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Automating Website Registration for Studying GDPR Compliance
Anonymous Author(s)

660k websites
from Tranco 1M

25.9% found
registration form

23.0%
errors

51.1%
no form 5.2% of forms are insecure

22.8% of forms
submitted successfully

33.9k websites
send us emails

12 605 (37.2%) potentially
non-compliant senders

Automated crawl Automated registration ML-based violation detetection

Figure 1: Overview of steps of our study and results.

ABSTRACT
Investigating how websites use sensitive user data is an active re-
search area. However, research based on automated measurements
has been limited to those websites that do not require user authen-
tication. To overcome this limitation, we developed a crawler that
automates website registrations and newsletter subscriptions and
detects both security and privacy threats at scale.

We demonstrate our crawler’s capabilities by running it on 660k
websites. We use this to identify security and privacy threats and to
contextualize them within the laws of the European Union, namely
the General Data Protection Regulation and ePrivacy Directive. Our
methods detect private data collection over insecure HTTP connec-
tions and websites sending emails with user-provided passwords.
We are also the first to apply machine learning to web forms, assess-
ing violations of marketing consent collection requirements. Over-
all, we find that 37.2% of websites send marketing emails without
proper user consent, which is mostly caused by websites sending
first a marketing email right after the subscription. Additionally,
1.8% of websites share users’ email addresses with third parties
without a transparent disclosure.

CCS CONCEPTS
• Security and privacy→ Privacy protections;Web applica-
tion security; • Applied computing → Law; • Information
systems →Web mining.
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1 INTRODUCTION
Since the Internet’s beginnings, users have been exposed to security
and privacy abuses [8, 28]. Over the past decades, the advertising
industry has been in on the game, employing tracking technolo-
gies [35] to gather user data. Many of these abuses are financially
motivated since users’ behavioral data has economic value, e.g., for
targeted advertising.

To protect individuals, the European Union (EU ) has enacted
several laws regulating online data collection. The ePrivacy Direc-
tive mandates that the sending of marketing emails requires prior
consent of the recipient. This consent is currently defined in the
General Data Privacy Regulation (GDPR). Both of these laws have
further requirements that pertain to the processing of personal data,
such as following secure communication practices.

Even though data protection authorities can impose heavy fines
for GDPR violations, the majority of studies analyzing EU websites’
compliance find significant levels of non-compliance. For example,
Libert [24] and Englehardt et al. [13] demonstrated that most web-
sites track users through cookies or fingerprinting, respectively.
Matte et al. [27] showed that 5% of websites ignore users’ cookie
consent, and Linden et al. [25] found that almost half of websites’
privacy policies violate GDPR requirements.

These studies have focused solely on websites’ landing pages.
Urban et al. [33] showed that browsing randompages beyond a site’s
landing page increased the incidence of privacy-invasive practices
by 36%. However, their study was also limited to unauthenticated
sections of websites, a limitation that has been addressed by only
a few researchers. Englehardt et al. [12] and Mathur et al. [26]
studied email privacy by signing up for US e-commerce and political
campaign newsletters, observing address sharing to third parties
and email tracking. Jonker et al. [18] utilized a public credential
database to log in to websites. However, their work was limited
to websites with available credentials in that database. Only the
study by Drakonakis et al. [11] addressed the registration process
in general, but it was successful on just 1.6% of the Alexa top 1M
websites, finding half of websites using insecure cookies.

Our work. We present a crawler that achieves a significantly
higher registration and newsletter sign-up rate than previous work;
in particular, it allows for the analysis of those parts of websites that
require prior user authentication, which have been understudied.
Utilizing this infrastructure, we examine the compliance of websites
with security and privacy requirements for the registration process
and analyze the emails received from these websites. The crawl
process and associated statistics are depicted in Fig. 1.
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To examine websites’ compliance, we trained machine learning
(ML) models on datasets from Kubicek et al. [21] predicting the
legal properties of forms and the received emails. By processing
the form’s legal properties in decision trees, we can detect various
kinds of potential violations of consent to marketing emails. We are
able to identify instances where consent is likely not active, free,
specific, or given at all, thereby violating GDPR requirements.

We evaluate both crawler and violation detection on a crawl of
660k websites, registering or signing-up for newsletter in 5.9% of
them. Using an ML classification of email types, we evaluate the
verification process of email address control, known as double-opt-
in, finding 59.8% of websites that fail to follow this process. Since
we generate a unique email address for each registered website,
we discovered that in 14.5% of the cases we received emails from
domains other than the domain where we registered. We develop
methods to evaluate the transparency of their disclosure practices,
finding 1.8% of websites with undeclared or hidden senders.

Contributions. We make the following key contributions. (1) We
develop a crawler that achieves more than double the rate of regis-
tration and newsletter sign-up than prior work. Our crawler enables
the automated analysis of those parts of websites that require prior
user authentication, enabling privacy and security studies at scale
that were previously not possible.1 (2) We automate the detection
of privacy and security violations using ML models that allow the
fully self-contained processing of crawled registration forms and
received emails. (3) We present new results on how tens of thou-
sands of websites potentially violate GDPR consent requirements
in the user registration process. Namely 37.2%, which is 12 605, of
websites send marketing emails despite insufficient consent. This
demonstrates the usefulness of our crawler in analyzing the security
and privacy of the registration process.

2 LEGAL BACKGROUND
During the registration process, users provide personal information
to websites, including their names, passwords, telephone numbers,
and email addresses. Within the EU, the collection and processing
of such information is regulated by the ePrivacy Directive and the
General Data Protection Regulation (GDPR). The ePrivacy Directive
regulates electronic communication, mandating prior consent (an
opt-in regime, unlike in the US) for sending marketing emails.

The GDPR defines in Articles 4(11), 7, and Recital 32 the re-
quirements for obtaining consent: it must be freely given, specific,
informed, and unambiguous. For example, valid consent is consid-
ered to be given when users actively mark a checkbox that explicitly
asks for consent to receive marketing emails, accompanied by a
clear explanation of what this means. For forms exclusively dedi-
cated to newsletter subscriptions, where the purpose of receiving
marketing emails is implicit in the form’s wording, the inclusion of
a checkbox becomes redundant. Nevertheless, in all cases, websites
should first send an activation email to verify the user’s possession
of the registered address through a double-opt-in procedure.

