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Abstract

Comparing probability distributions from biological images requires metrics that
are geometrically grounded and invariant to orientation. Classical optimal transport
(OT) distances are sensitive to rotations, while Gromov–Wasserstein (GW) offers
invariance but is computationally prohibitive. We introduce Rigid-Invariant Sliced
Wasserstein via Independent Embeddings (RISWIE), a scalable pseudometric
that achieves rigid invariance by aligning data-adaptive embeddings through op-
timal signed permutations, at negligible cost. Evaluated on 2D HuBMAP tissue
slices and 3D MPI-FAUST meshes, RISWIE attains 95.8% accuracy with over
104× speedup over GW and an AUC of 0.94 for human pose matching. Its op-
timization also yields explicit axis alignments usable for downstream analysis,
making RISWIE a practical and interpretable distance for large-scale geometric
data.

1 Introduction

Optimal transport (OT) distances have gained popularity in data analysis due to their usefulness
for comparing probability measures. In applications where the geometry of the underlying space
is important [Peyré and Cuturi, 2019, Santambrogio, 2015] (e.g. geometric data analysis), this
role is complicated by the fact that many datasets are embedded in coordinate systems that are not
canonically aligned [Besl and McKay, 1992]; a rigid transformation of the ambient space may leave
the original object unchanged while altering the numerical representation substantially.

In many biological imaging tasks—ranging from microscopy of cellular arrangements to 3D shape
modeling of organisms—samples are represented as point clouds or spatial distributions of features.
A central challenge is to compare these shapes across samples without requiring alignment or
manual registration. While rigid transformations preserve pairwise distances, finding an optimal
rigid correspondence between two point clouds (with unknown correspondences between points) is
computationally intractable, requiring a search over all possible point permutations in the worst case
[Cela, 2013].

Contributions. We introduce RISWIE, a sliced transport distance that combines data-dependent
embeddings with optimal signed-permutation alignment to compare measures up to rigid transfor-
mations. We establish theoretical guarantees including rigid invariance, pseudometric properties,
closed-form expressions for Gaussian measures, and bounds relating it to Gromov-Wasserstein (GW).
Finally, we demonstrate that RISWIE achieves state-of-the-art runtime with essentially no loss in
accuracy for shape matching on biological tissue slices and human poses.
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2 Preliminaries

We use ∥ · ∥ to denote the ℓ2 norm on Rd, P(Rd) the set of Borel probability measures on Rd, and
P2(Rd) the subset with finite second moments. Given µ, ν ∈ P2(Rd), the 2-Wasserstein distance is

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2 dπ(x, y), (1)

where Π(µ, ν) is the set of couplings with marginals µ, ν [Villani, 2008, Santambrogio, 2015]. In
practice, the above measures are approximated by the empirical sample-based measures, which with
n samples scales as O(n3 log n). In one dimension, W2 admits the closed form

W 2
2 (µ, ν) =

∫ 1

0

(
F−1
µ (t)− F−1

ν (t)
)2
dt,

which can be evaluated in O(n log n) [Villani, 2008]. The sliced Wasserstein (SW) distance extends
this to higher dimensions by projecting onto directions θ ∈ Sd−1 and averaging:

SW2
2(µ, ν) =

∫
Sd−1

W 2
2

(
Pθ#µ, Pθ#ν

)
dθ,

where Pθ(x) = ⟨x, θ⟩ [Rabin et al., 2012, Kolouri et al., 2019]. Approximating with L random
projections yields O(Ln log n) scaling [Nietert et al., 2022], but SW, like Wasserstein, is not invariant
to rigid transformations. The Gromov–Wasserstein (GW) distance compares measures without
requiring a shared ambient space by aligning their internal distance structures [Mémoli, 2011]:

GW2
2(µ, ν) = inf

π∈Π(µ,ν)

∫∫ ∣∣dX(x, x′)− dY (y, y′)
∣∣2 dπ(x, y) dπ(x′, y′).

While GW is invariant to rigid transformations, it is NP-hard and even approximate solvers scale
as O(n4) per iteration, making GW computations scale poorly with sample size [Kerdoncuff et al.,
2021].

3 Methodology

We now define a new distance, which we denote as the Rigid-Invariant Sliced Wasserstein via
Independent Embeddings (RISWIE) distance. This distance preserves the invariance property of
GW while maintaining the computational efficiency of projection-based optimal transport. The
construction has three components: (i) data-dependent embeddings that map each distribution into
a low-dimensional coordinate system derived from its own geometry, (ii) an alignment step that
pairs axes across embeddings using signed permutations, and (iii) an aggregation of one-dimensional
Wasserstein costs over the matched axes.

3.1 Problem Formulation

Let µ, ν ∈ P2(Rd) be probability measures. We first define an object to describe rigid transformations.
Definition 1 (Signed Permutation Group). The signed permutation group on k elements is

O±
k := {R ∈ Rk×k : R⊤R = Ik, Rij ∈ {0,±1}, one nonzero per row/column}. (|O±

k | = 2k k!)

Equivalently, O±
k = {DεPπ : π ∈ Sk, Dε = diag(ε1, . . . , εk), εj ∈ {±1}}.

In particular, our objective is to construct an invariant distance D(µ, ν) such that D(µ, ν) =
D((R1)#µ, (R2)#ν) for any R1, R2 ∈ O±

d where (f)#µ denotes the pushforward of µ by f .

The RISWIE distance defined below can be seen as the minimum Wasserstein distance cost axis and
relative sign pairing across all 2kk! pairings.
Definition 2 (RISWIE Distance). Let µ, ν be centered probability measures on Rd1 and Rd2 , respec-
tively. Let ϕ := (ϕ1, . . . , ϕk) : Rd1 → Rk and ψ := (ψ1, . . . , ψk) : Rd2 → Rk be fixed embedding
functions. Let O±

k denote the group of signed permutation matrices of size k × k. For R ∈ O±
k ,

define (Rψ)j := εjψπ(j), where R corresponds to a signed permutation (π, ε).
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Figure 1: 3D Example of RISWIE alignment. RISWIE can align two point clouds by matching their
marginal distributions along embedded axes, which naturally extends to higher dimensions. For
each axis of the anchor shape, all possible pairings with axes of the target, including reflections are
evaluated to minimize the sum of costs. The second row shows the optimal axis matching.

The Rigid-Invariant Sliced Wasserstein via Independent Embeddings (RISWIE) distance is defined as

D2(µ, ν) := min
R∈O±

k

1

k

k∑
j=1

W 2
2 ((ϕj)#µ, ((Rψ)j)#ν) ,

where W2 denotes the 2-Wasserstein distance on R and (ϕj)#µ is the pushforward of µ under ϕj .

