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Abstract—Cancer has emerged as a significant threat to human
health, leading to numerous fatalities globally. It is important for
improving the level of cancer treatment to predict the response
of cancer patients to drugs,which is based on their personalized
differences. Existing methods for cancer drug response prediction
are difficult to effectively capture the differences and correlations
between multi-omics features and extract the complex structural
patterns of drug molecules, resulting in insufficient accuracy of
drug response prediction. To solve these problems, we propose a
graph contrastive learning method with multi-omics for cancer
drug response prediction (GCLM-CDR). Firstly, we construct
a multi-omics drug feature representation module to extract
multi-omics features and complex structural patterns of drug
molecular graphs. Specifically, for multi-omics data, we use
deep neural networks to extract multi-omics features, then we
construct a multi-omics neighbor interaction module to capture
differences and correlations between different omics data. For
drugs, the graph attention network is used to effectively extract
complex structural patterns of drug molecular graphs. Secondly,
we construct a graph contrastive learning module to further
enhance the feature representation after the fusion of multi-omics
and drug molecular graphs. In this task, the graph construction
strategies of effective positive and negative sample are designed
for two types of data. Finally, we construct a cancer drug
response prediction module to obtain the prediction results. The
experimental results on the GDSC dataset and CCLE dataset
showed that the AUC were 0.8534 and AUPR were 0.5327, which
were superior to existing methods.

Index Terms—cancer drug response prediction, graph con-
trastive learning, multi-omics, drug molecular

I. INTRODUCTION

According to global cancer data released by the World
Health Organization in 2022, cancer has become an important
cause of death threatening human health worldwide [1]. Tradi-
tional cancer treatment methods primarily consist of surgery,
radiotherapy, and chemotherapy, which often employ a uni-
form therapeutic strategy. However, different cancer patients
have individual differences that determine their response to
treatment options and prognosis. Therefore, predicting pa-
tients’ responses to cancer treatment drugs is of great signifi-
cance for improving the level of cancer treatment, enhancing

the quality of life for cancer patients, and extending the
survival period of cancer patients.

The existing cancer drug response prediction research is
mainly divided into the following three types. The first type is
regression task, which mainly uses regression models to pre-
dict a continuous value and ultimately represent the response
relationship between drugs and cells. Common regression
models such as elastic network [2] and ridge regression [3].
The second type is classification task, which mainly extracts
feature representations of multi-omics data and drug informa-
tion as input. After classification through the model, the pa-
tients’ sensitivities/insensitivities to the drug are output, which
reveal the patients’ responses to the drug. For example, MOLI
[4] proposed a binary classification task by integrating multi-
omics data and deep neural networks, predicting whether the
drug’s response to tumor cells is “sensitive” or “resistant”. The
SWnet [5] predicts drug response from cancer genome features
and compound chemical structures. The task is transformed
into a binary classification problem, which “sensitive” is coded
as “1” and “resistant” is coded as “0”. The third type is the
link prediction problem, which mainly involves identifying and
analyzing the similarities between drug molecules to predict
their interactions and efficacy in living organisms. GraphCDR
[6] employs graph neural networks to extract characteristics
from the molecular structure of drugs, and uses contrastive
learning to enhance the model’s representation learning ability
for cell line-drug pairs. It learns the graph representations of
cell lines and drugs to predict whether effective links will
form between them. MMCL-CDR [7] integrates data from
different biological levels and performs comparative learning
on morphological images of cancer cells to extract visual
features and enhance the model’s prediction ability for drug
response. Although existing research efforts have made many
contributions to drug prediction, there are still some problems
that need improvement. The existing data integration methods
mainly integrate multi-omics data into the same model through
linear combination [4]. This method ignores the differences
and correlations between different omics features and does

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

79
-8

-3
50

3-
86

22
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

B
IB

M
62

32
5.

20
24

.1
08

22
18

9

Authorized licensed use limited to: Hainan University. Downloaded on February 06,2025 at 01:13:25 UTC from IEEE Xplore.  Restrictions apply. 



1303

not use completely effective information to reveal individual
differences. Meanwhile, drug molecules are usually composed
of complex structures and multiple interacting attributes. Tra-
ditional drug molecule relationship extraction methods cannot
capture complex patterns and interactions in a large amount of
drug data [8], which limits the understanding of drug features
and leads to the accuracy of model predictions is poor.

