
Scalable Rigid-Invariant Distance for Shape Matching and Alignment

Zakk Heile^{2,3} Peilin He¹ Jayson Tran³ Alice Wang^{2,3} Shrikant Chand³

¹Division of Natural and Applied Sciences, Duke Kunshan University

²Department of Computer Science, Duke University

³Department of Mathematics, Duke University

`zakk.heile@duke.edu` `peilin.he@dukekunshan.edu.cn` `jayson.tran@duke.edu`
`alice.wang@duke.edu` `shrikant.chand@duke.edu`

Abstract

Comparing probability distributions from biological images requires metrics that are geometrically grounded and invariant to orientation. Classical optimal transport (OT) distances are sensitive to rotations, while Gromov–Wasserstein (GW) offers invariance but is computationally prohibitive. We introduce **Rigid-Invariant Sliced Wasserstein via Independent Embeddings (RISWIE)**, a scalable pseudometric that achieves rigid invariance by aligning data-adaptive embeddings through optimal signed permutations, at negligible cost. Evaluated on 2D HuBMAP tissue slices and 3D MPI-FAUST meshes, RISWIE attains 95.8% accuracy with over $10^4 \times$ speedup over GW and an AUC of 0.94 for human pose matching. Its optimization also yields explicit axis alignments usable for downstream analysis, making RISWIE a practical and interpretable distance for large-scale geometric data.

1 Introduction

Optimal transport (OT) distances have gained popularity in data analysis due to their usefulness for comparing probability measures. In applications where the geometry of the underlying space is important [Peyré and Cuturi, 2019, Santambrogio, 2015] (e.g. geometric data analysis), this role is complicated by the fact that many datasets are embedded in coordinate systems that are not canonically aligned [Besl and McKay, 1992]; a rigid transformation of the ambient space may leave the original object unchanged while altering the numerical representation substantially.

In many biological imaging tasks—ranging from microscopy of cellular arrangements to 3D shape modeling of organisms—samples are represented as point clouds or spatial distributions of features. A central challenge is to compare these shapes across samples without requiring alignment or manual registration. While rigid transformations preserve pairwise distances, finding an optimal rigid correspondence between two point clouds (with unknown correspondences between points) is computationally intractable, requiring a search over all possible point permutations in the worst case [Cela, 2013].

Contributions. We introduce **RISWIE**, a sliced transport distance that combines data-dependent embeddings with optimal signed-permutation alignment to compare measures up to rigid transformations. We establish theoretical guarantees including rigid invariance, pseudometric properties, closed-form expressions for Gaussian measures, and bounds relating it to Gromov-Wasserstein (GW). Finally, we demonstrate that RISWIE achieves state-of-the-art runtime with essentially no loss in accuracy for shape matching on biological tissue slices and human poses.

2 Preliminaries

We use $\|\cdot\|$ to denote the ℓ_2 norm on \mathbb{R}^d , $\mathcal{P}(\mathbb{R}^d)$ the set of Borel probability measures on \mathbb{R}^d , and $\mathcal{P}_2(\mathbb{R}^d)$ the subset with finite second moments. Given $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, the 2-Wasserstein distance is

$$W_2^2(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^2 d\pi(x, y), \quad (1)$$

where $\Pi(\mu, \nu)$ is the set of couplings with marginals μ, ν [Villani, 2008, Santambrogio, 2015]. In practice, the above measures are approximated by the empirical sample-based measures, which with n samples scales as $O(n^3 \log n)$. In one dimension, W_2 admits the closed form

$$W_2^2(\mu, \nu) = \int_0^1 (F_\mu^{-1}(t) - F_\nu^{-1}(t))^2 dt,$$

which can be evaluated in $O(n \log n)$ [Villani, 2008]. The sliced Wasserstein (SW) distance extends this to higher dimensions by projecting onto directions $\theta \in S^{d-1}$ and averaging:

$$\text{SW}_2^2(\mu, \nu) = \int_{S^{d-1}} W_2^2(P_\theta \# \mu, P_\theta \# \nu) d\theta,$$

where $P_\theta(x) = \langle x, \theta \rangle$ [Rabin et al., 2012, Kolouri et al., 2019]. Approximating with L random projections yields $O(Ln \log n)$ scaling [Nietert et al., 2022], but SW, like Wasserstein, is not invariant to rigid transformations. The Gromov–Wasserstein (GW) distance compares measures without requiring a shared ambient space by aligning their internal distance structures [Mémoli, 2011]:

$$\text{GW}_2^2(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \iint |d_X(x, x') - d_Y(y, y')|^2 d\pi(x, y) d\pi(x', y').$$

While GW is invariant to rigid transformations, it is NP-hard and even approximate solvers scale as $O(n^4)$ per iteration, making GW computations scale poorly with sample size [Kerdoncuff et al., 2021].