We require the distributions to be mean-centered. The embeddings ϕj and ψj are user-friendly and
may be obtained via dimensionality reduction techniques (e.g. PCA or diffusion maps) [Coifman and
Lafon, 2006], or other data-dependent procedures. In d dimensions with n points per point cloud, the
time complexity of RISWIE with PCA embeddings is O(nd2 + dn log n).

4 Experiments

We evaluate RISWIE with PCA embeddings in classification tasks, using the MPI-FAUST dataset
of human meshes [Bogo et al., 2014] and tissue data from the HuBMAP consortium [Hickey et al.,
2023]. The numerical results below quantify computational efficiency and assess discriminative,
clustering, and classification performance relative to existing distances.

4.1 Human Pose Alignment and Discrimination

As shown in Figure 1, RISWIE aligns shapes accurately, making it effective for distinguishing poses.
We evaluate this discrimination through unsupervised pose clustering on MPI-FAUST (10 subjects ×
10 poses), computing a 100× 100 pairwise distance matrix using 1000 subsampled vertices per mesh
for all methods to ensure compatibility with more intractable distances.

We evaluate K-Means, Spectral, Agglomerative, and t-SNE–based clustering on mesh embeddings
(distance matrix rows) and evaluate clustering accuracy on these embeddings with the ground-truth
poses. Table 1 shows that RISWIE matches or outperforms GW and other baselines across clustering
strategies. Over our grid of settings, all while computing the full distance matrix in ∼10 seconds
versus ∼5 hours for GW.
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Table 1: V-measure by method and distance function on MPI-FAUST pose clustering

Euclidean Gromov Wasserstein RISWIE Sliced

Agglomerative (avg, precomp) 0.2214 0.6568 0.6715 0.8094 0.5478
KMeans (dist rows) 0.3778 0.5930 0.5967 0.7839 0.4331
Spectral (RBF of dist) 0.3721 0.5630 0.5757 0.8138 0.6291
t-SNE-2D + KMeans 0.4066 0.6649 0.6480 0.8612 0.6329
t-SNE-2D + Spectral 0.3907 0.6481 0.6136 0.8196 0.6173

AUC-ROC (same-vs-different) 0.6099 0.8929 0.8603 0.9404 0.7843

4.2 Tissue Clustering

We evaluate RISWIE on two-dimensional tissue slices of the human small intestine, where each
slice is represented as a point cloud of cell coordinates [Hickey et al., 2023], orientated arbitrarily.
Ground-truth labels group slices by intestine identity.

Table 2 reports runtime and stack assignment accuracy across distances. For clustering/assignment,
we apply a farthest-point seeding strategy with greedy assignment based on intra-cluster distances,
with more information available in the appendix. RISWIE achieves sub-second computation and the
highest accuracy (95.8%), while Gromov–Wasserstein is slower by over four orders of magnitude.
Sliced Wasserstein and classical Wasserstein are faster than GW but substantially less accurate.

Table 2: Cells dataset: runtime and stack assignment accuracy for different point subsampling levels.

Distance Time (s); 1000 pts Accuracy; 1000 pts Time (s); 2000 pts Accuracy; 2000 pts

RISWIE 1 95.83% 1 95.83%
Gromov–Wasserstein 10352 85.42% 56614 95.83%
Sliced Wasserstein 2 52.08% 6 47.92%
Wasserstein 111 54.17% 746 47.92%

Beyond assignment, RISWIE provides stronger discriminative power. Using pairwise distances
to score same-intestine versus different-intestine pairs, RISWIE achieves an AUC-ROC of 0.943
compared to 0.921 for Gromov–Wasserstein under identical sampling. Since RISWIE scales nearly
linearly with sample size, it can exploit larger point sets with little additional cost. However, we
again subsample the same number of points for consistency. We refer readers to the appendix for
more experiments that consider high-dimensional marker data as well as spatial information.

5 Discussion

RISWIE preserves accuracy while allowing fast computation. On tissue slices, it recovers intestine
identity and achieves the highest stack assignment accuracy, running orders of magnitude faster than
GW. On 3D human meshes, it surpasses GW across clustering methods and metrics, completing in
seconds rather than hours. RISWIE also yields a signed axis permutation interpretable as a rigid
transformation between eigenspaces, serving as a useful pre-processing step for downstream tasks.

Two limitations remain. First, RISWIE relies on discrete axis matching, which limits differentiability
and constrains its direct integration into end-to-end deep learning pipelines. However, this can be
relaxed by replacing hard signed-permutation matching with continuous pairings via a regularized
transport plan. Second, RISWIE depends on the stability of the embedding procedure: when
eigengaps are small, axis orderings may fluctuate, degrading alignment quality. Future work could
mitigate this instability by grouping axes into low-dimensional blocks and matching them jointly.
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A Appendix

A.1 Algorithm

Algorithm 1: RISWIE Empirical Computation

Input: Empirical measures X = {x1, . . . , xn1
} ⊂ Rd1 , Y = {y1, . . . , yn2

} ⊂ Rd2 ;
embeddings Φ = (ϕ1, . . . , ϕk), Ψ = (ψ1, . . . , ψk).

Output: D(X,Y ) = D(X,Y ).

X ← {xi −mean(X)}n1
i=1; Y ← {yi −mean(Y )}n2

i=1

for ℓ = 1, . . . , k do
Aℓ ←

(
ϕℓ(x1), . . . , ϕℓ(xn1

)
)

; // embed X onto axis ℓ

Bℓ ←
(
ψℓ(y1), . . . , ψℓ(yn2)

)
; // embed Y onto axis ℓ

Ãℓ ← sort(Aℓ); B̃ℓ ← sort(Bℓ) ; // sort in ascending order before

for ℓ = 1, . . . , k do
for m = 1, . . . , k do

c+ℓm ←W2sorted2
(
Ãℓ, B̃m

)
;

c−ℓm ←W2sorted2
(
Ãℓ, reverse(− B̃m)

)
; // reflect and reverse

Cℓm ← min{c+ℓm, c
−
ℓm} ; // best sign for pair (ℓ,m)

π⋆ ← argminπ∈Sk

∑k
ℓ=1 Cℓ,π(ℓ) ; // solved by Hungarian

Z ←
∑k

ℓ=1 Cℓ,π⋆(ℓ);
return D(X,Y )←

√
Z/k ;

Note: W2sorted2 assumes its two input vectors are already sorted (ascending). For equal weights, it
returns 1

N

∑N
i=1(ui − vi)

2 when the two lists are length-N ; for unequal lengths/weights, it runs the
standard two-pointer monotone coupling in O(n1 + n2) time. Pre-sorting each projected list once
(above) avoids re-sorting inside every 1D OT call, saving a factor of k. Negating reflects the distribution
across 0; reversing ensures the reflected list remains sorted in ascending order.

