2Wiki
dataset to quantify the performance of the OpenIE triplet extraction process. The results are summa-
rized in Table 5.

Table 5: Overall performance metrics for the triplet extraction stage.
Confirmed Docs Precision Recall F1 Score Avg Triplets/Doc Avg Entities/Doc

50 95.9% 98.2% 95.0% 11.6 10.5

The high Precision (95.9%) and Recall (98.2%) scores demonstrate the overall reliability of the
extraction process. This detailed error analysis confirms the robustness of the IE module while also
highlighting key areas for future improvement, particularly in reducing the incidence of missing and
overmerged triplets.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.6.2 ERROR STATISTICS AND EXAMPLES

Out of the 50 documents, 16 (32.0%) were confirmed to have perfect extractions with no errors.
The remaining 33 documents (66.0%) contained at least one error. A detailed breakdown of the error
types is presented in Table 6.

Table 6: Breakdown of error types across 50 manually annotated documents.
Error Type Documents Affected Percentage
Missing 26 52.0%
Over-merge 20 40.0%
Inaccurate 5 10.0%
Over-split 5 10.0%
Placeholder 2 4.0%
Hallucination 1 2.0%

To provide a clearer understanding of these error categories, we include the following examples:

Table 7: Examples and Descriptions of Triplet Extraction Error Types
Error Type Description Example
Inaccurate An element of the triplet

is extracted with minor
errors.

Source: “...Pierre De Geyter, is known for, writing
the music of ’The Internationale’.”
Incorrect Extraction: (Pierre De Geyter,
is known for, the music of The
Internationale)

Over-split A single cohesive fact is
incorrectly split into mul-
tiple triplets.

Incorrect Extractions: (Denis Sanders, won
for, A Time Out of War) + (Denis Sanders,
won, Best Short Subject)
Correct Triplet: (Denis Sanders, won Best
Short Subject for, A Time Out of War)

Hallucination A triplet is generated that
is not supported by the
source text.

Source: “...He is the husband of actress Cate
Blanchett.”
Incorrect Extraction: (Cate Blanchett, is an
actress from, Australian)

Missing A key fact present in the
text is not extracted.

Source: “William I, Elector of Hesse... was the
eldest surviving son of Frederick II...”
Missed Triplet: (William I, son of,
Frederick II)

Over-merge Two or more distinct
facts are incorrectly com-
bined into a single triplet.

Intended Facts: (James Tuchet, succeeded,
James Tuchet) and (James Tuchet, is, 6th
Earl of Castlehaven) were incorrectly merged.

Placeholder A generic and uninforma-
tive triplet is extracted.

Source: “The Trail of the Lonesome Pine may
refer to...”
Incorrect Extraction: (The Trail..., may
refer to, various interpretations)

B.7 ERROR ANALYSIS

We conducted a comprehensive error analysis on 775 incorrect answer among 1000 samples of
MuSiQue dataset to categorize the primary points of weakness in our method. The analysis is done
by Gemini-2.5-pro. The results, summarized in Table 8, reveal that the most significant challenge lies
in the resolution phase. “Retrieved correct but wrong resolution” is the most prevalent error type,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

accounting for a substantial 46.0% of all cases. This indicates that even when the system successfully
finds the relevant knowledge, it frequently struggles to synthesize it correctly to form the final answer.

The second major bottleneck is “Missing retrieval,” which constitutes 31.2% of the errors, high-
lighting instances where the necessary facts were never found in the first place. Combined, these two
categories represent over 77% of all failures, underscoring that the retrieval and subsequent resolution
stages are the most critical areas for improvement. Less frequent, but still notable, issues include
“Hallucination” (12.7%) and generating an incorrect final answer despite having all correct interme-
diate steps (10.0%). This analysis strongly suggests that future work should prioritize enhancing the
model’s ability to not only retrieve the correct atomic pieces of information but also to reason over
them accurately.

In addition to solely analyzing one experiment, this toolkit can also facilitate more analysis such as
find out why a certain LLM performs much poorer than another.

Table 8: Distribution of error types across 775 identified failures. The analysis highlights that retrieval
and resolution are the primary challenges.