Furthermore, Articles 25 and 32 of the GDPR outline the obli-
gations to follow best practices, namely to implement secure and

1Our crawler is not publicly available as it can be misused for the Bomb attack studied
by Schneider [31]. However, interested researchers can request access using this form
(redacted for review).

private data processing by design and by default. This requirement
aims to prevent data breaches involving email addresses or pass-
words, which have led to significant fines [3, 17]. Collecting private
data through forms on insecure websites using HTTP, or transmit-
ting user-provided passwords via unencrypted emails may therefore
violate the requirement of following best security practices.

3 CRAWLING INFRASTRUCTURE
We developed an infrastructure for crawling websites and automat-
ing user registration. For each website where the crawler registers,
we provide a unique email address for a (simulated) user. Our in-
frastructure then analyzes the received emails to evaluate how the
website uses the user’s email address.

3.1 Crawler
Websites vary significantly in both their appearance and implemen-
tation, primarily due to the flexibility of JavaScript and CSS. Since
all registration options must adhere to the same laws regardless of
the technologies used, we focus on registration using an email ad-
dress. We therefore do not attempt to register using single sign-on,
which was covered by other compliance studies [10].

Below we discuss the crawling steps. First, the crawler navigates
through website to find pages containing a registration form, which
it then fills out and submits. Afterwards, it checks the registration
state and finishes the double-opt-in when it is requested by email.

3.1.1 Implementation. To simulate users’ browsing patterns, our
crawler utilizes a real browser orchestrated by Selenium. Since
existing frameworks such as OpenWPM [13] or webXray [24] are
not designed for the complex crawling that our task demands, we
do not use them. To represent the majority of web users, we crawl
websites using Chrome, but Firefox is supported as well.

To maximize the chances of successfully loading websites, we
employ several techniques to evade bot detection, which we de-
scribe in Appendix A.1. We have tested that our crawler is not
flagged by any major Content Delivery Network (CDN ), including
Cloudflare, Fastly, Amazon CloudFront, and Akamai.

Our crawler successfully loads 90.6% of websites, as opposed
to 70% without bot evasion techniques. In comparison, Le Pochat
et al. [22], successfully crawled 85% from URLs of a similar list
(the intersection of the Tranco and Chrome UX report lists). Their
crawler did not actively evade bot detection. We suspect that many
of the websites that they report as successfully loaded actually
flagged their crawler as a bot and presented a simple warning page.

3.1.2 Navigation. After loading each website with a fresh cache,
the crawler determines the page’s language using the polyglot
Python package. If the language detection fails, we rely on the
<html> tag. If English is not the detected language, the crawler tries
to switch to the English version, if one exists. We keep browsing
the website regardless of the switch to English since we support
the majority of European languages (see Appendix A.2).

Keyword matching. The detection of a link or button to change
the language is based on matching keywords in the visible text,
the ‘alt’ attribute of <img> tag, or the URL. We curated phrases for
determining the purpose of page elements, such as a privacy policy
link or marketing consent checkbox. Native speakers translated
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these phrases to all the supported languages. The curation was
guided empirically by example websites. The matching procedure
works as follows. First, we remove stop words from both the website
and the keyword phrase. Then we lemmatize both texts, using
the SpaCy [16] or lemmagen3 [19] lemmatizers, depending on the
language support. Next, we map characters with accents or Cyrillic
to lowercase ASCII counterparts. Finally, the processed keywords
and phrases are matched. This keyword matching approach is also
used for other navigation aspects, which are described below.

Navigating webpages. Our crawler uses a priority queue to deter-
mine the order of visiting pages of the site. The priority represents
the likelihood that a given link leads to a registration or a newslet-
ter form. We order the link categories starting with the highest
priority as follows: the registration page, login page, privacy policy
and terms and conditions, and others. Links within a category are
ordered by their matching score. The “other” links are selected
randomly, preventing the crawler from getting stuck by, e.g., age
walls on adult websites. The privacy policy and terms are collected
after registration; they are relevant for our legal evaluation.

The crawler is restricted to visiting at most twenty pages and
the registration page is typically reachable within the first five
pages. We allow the crawler to navigate beyond the original TLD+1
domain,2 but only for a single step, i.e., links found on external do-
mains are not considered for subsequent crawling. This allows regis-
tration on an affiliated website directly accessible from the original
site. However, it restricts the crawler from navigating away from the
original site and identifying unrelated registration forms. Moreover,
the keyword-matching algorithm penalizes external domains.

Page content classification. When we load a page, we classify it
according to the presence and thereby type of a <form> tag. We
apply the decision tree depicted by Fig. 6 to classify the form as
registration, login, subscription, contact, search, or other.
We evaluated this procedure on a manually annotated dataset col-
lected from 1000 randomly selected English websites from Tranco
1M,3 containing 426 forms. There were 12 contact, 32 login, 139
subscription, 163 registration, and 80 other forms. Procedure
from Fig. 6 detected 74% of the registration forms and 94% of
the subscription forms, yielding an overall accuracy of 82%.

3.1.3 Form interaction. Once we detect a registration form, or
a subscription form when no registration form is found, we
interact with it. We first extract the entire subtree of the <form>
tag, which we process using the Beautiful Soup library. We use a
similar keyword-matching method as in Section 3.1.2 to detect the
type of input fields. We search for matches in the corresponding
<label> tag and visible text, and in attributes such as autocomplete,
type, label, placeholder, and value.

Once we determine the input type, we check which input fields
must be filled as indicated by the presence of the “required” at-
tribute, an ‘∗,’ or a bold label. Then we fill all the required inputs
by simulating typing. We ensured that our fictitious credentials
including an EU address seem plausible. This, together with VPN
in the EU, should indicate for the website that EU privacy laws are

2TLD+1 refers to the registered domain name preceding the top-level domain. For
example, in both bbc.co.uk and bbc.com, the string ‘bbc’ represents the TLD+1.
3From an older crawl using https://tranco-list.eu/list/89WV/1000000.

applicable, which we further discuss in Section 7. Most importantly,
we generate a unique email address for every website.