To analyze time complexity, we take d := max{d1, d2} and n := max{n1, n2}. We also assume
that k ≤ d and n ≥ d, as is common in practice.

For PCA embeddings,

O
(

nd2︸︷︷︸
covariances

+ kd2︸︷︷︸
top-k eigens

+ knd︸︷︷︸
projection

+ kn log n︸ ︷︷ ︸
sort once

+ k2n︸︷︷︸
k2 sorted W 2

2 calls

+ k3︸︷︷︸
Hungarian

)
= O

(
nd2 + dn log n

)
.

For Diffusion Map embeddings,

O
(

n2d︸︷︷︸
kernel build

+ kn2︸︷︷︸
top-k eigens

+ kn log n︸ ︷︷ ︸
sort once

+ k2n︸︷︷︸
k2 sorted W 2

2 calls

+ k3︸︷︷︸
Hungarian

)
= O

(
n2d
)
.

Both of the above embedding choices are computationally efficient when used with the proposed
scheme, with PCA-RISWIE being nearly linear in the number of samples. With n ≥ d, these
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approaches are faster than standard Optimal Transport, Gromov-Wasserstein, and equivalent asymp-
totically to Sliced Wasserstein with d projection axes. However, because random sampling can
perform poorly in higher dimensions, one might instead choose a superlinear number of axes (such
as d log d), in which case RISWIE becomes asymptotically faster.

A.2 Timing Results

For our timing experiments, we set the number of projection axes for Sliced Wasserstein to
max(10, d log d) and the number of embedding functions of RISWIE-PCA to d. The former is
done to make Sliced Wasserstein robust to bad sampling directions as they are not data dependent.
For diffusion-based RISWIE, we implement diffusion maps by building a sparse neighborhood graph
with k = ⌈d log n⌉ neighbors, then apply heat-kernel affinities and symmetric normalization before
computing the top d eigenvectors.

A.3 FAUST Full Experiment

Tables for this experiment include clustering pipelines, where abbreviations like “avg, precomp”,
“dist rows”, and “RBF of dist” refer to specific clustering setups described in the table caption and
glossary.
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Table 3: Description of clustering pipelines used in the experiments.

Pipeline Label Description

KMeans (dist rows) KMeans on rows of the pairwise distance matrix as Euclidean vectors.
KMedoids (precomputed dist) KMedoids using the full precomputed pairwise distance matrix.
Agglomerative (avg, precomp) Average-linkage agglomerative clustering on the precomputed distance ma-

trix.
Spectral (RBF of dist) Spectral clustering using an RBF kernel of the distance matrix:

Aij = exp
(
−D2

ij/(2σ
2)
)

with σ = median(D[D > 0]).
MDS-2D + KMeans 2D MDS embedding of distances followed by KMeans.
MDS-3D + KMeans 3D MDS embedding of distances followed by KMeans.
MDS-2D + Spectral 2D MDS embedding, RBF kernel on embedded points, then Spectral cluster-

ing.
t-SNE-2D + KMeans 2D t-SNE on precomputed distances (perplexity 10), then KMeans.
t-SNE-3D + KMeans 3D t-SNE on precomputed distances, then KMeans.
t-SNE-2D + Spectral 2D t-SNE followed by RBF kernel and Spectral clustering.
t-SNE-3D + Spectral 3D t-SNE followed by RBF kernel and Spectral clustering.

Table 4: V-measure (mean ± std) by method and distance function on MPI-FAUST pose clustering.

Distance Euclidean Gromov OT RISWIE Sliced
Pipeline

Agglomerative (avg, precomp) 0.2214 ± 0.0252 0.6568 ± 0.0586 0.6715 ± 0.0164 0.8094 ± 0.0268 0.5478 ± 0.0346
KMeans (dist rows) 0.3778 ± 0.0257 0.5930 ± 0.0478 0.5967 ± 0.0259 0.7839 ± 0.0192 0.4331 ± 0.0292
Spectral (RBF of dist) 0.3721 ± 0.0248 0.5630 ± 0.0412 0.5757 ± 0.0225 0.8138 ± 0.0190 0.6291 ± 0.0387
t-SNE-2D + KMeans 0.4066 ± 0.0274 0.6649 ± 0.0447 0.6480 ± 0.0264 0.8612 ± 0.0270 0.6329 ± 0.0351
t-SNE-2D + Spectral 0.3907 ± 0.0308 0.6481 ± 0.0482 0.6136 ± 0.0215 0.8196 ± 0.0183 0.6173 ± 0.0275

Figure 2: Matrix-build time versus number of points per mesh n (log-scale). RISWIE grows gently
with n and stays well below Sliced/OT, while Gromov–Wasserstein is the slowest by far.
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Table 5: Accuracy by Method and Distance Function

Method RISWIE Gromov OT Euclidean Sliced

KMeans (dist rows) 0.7200 0.5700 0.5600 0.3500 0.3600
Spectral (RBF of dist) 0.7800 0.7500 0.5300 0.3200 0.6000
Agglomerative (avg, precomp) 0.7200 0.5300 0.4600 0.1400 0.4500
MDS-2D + KMeans 0.7300 0.5800 0.5400 0.3100 0.4200
MDS-2D + Spectral 0.5800 0.4600 0.4300 0.3200 0.3300
MDS-3D + KMeans 0.7800 0.7000 0.5000 0.3200 0.4300
MDS-3D + Spectral 0.7300 0.6700 0.5200 0.3100 0.4200
t-SNE-2D + KMeans 0.8700 0.8200 0.6500 0.4100 0.6100
t-SNE-2D + Spectral 0.7200 0.6800 0.5600 0.4100 0.5300
t-SNE-3D + KMeans 0.8000 0.7500 0.5300 0.3500 0.5200
t-SNE-3D + Spectral 0.7600 0.6800 0.5700 0.3000 0.5000

Table 6: V-measure by Method and Distance Function

Method RISWIE Gromov OT Euclidean Sliced

KMeans (dist rows) 0.8058 0.6802 0.5957 0.4007 0.4373
Spectral (RBF of dist) 0.8238 0.8303 0.5790 0.3220 0.6437
Agglomerative (avg, precomp) 0.8082 0.7420 0.6763 0.2137 0.6092
MDS-2D + KMeans 0.7454 0.6721 0.5506 0.2986 0.4386
MDS-2D + Spectral 0.7065 0.5958 0.4921 0.3161 0.3510
MDS-3D + KMeans 0.8231 0.7879 0.5818 0.2870 0.4892
MDS-3D + Spectral 0.7789 0.7422 0.5700 0.3162 0.4676
t-SNE-2D + KMeans 0.8829 0.8577 0.6779 0.4138 0.6246
t-SNE-2D + Spectral 0.8291 0.7896 0.6357 0.3954 0.6022
t-SNE-3D + KMeans 0.7832 0.7606 0.5847 0.3486 0.5281
t-SNE-3D + Spectral 0.7754 0.7039 0.5843 0.2856 0.4686

