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Abstract

Neural networks continue to struggle with compositional generalization, and this
issue is exacerbated by a lack of massive pre-training. One successful approach for
developing neural systems which exhibit human-like compositional generalization
is hybrid neurosymbolic techniques. However, these techniques run into the core
issues that plague symbolic approaches to AI: scalability and flexibility. The
reason for this failure is that at their core, hybrid neurosymbolic models perform
symbolic computation and relegate the scalable and flexible neural computation to
parameterizing a symbolic system. We investigate a unified neurosymbolic system
where transformations in the network can be interpreted simultaneously as both
symbolic and neural computation. We extend a unified neurosymbolic architecture
called the Differentiable Tree Machine in two central ways. First, we significantly
increase the model’s efficiency through the use of sparse vector representations of
symbolic structures. Second, we enable its application beyond the restricted set of
tree2tree problems to the more general class of seq2seq problems. The improved
model retains its prior generalization capabilities and, since there is a fully neural
path through the network, avoids the pitfalls of other neurosymbolic techniques
that elevate symbolic computation over neural computation.

1 Introduction

Figure 1: Generalization ability of our ap-
proach (sDTM) compared with baselines
across various out-of-distribution shifts, av-
eraged over different datasets. See §4.

Note: this is an abbreviated version simultaneously
published at the NeurIPS 2024 main conference.
Please see that version for the full details. Deep
learning models achieve remarkable performance across
a broad range of natural language tasks [65], despite
having difficulty generalizing outside of their training
data, struggling with new words [34], known words in
new contexts [27], and novel syntactic structures, like
longer sequences with greater recursive depth [28, 37].
Increasingly this problem is addressed through data aug-
mentation, which tries to make it less likely a model
will encounter something unlike what it sees during
training — reducing the degree by which it has to gener-
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alize [1, 13, 24]. However, even models trained on vast
quantities of data struggle when evaluated on examples unlike those seen during training [30].

This stands in contrast to how humans process language, which enables robust generalization [47].
By breaking novel sentences into known parts, we can readily interpret phrases and constructions that
we have never encountered before (e.g. ‘At the airport I smiled myself an upgrade’, [20]). Why do
models trained on orders of magnitude more language data than a human hears in 200 lifetimes [23]
still fail to acquire some of language’s most essential properties?

Central to language’s generalizability is compositional structure [45] where contentful units, like
words, fit together in a structure, like a syntactic tree. Many classical approaches in NLP and
Machine Learning attempt to induce a grammar from data in the hope of leveraging the same kinds
of generalization seen in natural language [e.g. 32, 31, 62]. However, structured representations
are not first-order primitives in most neural networks [41, 57]. Despite theoretical appeal, the
strictures of purely discrete symbolic approaches have made them difficult to apply to the breadth
of tasks and domains where deep learning models have proven successful [16]. In contrast, purely
connectionist models — like Transformers [65] — struggle with the kinds of sample efficiency and
robust generalization ubiquitous to human learning.

Neurosymbolic methods attempt to integrate neural and symbolic techniques to arrive at a system
that is both compositional and flexible [3, 17, 18, 57]. While some neurosymbolic architectures
achieve impressive compositional generalization, they are often brittle due to the symbolic core
of their computation [53]. These methods are hybrid neurosymbolic systems, where the primary
computation is symbolic, and the neural network serves to parameterize the symbolic space. We take
a different approach, one where symbolic operations happen in vector space. In our system, neural
and symbolic computations are unified into a single space; we multiply and add vector-embedded
symbolic structures instead of multiplying and adding individual neurons. Related Work is discussed
in Appendix A.1.

We introduce a new technique for representing trees in vector space called Sparse Coordinate
Trees (SCT). SCT allows us to perform structural operations: transformations which change the
structure of an object without changing the content. This is a crucial aspect of compositionality,
where the structure and content can be transformed independently. We extend a previous system
which operates over binary trees in vector space, the Differentiable Tree Machine (DTM), to improve
performance and applicability to a larger variety of tasks2. While DTM processes vector-embedded
binary trees as the primitive unit of computation, the order of operations and argument selection is
governed by a Transformer. We present results showing that this unified approach retains many of the
desirable properties of more brittle symbolic models with regards to generalization, while remaining
flexible enough to work across a far wider set of tasks. While fully neural architectures or hybrid
neurosymbolic techniques excel at certain types of generalization, we find that DTM, with its unified
approach, excels across the widest array of shifts.