Error Type Count Percentage
Retrieved correct but wrong resolution 354 46.0%
Missing retrieval 240 31.2%
Hallucination 98 12.7%
All correct but wrong final answer 77 10.0%
Unknown / Unclassified 6 0.8%

Total 775 100.0%

C RELATED WORK

We group prior efforts into single-round, multi-round, graph-enhanced RAG and summarization-
based RAG, each adding more interaction or structured reasoning and paving the way for the
fine-grained design of T2RAG.

Single-round RAG. Classical sparse retrievers such as TF-IDF and BM25 paired with extractive
readers perform strongly for open-domain QA (Yang et al., 2019; Nie et al., 2019; Wang et al., 2023a).
Dense retrievers such as DPR (Karpukhin et al., 2020) later replaced sparse vectors with learned
embeddings, retrieving a fixed top-k set in one pass. However, answering multi-hop questions often
demands the intermediate results to further retrieval, motivating the multi-round techniques that
follow.

Multi-round RAG. Due to the missing bridges problem we mentioned in Section 1 more and more
works follow a multi-round, training-free paradigm, which enables the LLMs infer the intermediate
information thus better retrieve the final answer. Some works focus on the query side. Khot et al.
(2023) decompose multi-hop questions into single-hop sub-queries that are solved sequentially. Yao
et al. (2023) propose ReAct, interleaving chain-of-thought (CoT) (Wei et al., 2022) steps with search
actions issued by the LLM. Similariy, Query2Doc (Wang et al., 2023b) expanding queries into concise
triplets to cut token usage while preserving recall. Another line of works relies on the generated
intermediate results for next iteration. Beam Retrieval (Zhang et al., 2024a) jointly training an
encoder and classifiers to keep multiple passage hypotheses across hops. FLARE (Jiang et al., 2023)
forecasts upcoming sentences to decide when fresh retrieval is needed during long-form generation.
IRCoT (Trivedi et al., 2023) and ITER-RETGEN (Shao et al., 2023), alternately expanding a CoT
and fetching new evidence to answer multi-step questions. Adaptive QA (Xie et al., 2023) create an
adaptive framework that picks the simplest effective retrieval strategy according to query complexity.
Despite these advances, few efforts explicitly aim to reduce token costs or number of llm calls during
multi-round RAG. Previous methods expand query or generates CoT with long sentences in each
round. In contrast, our work minimizes token consumption by formulating query expansions as
triplets and simplifying reasoning steps as triplets resolving.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Graph RAG. One major line of research addresses complex QA by structuring knowledge into graphs.
Originating in Knowledge Graph QA (KGQA), early methods focused on decomposing queries or
performing multi-round, LLM-evaluated traversals from seed nodes (Luo et al., 2024; Sun et al., 2024;
Cheng et al., 2024; Mavromatis & Karypis, 2022). The application of this paradigm to general ODQA
was popularized by systems that construct a knowledge graph entirely with LLMs and use community
detection for retrieval (Edge et al., 2024). Subsequent work has aimed to make this process more
efficient. For instance, LightRAG (Guo et al., 2024) introduces a dual-level retrieval system combining
graph structures with vector search to improve knowledge discovery. Targeting resource-constrained
scenarios, MiniRAG (Fan et al., 2025) builds a heterogeneous graph of text chunks and named
entities, enabling lightweight retrieval suitable for Small Language Models. To tackle the common
challenge of entity merging, HippoRAG (Gutiérrez et al., 2025a) and HippoRAG2 (Gutiérrez et al.,
2025b) create synonym links between similary entity nodes and employs a PageRank (Haveliwala,
1999) algorithm for final node selection. Despite these advances, a central challenge for Graph RAG
remains the costly and error-prone nature of graph construction from unstructured text.

Summarization-based RAG. A distinct but related approach focuses on building hierarchical
summarization trees rather than explicit graphs. These methods aim to capture information at
varying levels of abstraction. For example, Raptor (Sarthi et al., 2024) constructs a summary tree by
recursively clustering document chunks and summarizing the content within each cluster to create
new, more abstract retrieval units (Wu et al., 2023). Aiming to capture more detailed contextual
information, SireRAG (Zhang et al., 2024b) creates a "relatedness tree" by summarizing fine-grained
propositions that share the same entities. However, these summarization-based methods often incur
high computational costs during the indexing phase and risk losing the fine-grained, factual details
that are essential for precise factoid QA.