A.4 Cells Full Experiment

Figure 3: RISWIE Distance matrix for the HuBMAP tissue slices. Each block along the diagonal
corresponds to slices from the same tissue stack. Within a block, RISWIE distances are consistently
near zero, indicating strong invariance to small perturbations and local alignment of slices from the
same sample. Across blocks, RISWIE captures larger geometric variation between tissues from
different regions, producing higher inter-block distances.
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Table 7: Adjusted Rand Index (ARI) by Method and Distance Function

Method RISWIE Gromov OT Euclidean Sliced

KMeans (dist rows) 0.5844 0.3910 0.3673 0.1359 0.1618
Spectral (RBF of dist) 0.6825 0.6154 0.3312 0.0944 0.4277
Agglomerative (avg, precomp) 0.5526 0.4197 0.3796 0.0171 0.3498
MDS-2D + KMeans 0.5454 0.3906 0.3067 0.0486 0.1723
MDS-2D + Spectral 0.4363 0.2881 0.2318 0.0696 0.1078
MDS-3D + KMeans 0.6531 0.5645 0.3336 0.0499 0.2214
MDS-3D + Spectral 0.5576 0.5028 0.3427 0.0732 0.2026
t-SNE-2D + KMeans 0.7965 0.7416 0.4946 0.1765 0.4116
t-SNE-2D + Spectral 0.6436 0.5718 0.4102 0.1480 0.3569
t-SNE-3D + KMeans 0.6529 0.6085 0.3552 0.1013 0.3136
t-SNE-3D + Spectral 0.6107 0.4572 0.3301 0.0584 0.2254

Table 8: Normalized Mutual Information (NMI) by Method and Distance Function

Method RISWIE Gromov OT Euclidean Sliced

KMeans (dist rows) 0.8058 0.6802 0.5957 0.4007 0.4373
Spectral (RBF of dist) 0.8238 0.8303 0.5790 0.3220 0.6437
Agglomerative (avg, precomp) 0.8082 0.7420 0.6763 0.2137 0.6092
MDS-2D + KMeans 0.7454 0.6721 0.5506 0.2986 0.4386
MDS-2D + Spectral 0.7065 0.5958 0.4921 0.3161 0.3510
MDS-3D + KMeans 0.8231 0.7879 0.5818 0.2870 0.4892
MDS-3D + Spectral 0.7789 0.7422 0.5700 0.3162 0.4676
t-SNE-2D + KMeans 0.8829 0.8577 0.6779 0.4138 0.6246
t-SNE-2D + Spectral 0.8291 0.7896 0.6357 0.3954 0.6022
t-SNE-3D + KMeans 0.7832 0.7606 0.5847 0.3486 0.5281
t-SNE-3D + Spectral 0.7754 0.7039 0.5843 0.2856 0.4686

We compute the all-pairs RISWIE distance matrix between point clouds from different tissue types
and vertical slices. Each block in the matrix compares all slices of one tissue to all slices of another.
Since each slice may be arbitrarily rotated or reflected, a rigid-invariant distance should yield low
pairwise values within diagonal blocks (same tissue), despite variations in orientation or sampling.
Figure 3 highlights RISWIE’s robustness to such transformations, showing consistently low intra-
tissue distances.

To evaluate RISWIE’s effectiveness in recovering biologically meaningful groupings, we perform
balanced partitioning of tissue slices into spatial stacks based on the computed pairwise distances
between tissue slices. We use a farthest-point seeding strategy to encourage diversity among initial
stack centers and apply a greedy assignment procedure to add tissue slices to a cluster that they are
most similar to.

In other words, we are trying to minimize

L(S1, . . . ,SK) =

K∑
k=1

∑
i,j∈Sk
i<j

DInput Distance(Xi, Xj)

where X = {X1, X2, . . . , Xn} is the set of tissue slices and we want to partition them into stacks
S1, . . . ,SK , each of size n/K.
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Table 9: Clustering performance using RISWIE with no subsampling. Accuracy, V-measure, ARI,
and NMI are reported across clustering pipelines.

Method Accuracy V-measure ARI NMI

KMeans (dist rows) 0.7500 0.8469 0.6446 0.8469
KMedoids (precomputed dist) 0.8200 0.8296 0.6966 0.8296
Spectral (RBF of dist) 0.7900 0.8343 0.6921 0.8343
Agglomerative (avg, precomp) 0.7800 0.8549 0.6655 0.8549
MDS-2D + KMeans 0.7500 0.7756 0.5934 0.7756
MDS-2D + KMedoids 0.7500 0.7666 0.5878 0.7666
MDS-2D + Spectral 0.6600 0.7531 0.5121 0.7531
MDS-3D + KMeans 0.7300 0.7517 0.5608 0.7517
MDS-3D + KMedoids 0.7100 0.7541 0.5776 0.7541
MDS-3D + Spectral 0.7200 0.7843 0.5382 0.7843
t-SNE-2D + KMeans 0.8300 0.8498 0.7348 0.8498
t-SNE-2D + KMedoids 0.8300 0.8498 0.7348 0.8498
t-SNE-2D + Spectral 0.7000 0.8339 0.6081 0.8339
t-SNE-3D + KMeans 0.7600 0.7850 0.6276 0.7850
t-SNE-3D + KMedoids 0.7700 0.7633 0.6116 0.7633
t-SNE-3D + Spectral 0.6400 0.7145 0.4688 0.7145

Algorithm 2: Stack Assignment via RISWIE, Farthest-Point Seeding, and Greedy Assign-
ment

Input: Set of n = 48 regions (point clouds) {Xi}
Output: Optimal grouping of regions into K balanced stacks
Step 1: Compute Distance Matrix
for i = 1 to n do

for j = i+ 1 to n do
Dij ← RISWIE_distance(Xi, Xj) ;
Dji ← Dij ;

Step 2: Farthest Point Seeding and Greedy Assignment
for s = 1 to n // Try each region as first seed do

S ← [s] // Seed indices
while |S| < K do

Select t = argmaxt/∈S minu∈S Dtu ;
Append t to S ;

Initialize K stacks, each with one seed from S ;
while unassigned regions remain do

for each unassigned region r, and each stack k not full do
Compute cost cr,k =

∑
b∈stackk Dr,b ;

Assign r∗ to stack k∗ minimizing cr,k, breaking ties arbitrarily ;

Compute total within-stack sum Cs =
∑K

k=1

∑
i,j∈Sk, i<j Dij ;

Store stacks and Cs ;
Select the stack assignment with lowest within-stack sum, summed across all stacks:

∑
s Cs ;

Step 3 (Optional): Random Seeds
Optionally repeat the greedy assignment with some number random initializations of K
stacks and take the lowest cost stack assignment across all completed stacks.