The main contributions from this paper are:

• Sparse Coordinate Trees (SCT), a method for representing binary trees in vector space. (§2)

• Bit-Shift Operating — systematic and parallelized tree operations for SCT. (§2.1)

• The introduction of Sparse Differentiable Tree Machine (sDTM), architectural improvements
to the DTM to leverage SCT and drastically reduce parameter and memory usage. (§3)

• Techniques to apply DTM to seq2seq tasks by converting sequences into trees. (§3.5)

• Empirical comparisons between sDTM and various baselines showing sDTM’s strong general-
ization across a wide variety of tasks. (§4)

2 Differentiable Tree Operations Over Sparse Coordinate Trees

Representing trees in vector space enables us to perform differentiable structural operations on them.
Soulos et al. [61] used Tensor Product Representations (TPRs) [58] for this purpose. TPRs use the
tensor (or outer) product to represent trees in vector space (§A.2). Use of an outer product leads to a
representation dimensionality that is multiplicative with both the embedding dimensionality and the

2Code and data available at publication.
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number of possible tree nodes. Additionally, the number of nodes is itself an exponential function of
the supported depth. This makes TPRs difficult to use in practice, given available memory is quickly
exceeded as tree depth increases.

In this section, we introduce Sparse Coordinate Trees (SCT), a new schema for representing trees
in vector space. We then define a library of parallelized tree operations and how to perform these
operations on SCT.

Like TPRs, we want an encoding for trees that factorizes the representation into subspaces for
structure and content respectively. This approach to representational spaces differs from models like
an RNN and Transformer, which represent structure and content jointly in an unfactorized manner.
By separating the structure and content subspaces a priori, we can operate over these two spaces
independently. This decision is motivated by the fact that distinct treatment of these spaces is an
essential aspect of compositionality.

DP
The
NP
fun

Values Tree positional index

DP.001

NP.011

person.111fun.101

The.010

person

Figure 2: An example represen-
tation using Sparse Coordinate
Trees (SCT). The values are N-
dimensional vectors, and the tree
positional indices are integer rep-
resentations of positions in the
tree. The absent child nodes
of "The" (indices 4 and 6) are
skipped with SCT.

We derive our tree representation scheme from the sparse co-
ordinate list (COO) format. COO stores tensor data in tuples
of (indices [integers], values [any format], size [integers]). The
indices are N-dimensional to simulate a tensor of arbitrary shape
(e.g. including dimensions such as batch or length). When an
index is not indicated in indices, it is assumed that the correspond-
ing value is 0.

We give structural meaning to COO representations by defining
one dimension of indices as the tree position occupied by a value
vector. Our tree addressing scheme is based on Gorn addresses
[21]: to get the tree position from an index, convert the index to
binary and read from right to left. A left-branch is indicated by
a 0 and a right branch by a 1. To distinguish between leading
0s and left-branches (e.g. 010 vs 10), we start our addressing
scheme at 1 instead of 0. This indicates that all 0s to the left of
the most-significant 1 are unfilled and not left-branches. Figure
2 shows an example encoding of a tree with this approach. SCT
can be viewed as a TPR with certain constraints, and Section A.2
defines this equivalence and describes the memory savings.

Section 4.1 discusses the performance, memory, and parameter
comparison between DTM models which use TPRs and SCT.

2.1 Differentiable Tree Operations

To operate on the trees defined in the previous section, we need a set of functions. We use a small
library of only three: left-child (left), right-child (right), and construct (cons) a new tree from a
left and right subtree.3 Although these three functions are simple, along with the control operations
of conditional branching and equality-checking, these five functions are Turing complete [42].

In addition to saving memory, SCT also provides a more efficient method for performing differentiable
tree operations. The operations defined in Soulos et al. [61] require precomputing, storing, and
applying linear transformations for left, right, and cons. Since our values and tree positional
indices are kept separate, we can compute the results of left, right, and cons dramatically more
efficiently using indexing, bit-shifts, and addition.

Figure 3 shows how we can perform left directly on SCT. left is performed by indexing the even
indices (i.e. those with a 0 in the least significant bit, which targets all of the nodes left of the root)
and their corresponding values, then performing a right bit-shift on the indices. right is symmetrical,
except that we index for the odd positional indices and ignore position 1 in order to remove the
previous root node. cons is performed by left bit-shifting the positional indices from the left- and
right-subtree arguments, then adding 1 to the newly shifted indices for the right argument. A new
value s can be provided for the root node.

3In LISP and expert systems literature, left is referred to as car, and right is referred to as cdr.
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Figure 3: Left: Performing left (orange) and right (blue). Right: visualizing the left transforma-
tion which results in DP being placed at the root. Tree positional indices of 0 and their corresponding
values are discarded.

Our network also needs to learn a program over multiple operations differentiably. This involves
the aforementioned structured operations, as well as differentiable selection of which operation to
perform and on which trees. We take weighted sums over the three operations left, right, and
cons, as well as over potential trees. Specific details are discussed in the next section. The result
of our weighted sum is coalesced, which removes duplicate positional indices by summing together
all of the values that share a specific index. Formally, define the trees over which to perform left
TL, right TR, and cons TCL & TCR; T⃗ = [TL;TR;TCL;TCR]. We also take a new value s ∈ Rd

to be inserted (⊗) at the new root node of the cons operation, and a vector of operation weights
w⃗ = (wL, wR, wC) which sum to 1.