3 Methodology

We now define a new distance, which we denote as the Rigid-Invariant Sliced Wasserstein via Independent Embeddings (RISWIE) distance. This distance preserves the invariance property of GW while maintaining the computational efficiency of projection-based optimal transport. The construction has three components: (i) data-dependent embeddings that map each distribution into a low-dimensional coordinate system derived from its own geometry, (ii) an alignment step that pairs axes across embeddings using signed permutations, and (iii) an aggregation of one-dimensional Wasserstein costs over the matched axes.

3.1 Problem Formulation

Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ be probability measures. We first define an object to describe rigid transformations.

Definition 1 (Signed Permutation Group). *The signed permutation group on k elements is*

$$\mathcal{O}_k^\pm := \{R \in \mathbb{R}^{k \times k} : R^\top R = I_k, R_{ij} \in \{0, \pm 1\}, \text{ one nonzero per row/column}\}. \quad (|\mathcal{O}_k^\pm| = 2^k k!)$$

Equivalently, $\mathcal{O}_k^\pm = \{D_\varepsilon P_\pi : \pi \in S_k, D_\varepsilon = \text{diag}(\varepsilon_1, \dots, \varepsilon_k), \varepsilon_j \in \{\pm 1\}\}$.

In particular, our objective is to construct an invariant distance $D(\mu, \nu)$ such that $D(\mu, \nu) = D((R_1)_\# \mu, (R_2)_\# \nu)$ for any $R_1, R_2 \in \mathcal{O}_d^\pm$ where $(f)_\# \mu$ denotes the pushforward of μ by f .

The RISWIE distance defined below can be seen as the minimum Wasserstein distance cost axis and relative sign pairing across all $2^k k!$ pairings.

Definition 2 (RISWIE Distance). *Let μ, ν be centered probability measures on \mathbb{R}^{d_1} and \mathbb{R}^{d_2} , respectively. Let $\phi := (\phi_1, \dots, \phi_k) : \mathbb{R}^{d_1} \rightarrow \mathbb{R}^k$ and $\psi := (\psi_1, \dots, \psi_k) : \mathbb{R}^{d_2} \rightarrow \mathbb{R}^k$ be fixed embedding functions. Let \mathcal{O}_k^\pm denote the group of signed permutation matrices of size $k \times k$. For $R \in \mathcal{O}_k^\pm$, define $(R\psi)_j := \varepsilon_j \psi_{\pi(j)}$, where R corresponds to a signed permutation (π, ε) .*

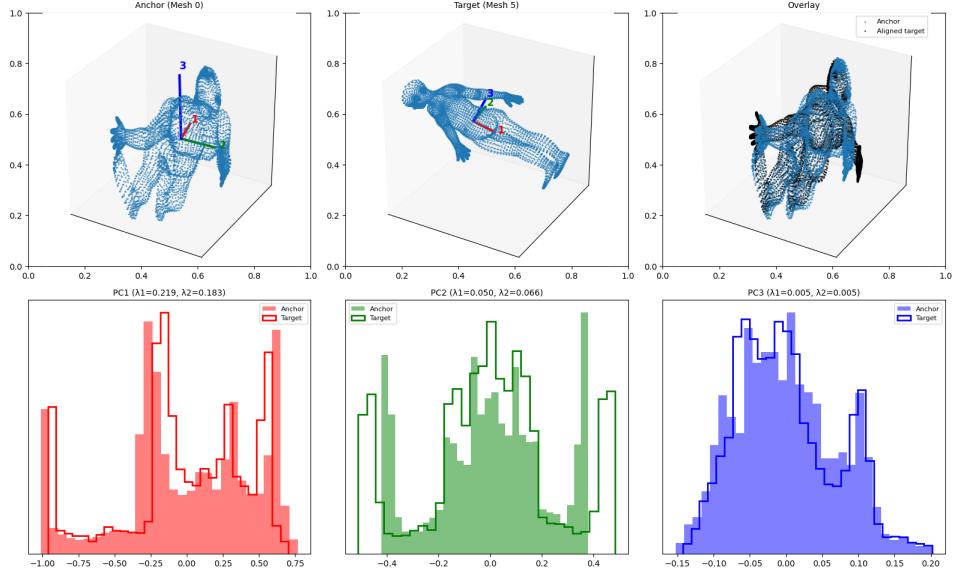


Figure 1: 3D Example of RISWIE alignment. RISWIE can align two point clouds by matching their marginal distributions along embedded axes, which naturally extends to higher dimensions. For each axis of the anchor shape, all possible pairings with axes of the target, including reflections are evaluated to minimize the sum of costs. The second row shows the optimal axis matching.