The assignment accuracy reported reflects the best label alignment between predicted and ground
truth stacks, computed via Hungarian matching.
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Figure 4: Hybrid Chosen Stack Assignment with RISWIE as the spatial distance and λ = 0.5

A.4.1 Hybrid Spatial–Marker Distance and Stack Assignment

To incorporate both spatial structure and marker expression in our region-level comparisons, and
taking inspiration from Vayer et al. [2019], we define a hybrid distance matrix that interpolates
between them.

For each pair of regions, we compute two quantities.

• A spatial distance using a selected geometric distance function (e.g., RISWIE, etc), applied
to the cell coordinates within each region.

• A marker distance computed as the 2-Wasserstein distance between high-dimensional cell
marker embeddings sampled from each region.

Let Dspatial
ij and Dmarker

ij denote these pairwise dissimilarities, both scaled to [0, 1] via min-max
normalization.

We then define

Dhybrid
ij = λ ·Dspatial

ij + (1− λ) ·Dmarker
ij ,

where λ ∈ [0, 1] is tunable.

We then use this hybrid distance matrix to perform stack assignment as before. Interestingly, λ = 0.5
is able to recover perfect stack accuracy using RISWIE as the spatial distance, while λ = 1.0 and
λ = 0.0 were unable to.
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Figure 5: Unaligned Chosen Stack Assignment with RISWIE as the spatial distance and λ = 0.5
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A.5 Ordering Agreement Between RISWIE and Gromov–Wasserstein

We also investigate how often the ordering induced by Gromov–Wasserstein aligns with that induced
by RISWIE. Specifically, for the cell dataset, we compute the proportion of consistent orderings:∑

I [sign(GW(a, b)−GW(c, d)) = sign(D(a, b)−D(c, d))]∑
1

where the sum ranges over all unique pairs of upper-triangular (off-diagonal) entries in the pairwise
distance matrix.

Gromov–Wasserstein and RISWIE agreed on the ordering of 87.4% of all 635,628 region pair
comparisons. The mean (median) absolute percentile difference between the two metrics was 0.091
(0.064).

When restricting to region pairs separated by at least one Gromov–Wasserstein standard deviation,
the ordering agreement increased to 99.4% (302,853 out of 304,720 pairs).

Note that we approximate Gromov–Wasserstein using the solver provided in the POT library [Flamary
et al., 2021, 2024]. This does not guarantee exact agreement with the theoretical (NP-hard) Gromov–
Wasserstein value.

A.6 Main Theorems

Throughout the appendix, we will denote the RISWIE distance by D unless stated otherwise (such as
for the Gaussian closed form, denoted DG).
Theorem 1 (Rigid-Invariance). Let µ, ν ∈ P2(Rd), and T (x) = Rx+ t an affine transformation for
R ∈ O(d), t ∈ Rd. Suppose either:

(i) (PCA) All nonzero eigenvalues of the centered covariance of µ are unique (so µ has finite
second moments); or

(ii) (Diffusion map) The embedding returns the same set of eigenvectors (up to sign) for a given
matrix (i.e., deterministic eigensolver for fixed input).

Then
D(µ, ν) = D(T#µ, ν).

In particular, D(µ, T#µ) = 0.

Theorem 2 (Pseudometric). For any X,Y, Z ∈ P2(Rd) and for any embedding procedure, the
RISWIE distance is a pseudometric.

Theorem 3 (RISWIE Distance for Gaussians under PCA Embeddings). Let A ∼ N (ωA,ΣA) and
B ∼ N (ωB ,ΣB) be Gaussian probability measures on Rd with finite second moments so that they
admit eigendecompositions ΣA = UAΛAU

⊤
A and ΣB = UBΛBU

⊤
B , where ΛA = diag(λA1 , . . . , λ

A
d )

and ΛB = diag(λB1 , . . . , λ
B
d ) with λA1 > · · · > λAd ≥ 0 and λB1 > · · · > λBd ≥ 0. Denote

a :=
(√

λA1 , . . . ,
√
λAd
)
, b :=

(√
λB1 , . . . ,

√
λBd
)
.

Then, the RISWIE distance (using all d PCA axes) admits the closed-form:

D2(A,B) =
1

d
∥a− b∥22.

Theorem 4 (RISWIE–GW Comparison for Gaussians). Let A and B satisfy the same assumptions
as in Theorem 3 and additionally be full rank. Define α := mini(ai + bi). Then the RISWIE distance
under PCA embeddings satisfies:

(i)

D2(A,B) ≤ GW 2
2 (A,B)

8dα2
+
∥ΣA∥F ∥ΣB∥F

dα2

(
1− 1√

d

)
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(ii)

D2(A,B) ≤ 1

2
√
d

√
GW 2

2 (µ, ν)− 4
(
tr(Λ0)− tr(Λ1)

)2 − 4
(
∥Λ0∥F − ∥Λ1∥F

)2
≤ GW2(A,B)

2
√
d

A.7 Additional Theorems and Proofs

Proof of Theorem 1. RISWIE is defined on centered embeddings (the means are subtracted), so
translation t has no effect on the pushforwards; we may assume t = 0 w.l.o.g.

PCA: Let Σµ = UΛU⊤ be the eigendecomposition of the covariance where Λ = diag(λ1, . . . , λd)
and the eigenvalues are ordered λ1 > · · · > λr > 0 = λr+1 = · · · = λd

Applying T (x) = Rx+ t, the covariance of T#µ is

ΣT#µ = RΣµR
⊤ = (RU)Λ(RU)⊤

Seen on an individual eigenvector level,

Σµu = λu =⇒ ΣT#µ(Ru) = RΣµR
⊤(Ru) = R(Σµu) = λ(Ru),

Thus, the eigenvalues of ΣT#µ are equal to those of Σµ and its eigenvectors are interpreted as
orthogonally transformed versions of those of µ. For the eigenvectors corresponding to the non-zero
eigenvalues, the transformation is unique up to sign. The two covariance matrices have the same
distribution of eigenvalues (unique non-zero eigenvalues, some number of zero eigenvalues), so the
only ambiguity in finding a non-zero eigenvalue eigenvector is the sign. For the zero-eigenvalue
eigenvectors, which may have multiplicity, there is more to say.