Checkboxes and form submission. We interact with every required
checkbox and <select> tag. Once the form is filled, we submit it
using any detected submission button or by simulating pressing
the Enter key. After submission, we look for a redirect or a change
in the website content to detect the registration state. We compute
the difference in the website’s visible content and the form code to
distinguish the following outcomes. The text differs and contains
keywords indicating a ‘successful’ or ‘failed’ registration. The form
remains unchanged, usually indicating a ‘failed’ registration. The
form is changed after a redirect, indicating a multi-step registration.
None of the above applies and we denote this an ‘unknown’ state.

If the registration failed but the same form is still present, we
try filling in the credentials again, but this time we confirm all
checkboxes. This increases the probability that a required checkbox
like “I agree with the terms and conditions” is checked. However, it
also increases the probability of consenting to sending marketing
emails, which could be detrimental to the objective of our consent
study.4 Then the form is submitted again, possiblymany timeswhen
the form changes and our heuristic detects a multi-step registration.

CAPTCHA solving. During any of the crawling steps, we might
encounter a CAPTCHA. This usually happens during registration
or when loading an index page is intercepted by CloudFlare or a
similar DDoS-mitigation service. The crawler observes the type
of CAPTCHA by the JavaScript that loads it. For reCAPTCHA or
hCAPTCHA, we load a template substitute JavaScript that prevents
crashes due to website changes of the CAPTCHA invocation. Image
CAPTCHAs are detected by keywords directly in the forms. We
use an external service that solves CAPTCHA using humans.

A third of crawled websites use CAPTCHAs: 75% of them Re-
Captcha v2, 20% ReCaptcha v3, 2% hCaptcha, and 3% image CAPTCHA.

Self-hosted mailserver. We self-host generated email addresses
at redacted for review, configured to only receive emails using the
Mail Delivery Agent implemented with the Python Maildir library.

3.2 Registration confirmation
Once the crawler determines that the registration state is either
‘successful’ or ‘unknown,’ it waits for a confirmation email. As
shown in [21], only 85% of websites send emails to registered users
and, of those, 59% send double-opt-in emails requiring activation.
If we receive an activation email, we extract the activation link or
code. The crawler visits the activation link or inserts the code into
the open registration.

For computational reasons, we wait for activation mail only for
a limited period. We discuss this period and issues that we faced
with confirmations in Appendix A.4.

3.3 Deployment
We evaluated our crawler by visiting the Tranco 1M list5 [23],
generated on 15 June 2022. We selected the Tranco list to enable an

4Checking all checkboxes hinders detecting the ‘marketing email despite user did not
consent’ violations. Skipping such a requirement improves the registration rate by 10%,
which is relevant for our crawler application to other than consent compliance studies.
5Available at https://tranco-list.eu/list/82Q3V
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accurate comparison with prior work that utilizes a similar crawling
list. However, Ruth et al. [30] have observed that Tranco represents
less accurately users’ browsing patterns than the ChromeUXReport
(CrUX ) list. Hence we also evaluate the subset of Tranco that is
present in the CrUX list. Unfortunately, due to a processing error,
we crawled one million websites that were uniformly randomly
sampledwith replacement, rather than crawling all thewebsites. For
this reason, our results are only based on 660 202 unique domains,
corresponding to the first crawl.

The crawl was conducted from June to September 2022, averag-
ing 10k websites per day on a server equipped with four Intel Xeon
E7-8870 CPUs. We ran 60 Chrome browsers in parallel each within
a separate docker container, using a freshly launched browser for
every website. We used 16 IP addresses provided by the German
Research Network ensuring that the traffic originates in the EU.

The crawler collected evidence in the form of HTML code from
the index and registration pages, as well as extracted text from the
privacy policy and terms and conditions. Additionally, we obtained
screenshots of each step taken during registration and recorded
all the observed cookies. Finally, the crawler collected information
regarding the registration status, which we describe below.

3.4 Crawling results
From the 660 202websites, 504 509websiteswere successfully loaded
in a supported language. Among the loaded websites, our crawler
detected a registration or subscription form on 33.6% (169 765)
of them. Furthermore, our crawler estimated the success rate of
form submissions defined in Section 3.1.3. The estimation indicates
that 30.2% of form interactions were successful (51 290), 38.4% failed
(65 220), and 31.4% resulted in an undefined state (53 255).

The form submissions state detection is prone to false positives.
Hence we manually investigated the correctness of the crawler de-
termined registration state by inspecting 200 websites and testing
the used credentials. The analysis revealed three newsletter sub-
scriptions deemed successful by the crawler and nine registrations,
seven of whichwere correctly identified as successful by the crawler.
Two registrations were successful, despite the crawler assigning
them an ‘unknown’ and ‘failed’ state. We suspect that newsletter
forms were underrepresented in this sample and as nearly half of
the received emails resulted from newsletter subscriptions. Further
observations from the manual analysis are presented in Appendix B.

We also analyze the results based on whether the websites are
included in the CrUX list. Note that Tranco 1M and CrUX have
only 51.9% overlap. The crawl was significantly more successful for
the CrUX websites. Specifically, 90.6% of the websites present in
both lists were successfully loaded, in contrast with 65.3% for non-
CrUX websites. Among the websites in the CrUX list, registration
was detected as successful in 11.7% of cases (3.9% for non-CrUX
websites). Our list choice supports a comparison with [11], relying
on the DNS-based Alexa list with domains as WindowsUpdate.com
without HTTP(S) endpoint. In the future, we recommend crawling
the CrUX list to prevent unnecessary computations.

3.5 Ethical considerations
We have identified the following three risks of our study. 1) Legal
risks arising from crawling: we considered various legal regimes

and concluded that our research does not violate laws such as
fraud, trespass, or breach of contract as our intentions are the
pursuit of good-faith privacy research. 2) Risks to website owners: our
single crawl negligibly impacts each individual website’s capacity.
Moreover, the registration rarely results in a manual action by
website owners, as the vast majority of emails are automated. In
Section 5, we present only aggregated results, preventing harm by
wrongful accusation of individual websites for privacy violations.
For that reason, we refrain from publicly disclosing our dataset
of identified violations, except in cases where parties explicitly
provide consent to adhere to the same ethical standards we uphold.
3) Risks to CAPTCHA solvers: we employed a third-party CAPTCHA
solving service. Given the substantial prevalence of CAPTCHAs,
accounting for one-third of our successful registration, and their
prevalence on often higher-profit services, omitting CAPTCHA
solving would introduce a significant bias. Finally, we discussed the
outsourcing with our university’s legal department. Furthermore,
our university’s ethics board determined that our project does
not require ethics approval as it does not involve human subjects.
Since email service providers have started to require CAPTCHAs
to complete the confirmation, we are transitioning to CAPTCHA
solving by research assistants employed at our university.