We propose a graph contrastive learning method with multi-
omics for cancer drug response prediction (GCLM-CDR) to
address the existing issues. Firstly, we constructed a multi-
omics drug feature representation module to extract multi-
omics and drug molecule features. This can fully capture the
differences and correlations between multi-omics features, as
well as better capture the correlation relationships between
nodes in the drug molecular graphs. Secondly, we constructed
a graph contrastive learning module to simultaneously capture
and learn local structural information of multi-omics and drug
molecules, as well as richer global information. It provides
a more effective node feature embedding for drug response
prediction and enhances the generalization ability of the
model. Finally, we use a function to calculate the probability of
predicting sensitive reactions between multi-omics and drugs.
Compared with existing research methods, our model achieved
better performance on both GDSC and CCLE datasets. The
genomics of drug sensitivity in cancer (GDSC) [9] and cancer
cell line encyclopedia (CCLE) [10] are two public databases
established to store and share information related to cancer cell
lines, providing researchers with richer resources to help them
study the sensitivity and resistance of cancer cells to different
drugs. By analyzing this data, researchers can better predict
drug efficacy and develop personalized treatment strategies to
improve the effectiveness of cancer treatment.

II. METHODS

As shown in Fig. 1, the framework of GCLM-CDR mainly
includes three modules: (1) multi-omics drug feature repre-
sentation module, (2) graph contrastive learning module, (3)
cancer drug response prediction module.

A. Multi-omics drug feature representation module

In this module, we extract multi-omics data features through
Deep Neural Networks (DNN). Then, multi-omics interaction
is conducted to capture the differences between different
omics, enhancing the complementarity and synergy between
multi-omics features. Meanwhile, Graph Attention Network
(GAT) is used to extract drug information with different
complex structures, obtaining a more holistic representation
of drug characteristics and enhancing the feature expression
ability of drug molecules.

a) Multi-omics representation: firstly, we input three
types of omics data (i.e. a genomic feature vector MG, an
epigenomic feature vector ME and a transcriptomic feature
vector MN ) into the deep neural network, and automatically
learn the feature representation in the data through the hierar-
chical structure of the deep neural network, thereby learning a
richer Multi-omics feature representation. We concatenate the

three omics data learned by DNN layers pairwise, and then
conduct multi-omics interaction to strengthen the connection
between the three omics. In order to discover the correlation
and common characteristics between the three types of omics,
we constructed a multi-omics Neighborhood Interaction (NI)
layer, see (1):

Mj = Ma ⊙Mb, j ∈ {1, 2, 3} ; a, b ∈ {G,E, N} and a ̸= b (1)

where ⊙ represents for element-wise dot product of multi-
omics features.

In the NI layer, one type of omics data node element-wise
dot product with two other neighboring omics data nodes. This
process is applied to all three types of omics data to identify
similarities and correlations between different omics data,
thereby extracting more comprehensive information. Finally,
the integrated omics data are consolidated into a whole,
creating a comprehensive multi-omics feature representation
denoted as MC :

MC = M1||M2||M3 (2)

where || represents concatenation of M1, M2, and M3, con-
necting the interacted omics data into a whole.

By interacting and integrating three types of omics data, po-
tential biological interconnections can be uncovered, offering
insights for subsequent clinical analysis and interpretation.

b) Drug representation: drug molecules are composed of
complex structures and multiple interacting attributes. Under-
standing the relationship between drug molecules is important
for predicting drug effects. We represent drug smiles compiled
into drug molecular graphs. We denote graph GD = (XD, AD)

. XD ∈ RND×FD is a matrix that stores the attribute vectors of
all drug atoms (FD=75) and an adjacency matrix AD ∈ RND×ND

representing the keys, where ND is the number of atoms in
the drug molecule diagram D.

We use Graph Attention Networks (GAT) [11] to ex-
tract drug molecule graph features. GAT use the attention
mechanism to dynamically calculate the relationship weights
between nodes, so it can effectively capture the internal struc-
tural information of drug molecule graphs and the interaction
between molecules. In order to obtain the weight of each
neighboring node for all nodes, we train a shared weight
matrix M . Map the representations of node α and node β
using M respectively, use feedforward neural network A⃗T to
map the concatenated vectors onto real numbers, and activate
them through LeakyReLU. After normalization, obtain the
final attention coefficient aαβ as (4):

eαβ = LeakyReLU
(
A⃗T

[
Mh⃗α||Mh⃗β

])
(3)

aαβ = softmaxβeαβ
exp

(
eαβ

)
Σk∈Nα exp (eαk)

(4)

Utilizing the derived attention weights, the neighboring
nodes are aggregated with weighted importance. Then we
obtained the output features of the nodes α as:

h
′
α = σ

 ∑
β∈Nα

ααβW
−→
hβ

 (5)
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Fig. 1. Overview of GCLM-CDR framework.