O(w⃗, T⃗ , s) = wLleft(TL) + wRright(TR) + wC(cons(TCL, TCR) + s⊗ r1) (1)

3 The Sparse Differentiable Tree Machine (sDTM)

Our work extends the Differentiable Tree Machine (DTM) introduced in Soulos et al. [61] with
the Sparse Differentiable Tree Machine (sDTM). While similar to the original at a computational
level, sDTM represents a different implementation of these concepts that make it dramatically more
parameter and memory efficient. We also introduce techniques to apply sDTM to tasks with sequence
input and output (seq2seq).

3.1 Overview Differentiable Tree Machine (DTM)

Agent Interpreter Memory

Figure 4: A schematic of how the
three core components of the DTM
(agent, interpreter, and memory) re-
late to each other. Adapted from
Soulos et al. [61].

sDTM uses our Sparse Coordinate Trees schema across its com-
ponents. Like the original DTM, our model is comprised of an
agent, interpreter, and memory (illustrated in Figure 4). The
Interpreter performs Equation 1 by applying the bit-shifting tree
operations from Section 2.1 and weighting the result. The out-
put from the interpreter is written to the next available memory
slot, and the last memory slot is taken as the output.

The Agent is a Transformer encoder that takes an encoding of
the memory as input and produces the inputs for Equation 1: w⃗, T⃗ , and s. Two special tokens, <OP>
and <ROOT>, are fed into the Agent to represent w⃗ and s. Each time a tree is written to memory, a
fixed-dimensional encoding of that tree is produced and fed as a new token to the agent (§3.2). The
agent soft-selects tree arguments for the interpreter, T⃗ , by performing a weighted sum over the trees
in memory. Figure 6 in the Appendix contains a detailed diagram showing the flow of information
for one layer of sDTM.

3.2 Pooling by attention

Each tree in memory needs to have a fixed-dimensional encoding to feed into the agent regardless of
how many nodes are filled. Commonly this is done via pooling, like taking the means of the elements
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Figure 5: Left: The memory state is initialized as a sequence of trees where only the root node
contains a token. Right: An output sequence is embedded in a tree using the left-aligned uniform-
depth (LAUD) scheme. <NT> and <EOB> are special tokens not in the original output sequence.

in the tree, or a linear transformation in the case of the original DTM. Instead, we use Pooling by
Multi-headed Attention (PMA) [36], which performs a weighted sum over the elements, where the
weight is derived based on query-key attention.

Attention is permutation invariant, but it is important that our pooling considers tree position informa-
tion. To enforce this, we convert the position indices to their binary vector representation b⃗. This leads
to an asymmetrical vector with only positive values, so instead we represent left branches as −1 and
keep right branches as +1. For example, position 5 → [0, 0, 0, 0, 0, 1, 0, 1] → [0, 0, 0, 0, 0, 1,−1, 1].
The input to our pooling function is the concatenation of this positional encoding b⃗ with the token
embedding x⃗ at that position: [x⃗; b⃗]. This method for integrating token and node position is similar
to tree positional encoding from Shiv and Quirk [54], except that we use concatenation and a linear
transformation to mix the content and position information instead of addition.

Unlike standard self attention, we use a separate, single learnable parameter for our query
vector q⃗ ∈ Rnum_heads×key_dim. We pass [x⃗; b⃗] through linear transformations to generate keys
k⃗ ∈ Rnum_heads×key_dim and values v⃗ ∈ Rnum_heads×value_dim. The result of this computation is al-
ways z ∈ Rnum_heads×value_dim given that q⃗ is fixed and does not depend on the input. The rest of the
computation is identical to a Transformer with pre-layer normalization [67].

3.3 Tree Pruning

While Sparse Coordinate Trees mean that trees with fewer filled nodes take up less memory, the
way our model blends operations results in trees becoming dense. The interpreter returns a blend
of all three operations at each step, including the cons operation which increases the size of the
representation by combining two trees. In practice even as the entropy of the blending distribution
drops, the probability of any operation never becomes fully 0. This means that over many steps, trees
start to become dense due to repeated use of cons. In order to keep our trees sparse, we use pruning:
only keeping the top-k nodes as measured by magnitude. k is a hyper-parameter that can be set along
with the batch size depending on available memory.

3.4 Lexical Regularization

To aid lexical generalization, we add noise to our token embeddings. Before feeding an embedded
batch into the model, we sample from a multi-variate standard normal for each position in each tree,
adding the noise to the embeddings as a form of regularization [4]. Ablation results showing the
importance of this regularization are available in Appendix A.4.