4 CLASSIFYING LEGAL PROPERTIES
Kubicek et al. [21] defined 21 legal properties relevant to consent
compliance and annotated a dataset with them. In this section,
we automate the prediction of these properties. Using the dataset
from [21], we train two types of ML models: for emails and forms.
For each type of model, we describe the feature engineering step,
how models are trained, and the results.

4.1 Features of emails
The training dataset consists of 5725 mostly German and English
emails. To reduce the complexity of dealing with multiple languages
and to utilize all the training samples, we translate the subjects
and bodies into English using LibreTranslate. From each translated
email, we further process the headers, subject, and body.

4.1.1 Headers. Email headers constitute a set of key-value string
pairs, such as ‘Date,’ ‘Reply-To,’ or ‘List-Unsubscribe.’ While several
headers are standardized, there are many, often prefixed with ‘X-,’
that are custom to specific email servers. We define the supported
keys as the set of all header keys in the training dataset. This resulted
in 76 headers without the ‘X-’ prefix and 488 headers with it. For
each email, we denote whether there is an entry for a given key,
whether it contains an email, URL, other text, or whether it is empty.

4.1.2 Subject. The translated subjects are processed with TF-IDF
encoding6 that we fit to the training dataset. In addition to this
encoding, we use a universal sentence encoder [5]. This pretrained
NLP model transforms sentences to an embedding in R512.

4.1.3 Body. We extract both the TF-IDF encoding of the translated
body and several manually-defined numeric features. These features

6Term Frequency-Inverse Document Frequency (TF-IDF ) is a variant of the Bag-of-
Words text representation model that accounts for the total number of words. It
outperforms Bag of Words in common classification tasks [1].
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Figure 2: Confusion matrices of mail type classification.

include the number of characters or sentences of the email text,
number of URLs, images, and links.

4.2 Training ML models for emails
Given that our features correspond to tabular data, we use the
XGBoost model [7]. XGBoost is well-suited as it outperforms other
training algorithms for datasets with few annotated samples but
high dimensionality of the feature space.

We train the model using an established ML pipeline. We per-
form a stratified split of the dataset dedicating 75% for training,
saving 25% of the unseen data for validation. We adjust for class-
imbalance by sample-weighting. The models optimize the weighted
‘multi:softmax’metric formulti-class classification and ‘binary:logistic’
for binary classification. All reported results are based on four-fold
cross-validation. Given data scarcity, we skip hyperparameter tun-
ing, which would require a further data split, and we use the default
XGBoost hyperparameters.

We trained models that predict two distinct legal properties of
emails. Our first model predicts whether an email is a marketing
email (i.e., newsletters, notifications promoting service monetiza-
tion, and surveys), a servicing double-opt-in email, or another kind
of servicing email (confirmation emails or service updates). Our
second model detects whether an email contains a method to un-
subscribe, which we evaluate only on marketing emails.

In Fig. 2a, we present the confusion matrices of the mail-type
model. The mail-type model achieves 97.7% balanced accuracy,
while in the simplified task of deciding only whether email is mar-
keting or servicing (aggregating double-opt-ins with confirmations
and legal updates), the balanced accuracy increases to 99.2%. The
same balanced accuracy of 99.2% is achieved by the model predict-
ing the presence of the unsubscribe options.

4.3 Features of forms
To transform forms of unlimited length to tabular features, we
aggregate the form inputs by the crawler’s keyword-based element
classification.We group semantically similar inputs, such as the first
and last name, full name, and username, see Appendix A.3 for details.
We also reduce the complexity by excluding inputs irrelevant to
legal classification, such as CAPTCHA. From all inputs, we extract
whether they are required or optional, and from checkboxes also

their default values. We concatenate texts, such as corresponding
labels, and translate them to English. Finally, we include the form
type (registration or subscription) as a categorical feature.

We then process the form texts similarly as emails. Note that
checkbox labels often consist of complex and nuanced statements,
such as “I don’t want to receive special offers about [company name]
products.” To better capture the meaning of these statements, we
extract both sentence embeddings and TF-IDF representations with
a limit of 500 words. However, for other form inputs, which tend to
have shorter labels like “Your email,” we skip sentence embeddings
and only use TF-IDF with a limit of 50 words.

The feature extraction produces 5839 tabular features: 69 numer-
ical features about form’s input fields, 3154 TF-IDF columns, and
five sequences of R512 sentence embeddings.

4.4 Training ML models for forms
Similarly, as with the email classification, we trained an XGBoost
model for each of the 21 binary legal properties annotated by [21].
Note that the training dataset consists of only 668 annotated forms.
To address this data scarcity, we also conducted experiments using
the Tabnet model [2], a neural network model optimized for tabular
data. One notable advantage of Tabnet over XGBoost is its ability
to perform unsupervised pretraining on unlabeled data, allowing
it to capture the distribution of classified data. For the pretraining
phase, we provided the extracted features of 30k websites where
the crawler detected registration or subscription forms.

Table 1 presents the results of XGBoost with predictions based
solely on the crawler’s keyword-based classification of form con-
tent. However, the crawler’s prediction is unavailable for some legal
properties, so for space reasons we skip such rows together with
Tabnet as its performance is aligned with that of XGBoost. The table
provides a summary of the macro-averaged F1 score, precision, and
recall, while the last column indicates the percentage of positive
samples in the training dataset. Note that the overall performance is
highly dependent on the number of positive samples, making scarce
properties insufficient for making legal judgments. To mitigate the
risk of falsely predicting a privacy violation, we combine the ML
predictions with the crawler’s keyword-based deterministic predic-
tion. When the presence of a legal property implies a violation, we
combine predictions using AND and conversely when it implies
compliance, we use OR. We further reduce false positives by con-
ditioning predictions when possible, such as ‘marketing checkbox
forced’ requires ‘marketing checkbox present’ in the first place.