Finally, we use a Global Maximum Pooling (GMP) layer
to integrate the global representation of the extracted drug
molecule graph, and the summarized drug feature represen-
tations nodes are used as effective inputs for subsequent
modules.

B. Graph contrastive learning module

In recent years, contrastive learning has achieved a good
performance in the field of graph learning [12]. Graph con-
trastive learning facilitates the acquisition of effective repre-
sentations for drug molecular graphs, enhancing the model’s
ability to capture similarities and disparities among drugs.

Inspired by Heterogeneous Deep Graph Infomax [13], we
constructed a graph contrastive learning module. We desig-
nate sensitive responses as positive responses and insensitive
responses as negative responses based on known cell-drug
responses. Firstly, we use the multi-omics nodes and drug
nodes that extracted by the multi-omics drug feature represen-
tation module as the node set of the drug molecular graphs.
Then, we use the sensitive/insensitive reactions between multi-
omics and drugs as the edge set to construct an undirected
heterogeneous graph GOD = (V,E) , where V represents the
node set containing multi-omics O and drug D that do not
intersect ( |V | = NO+ND ) , E ⊂ V ×V represents the edges set
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representing multi-omics and drug sensitive reactions. We can
also use node attributes and adjacency matrices to represent
the constructed graph: GOD = (XOD, AOD) , XOD ∈ R|V |×F

represents node attributes and AOD ∈ {0, 1}|V |×|V | represents
the adjacency matrix (“1” represents sensitive and “0” repre-
sents insensitive). By processing, we obtained positive graphs
GOD and negative graphs G̃OD. After that, we built a local
representation encoder ΩOD :(XOD, AOD) → HOD ∈ R|V |×F

to process the graph. We input graphs into the encoder, and
obtain positive patch representations HOD and negative patch
representations H̃OD . ΩOD is set to a kOD-layer (kOD = 1)
GCN with the PReLU [14] function, and the embedding of
node x ∈ V can be expressed as:

h⃗
(kOD)
x = PReLU(kOD)

 ∑
y∈N (x)∪{x}

1
√
qxqy

·w(kOD)
OD · h⃗(kOD−1)

x


(6)

Positive graph-level embeddings TOD and negative graph-
level embeddings T̃OD are summarized by passing the result-
ing patch representations to an attentive readout function R :
TOD =

∑
x∈V ax ·

−→
hx

(kOD) , ax indicates the attention score of
node x:

ax =
exp

(
fa

([−→
h

(0)
x ||

−→
h

(kOD)
x

]))
∑

x∈V exp
(
fa

([−→
h

(0)
x ||

−→
h

(kOD)
x

])) (7)

where fa is a fully connected layer used to map embeddings
to real numbers. Similarly, T̃OD = R

(
H̃OD

)
.

In order to help the model learn useful information from
these complex structures, we express the goal of graph con-
trastive learning tasks as follows: (1) maximizing mutual
information between positive graph-level embeddings and
positive patch representations. (2) maximizing disagreements
between positive patch representations and negative graph-
level embeddings. And we define the loss function of the graph
contrastive learning module as the following two parts:

Lpos = −
1

2|V|

∑
x∈V

logD
(−→
h x, T

)
+

∑
x∈V

log

(
1−D

(
−̃→
h x, T

))
(8)

Lneg = −
1

2|V|

∑
x∈V

logD

(
−̃→
h x, T̃

)
+

∑
x∈V

log
(
1−D

(
h⃗x, T̃

))
(9)

where D (·, ·) is a discriminator evaluates similarities between
the patch representations and the graph-level embedding . The
discriminator constructed by a function σ

(−→
h TWT

)
, W is a

learnable scoring matrix, σ is a logistic sigmoid nonlinearity.