3.5 Handling Sequential Inputs and Outputs

seq2tree The original DTM can only be applied to tasks where a tree structure is known for both
inputs and outputs. Here we provide an extension to allow DTM to process sequence inputs. To do this
we treat each input token as a tree with only the root node occupied by the token embedding. We then
initialize the tree memory with N trees, one for each token in the input sequence. Figure 5 left depicts
the initial memory state for a sequence. The agent’s attention mechanism is permutation-invariant,
so in order to distinguish between two sequences which contain the same tokens but in different
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orders, we apply random sinusoidal positional encodings to the first N tokens passed to the agent
[38, 50]. Random positional encodings sample a set of increasing integers from left-to-right instead
of assigning a fixed position to each token. The purpose of left and right is to extract subtrees.
Since in our seq2tree setting the input sequence is processed in a completely bottom-up manner, we
restrict the agent and interpreter to only have a single operation: cons. Use of a single operation
to construct new trees from subtrees aligns the DTM theoretically with the Minimalist Program [9],
which addresses natural language’s compositionality in terms of a single operation: merge.

seq2seq To handle sequence inputs and outputs we convert the output sequence to a tree. One
method to convert the output sequence into a tree is to use a parser. Alternatively, when a parser is
not available, we can embed a sequence as the left-aligned leaves at uniform depth (LAUD). Figure 5
right shows how an output sequence can be embedded using LAUD. Since all of the non-terminal
nodes are the same, we can hardcode the root argument to cons. We insert a special token <EOB> to
signify the end of a branch, similar to an <EOS> token.

4 Results

We consider models that are trained from scratch on the datasets they’re evaluated on; while the
compositional capabilities of large pre-trained models are under active debate [30], we are interested
in the compositional abilities of the underlying architecture — rather than those that may result
from a pre-training objective. We compare DTM to two fully neural models, a standard Transformer
[65] as well as a relative universal Transformer (RU-Transformer) which was previously shown
to improve systematic generalization on a variety of tasks [11]. We also compare our model to
a hybrid neurosymbolic system, NQG [53, 63], a model which uses a neural network to learn a
quasi-synchronous context-free grammar [56]. NQG was introduced alongside NQG-T5, which is a
modular system that uses NQG when the grammar produces an answer and falls back to a fine-tuned
large language model T5 [49]. As mentioned at the beginning of this section, we only compare to
NQG in this paper since we want to evaluate models that have not undergone significant pre-training.4
Details related to data preprocessing (§A.5), model training (§A.7, §A.8), and compute resources
(§A.9) are available in the Appendix.

For each task, we test whether models generalize to samples drawn from various data distributions.
Independent and identically distributed (IID) samples are drawn from a distribution shared with
training data. We evaluate several out-of-distribution (OOD) shifts. One-shot lexical samples,
while drawn from the same distribution as the training data, contain a word that was only seen in
a single training sample. Similarly, Zero-shot lexical samples are those where the model is not
exposed to a word at all during training. Structural/length generalization tests whether models
can generalize to longer sequences (length) or nodes not encountered during training (structural).
Template generalization withholds an abstract n-gram sequence during training, and then each test
sample fits the template. Finally, maximum compound divergence (MCD) generates train and test sets
with identical uni-gram distributions but maximally divergent n-grams frequencies [27]. Although
models are often tested on a single type of generalization, we believe evaluating a model across a
broad array of distributional shifts is essential for characterizing the robustness of its generalization
performance.

4.1 Performance Regression (Active↔Logical)

Active↔Logical is a tree2tree task containing input and output trees in active voice and logical
forms [61]. Transforming a tree in active voice to its logical form simulates semantic parsing, and
transforming a logical form tree to active voice simulates natural language generation. For this
dataset, there are three test sets: IID, 0-shot lexical, and structural. In addition to the baselines listed
in the previous section, we also compare our modified sDTM to the original DTM to see the changes in
parameter count and memory. The results are show in Table 1.

The various DTM models and Transformers all perform perfectly on the IID test set. NQG struggles to
learn the Active↔Logical task, an example of the brittleness of hybrid neurosymbolic systems. Only
the DTM variants succeed on the OOD test sets. As anticipated, the RU-Transformer performs better
than the standard Transformer with regards to structural generalization.

4NQG uses pre-trained BERT embeddings [13]; it is unknown how much this pre-training helps the method.
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Table 1: Active↔Logical accuracy. Results are the best performance over five runs. The test sets
are divided into IID, and OOD sets 0-shot lexical and structural. Parameter and memory usage is
shown for the original DTM with TPRs and our proposed sparse DTM with and without pruning. Our
modifications reduce the parameter count by almost two orders of magnitude. ∗NQG was trained on
a seq2seq version without parantheses because it was not able to learn the tree2tree training set.