The Rigid-Invariant Sliced Wasserstein via Independent Embeddings (RISWIE) distance is defined as

$$D^2(\mu, \nu) := \min_{R \in \mathcal{O}_k^\pm} \frac{1}{k} \sum_{j=1}^k W_2^2 ((\phi_j)_\# \mu, ((R\psi)_j)_\# \nu),$$

where W_2 denotes the 2-Wasserstein distance on \mathbb{R} and $(\phi_j)_\# \mu$ is the pushforward of μ under ϕ_j .

We require the distributions to be mean-centered. The embeddings ϕ_j and ψ_j are user-friendly and may be obtained via dimensionality reduction techniques (e.g. PCA or diffusion maps) [Coifman and Lafon, 2006], or other data-dependent procedures. In d dimensions with n points per point cloud, the time complexity of RISWIE with PCA embeddings is $O(nd^2 + dn \log n)$.

4 Experiments

We evaluate RISWIE with PCA embeddings in classification tasks, using the MPI-FAUST dataset of human meshes [Bogo et al., 2014] and tissue data from the HuBMAP consortium [Hickey et al., 2023]. The numerical results below quantify computational efficiency and assess discriminative, clustering, and classification performance relative to existing distances.

4.1 Human Pose Alignment and Discrimination

As shown in Figure 1, RISWIE aligns shapes accurately, making it effective for distinguishing poses. We evaluate this discrimination through unsupervised pose clustering on MPI-FAUST (10 subjects \times 10 poses), computing a 100×100 pairwise distance matrix using 1000 subsampled vertices per mesh for all methods to ensure compatibility with more intractable distances.

We evaluate K-Means, Spectral, Agglomerative, and t-SNE-based clustering on mesh embeddings (distance matrix rows) and evaluate clustering accuracy on these embeddings with the ground-truth poses. Table 1 shows that RISWIE matches or outperforms GW and other baselines across clustering strategies. Over our grid of settings, all while computing the full distance matrix in ~ 10 seconds versus ~ 5 hours for GW.

Table 1: V-measure by method and distance function on MPI-FAUST pose clustering

	Euclidean	Gromov	Wasserstein	RISWIE	Sliced
Agglomerative (avg, precomp)	0.2214	0.6568	0.6715	0.8094	0.5478
KMeans (dist rows)	0.3778	0.5930	0.5967	0.7839	0.4331
Spectral (RBF of dist)	0.3721	0.5630	0.5757	0.8138	0.6291
t-SNE-2D + KMeans	0.4066	0.6649	0.6480	0.8612	0.6329
t-SNE-2D + Spectral	0.3907	0.6481	0.6136	0.8196	0.6173
AUC-ROC (same-vs-different)	0.6099	0.8929	0.8603	0.9404	0.7843

4.2 Tissue Clustering

We evaluate RISWIE on two-dimensional tissue slices of the human small intestine, where each slice is represented as a point cloud of cell coordinates [Hickey et al., 2023], orientated arbitrarily. Ground-truth labels group slices by intestine identity.

Table 2 reports runtime and stack assignment accuracy across distances. For clustering/assignment, we apply a farthest-point seeding strategy with greedy assignment based on intra-cluster distances, with more information available in the appendix. RISWIE achieves sub-second computation and the highest accuracy (95.8%), while Gromov–Wasserstein is slower by over four orders of magnitude. Sliced Wasserstein and classical Wasserstein are faster than GW but substantially less accurate.

Table 2: Cells dataset: runtime and stack assignment accuracy for different point subsampling levels.