D LIMITATIONS

Although our method achieves state-of-the-art performance with a simple design, it is not without
limitations. Experimentally, we limited our multi-round methods to 3 iterations to match the
complexity of the datasets and ensure a fair efficiency comparison; we also did not have the resources
to test on other embedding models especially LLM-based ones, re-rankers or large external knowledge
graphs (e.g., Wikipedia KG (Hertling & Paulheim, 2018)). Our evaluation is also limited to the
black-box and end-to-end one which may lack explanability without the recall score of chunks.
Methodologically, our approach is highly dependent on the quality of the triplet extraction. While
higher-quality sources can be used, simple triplets may not adequately represent complex knowledge
like many-to-many relationships, a challenge that could be addressed with hypergraph modeling (Luo
et al., 2025) in future work. Besides, the efficiency of triplet extraction can be further improved
beyond the classic OpenIE pipeline. Developing these methods needs efforts from information
extraction (Grishman, 2015) area. Finally, regarding scalability, building the index from a very
large corpus is token-intensive. However, our method is very efficient when using a pre-existing
triplet database. This design also makes it inherently suitable for evolving knowledge bases, as new
triplets are independent to previous ones thus they can be added incrementally, offering a significant
advantage over static Graph RAG approaches (Zhang et al., 2025).

E CASE STUDY

We offer a full log of T2RAG during our experiment running in Figure 11.

This case study showcases the effectiveness of resolving the complex comparative query in 2 retrieval
iterations. The system successfully decomposed the query into 4 necessary triplets (two directors,
two birth years) and retrieved context only by the searchable ones. By identifying both directors
(Michael Curtiz, Edith Carlmar) and their birth years (1886, 1911) from the triplet DB or initial set of
chunks, it bypassed the need for further retrieval rounds. This immediate and complete information
acquisition demonstrates the power of T2RAG’s query decomposition and high-quality triplet-based
retrieval.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Question: Which film has the director born earlier, God’s Gift To Women or Aldri Annet Enn Brak?

Q: Think step by step about what information is needed to answer this question. Form triples in the format: subject | predicate | object. Use "?" as placeholder for unknown entities…

A:

Searchable Triplets: God’s Gift To Women, is directed by, ?DirectorA ; Aldri Annet Enn Brak, is directed by, ?DirectorB ;

Fuzzy Triplets: ?DirectorA, was born in, ?birthYearA ; ?DirectorB, was born in, ?birthYearB

Q: Use the context passages and propositions to solve any '?' placeholders with as much detail as possible, grounding your answers in the passage content.

Retrieved Triplets: Aldri annet enn brak was directed by Edith Carlmar, God's Gift to Women directed by Michael Curtiz, God's Gift to Women was completed as musical film,

Aldri annet enn brak is 1954 Norwegian comedy-drama film, God's Gift to Women starring Joan Blondell, Aldri annet enn brak has English title Nothing but trouble, God's Gift to

Women is 1931 American pre-Code romantic musical comedy film … (18 propositions in total)

Retrieved Chunks: Title: Altid ballade … Title: God's Gift to Women … Title: Aldri annet enn brak ... Title: Edith Carlmar (Edith Mary Johanne Mathiesen) (15 November 1911 -

17 May 2003) Title: Stanley Kwan

A:

Newly Resolved triplets: God’s Gift To Women, is directed by, Michael Curtiz ; Aldri Annet Enn Brak, is directed by, Edith Carlmar ; Edith Carlmar, was born in, 1911

Newly searchable chunks: Michael Curtiz, was born in, ?birthYearA ;

Query Decomposition

Iteration 1

Q: Use the context passages and propositions to solve any '?' placeholders with as much detail as possible, grounding your answers in the passage content.

Retrieved Triplets: Michael Curtiz born as Mih1ly Kertsz, Michael Curtiz was Hungarian-born American film director, Michael Curtiz was born on December 24, 1886, Michael

Curtiz made stars of Bette Davis, The Vagabond King directed by Michael Curtiz, Bright Leaf directed by Michael Curtiz…(32 propositions in total)

Retrieved chunks: Title: Michael Curtiz Michael Curtiz\nMichael Curtiz (born Man Kaminer(1886-1905) Mih1ly Kertz (1905); December 24, 1886 April 11, 1962) was a

Hungarian-born American film director… Title: Bright Leaf… Title: Altid ballade…Title: The Vagabond King… Title: JdJds…

A:

Newly Resolved Triplets: Michael Curtiz, was born in, 1886

Newly Searchable Triplets: None.（all triplets resolved and the iteration is terminated)

Iteration 2

Q: Based on the following triplets, please answer the following question.