C. Cancer drug response prediction module

We extract the final embeddings of multi-omics and drugs
from the positive patch representations, and activate them
through linear transformation and sigmoid function. We repre-
sent −→

h O = HOD [O, :] and −→
h D = HOD [D, :] as the final embed-

dings of multi-omics node O and drug node D, respectively.
Finally, we calculate the inner product between the −→

h O and

−→
h D through the function to predict the probability of sensitive
reactions P̂OD:

P̂OD = Sigmoid
(−→
hO

−→
hD

T
)

(10)

We define the loss function of the drug response prediction
module as:

Lpre = −
1

|Y |
∑

(O,D)∈Y

(
POD log P̂OD + (1− POD) log

(
1− P̂OD

))
(11)

where Y is the training set of responses, POD is the label for
the response between nodes O and D.

D. Optimization

In order to improve the predictive performance and reliabil-
ity of the model, we combined (8), (9) and (11) to optimize
the objective:

L = (1− λ− µ)Lpre + λLpos + µLneg (12)

where λ and µ are hyper-parameters that balance the contribu-
tion of graph contrastive learning task and the drug response
prediction task. After setting hyper-parameter optimization
validation on the GDSC dataset, the model achieved the best
performance at 0.3, so we fixed the hyper-parameter λ and µ
to 0.3.

III. EXPERIMENTS

A. Datasets

In this section, we will provide a brief overview of the
dataset. Our dataset come from three resources: CCLE, GDSC
and PubChem.

• CCLE contains a large number of molecular character-
istics data of cancer cell lines. We downloaded three
types of omics data (gene expression, genome muta-
tion and DNA methylation) from the DeMap portal
(https://depmap.org/). The specific processing method is
similar to GraphCDR [6]. The final datas are: 34,673-
dimensional genome feature vector, 808-dimensional
epigenome feature vector, and 697-dimensional transcrip-
tome feature vector.

• GDSC contains a large amount of data on drug sensitivity
of various tumor cells. We mainly collected IC50 values
as a measure of the response. We binarized the IC50 value
based on the threshold in the existing report [15] as a
criterion for judging whether the drug is sensitive to cells.
After processing, we finally obtained a reaction dataset
containing 222 drugs and 561 cell lines (including 88,981
resistant reactions and 11,591 sensitive reactions). Some
IC50 values in this data are unknown/missing.

• PubChem is a chemical information database that pro-
vides SMILES strings for many drugs. We downloaded
the required drug data and use the ConvMolFeaturizer
method [16] from the DeepChem library to compile the
drug SMILES string into the desired drug molecular dia-
gram. Through processing, the attributes of drug atomic
nodes are represented as 75-dimensional feature vectors.
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B. Model evaluation

In this research, the GDSC dataset was employed as the
main dataset for evaluating the performance of the GCLM-
CDR. We consider drug-sensitive reactions as positive samples
and drug-resistant reactions as negative samples. We divide the
response data on GDSC dataset into the cross-validation sets
and independent test sets respectively at a ratio of 9:1, and
ensure that there is no overlap between these two parts of
data. Some of the experimental settings are as follows:

• Cross-validation: we randomly divide the drug responses
dataset into five equal parts and employ 5-fold cross-
validation (5-CV). In each iteration, we train the model
on four parts of the data (the train set) and evaluate its
performance on the remaining part (the test set).

• Independent test: we validate the performance of GCLM-
CDR through independent testing. Except for the GDSC
dataset, we also additionally carried out an independent
test utilizing the CCLE dataset.

• Evaluation metrics: Area Under the Curve (AUC) provide
a general measure of model effectiveness, and Area
Under the Precision-Recall Curve (AUPR) provide insight
into the model’s performance. AUC and AUPR are two
performance metrics used to evaluate the accuracy of
classification models.

C. Experimental comparison

We choose the following baselines to conduct the compre-
hensive evaluation of our model:

• GraphCDR [6] constructs a graph data representation of
multi-omics data and drug molecular structure, which
combined graph neural network and contrastive learning
to learn more discriminative node representations, and
finally to predict cancer drug response.

• DeepCDR [17] converts multi-omics data and drug
molecular structures into graph data representation, and
then uses a hybrid graph convolutional network to learn
these graph data. Finally, the learned feature representa-
tions are input into a prediction model to predict drug
response to different cancer cell lines.

• DeepDSC [8] extracts genomic features of cancer cell
lines from gene expression data using a stacked depth
autoencoder, and then combined the chemical information
of the compounds with the genomic features to predict
the IC50 value of the drug.