Distance	Time (s); 1000 pts	Accuracy; 1000 pts	Time (s); 2000 pts	Accuracy; 2000 pts
RISWIE	1	95.83%	1	95.83%
Gromov–Wasserstein	10352	85.42%	56614	95.83%
Sliced Wasserstein	2	52.08%	6	47.92%
Wasserstein	111	54.17%	746	47.92%

Beyond assignment, RISWIE provides stronger discriminative power. Using pairwise distances to score same-intestine versus different-intestine pairs, RISWIE achieves an AUC-ROC of 0.943 compared to 0.921 for Gromov–Wasserstein under identical sampling. Since RISWIE scales nearly linearly with sample size, it can exploit larger point sets with little additional cost. However, we again subsample the same number of points for consistency. We refer readers to the appendix for more experiments that consider high-dimensional marker data as well as spatial information.

5 Discussion

RISWIE preserves accuracy while allowing fast computation. On tissue slices, it recovers intestine identity and achieves the highest stack assignment accuracy, running orders of magnitude faster than GW. On 3D human meshes, it surpasses GW across clustering methods and metrics, completing in seconds rather than hours. RISWIE also yields a signed axis permutation interpretable as a rigid transformation between eigenspaces, serving as a useful pre-processing step for downstream tasks.

Two limitations remain. First, RISWIE relies on discrete axis matching, which limits differentiability and constrains its direct integration into end-to-end deep learning pipelines. However, this can be relaxed by replacing hard signed-permutation matching with continuous pairings via a regularized transport plan. Second, RISWIE depends on the stability of the embedding procedure: when eigengaps are small, axis orderings may fluctuate, degrading alignment quality. Future work could mitigate this instability by grouping axes into low-dimensional blocks and matching them jointly.

6 Acknowledgments

This work was supported by the National Science Foundation under Grant DMS-2038056. The authors thank Jiajia Yu, Heekyoung Hahn, and Lenny Ng for their guidance and valuable feedback throughout the project.

References

P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):239–256, 1992. doi: 10.1109/34.121791.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and evaluation for 3D mesh registration. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, Piscataway, NJ, USA, June 2014. IEEE.

E. Cela. *The Quadratic Assignment Problem: Theory and Algorithms*. Combinatorial Optimization. Springer US, 2013. ISBN 9781475727883. URL <https://books.google.hu/books?id=cpMCswEACAAJ>.

Ronald R. Coifman and Stéphane Lafon. Diffusion maps. *Applied and Computational Harmonic Analysis*, 21(1):5–30, 2006. doi: 10.1016/j.acha.2006.04.006. Special Issue: Diffusion Maps and Wavelets.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Zeghal Alaya, Arnaud Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):1–8, 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

Rémi Flamary, Cédric Vincent-Cuaz, Nicolas Courty, Alexandre Gramfort, Oleksii Kachaiev, Huy Quang Tran, Laurène David, Clément Bonet, Nathan Cassereau, Théo Gnassounou, Eloi Tanguy, Julie Delon, Antoine Collas, Sonia Mazelet, Laetitia Chapel, Tanguy Kerdoncuff, Xizheng Yu, Matthew Feickert, Paul Krzakala, Tianlin Liu, and Eduardo Fernandes Montesuma. Pot python optimal transport (version 0.9.5), 2024. URL <https://github.com/PythonOT/POT>.

J. Hickey, C. Caraccio, G. Nolan, and HuBMAP Consortium. Organization of the human intestine at single cell resolution. HuBMAP Consortium, 2023.

Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. Sampled Gromov Wasserstein. *Machine Learning*, 2021. doi: 10.1007/s10994-021-06035-1. URL <https://hal.science/hal-03232509>.

Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Generalized sliced wasserstein distances. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 32, 2019.

Facundo Mémoli. Gromov-wasserstein distances and the metric approach to object matching. *Foundations of Computational Mathematics*, 11(4):417–487, 2011. doi: 10.1007/s10208-011-9093-5.

Sloan Nietert, Ziv Goldfeld, Ritwik Sadhu, and Kengo Kato. Statistical, robustness, and computational guarantees for sliced wasserstein distances. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural Information Processing Systems*, volume 35, pages 28179–28193. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b4bc180bf09d513c34ecf66e53101595-Paper-Conference.pdf.

Gabriel Peyré and Marco Cuturi. Computational optimal transport: With applications to data science. *Foundations and Trends in Machine Learning*, 11(5-6):355–607, 2019. doi: 10.1561/2200000073.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to texture mixing. In Alfred M. Bruckstein, Bart M. ter Haar Romeny, Alexander M. Bronstein, and Michael M. Bronstein, editors, *Scale Space and Variational Methods in Computer Vision (SSVM)*, pages 435–446, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-24785-9_37.