For the zero-eigenvalue eigenspace, any orthonormal basis spans the kernel. Projections of µ onto any
direction in this subspace yield Dirac masses at zero. Although there is some ambiguity in choosing
them, we only use these eigenvectors to induce distributions on the real line, so the end effect is the
same. Also, the sign ambiguity doesn’t matter either (reflection of a Dirac mass at zero is still a Dirac
mass at 0).

For the non-zero eigenvalue eigenvectors, the projection of rotated data onto rotated eigenvectors
induces the same distribution. That is,

for all x ∈ Rd : ⟨Rx, Ru⟩ = ⟨x, u⟩, so for any sample {xi}, {⟨Rxi, Ru⟩}i = {⟨xi, u⟩}i

This assumes that we chose the optimal relative sign difference, because otherwise one of these
multisets is reflected across 0. The element in the cost matrix for this pairing removes the ambiguity
regarding the sign and recovers the correct relative sign between them. That is, for projections onto
non-zero eigenvalue eigenvectors, we knew the induced distributions were unique up to sign, and s
handles the relative difference in sign.

c(±u,±Ru) = min
s∈{±1}

W 2
2 ({⟨xi, u⟩}ni=1 , {s⟨Rxi, Ru⟩}

n
i=1)

Notationally, what we are illustrating is that there is sign ambiguity in how each axis is obtained from
PCA (up to sign), but regardless of that, the cost matrix entry will be the same.

W2 is a metric, so W 2
2 is 0 if and only if the two multisets are equal. Thus, for one of these two

terms in the minimization, W 2
2 will be 0. This is because Wasserstein is invariant under simultaneous

reflection, so we only need to consider two cases instead of four.

As stated earlier, the zero eigenvalues all yield Dirac masses at 0, and the cost matrix entry between
them will be 0.
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Thus, if π(i) is defined to pair axes with the same eigenvalue to axes of the same eigenvalue, each
ci,π(i) will be 0. This is feasible because they have the same eigenvalue distribution. This can be
done uniquely for the top r eigenvectors, and in any such way for the remaining indices r + 1, ...d.
The end result is that identical (up to sign) multisets are paired together, and scored as 0 cost, and any
Diracs are paired together for 0 cost.

ci,π(i) = min
s∈{±1}

W 2
2

(
{⟨xj , ui⟩}j , {s ⟨Rxj , vπ(i)⟩}j

)
= 0,

Thus, D2(µ, T#µ) = 0 =⇒ D(µ, T#µ) = 0 as

D2 ≤ 1

k

k∑
j=1

c
(
uj , vπ(j)

)
= 0

as we constructed one such signed permutation that is minimized over and RISWIE is non-negative.

Note that we can take only the top k eigenvectors (truncated SVD) and still obtain rigid-invariance by
defining the same bijection π but truncating the two sets of eigenvectors, keeping only the top k by
eigenvalue in each. This will also result in a RISWIE distance of 0.

We have directly shown the special case that when two distributions differ by a rigid transformation
that their distance is 0. It is a simple generalization to show that arbitrary rigid transformations
applied to one of two different distributions do not change the RISWIE distance.

That is, for two measures µ, ν (still making simple non-zero covariance eigenvalue assumptions), any
for any rigid maps T (x) = Rx, S(y) = Qy,

D(µ, ν) = D(T#µ, ν) = D(µ, S#ν) = D(T#µ, S#ν)

This is because the RISWIE distance is just a function of the 1D marginals. The 1D marginals are
actually the same up to sign for the same distribution before and after a rigid transformation. Thus,
when we do axis-pairing, it doesn’t matter whether a distribution was rigidly transformed or not.
RISWIE will optimize over signs and remove that ambiguity.

Diffusion Maps: Define the kernel

Kij = k

(
∥xi − xj∥2

ε

)
(e.g. k(s) = e−s)

Rigid transformations preserve pairwise distances

∥T (xi)− T (xj)∥ = ∥Rxi + t− (Rxj + t)∥ = ∥R(xi − xj)∥ = ∥xi − xj∥

Consequently, the construction of the kernel matrix itself is rigid-invariant. If we called the kernel
matrix K ′ (build from {T (xi)}), then K ′ = K.

As such, given that the entire diffusion procedure (writing the degree matrix E, Laplacian L, EVD,
etc) is entirely derived from the kernel matrix, the embedded distributions should be exactly the same.

E′ = diag(K1) = E, L′
rw = E−1K = Lrw, L′

sym = I − E−1/2KE−1/2 = Lsym.

Let LsymΦ = ΦΛ be an be an eigendecomposition.

Point i is embedded with diffusion coordinates

Ψt(i) =
(
λt1 ϕ1(i), . . . , λ

t
k ϕk(i)

)⊤
for some fixed time t.

Given that the construction of Lsym is rigid-invariant, the eigenvectors returned by an eigensolver for
Lsym and L′

sym should be the same. Whether this is true in practice depends on the implementation
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of numerical eigensolvers. It would suffice to assume a simple spectrum, which would ensure that
the eigenvectors are unique up to sign, but it is not necessary. As such, we only assume that the
eigensolver used is deterministic.

Thus, following the same argument as for PCA, if the k 1D distributions are the same whether or not a
rigid transformation is applied to the distribution, then the RISWIE distance between any two shapes
does not depend on arbitrary rigid transformations applied to them. So D(µ, ν) = D(T#µ, S#ν)
where diffusion map embeddings in D are implicitly used as well.

Proof of Theorem 2. Let E be any deterministic k-dimensional embedding procedure. Then for any
X,Y, Z ∈ P2(Rd), the RISWIE distance satisfies:

(i) Non-negativity: D(X,Y ) ≥ 0,

(ii) Symmetry: D(X,Y ) = D(Y,X),

(iii) Triangle inequality: D(X,Z) ≤ D(X,Y ) +D(Y,Z),

The square root of the average of W 2
2 distances is non-negative and symmetric.

Let RXY = argminR∈O±
k

1

k

k∑
j=1

W 2
2

(
αj , βRj

)
, RY Z = argminR∈O±

k

1

k

k∑
j=1

W 2
2

(
βj , γRj

)
.

Define the composite signed permutation RXZ = RY Z RXY ∈ O±
k . For each j, let

uj =W2

(
αj , βRXY j

)
, vj =W2

(
βRXY j , γRXZj

)
, wj =W2

(
αj , γRXZj

)
.

By the one-dimensional triangle inequality,

wj = W2

(
αj , γRXZj

)
≤ W2

(
αj , βRXY j

)
+ W2

(
βRXY j , γRXZj

)
= uj + vj .

Hence componentwise w ≤ u+ v, so

∥w∥2 ≤ ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2,

and dividing by
√
k gives √√√√1

k

k∑
j=1

w2
j ≤

√√√√1

k

k∑
j=1

u2j +

√√√√1

k

k∑
j=1

v2j .