5 POTENTIAL VIOLATION DETECTION
In this section, we describe our analysis of security threats and
potential privacy violations concerning consent in forms and emails.
For each method, we give context regarding related work and the
EU privacy regulations – the GDPR and the ePrivacy Directive.

5.1 Security violations
Using our automated methods, we investigate websites’ adherence
to security best practices in private data protection mandated by
Art. 25 and 32 GDPR. We focus on the collection of personal infor-
mation through user registration and newsletter sign-up processes.
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Table 1: Performance of legal properties models. ‘Determ.’
model stands for the crawler’s prediction.

Property Model F1 Precision Recall Support
Determ. 77.58% 80.43% 76.87%Marketing consent XGBoost 82.33% 82.88% 82.08% 41.92%

Determ. 68.06% 64.95% 74.65%Marketing purpose XGBoost 63.15% 61.71% 66.21% 7.04%

Determ. 79.01% 83.23% 77.33%Marketing checkbox present XGBoost 81.67% 82.95% 81.04% 35.18%

Determ. 71.74% 73.26% 70.44%Marketing checkbox pre-checked XGBoost 57.66% 57.58% 58.43% 5.84%

Determ. 55.67% 59.67% 54.22%Marketing checkbox forced XGBoost 58.94% 59.84% 58.38% 3.14%

Determ. 71.16% 71.48% 70.86%Tying policy and terms checkboxes XGBoost 77.71% 78.10% 77.92% 16.77%

Determ. 51.84% 51.51% 64.49%Tying all checkboxes XGBoost 49.70% 49.70% 49.70% 0.45%

Forced policy XGBoost 74.16% 74.34% 74.07% 26.95%
Forced terms XGBoost 74.05% 80.28% 70.99% 5.24%
Forced policy and terms XGBoost 72.55% 72.16% 73.25% 18.41%

0% 2% 4%

Password in plaintext

Insecure registration

1.8%
(626/33899)

5.2%
(7780/149192)

Figure 3: Security threats of registration to websites.

We present our findings in Fig. 3. We detect 5.2% of websites
collecting sensitive information through forms from unsecured
HTTP websites, failing to ensure the personal data confidentiality
required by GDPR. Utz et al. [34] found such violation on only 2.85%
of websites. The difference might stem from our better selection
of forms for inspection and the difference in the crawling lists. We
also observed 1.8% of websites that send us an email included the
user-provided password in plaintext in the email. The data protec-
tion authority of Baden-Württemberg (Germany) [3] considers this
practice as a violation of Article 32 of the GDPR. A similar incidence
of 2.3% was observed in manual study of Kubicek et al. [21].

5.2 Violations of marketing consent in forms
Our detection of potential violations of marketing consent in forms
is based on the predicted legal properties used in the decision proce-
dures defined by Kubicek et al. [21, Figs. 6 and 7]. Due to space con-
straints, in Fig. 4 we only report the aggregated results using these
procedures. Note that the baseline of reported incidence is 33 899 of
websites that send any email. According to Kubicek et al. [21], only
85% of registrations result in the website sending any email, and this
factor should be taken into account when interpreting our results.

Over 43% of registrations resulted in websites that never sent us
any marketing emails, potentially caused by issues with account
activation (see Appendix A.4) and up to 44% of the marketing emails
we received resulted from newsletter subscriptions, reflecting the
crawler’s higher success rate with subscription forms compared
to registration forms. We found that at least 3.6% of senders
violated the opt-in requirement of the ePrivacy Directive by send-
ing marketing emails without any indication of marketing email

0% 2% 4%

Email despite user
did not consent

Email after
invalid consent

Email despite
no opt-in

3.4%
(1138/33899)

4.3%
(1468/33899)

3.6%
(1205/33899)

Figure 4: Portion of senders that violate at least one market-
ing consent requirement. This figure is based on the decision
procedures from [21, Figs. 6 and 7].

consent. At least 4.3% of websites then violate the GDPR consent
requirements by not including a marketing checkbox, pre-checking
the checkbox by default, or tying the checkbox with privacy policy
or terms. In 3.4% cases, we received a marketing email despite re-
jecting consent, where the checkbox was neither pre-checked nor
checked by the crawler.

5.3 Email privacy violations
When users register, websites should verify the ownership of the
registered email address through a double-opt-in process. Without
this verification, our crawler could be used to subscribe arbitrarily
selected email addresses to thousands of newsletters without the
owners’ consent, resulting in the Bomb attack [31]. The double-
opt-in process also ensures that the website retains a clear record
of consent. Using the ML model from Section 4.2, we classify the
first email we receive from the website. The results presented in
Fig. 5a show that 42.4% of websites adhere to the double-opt-in
requirements and 24.8% of websites only send a confirmation email,
not conforming to the double-opt-in practice. The remaining 32.8%
of websites immediately send marketing emails to users.

5.3.1 Email sharing. To track how websites use email addresses,
each registration was performed with a unique email address. De-
tecting when the website shares the email address to third par-
ties, however, poses a challenge. For example, facebook.com sends
emails from facebookmail.com. We developed the following heuris-
tic to address this issue.

For a given registration, we extract a set of TLD+1 domains from
which we receive emails. We then match these domains to other
domains found in various sources documenting how the website
declares this domain. We consider that domains match if the longest
common subsequence between two domains is at least half of the
shorter domain. This threshold of 0.5 was determined by empirical
evaluation of a set of 200 domain matches, resulting in an accuracy
of 91%with 2.5% of false negatives (wrongly predicting that domains
are not similar) and 7.5% of false positives.

For each sender domain, we identify how the website discloses it.
We take the first of the following outcomes, ordered from the most
to the least disclosed. (1) The domain name where we registered and
any domains that are similar are marked as ‘registration domain.’
(2) The domain of the first received email is marked as ‘first sender.’
(3) Any common email host (e.g., gmail.com) is marked as ‘similar

6
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Figure 5: Potential violations in emails.

email host’ if the name preceding the @ symbol is similar to the reg-
istration domain. (4) Any domain declared on the registration page
is marked as ‘in form.’ (5) Any common host that was not matched
previously as ‘dissimilar email host.’ (6) Domains in the privacy
policy and terms and conditions, are marked as ‘in policy/terms.’
(7) Domains that belong to common newsletter senders such as
Mailchimp are marked as ‘newsletter sender.’ (8) If all these checks
fail, the domain is marked as ‘undeclared.’ We list other methods
we considered for third-party sharing detection in Appendix C.1.