Model Split

IID 0-Shot Lexical Structural

Transformer 1.0 0.0 0.0
RU-Transformer 1.0 0.0 .12
NQG∗ .45 0.0 0.0

Parameters Memory (GB)

Original DTM 1.0 1.0 1.0 72M 12.3
sDTM 1.0 1.0 1.0 1M 9.7
sDTM (pruned k=1024) 1.0 1.0 .95 1M 1.8

Comparing the original DTM to sDTM without pruning, we see a 70x reduction in parameter count
from pooling by attention, as well as a 20% reduction in memory usage from fewer parameters and
SCT. We are able to gain even further memory savings due to the pruning method. The final two
rows show that the pruning method has no impact on lexical generalization and a minor impact on
structural generalization, while reducing memory usage by 5x. The results from this experiment
confirm that sDTM is capable of matching DTM performance on a previous baseline. Next we turn to
tasks where the original DTM could not be used.

4.2 Scalability (FOR2LAM)

FOR2LAM is a tree2tree program translation task to translate an abstract syntax tree (AST) in an
imperative language FOR to an AST in a functional language LAM [6]. This makes FOR2LAM a
good dataset to test the scalability of sDTM to more complex samples. We augment the FOR2LAM
dataset with a 0-shot lexical test set. During training, only two variable names appear: ‘x’ and ‘y’.
For the 0-shot test, we replace all occurrences of x in the test set with a new token ‘z’. We are unable
to test DTM on FOR2LAM because a batch of 1 does not fit into memory due to the depth of the trees.

Results on FOR2LAM are shown on the left side of Table 2. NQG suffers with scale (see A.8), and
we were unable to include results for it on FOR2LAM due to training and evaluation exceeding 7 days.
All other models do well on the in-distribution test set, but only DTM is able to achieve substantive
accuracy on the 0-shot lexical test. DTM’s performance is impressive given work on data augmentation
has shown the difficulty of few-shot generalization is inversely proportional to vocabulary size [46],
with smaller vocabulary tasks being more challenging. This 0-shot challenge is from 2 variables (x,
y) to 3 (x, y, z), making it difficult enough that both transformer variants score 0.03%. ta

4.3 Seq2Tree (GeoQuery)

GeoQuery is a natural language to SQL dataset [69] where a model needs to map a question stated in
natural language to a correctly formatted SQL query, including parentheses to mark functions and
arguments. We use the parentheses and function argument relationship as the tree structure for our
output. In this format, GeoQuery is a seq2tree task, and we follow the description from Section 3.5.
We use the same preprocessing and data as Shaw et al. [53]. The TMCD split for GeoQuery [53]
extends MCD to natural language datasets instead of synthetic languages. GeoQuery is a very small
dataset, with a training set containing between 440 and 600 samples, depending on the split. We are
unable to test DTM on GeoQuery because a batch size of 1 does not fit into memory.

Results for GeoQuery are shown on the right side of Table 2. This is the most difficult task that we
test because of the small training set, and the natural language input is not draw from a synthetic
grammar. Given this, a potential symbolic solution to this task might be quite complex. We find that
both NQG and DTM perform worse than the two Transformer variants on the IID test set. This also
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FOR2LAM GeoQuery
Model IID 0-shot lexical IID Length Template TMCD

Transformer 1.0 .03 .88 .26 .79 .40
RU-Transformer 1.0 .03 .87 .25 .77 .37
NQG† – – .76 .37/.26∗ .62 .41

sDTM 1.0 .61 .73 .18 .20 .35

Table 2: Accuracies on FOR2LAM and GeoQuery. Results are the best performance over five runs.
†Results taken from Shaw et al. [53]. ∗We report the results from a replication study of NQG where
the result on the Length split differed substantially from the original result [63].

Table 3: SCAN accuracy. Results are the best performance over five runs. MCD scores are calculated
as the average of the three MCD splits. †Results from Shaw et al. [53]. ∗Results from Sun et al. [63].

Model Split

IID 1-shot lexical 0-shot lexical Length Template MCD

Transformer 1.0 .08 0.0 .07 1.0 .02
RU-Transformer 1.0 .11 0.0 .19 1.0 .01
NQG† 1.0∗ 1.0 0.0 1.0 0.0∗ 1.0

sDTM (parse trees) 1.0 .99 .99 .75 .95 .03
sDTM (LAUD trees) 1.0 .87 .98 .06 .98 0.0

holds true for the Template split, where Transformers outperform the neurosymbolic models. On
the Length and TMCD splits, all of the baselines achieve roughly the same performance while DTM
performs slightly worse — the degree of variation in the input space and small training set appear to
make it difficult for sDTM to find a compositional solution.