Since RXZ is only a candidate for the minimization defining D(X,Z),

D(X,Z) = min
R∈O±

k

√√√√1

k

k∑
j=1

W 2
2 (αj , γRj) ≤

√√√√1

k

k∑
j=1

w2
j ≤ D(X,Y ) + D(Y,Z).

Remark 1. While RISWIE is designed to be invariant to rigid transformations, a RISWIE distance
of zero does not necessarily imply that two point clouds are related by a rigid transformation.
Heuristically, this is essentially always the case with data-dependent embeddings, but it is a theoretical
limitation. We show a counterexample to this property for RISWIE using a poor choice of embeddings
(coordinate extraction, i.e., projecting onto e1 and e2). Thus, it remains true that an embedding must
be appropriately and reasonably chosen to yield meaningful RISWIE distances.

Proof of Theorem 3. Without loss of generality, consider the centered versions A ∼ N (0,ΣA) and
B ∼ N (0,ΣB), as RISWIE is translation-invariant.

23



Figure 6: Using embeddings defined as the projection onto the standard basis vectors, these two point
clouds of three points have RISWIE distance 0.

Projecting A ∼ N (0,ΣA) onto its ith PCA axis ui yields a one-dimensional Gaussian, since
u⊤i x ∼ N (0, λAi ). Similarly, projecting B ∼ N (0,ΣB) onto its jth PCA axis vj yields, with
v⊤j y ∼ N (0, λBj ). Take

ai :=
√
λAi

and bj :=
√
λBj . It is known that the squared Wasserstein-2 distance between N (0, λAi ) and

N (0, λBj ) is (ai − bj)2.

Thus, the RISWIE cost for a permutation π ∈ Sd is

C(π) :=
1

d

d∑
i=1

(ai − bπ(i))2.

We claim this is minimized when both vectors are sorted in increasing order (i.e., π∗ = id). Note that
a1 ≤ · · · ≤ ad (the ai are sorted).

Indeed, consider swapping two positions, say i < j, and compare the change in costs between the
two permutations:

∆ :=
[
(ai − bj)2 + (aj − bi)2

]
−
[
(ai − bi)2 + (aj − bj)2

]
=
[
a2i − 2aibj + b2j + a2j − 2ajbi + b2i

]
−
[
a2i − 2aibi + b2i + a2j − 2ajbj + b2j

]
=
[
− 2aibj + b2j − 2ajbi + b2i

]
−
[
− 2aibi + b2i − 2ajbj + b2j

]
= −2aibj + b2j − 2ajbi + b2i + 2aibi − b2i + 2ajbj − b2j
= 2ai(bi − bj) + 2aj(bj − bi)
= 2(aj − ai)(bj − bi).

If bj < bi (an inversion relative to the a−order, then bj − bi < 0 and hence ∆ ≤ 0. So swapping bi,
bj for the increasing sorted order does not increase the cost, and strictly decreases it unless ai = aj .

Thus, given any permutation, it can be improved by swapping inverted adjacent pairs. The only time
we can’t improve a solution is there are no inversions, i.e. when

bπ(1) ≤ bπ(2) ≤ · · · ≤ bπ(d)
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Since any permutation can be reduced to the identity via a sequence of such swaps, and each swap
never increases the cost, the minimal cost is achieved by the identity permutation:

C(id) =
1

d

d∑
i=1

(ai − bi)2.

Therefore,

D2
G(A,B) =

1

d
∥a− b∥22,

as claimed. Here, we denote DG to be the Gaussian closed form.

Proof of Theorem 4. We use the bounds from [Salmona et al., 2022]:

LGW 2
2 (A,B) = 4(tr(ΛA)− tr(ΛB))

2 + 4(∥ΛA∥F − ∥ΛB∥F )2 + 4∥ΛA − ΛB∥2F ,

GGW 2
2 (A,B) = 4(tr(ΛA)− tr(ΛB))

2 + 8∥ΛA − ΛB∥2F + 8(∥ΛA∥2F − ∥Λ
(n)
A ∥

2
F ).

Here, LGW andGGW are lower and upper bounds forGW 2
2 . The results from Salmona et al. [2022]

are general and apply to Gaussian measures defined on Euclidean spaces of differing dimensions. For
clarity and interpretability, however, we focus on the case where both distributions lie in the same
ambient space. As such, we have already dropped an additional term from the original formulation,
which accounted for the difference in Frobenius norm between the full covariance eigenvalue matrix
and its truncation to the lower-dimensional space. This term vanishes in our setting since both
distributions lie in the same ambient space, and no truncation is required.

Let ai =
√
λAi , bi =

√
λBi , and α = mini(ai+ bi). Note that (λAi −λBi )2 = (ai+ bi)

2(ai− bi)2 ≥
α2(ai − bi)2 for all i.

Therefore,

∥ΛA − ΛB∥2F =

d∑
i=1

(λAi − λBi )2 ≥ α2
d∑

i=1

(ai − bi)2 = dα2D2
G(A,B).

Since all other terms in LGW 2
2 are nonnegative,

LGW 2
2 (A,B) ≥ 4∥ΛA − ΛB∥2F ≥ 4dα2D2

G(A,B).

Similarly,
GGW 2

2 (A,B) ≥ 8∥ΛA − ΛB∥2F ≥ 8dα2D2
G(A,B).

Hence,

D2
G(A,B) ≤ GGW 2

2 (A,B)

8dα2
.

Additionally, Salmona et al. [2022] shows a bound on the difference between the upper and lower
bounds:

GGW 2
2 (A,B)− LGW 2

2 (A,B) ≤ 8∥ΣA∥F ∥ΣB∥F
(
1− 1√

d

)
.

Because GW 2
2 (A,B) ≤ GGW 2

2 (A,B), and LGW 2
2 (A,B) ≤ GW 2

2 (A,B), we may write

GGW 2
2 (A,B) = GW 2

2 (A,B) + (GGW 2
2 (A,B)−GW 2

2 (A,B))

≤ GW 2
2 (A,B) + (GGW 2

2 (A,B)− LGW 2
2 (A,B)).

Plugging this into the previous bound,

D2
G(A,B) ≤ GW 2

2 (A,B)

8dα2
+
GGW 2

2 (A,B)− LGW 2
2 (A,B)

8dα2

≤ GW 2
2 (A,B)

8dα2
+
∥ΣA∥F ∥ΣB∥F

dα2

(
1− 1√

d

)
.
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For the second bound, note that for all i,

(ai − bi)2 =

(√
λAi −

√
λBi

)2

≤
∣∣λAi − λBi ∣∣ ,

since by the factorization a2i − b2i = (ai − bi)(ai + bi) and the triangle inequality,

|ai − bi| ≤ |ai + bi| =⇒ (ai − bi)2 ≤ |a2i − b2i | = |λAi − λBi |.
Thus,

D2
G(A,B) =

1

d

d∑
i=1

(ai − bi)2 ≤
1

d

d∑
i=1

|λAi − λBi |.