Total Resolved Triplets: God’s Gift To Women, is directed by, Michael Curtiz ; Aldri Annet Enn Brak, is directed by, Edith Carlmar ; Michael Curtiz, was born in, 1886 ; Edith

Carlmar, was born in, 15 November 1911.

A: God’s Gift To Women

Final Answering

Figure 11: An example of T2RAG QA. To answer the question, we need intermediate facts about
Michael Curtiz (marked by yellow and Edith Carlmar (marked by red), which are not reflected in the
question.

F PROMPTS

We provide all prompt templates we used at retrieval stage, namely structured query
decomposition, triplet resolving and final answering. These are prompts used in
LLMDecompose,LLMResolve,LLMAnswer, respectively. {·} represents the content needed to be replaced
by the original question, intermediate generated triplets, or retrieved propositions and chunks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Structured Query Decomposition

You are tasked with reasoning about a question and extracting the necessary knowledge triples
to answer it.
Instructions:
1. Think step by step about what information is needed to answer this question
2. Form triples in the format: subject | predicate | object
3. Use "?" as placeholder for unknown entities
4. For comparative questions involving multiple entities, use distinct placeholders like
?entityA, ?directorA, ?directorB
5. Extract multiple triples if the question requires complex reasoning
Examples:
- Question: "What is the capital of France?" Reasoning: To answer this, I need to know what
France’s capital is. Triple: France | has capital | ?
- Question: "Who directed the movie that won Best Picture in 2020?" Reasoning: To answer
this, I need to know which movie won Best Picture in 2020, and who directed that movie.
Triples: ? | won Best Picture | 2020 ? | is directed by | ?
- Question: "Which film whose director was born first, MovieA or MovieB?" Reasoning: To
answer this, I need to know the director of each movie, and the birth year of each director
to compare them. Triples: MovieA | is directed by | ?directorA MovieB | is directed by |
?directorB ?directorA | was born in | ? ?directorB | was born in | ?
Now analyze this question:
Question: {query}
Provide your response in this format:
Reasoning: [Your step-by-step reasoning about what information is needed]
Triples: [List each triple on a new line in format: subject | predicate | object]

Triplets Resolving

Example: Context Propositions: {context propositions}
Fully Resolved Clue 1: Subject: Lothair II Predicate: has mother Object: Ermengarde of
Tours
Newly Searchable Clue 1: Subject: Ermengarde of Tours Predicate: died on Object: ?
—
Now apply the same process to the following clues: Use the context passages and propositions
to resolve any ’?’ placeholders with as much detail as possible, grounding your answers in
the passage content. Instructions:
1. For searchable clues (one ’?’), replace ’?’ with the correct entity to fully resolve it,
including any relevant attributes.
2. For fuzzy clues (multiple ’?’), generate a Newly Searchable Clue by replacing one of the
placeholders with the correct entity, including any relevant context.
Original Query: {query}
Searchable Clues: {searchable clues text}
Fuzzy Clues: {fuzzy clues text}
Context Passages: {context passages}
Context Propositions: {context propositions}
Previous Resolved Clues: {resolved clues context}
Return two lists in this format:
Fully Resolved Clue 1: Subject: ... Predicate: ... Object: ...
Fully Resolved Clue 2: Subject: ... Predicate: ... Object: ...
Newly Searchable Clue 1: Subject: ... Predicate: ... Object: ...
Newly Searchable Clue 2: Subject: ... Predicate: ... Object: ...
(Continue numbering accordingly)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Final Answering

Based on the reasoning clues, please answer the following question.
Question: {query}
Key Reasoning Clues: {total resolved clues + remaining searchable clues}
Instructions:
1. Analyze the question step by step
2. Use the reasoning clues to understand what information is needed
3. Provide ONLY a concise answer
Answer format requirements:
- For WH questions (who/what/where/when): Provide the exact entity, date, full name, or full
place name only
- For yes/no questions: Answer only "yes" or "no"
- No explanations, reasoning, or additional text
- One entity or fact only
Answer:

27