4.4 Seq2Seq (SCAN)

SCAN is a synthetic seq2seq task with training and test variations to examine OOD generalization
[34]. To process seq2seq samples, we follow the description in Section 3.5. We compare two methods
for embedding the output sequence into a tree by writing a parser for SCAN’s output and comparing
this to the left-aligned uniform-depth trees (LAUD). In addition to the standard test splits from SCAN,
we introduce a 0-shot lexical test set as well.

All models perform well on the IID test set, showing that they have learned the training distribution
well. Transformer variants perform poorly on lexical, length, and MCD splits. The Transformers and
sDTM perform well on the Template split while NQG completely fails. Along with the results from
GeoQuery, which showed weak sDTM performance on the Template split and strong performance
from both Transformers, it seems that the Transformer architecture is robust under template shifts
between training and testing. sDTM is the only model to perform well on the 0-shot lexical test set,
whereas NQG is the only model able to perform well on the MCD test set. The two sDTM rows
compare models trained with output trees from a parser or LAUD encoding. The main performance
difference is on the Length split, where the structurally relevant information in the parse trees is
necessary for sDTM to perform well. It is not necessary to have structured input for the model to
perform well on length generalization as long as the output is structured.

5 Conclusions

We introduced the Sparse Differentiable Tree Machine (sDTM) and a novel schema for efficiently
representing trees in vector space: Sparse Coordinate Trees (SCT). While not perfect — sDTM
struggles with MCD and Template shifts, as well as the extremely small GeoQuery dataset — the
model generalizes robustly across the widest variety of distributional shifts. sDTM is also uniquely
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capable of zero-shot lexical generalization, likely enabled by its factorization of content and structure.
While these capacities for generalization are shared with the original DTM, our instantiation is
computationally efficient (representing a 75x reduction in parameters) and can be applied to seq2seq,
seq2tree, and tree2tree tasks. Our work reaffirms the ability of neurosymbolic approaches to bridge
the flexibility of connectionist models with the generalization of symbolic systems. We believe
continued focus on efficient neurosymbolic implementations can lead to architectures with the kinds
of robust generalization, scalability, and flexibility characteristic of human intelligence.
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A Appendix

A.1 Related Work

Work leveraging the generalizability of tree structures has a long history across Computer Science,
Linguistics, and Cognitive Science [8, 42, 52, 58, 62]. Much of classical NLP aims to extract
structured representations from text like constituency or dependency parses [for overview: 12, 40].
More recent work has shown the representations learned by sequence-to-sequence models without
structural supervision can recover constituency, dependency, and part of speech information from
latent representations in machine translation and language models [2, 5]. While those analyses show
structural information is encoded, they stop short of showing that the representations themselves are
tree-structured. Analyses inspired by Tensor Product Representations [43, 60] and chart parsing [44]
give an account of how representations become somewhat tree-structured over the course of training.

Despite the apparent emergence of semi-structured representations in transformers and LSTMs, these
architectures still appear to struggle with the kinds of structural generalization that come easily
to humans [34, 29, 27]. A variety of approaches try to tackle this problem through meta-learning
[35, 10], data augmentation [1], or decomposing the task into separate parts [51, 39]. The Relative-
Universal Transformer [11] combines relative positional embeddings with a recurrent component, in
an effort to emphasize local structures while allowing for unbounded computation.

Explicitly tree structured network architectures have been introduced for RNNs [59], LSTMs [64, 14],
and Transformers [66, 55]. However, these variants often do not outperform their unstructured
counterpart on out-of-distribution challenges [61]. This may be because generalization requires both
structured representations and operations that respect that structure. A separate line of work considers
neural architectures that are used to parameterize components of a symbolic system [31, 7] or that
leverage explicit stack operations [15, 22, 25, 68]. NQG from Shaw et al. [53] combines the outputs
from neural and symbolic models by inducing a grammar, but deferring to T5 [49] when that grammar
fails. However the grammar’s induction method has polynomial complexity with both dataset size
and sequence length, which limits its application to larger tasks.

Vector Symbolic Architectures (VSAs) implement symbolic algorithms while leveraging high dimen-
sional spaces [48, 19, 26, 33]. VSAs are similar to uniform neurosymbolic approaches, although
VSAs commonly lack a learning component. Our work extends that of Soulos et al. [61] which can
be viewed as integrating Deep Learning and VSAs. They introduce the Differentiable Tree Machine
for Tree-to-Tree transduction. Here we instantiate a sparse Sequence-to-Sequence version with far
fewer parameters and improved memory efficiency.

A.2 Sparse Coordinate Trees as Tensor Product Representations

This section shows that Sparse Coordinate Trees is the same as a TPR with the constraint that the role
basis is the standard basis. TPRs define structural positions as role vectors ri ∈ Rdr , and the content
that fills these positions is defined by filler vectors fi ∈ Rdf . For a particular role and filler pair, the
filler fi is bound to the role ri using the tensor/outer product: fi ⊗ ri ∈ Rdf×dr . The representation
of an entire structure is the sum over all N individual filler-role pairs: T =

∑N
i=1 fi ⊗ ri ∈ Rdf×dr .