If there are at least two senders and one of them is marked as
‘dissimilar email host’ or higher in the ordering above, we consider
the website to be sharing the email address without a proper dis-
closure. As shown in Fig. 5b, 1.6% of our email addresses received
emails from undeclared domains, including one website that shared
our email address to 56 undeclared domains. Additionally, 0.3% of
websites sent emails through common newsletter senders such as
MailChimp or from domains that were only declared in the policy
or terms, which are rarely read [4]. Finally, 1.0% of senders are
correctly defined directly in the form, and the remaining websites
sending emails do so from expected domains. The prevalence of
this violation is comparable to results by Kubicek et al. [21].

6 MANUAL EVALUATION
To evaluate the trustworthiness of our automated methods in a real-
world scenario, we manually analyzed a random sample of 100 web-
sites that had sent us at least one email. We selected this sample for
two reasons. First, it maximizes the number of websites for which
our crawler has successfully filled out the form. Second, websites
that had sent us emails serve as a baseline for reporting violations.
Among these 100 websites, our crawler submitted one contact, 54
newsletter subscription, 45 registration forms. Our crawler
misclassified six subscription forms as registration forms and
one registration and contact form as subscription forms.

Out of the registrations or newsletter sign-ups, the crawler was
unable to complete 25 double-opt-in procedures. Note that our eval-
uation of failed double-opt-ins is conservative since we classified
any lack of email confirmation as a failure, regardless of whether the
website actually sends such an email. Nonetheless, considering that
almost half of the websites use double-opt-in, email confirmation
should be improved in future work. Additionally, two registrations
were incomplete, but the websites reminded us to finish the reg-
istration—a behavior that was studied by Senol et al. [32]. Finally,
the crawler successfully submitted the remaining 73 forms.

We examined the email opt-in violations and found that the first
emails from 83 websites were correctly classified. Unfortunately,
the model misclassified that the first email was for marketing rather

than single- or double-opt-in in nine and five cases, respectively.
For subsequent legal work, we completed double-opt-ins manually,
which allowed us to inspect 11k classifications of initial email,
which we summarize in Fig. 2b. Our inspection suggests that we
tend to classify emails more rarely to be marketing compared to
the annotators of the dataset we used for training [21]. As future
work, we will incorporate the larger annotated dataset for training
to improve the mail-type model’s robustness.

Regarding form interface violations, our sample contained 17
marketing consent violations. Our method detected 11 of them,
with an 86% accuracy, 82% precision, and 50% recall. The two false
positives were misclassification of servicing emails for marketing,
but the method correctly identified the form interface problems.

For insecure registration and passwords sent via email, the sam-
ple had two violations each, and their prediction was accurate. We
expect false positives to occur only if we misclassify a form. We
evaluated third-party sharing on 50 websites sending emails from
multiple different domains. This sample contained 13 violations.
Our method achieved a recall of 85% (two short sender domains
were falsely detected on the registration page) and a precision of
79% (three senders used multiple domains belonging to the same
company which can be observed only from the email content).

In conclusion, while our results reasonably represent the land-
scape of violations, individual violations are sometimes incorrect.
Therefore, individual violations should not be blindly trusted with-
out inspecting the evidence we collected. Still, using our detection
methods as a tool for privacy enforcement can considerably stream-
line the detection of violations, as it presents enforcement agencies
with a set of potential violations alongside the evidence needed to
manually check whether the violation actually took place.

7 LIMITATIONS
Bias. Our study is susceptible to a selection bias introduced by

the crawler. As explained in Section 6, our crawler exhibits greater
success in signing up for simple websites and forms such as newslet-
ters compared to complex registrations. However, it is possible that
form complexity and website compliance are correlated. Hence,
our results may not be representative of the entire population of
websites visited by users.

To mitigate this limitation, we propose involving real users in
part of the process. For example, semi-automated techniques can
be employed for email confirmation, ensuring that humans accu-
rately handle the various double-opt-in processes used by websites.
Additionally, violation detection can be similarly inspected.

Accuracy. All of our findings are prone tomisclassification. Hence
all violations should be regarded as potential violations. In particu-
lar, in cases where our methods exhibit low precision in identifying
violations, caution should be exercised when using the results for
enforcement purposes. We propose two complementary solutions
to address this. First, one can carefully examine the evidence of
the violation in the form of screenshots and website source code
similarly to our approach in Section 6. Moreover, a larger training
dataset can be constructed by rectifying misclassified violations
and adjusting the corresponding legal labels, thereby improving our
models in the future. This is particularly crucial for properties with
few positive samples, such as the pre-checked marketing checkbox.
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Finally, our methods are not a complete audit as there may be
additional unaddressed violations. Detecting email sharing might
require a longer observation period to capture incriminating events.

Adversarial websites. Website operators couldmodify their forms,
for example by including input fields or text labels invisible to
users, to evade our violation detection methods, as was proposed
by Zhao et al. [36, 37]. We assume that websites do not do this, since
we have not published our violation detection models, making it
difficult for websites to exploit their weaknesses to evade detection.
Moreover, the classification also depends on crawler’s keyword-
based prediction.

Territorial applicability of EU privacy laws. Although we access
the websites from Germany and register a user located in the same
country, note that websites with only a few EU visitors may not be
obligated to complywith EU regulations. To ensure the enforcement
of EU law, future studies can restrict their analysis to lists that
are ranking websites by the origin of visitors, such as CrUX or
Similarweb. In Section 3.4, we found that the registration rate is
favorable when crawling such lists. By utilizing these lists and
considering additional factors such as the website’s language, one
can estimate whether a website is targeting users located in the EU
and, consequently, whether their privacy rights must be respected.