The results on the GDSC and CCLE datasets are shown in
Table I and Table II.

a) Test results on the GDSC dataset: we adopted the 5-
fold cross-validation (5-CV) on GDSC dataset, and compared
our model with other baselines. As shown in Table I, our model
outperforms other baselines, achieving the highest AUC score
0.8534 and AUPR score 0.5327.

b) Test results on the CCLE dataset: we also conducted
independent tests on the CCLE dataset, which allowed us to
further evaluate the model’s performance on unfamiliar data
and evaluate the model’s performance more objectively. As

TABLE I
THE RESULTS ON GDSC DATASET

Method AUC AUPR
DeepDSC 0.7592 0.4236
DeepCDR 0.8221 0.4622
GraphCDR 0.8451 0.5210

GCLM-CDR 0.8534 0.5327

shown in Table II, our experimental results on the CCLE
dataset are also better than other baselines, achieving the
highest AUC score 0.9599 and AUPR score 0.8715.

TABLE II
THE RESULTS ON CCLE DATASET

Method AUC AUPR
DeepDSC 0.9305 0.8363
DeepCDR 0.9420 0.8225
GraphCDR 0.9467 0.8594

GCLM-CDR 0.9599 0.8715

Compared with other baselines, the results indicate that our
model has achieved the highest performance in predicting
multi-omics drug responses in cancer, indicating that our
model has high generalization ability.

D. Ablation study

Our study included multiple modules to predict drug re-
sponse. In order to further investigate the impact and impor-
tance of each component on the prediction task, we designed
the following ablation experiments on GDSC dataset to verify.
Our settings are shown in Table III:

TABLE III
RESULTS OF ABLATION STUDY

Method AUC AUPR
w/o Genomic mutation 0.8473 0.5212
w/o Gene expression 0.8498 0.5271

w/o DNA methylation 0.8506 0.5293
w/o Multi-omics interaction 0.8178 0.4610

w/o CL task 0.8294 0.4901
w/o GAT 0.8053 0.4315

Full model 0.8534 0.5327

In Table III, “w/o Genomic mutation” means our model has
no genetic mutation data, “w/o Gene expression” means our
model has no gene expression data, “w/o DNA methylation”
means our model has no DNA methylation data, “w/o Multi-
omics interaction” means our model removes interactions with
multi-omics data, “w/o CL task” means our model has deleted
the contrastive learning task in the module, “w/o GAT” means
our model not use GAT to extract drug molecule graphs.

We conducted ablation experiments using 5-CV on the
GDSC dataset. Based on the results, when any one of the
three omics data is deleted, the AUC and AUPR scores will
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be lower than the original model, indicating that all the three
types of omics data have a certain impact and contribution
to drug response prediction. After removing the GAT, the
AUC and AUPR scores also decrease, indicating that GAT
can selectively aggregate node information from drug molec-
ular graphs through attention mechanisms, thereby improving
prediction accuracy. When we delete the multi-omics data
interaction module, the AUC and AUPR scores will decrease.
This indicates that we not only need to use multi-omics data
for prediction, but also need to pay attention to the connections
between different omics. We should enhance the complemen-
tarity and synergy between multi-omics features. When we
removed the contrastive learning task, the experimental results
decreased, indicating that using the contrastive learning task
can make a certain contribution to the drug response prediction
task.

IV. CONCLUSION

This paper proposes a model GCLM-CDR, which can
capture the differences and correlations between different
multi-omics and effectively extract complex structural patterns
of drug molecules. The graph contrastive learning module
constructed in GCLM-CDR can further enhance the fea-
ture representation after the fusion of multi-omics and drug
molecules. By focusing on increasing the match between
positive samples while decreasing the match between negative
ones, it helps the model learns to identify features that are
widely applicable, enhancing its capability to forecast drug
reactions. The empirical outcomes indicate that the GCLM-
CDR outperforms current methodologies on both the GDSC
and CCLE datasets.

In the future, we plan to develop novel approaches to data
augmentation, designed to expand the training dataset and
strengthen the model’s capacity to generalize.
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M. Schubert, N. Aben, E. Gonçalves, S. Barthorpe, H. Lightfoot et al.,
“A landscape of pharmacogenomic interactions in cancer,” Cell, vol.
166, no. 3, pp. 740–754, 2016.

[16] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[17] Q. Liu, Z. Hu, R. Jiang, and M. Zhou, “Deepcdr: a hybrid graph convo-
lutional network for predicting cancer drug response,” Bioinformatics,
vol. 36, pp. i911–i918, 2020.

Authorized licensed use limited to: Hainan University. Downloaded on February 06,2025 at 01:13:25 UTC from IEEE Xplore.  Restrictions apply. 