As shown in the previous two equations, the dimensionality of a single filler-role pair is equal to
the dimensionality of an entire structure: both have dimensionality Rdf×dr . This means that a tree
with only a filled root node takes up the same memory as a dense tree with every node filled. An
important requirement for TPRs is that the role vectors must be linearly independent; this ensures
that a filler can be unbound from a role without introducing noise using the inner product: fj = Tr+j ,
where {r+i }i is the basis dual to {ri}i. Previous work typically used randomly initialized and frozen
orthonormal vectors to define the role basis. By defining our role vectors in a sparse manner as
opposed to random initialization, we can greatly reduce the memory used by TPRs.

Classic symbolic data structures grow in memory linearly with the number of filled positions. It is
possible to replicate this behavior with TPRs by defining the role vectors to be the standard one-hot
basis, which is orthonormal by definition. The i-th element of role vector ri is 1, and the other
elements are 0. When a filler and role vector are both dense, the resulting bound vector is also
dense. When the role vector is one-hot, the resulting bound vector is 0 everywhere except for column
i which corresponds to the value 1 in ri. By using a sparse tensor representation that only keeps
track of dimensions that are not equal to 0, we can reduce the memory usage of TPRs to linear

14



cdr

car

Append

Tree 2Pooling by
Attention

Differentiable
Tree
Interpreter

Multihead Attention(1)

Feedforward(1)

From previous Transformer layer

To next Transformer layer

Neural
Tree
Agent

St
ep

 1

Softmax

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding1

Operation
Encoding1

Tree 1
Encoding1

Tree 0
Encoding1

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Tree 2
Encoding2

Tree Memory

Tree 0

Tree 1

cons

Operation x Tree Arg LogitsOperation
Logits

Softmax

Figure 6: Adapted from Soulos et al. [61]. One step of DTM is expanded to show how the agent
produces the input to the interpreter. The interpreter then writes the output to memory and encodes the
output for the agent. Parts of the architecture with learnable parameters are indicated in yellow. The
agent uses three linear transformations on top of a standard Transformer encoder layer to parameterize
the inputs to the interpreter. The superscript indicates the layer number and refers to parameters and
activations that are exclusive to this layer.

growth that scales with the number of filled positions, like a classical symbolic data structure. This
however forgoes a motivating desideratum for the design of TPRs, that roles (and not just fillers) have
similarity relations that support generalization across structural positions.

We can additionally improve the efficiency by refraining from performing the outer product. Since we
are not performing a tensor product, this technique is only implicitly a Tensor Product Representation.
Instead, we can keep the filler and role vectors in two aligned lists. A filler is bound to a role by
sharing an index in our aligned lists. This is equivalent to the binding and unbinding from classical
dense TPRs without having to perform multiplication.

Since we are not performing an outer product, instead of storing sparse role vectors, we can simply
store a role integer, where the integer corresponds to the one-hot dimension. We derive a tree
addressing scheme based on Gorn addresses [21]. In our scheme, addresses are read from right to left,
giving the path from the root where a left-branch is indicated by a 0 and a right-branch is indicated
by a 1. We need a way to distinguish between leading 0s and left-branches (e.g., 010 vs. 10), so we
start our addressing scheme at 1 instead of 0. This indicates that all 0s to the left of the left-most 1
are unfilled and not left-branches; the left-most 1 and all preceding 0s are ignored when decoding the
path-from-root. Figure 2 shows an example encoding of a tree in the sparse implicit approach.

We can compare the memory requirements of the Sparse Coordinate Tree encoding used in the sDTM
to the memory requirements of the full TPRs used in the original DTM of Soulos et al. [61]. A TPR
uses the same amount of memory regardless of the number of filled nodes. As with all sparse tensor
formats, the memory savings arise when there are many zeros. In a dense tree where every node is
occupied, the classical dense TPR approach is actually more efficient: the SCT’s value list has the
same total dimension as the classical TPR, but, in addition, the SCT encoding includes the list of
filled-node addresses.

A.3 Agent Figure

See Figure 6.
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Table 4: Comparing sDTM’s accuracy on SCAN 1-shot lexical OOD generalization with and without
lexical regularization. We use LAUD to embed the output sequence in a tree.

With noise .87
Without noise 0.0

A.4 Lexical Regularization Ablation

To see the importance of adding noise to our input embeddings as defined in Section 3.4, we show
the performance of sDTM with and without this regularization in Table 4.

A.5 Dataset Preprocessing

We preprocessed GeoQuery according to the steps from Shaw et al. [53]. FOR2LAM and GeoQuery
both contain non-binary trees, which we convert to binary form using Chomsky normal form. When
a new node is inserted to make a branch binary, we use the token <NT>. For output sequences with
length one embedded according to left-aligned uniform-depth, we make the single token the left child
of a new <NT> root node.