8 RELATEDWORK
Drakonakis et al. [11] automated the registration process to detect
insecurely configured cookies on over half of the websites. Their
crawler registered successfully on 1.6% of Alexa top 1M websites,
while our crawler achieved registrations on 5.9% of websites from
the comparable Tranco list, although nearly half of our registrations
can be attributed to newsletter sign-ups. In contrast, Drakonakis
et al.’s method also relies on Single Sign-On (SSO) as part of their
procedure, which is unsuitable for our mail violation detection re-
quiring a unique email address for each registration. We attempted
to re-evaluate their results, without success as their code is depen-
dent on an outdated Google’s SSO API. Zhou et al. [38] registers and
inspect vulnerabilities specifically on websites with the Facebook
SSO, making their work even less aligned with our study objectives.

A similar crawler was proposed by Chatzimpyrros et al. [6]. They
claim that their crawler successfully registered on 26.4% of websites,
which accounts for 80% of websites with any form. However, their
claims are questionable. First, they regard login as registration
forms. Second, they consider form submission as a successful regis-
tration. Finally, they do not report the number of senders, except for
0.03% of websites sending emails without crawler’s form submis-
sion. Senol et al. [32] similarly investigated the detection of private
data exfiltration prior to form submission. They found that nearly
3% of websites extract private inputs, such as email addresses.

Jonker et al. [18] developed a crawler that logs into websites
using a legitimate crowd-sourced database of credentials called Bug-
MeNot. They were able to login to 14.3% of approximately 50k web-
sites present in the BugMeNot database, but they do not present any
privacy or security results. While Jonker et al.’s approach is more
effective in logging-in than our crawler, it is limited by the size of
the BugMeNot database. Consequently, their approach is unsuitable
for detecting violations during the registration process or in emails.

Englehardt et al. [12] automated newsletter subscription, which
was successful on 5.7% of US e-commerce websites. They focused
on identifying the presence of email tracking and email sharing,
revealing third-party sharing by 30% of websites. Mathur et al. [26]
studied the 2020 US political campaign with similar observations.
In contrast, our research uncovered email address sharing by only
5.2% of the senders. This discrepancy suggests that privacy regula-
tions such as the GDPR foster the protection of privacy, particularly
in contrast to jurisdictions that lack similar regulations. Addition-
ally, our crawler was more successful in subscribing to newsletters
compared to these works.

Oh et al. [29] studied how website forms meet the GDPR con-
sent requirements, specifying four conditions on consent with pri-
vacy policies and terms, including consent presence and tying of
checkboxes. We focus on consent to marketing emails, and our
methods involve observing the actual data use that violates the
consent. Hasan Mansur et al. [15] automated the dark pattern de-
tection across websites and apps, including the identification of
pre-checked boxes as a default choice. Their findings however un-
derscore the difficulty of detecting this type of violation. A compa-
rable yet manual study was carried out by Gunawan et al. [14].

Consent compliance was thoroughly studied for subpages of
websites that do not require prior user authentication. The focus
of researchers lay mostly on cookie pop-ups and the consented
privacy policies. We refer to a meta-study by Kretschmer et al. [20]
that lists and compares publications with these two focal points.

9 CONCLUSIONS AND FUTUREWORK
We have developed a crawler capable of conducting large-scale
studies on the privacy and security of website registration. Our
crawler more than doubles successful registrations of prior work;
signing up to 5.9% of 660k websites. This led to the collection of over
2 million emails. Using this crawler, we were able to detect a wide
range of privacy and security threats, fully automating previous
manual studies and scaling them by orders of magnitude. To do so,
we automated prediction of complex legal properties of forms and
emails using ML. We observed 12 605 websites, which is 37.2% of
the websites sending us emails, containing at least one potential
violation, or sending a marketing email as the first email.

Our automation fosters various kinds of research. First, our
crawler enables future work to analyze the privacy and security
of authenticated sections, reflecting how real users browse web-
sites. Second, the option to collect a large-scale dataset of emails
can foster the research of communication practices. Examples in-
clude analyzing whether websites respect the unsubscribe action
or studying whether tracking by third-parties is even more present
in those parts of websites requiring authentication.

In future work, we will explore using our infrastructure for reg-
ulatory enforcement. Namely, by extending our training datasets,
such as the annotation of 11k emails, we plan to enhance the pre-
dictive capabilities of our machine learning models in detecting vio-
lations. These enhanced methods can potentially help understaffed
and under-resourced data protection authorities by pre-filtering
non-compliant websites and collecting supporting evidence. This
can support efficient enforcement at scale and thereby improve
security and privacy for users of the web.
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A CRAWLER
A.1 Bot-evasion techniques
We implemented the following methods to further decrease the
chance of our crawling being detected as a bot activity.

Browser. We use Undetected Chromedriver,7 which extends the
usual Chromedriver with numerous bot evasion techniques, such
as removing fingerprints unique to Selenium. Unfortunately, there
is no equivalent driver available for Firefox.

Fingerprinting evasion. For each page load, the crawler checks
the load status. This functionality is not directly implemented by
Selenium, so we use Chrome DevTools Protocol for Chrome and
Selenium Wire for Firefox. The use of Selenium Wire is however
prone to TLS fingerprinting. The proxy and browser differ in the
ciphersuite, which is inspected by modern bot detection systems
like Cloudflare. While the Firefox-based crawler is prone to this
detection, the Chrome implementation does not use any proxy.
Additionally we must run Chrome with a non-root user. Chrome
disables sandboxing protections when run as root, making it flagged
as a bot by Cloudflare.

Interaction speeds. Interactions with the website cannot occur
instantaneously, as humans are limited in their reading and writing
speeds. Our crawler introduces random time delays before each
click and during typing to mimic human behavior.

IP address. As we study the impact of the EU’s privacy regula-
tions, we focused our data collection on traffic originating from
within the EU. We considered using commercial VPNs, datacenter
or residential proxies, or a university VPN located in the EU. Ac-
cording to a study by Demir et al. [9], residential proxies are the
least likely to be detected as bot traffic, closely followed by univer-
sity VPNs, while datacenters and commercial VPNs are blocked
more frequently. Since purchasing a large number of residential IP
addresses from services like Bright Data is expensive (≥$10k for
our crawl), we used a VPN provided by a university in Germany,
which gave us access to a block of 16 IP addresses.