By Cauchy–Schwarz,

d∑
i=1

|λAi − λBi | ≤
√
d

(
d∑

i=1

(λAi − λBi )2
)1/2

=
√
d∥ΛA − ΛB∥F .

Thus,

D2
G(A,B) ≤ 1√

d
∥ΛA − ΛB∥F .

But GW 2
2 (A,B) ≥ 4∥ΛA − ΛB∥2F + 4(tr(ΛA)− tr(ΛB))

2 + 4(∥ΛA∥F − ∥ΛB∥F )2, so

∥ΛA − ΛB∥2F ≤
1

4

(
GW 2

2 (A,B)− 4(tr(ΛA)− tr(ΛB))
2 − 4(∥ΛA∥F − ∥ΛB∥F )2

)
.

Therefore,

∥ΛA − ΛB∥F ≤
1

2

√
GW 2

2 (A,B)− 4(tr(ΛA)− tr(ΛB))2 − 4(∥ΛA∥F − ∥ΛB∥F )2.

Putting this together,

D2
G(A,B) ≤ 1

2
√
d

√
GW 2

2 (A,B)− 4
(
tr(ΛA)− tr(ΛB)

)2 − 4
(
∥ΛA∥F − ∥ΛB∥F

)2
.

Corollary 5 (Identity of Indiscernibles for Gaussians). Under the same setting as above,DG(A,B) =
0 if and only if there exists an orthogonal matrix R and translation t such that B is the distribution of
RX + t for X ∼ A.

Proof. DG(A,B) = 0 if and only if there exists R ∈ O±
d such that√

λAj =
√
λBRj , ∀ j = 1, . . . , d,

or equivalently, λAj = λBRj for all j.

This means there exists a signed permutation R such that ΛA = R⊤ΛBR, i.e., the eigenvalues of
ΣA and ΣB match up (possibly up to permutation and sign flip of axes). Without loss of generality,
assuming A and B are centered Gaussians, it follows that their covariance matrices satisfy

ΣB = RΣAR
⊤.

Therefore, B is the law of RX for X ∼ A, and more generally, the law of TX + t for some
orthogonal T and translation t.

Conversely, if B is the distribution of TX + t for some orthogonal T and t ∈ Rd, then A and B have
matching covariance eigenvalues, so DG(A,B) = 0.

Theorem 6 (Stability of RISWIE under Gaussian Covariance Perturbations). If Σ′ = ΣX + E with
E = E⊤ and all eigenvalues of ΣX ,Σ

′ are ≥ λmin > 0, then

DG(X,X
′) ≤ ∥E∥2

2
√
λmin

.
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Proof. By Weyl’s theorem for symmetric matrices (discussed by Shamrai [2025]), for each i =
1, . . . , d,

|λi(Σ′)− λi(ΣX)| ≤ ∥Σ′ − ΣX∥2 = ∥E∥2 ≤ η,
where we set η := ∥E∥2.

Consider the function f(x) =
√
x for x ≥ 0. By the mean value theorem, for each i, there exists ξi

between λi(ΣX) and λi(Σ′) such that∣∣∣√λi(Σ′)−
√
λi(ΣX)

∣∣∣ = f ′(ξi) · |λi(Σ′)− λi(ΣX)| .

Since f ′(x) = 1
2
√
x

and all eigenvalues of ΣX and Σ′ are at least λmin, we have ξi ≥ λmin, and
f ′(ξi) is decreasing, so

f ′(ξi) =
1

2
√
ξi
≤ 1

2
√
λmin

.

Therefore, ∣∣∣√λi(Σ′)−
√
λi(ΣX)

∣∣∣ ≤ 1

2
√
λmin

· η.

Let σi :=
√
λi(ΣX), σ′

i :=
√
λi(Σ′), and collect them as vectors σ = (σ1, . . . , σd), σ′ =

(σ′
1, . . . , σ

′
d).

Then,

∥σ′ − σ∥2 ≤

√√√√ d∑
i=1

(
η

2
√
λmin

)2

=
η

2
√
λmin

√
d,

so

DG(X,X
′) ≤ 1√

d
· η

2
√
λmin

√
d =

η

2
√
λmin

.

More generally, if the lower bound for each eigenvalue is min(λi(ΣX), λi(Σ
′)), then by the same

reasoning,

DG(X,X
′) ≤ η

2

√√√√ d∑
i=1

1

min(λi(ΣX), λi(Σ′))
.

Theorem 7 (Consistency of empirical RISWIE). Let µ̂n, ν̂n denote empirical measures of size n
drawn i.i.d. from µ, ν ∈ P2(Rd), respectively. Then

D(µ̂n, ν̂n)
a.s.−−→ D(µ, ν) as n→∞.

Proof. Fix R ∈ O±
k . Since the projections ϕj and ψj are measurable and bounded, the pushforward

measures (ϕj)#µ̂n converge weakly almost surely to (ϕj)#µ for each j, by the strong law of large
numbers. Similarly, (ψj)#ν̂n converge weakly almost surely to (ψj)#ν.

In one dimension, the Wasserstein-2 distance W2 is continuous with respect to weak convergence
plus convergence of second moments. Since the measures are supported on a bounded interval and
have finite second moments by construction, we conclude that

W2

(
(ϕj)#µ̂n, (ψRj)#ν̂n

) a.s.−−→W2

(
(ϕj)#µ, (ψRj)#ν

)
as n→∞.

Averaging over j = 1, . . . , k preserves almost sure convergence, and since the minimum of a finite
collection of continuous functions is continuous, the minimum over R ∈ O±

k also converges almost
surely to its limit. Therefore,

D(µ̂n, ν̂n)
a.s.−−→ D(µ, ν) as n→∞.
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Remark 2 (Bias of the empirical RISWIE estimator). Let µ be Borel probability measure with finite
second moments. Then, D(µ, µ) = 0, but

E
[
D(µ̂n, µ̂

′
n)
]
> 0,

where µ̂′
n is another independent sample of µ.

Proof. We have D(µ, µ) = 0, since projecting and optimally matching each direction trivially yields
zero cost. However, the independent empirical marginals α̂j and α̂′

j almost surely differ, and thus
W 2

2 (α̂j , α̂
′
j) > 0 almost surely for each j. Therefore, averaging and minimizing still yields strictly

positive expectation:
E
[
D(µ̂n, µ̂

′
n)
]
> 0.
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