A.6 0-shot Lexical Test Generation

For both FOR2LAM and SCAN, we introduce 0-shot lexical tests. For FOR2LAM, we do this by
replacing every occurrence of ‘x’ in the test set with a new token ‘z’. For the SCAN 0-shot set, we
start with the 1-shot lexical test set and remove the sample containing the 1-shot word ‘jump’. We
alter the output vocabulary to use the same tokens as the input vocabulary, since it is impossible for a
word level model to translate between an input and output word without any exposure to that word.

A.7 DTM Training Details

When applicable, we adopt the hyperparameters from Soulos et al. [61]. Below we list the newly
introduced hyperparameters and changes we made to existing parameters.

Soulos et al. [61] set the dimensionality of the embeddings to be equal to the size of vocabulary. This
works for the datasets with small vocabulary examined in the original paper. We keep this setting for
Active↔Logical, but set the embedding dimension to 64 for FOR2LAM, and 128 for GeoQuery and
SCAN. We also changed the loss function from mean-squared error to cross entropy.

For each new task, we need to decide how many layers to use for sDTM. We followed the heuristic
of doubling the max tree depth for the models with sequence input and quadrupling the number of
layers for tree input. This leads to 56 layers for FOR2LAM, 22 layers for GeoQuery, and 14 layers
for SCAN.

Pooling by multi-headed attention 3.2 introduces new hyperparameters such as number of pooling
heads and pooling key dimensionality, and we set the value of these to be the same as the Transformer
hyperparameters for the agent. Tree pruning 3.3 introduces a new hyperparameter k for the maximum
number of nodes to keep. In general, a larger k is better but uses more memory. For Active↔Logical
we set k = 1024, for FOR2LAM k = 1024, for GeoQuery k = 2048, and for SCAN k = 256.
With the memory savings from SCT, pooling by multi-headed attention, and pruning, we increase
the batch size from 16 to 64. We also increased the agent’s model dimension to 256 with 8 heads
of attention due to the memory savings except for Active↔Logical where we matched the original
hyperparameters.

Random positional embeddings (RPE) also introduce a new hyperparameter for the max input integer,
and we set this to be double the max input length. This leads to an RPE hyperparameter of 44 for
GeoQuery and 18 for SCAN.

We noticed that randomly initializing and freezing our embedding vectors was essential for sDTM to
achieve 0-shot generalization on SCAN.
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For the results, we reported the best run of 5 random seeds. Like DTM, sDTM suffers from high
variance. Some runs get stuck in local optima and fail to achieve moderate performance on the
training set, which leads to poor performance on the test sets. This is a known issue with models that
use superposition data structures, and reporting the best run over a number of random seeds has been
previously used [68, 15].

A.8 Baseline Training Details

NQG: Active↔Logical rule induction used the following hyperparameters: sample size=training
set size, terminal code length=8, allow repeated nts=True. The terminal code length setting was
obtained via grid search over the values 1, 8, 32. For the actual training of the model we follow the
hyperparameters utilised by [63, 53]. FOR2LAM used the same hyperparameters with the exception
of sample size which had to be set to 1000 as additional increases became computationally intractable.
Even under these settings rule induction took 42 hours on a machine with 64gb of ram. Writing the
training set would take an additional week of processing time, which we considered computationally
too expensive.

Transformer: We followed the same hyperparameters obtained via grid search from [61]. Specifically
these are: 30,000 steps of which 1000 were warmup and linear learning rate decay; batch size 256;
one encoder layer and three decoder layer each with a hidden dimension of 1024 and two attention
heads; the optimizer was Adam.

RU-Transformer: We followed the hyperparameters reported by [11]. These are: 128 dimension
hidden size with 256 feedforward; 8 attention heads; 3 layers; batch size 256; trained using Adam
with learning rate 10−3.

A.9 Compute resources

All reported sDTM runs could be processed on NVIDIA 16gb V100 GPUs. Depending on availability,
we ran some seeds on 80gb H100 GPUs, but this is not necessary. The Transformer baselines were
also run on NVIDIA 16gb V100 GPUs. NQG used NVIDIA 40gb A100 GPUs. The GPUs we used
were hosted on an internal cluster.

Designing our architecture involved many preliminary experiments that are not reported in the paper.

A.10 Licenses

Baselines:

• DTM: Permissive 2.0
• Transformer: BSD-3 (Pytorch implementation)
• RU-Transformer: MIT Licence
• NQG: Apache 2.0

Datasets:

• GeoQuery: GLP 2.0
• SCAN: BSD
• Active↔Logical: Permissive 2.0
• FOR2LAM: Not public (no licence obtained through email request to original authors)
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