A.2 Supported languages
Our crawler supports 36 languages, with most of the keywords be-
ing translated by native or fluent speakers of the language, whom
we instructed in collecting multiple example websites prior to
the translation. These languages are: Bulgarian, Bosnian, Catalan,
Czech, Welsh, Danish, German, Greek, English, Spanish, Es-
tonian, Basque, Finnish, French, Galician, Croatian, Hungarian,
Icelandic, Italian, Luxembourgish, Lithuanian, Latvian, Macedo-
nian, Maltese, Dutch, Norwegian, Polish, Portuguese, Romanian,
Russian, Slovak, Slovenian, Albanian, Serbian, Swedish, Turk-
ish, and Ukrainian. From these languages, only 18 of them are
supported by LibreTranslate and therefore are suitable for detection
of all the violations. We highlighted these languages in bold.

A.3 Crawler form classification
Our crawler distinguishes various form fields, which we aggregate
to the following groups for the form feature processing. This fixed

7https://github.com/ultrafunkamsterdam/undetected-chromedriver

structure allows us to process differently ordered forms using the
same tabular pattern.

• mail
• password
• phone
• username
• names: first, middle, last or full name
• name-other: organization, title, honorific prefix, other text

fields
• address: street, house number, city, ZIP, country, full address
• age
• sex
• checkbox: terms of service
• checkbox: privacy policy
• checkbox: privacy policy and terms of service
• checkbox: marketing, privacy policy and terms of service
• checkbox: marketing
• checkbox: SMS
• checkbox: age
• checkbox: other
• birthday: day, month, year, full birth, other <select>
• submit buttons: registration, subscribe
• other buttons: login, contact, other

A.4 Email confirmation
Since letting the crawler wait for an activation email is computa-
tionally expensive, our crawler only waits for up to 30 seconds. If
an activation email is received after this period, we activate the
registration using a standalone script that processes the incom-
ing emails from all the crawlers running in parallel. However, this
script lacks the registration page session, such as cookies, which
reduces its success rate compared to the stateful crawler within
the 30-second period. We analyzed the distribution of confirmation
emails over time in our crawl and observed that less than half of the
activation emails arrived within this 30-second period. To achieve a
higher success rate for account activation, we recommend waiting
for five minutes in future work, since 97.7% of websites that send
activation emails do so within this period. Further increasing the
waiting period to, say, fifteen minutes would only marginally im-
prove this rate to 99.0%. The longer waiting time, however, comes at
the expense of crawling time. Specifically, waiting for five minutes
doubles the crawling time, while waiting for fifteen minutes almost
quadruples it.

Unfortunately, due to technical issues the independent confir-
mation script was malfunctioning for about half of the crawl. The
combination of a shorter period of waiting by the crawler and the
faulty script results in lower confirmation rates. This causes the
presented results in Section 5 to be more conservative. Namely,
websites that violated the consent in the form but then complied
with the double-opt-in requirement and never sent us a marketing
email are falsely considered compliant.

B MANUAL ANALYSIS OF THE CRAWLER
We conducted a manual investigation of 200 crawled websites to
evaluate form detection. Out of the 200 pages, 19 failed to load, and
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Figure 7: Evaluation of crawler-detected registration forms.
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Figure 8: Evaluation of crawler-detected subscription forms.

thus the analysis presented below pertains to the remaining 181
websites.

In Fig. 7, we present the evaluation of registration form detec-
tion. Among the sampled websites, 55 had a registration form,
of which our crawler successfully detected two-thirds. Additionally,
the crawler identified a wrong form (e.g., a contact form or pass-
word reset form) in 10.5% of the evaluated websites. Furthermore,
in 4.7% of the websites, the crawler misclassified a subscription
form as a registration form.

Fig. 8 illustrates the evaluation of discovered subscription
forms. Our findings reveal that 73.0% of websites do not have a
subscription form (although note that many websites contain
both a subscription form and a registration form). The crawler
accurately determined the absence of this form on two-thirds of the
websites, and on 19.6% of the websites, it correctly identified the ex-
isting form. However, the crawler failed to detect the subscription
form on 7.4% of the analyzed websites, and in 6.9% of websites, it
found an incorrect form.

We also inspected the detected privacy policies and terms and
conditions on a list of 300 websites. Our manual evaluation showed
that almost 80% and 70% of websites contain privacy policies and
terms and conditions, respectively. Our crawler can then detect the
correct privacy policy on 51% of websites and correctly conclude
that there is no policy on 21% of websites. On 19% of websites, it fails
to find the policy and in the remaining 9% of cases, it finds a wrong
document. The crawler is correct in finding the terms and detects
the absence of terms on 37% and 21% of websites, respectively. It

failed to detect terms on 13% of websites and in the remaining 29%
of cases, it detects a wrong document.

C VIOLATION DETECTION
C.1 Alternatives for detecting 3rd-party sharing
In addition to the described methods in Section 5.3.1, we explored
the following methodologies to minimize false positives and nega-
tives in our violation detection for third-party sharing.

TLS certificates. We considered the extraction of company infor-
mation from TLS certificates. However, note that only a minority,
less than 30% of websites, include company names within their TLS
certificates. This practice is predominantly observed among highly
popular websites, whereas our automated crawling and classifica-
tion methods perform the best on websites of medium popularity.
Furthermore, our observations revealed that websites associated
with the same parent companies commonly employ different com-
pany names in their certificates, dismissing the usefulness of this
approach.

Co-occurrences. We investigated the co-occurrence of senders
who send emails to multiple addresses registered by our crawler.
This analysis uncovered two distinct scenarios. First, email hosting
providers such as Gmail were observed to send emails to multiple
accounts, suggesting that co-occurrence could be indicative of web-
sites that are compliant with privacy regulations. Conversely, we
identified clusters of websites that shared email addresses among
themselves without belonging to the same corporate group and
without obtaining proper user consent, which strongly indicated
privacy violations.

Company databases. We explored the use of databases such as
Whois, Crunchbase, and Orbis to discover connections between
domains owned by the same companies. However, Whois data has
become increasingly sparse due to privacy concerns. Moreover,
both Crunchbase and Orbis feature inconsistent company name
records, leading to false positive violation reports and occasionally
attributing incorrect company names, resulting in false negative
violation reports. We also considered the webXray dataset curated
by Libert [24],8 but it primarily targets third parties within the
tracking industry, which seldom overlap with email senders.

Received 6 October 2023

8https://github.com/agilemobiledev/webXray/blob/master/webxray/resources/
org_domains/org_domains.json
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