Antoine Salmona, Julie Delon, and Agnès Desolneux. Gromov-Wasserstein Distances between Gaussian Distributions. *Journal of Applied Probability*, 59(4), December 2022. URL <https://hal.science/hal-03197398>.

Filippo Santambrogio. *Optimal Transport for Applied Mathematicians*. Birkhäuser, 2015.

Maksym Shamrai. Perturbation analysis of singular values in concatenated matrices, 2025. URL <https://arxiv.org/abs/2505.01427>.

Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Optimal transport for structured data with application on graphs, 2019. URL <https://arxiv.org/abs/1805.09114>.

C. Villani. *Optimal Transport: Old and New*. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2008. ISBN 9783540710509. URL https://books.google.com/books?id=hV8o5R7_5tkC.

A Appendix

A.1 Algorithm

Algorithm 1: RISWIE Empirical Computation

Input: Empirical measures $X = \{x_1, \dots, x_{n_1}\} \subset \mathbb{R}^{d_1}$, $Y = \{y_1, \dots, y_{n_2}\} \subset \mathbb{R}^{d_2}$;
embeddings $\Phi = (\phi_1, \dots, \phi_k)$, $\Psi = (\psi_1, \dots, \psi_k)$.
Output: $D(X, Y) = D(X, Y)$.

```

 $X \leftarrow \{x_i - \text{mean}(X)\}_{i=1}^{n_1}; \quad Y \leftarrow \{y_i - \text{mean}(Y)\}_{i=1}^{n_2}$ 
for  $\ell = 1, \dots, k$  do
   $A_\ell \leftarrow (\phi_\ell(x_1), \dots, \phi_\ell(x_{n_1}))$ ; // embed  $X$  onto axis  $\ell$ 
   $B_\ell \leftarrow (\psi_\ell(y_1), \dots, \psi_\ell(y_{n_2}))$ ; // embed  $Y$  onto axis  $\ell$ 
   $\tilde{A}_\ell \leftarrow \text{sort}(A_\ell); \quad \tilde{B}_\ell \leftarrow \text{sort}(B_\ell)$ ; // sort in ascending order before
for  $\ell = 1, \dots, k$  do
  for  $m = 1, \dots, k$  do
     $c_{\ell m}^+ \leftarrow \text{W2sorted}^2(\tilde{A}_\ell, \tilde{B}_m)$ ;
     $c_{\ell m}^- \leftarrow \text{W2sorted}^2(\tilde{A}_\ell, \text{reverse}(-\tilde{B}_m))$ ; // reflect and reverse
     $C_{\ell m} \leftarrow \min\{c_{\ell m}^+, c_{\ell m}^-\}$ ; // best sign for pair  $(\ell, m)$ 
   $\pi^* \leftarrow \arg \min_{\pi \in S_k} \sum_{\ell=1}^k C_{\ell, \pi(\ell)}$ ; // solved by Hungarian
   $Z \leftarrow \sum_{\ell=1}^k C_{\ell, \pi^*(\ell)}$ ;
return  $D(X, Y) \leftarrow \sqrt{Z/k}$ ;
```

Note: W2sorted^2 assumes its two input vectors are already sorted (ascending). For equal weights, it returns $\frac{1}{N} \sum_{i=1}^N (u_i - v_i)^2$ when the two lists are length- N ; for unequal lengths/weights, it runs the standard two-pointer monotone coupling in $O(n_1 + n_2)$ time. Pre-sorting each projected list once (above) avoids re-sorting inside every 1D OT call, saving a factor of k . Negating reflects the distribution across 0; reversing ensures the reflected list remains sorted in ascending order.

To analyze time complexity, we take $d := \max\{d_1, d_2\}$ and $n := \max\{n_1, n_2\}$. We also assume that $k \leq d$ and $n \geq d$, as is common in practice.

For PCA embeddings,

$$O\left(\underbrace{nd^2}_{\text{covariances}} + \underbrace{kd^2}_{\text{top-}k \text{ eigens}} + \underbrace{knd}_{\text{projection}} + \underbrace{kn \log n}_{\text{sort once}} + \underbrace{\frac{k^2 n}{k^2 \text{ sorted } W_2^2 \text{ calls}}}_{\text{Hungarian}} + \underbrace{k^3}_{\text{Hungarian}}\right) = O(nd^2 + dn \log n).$$

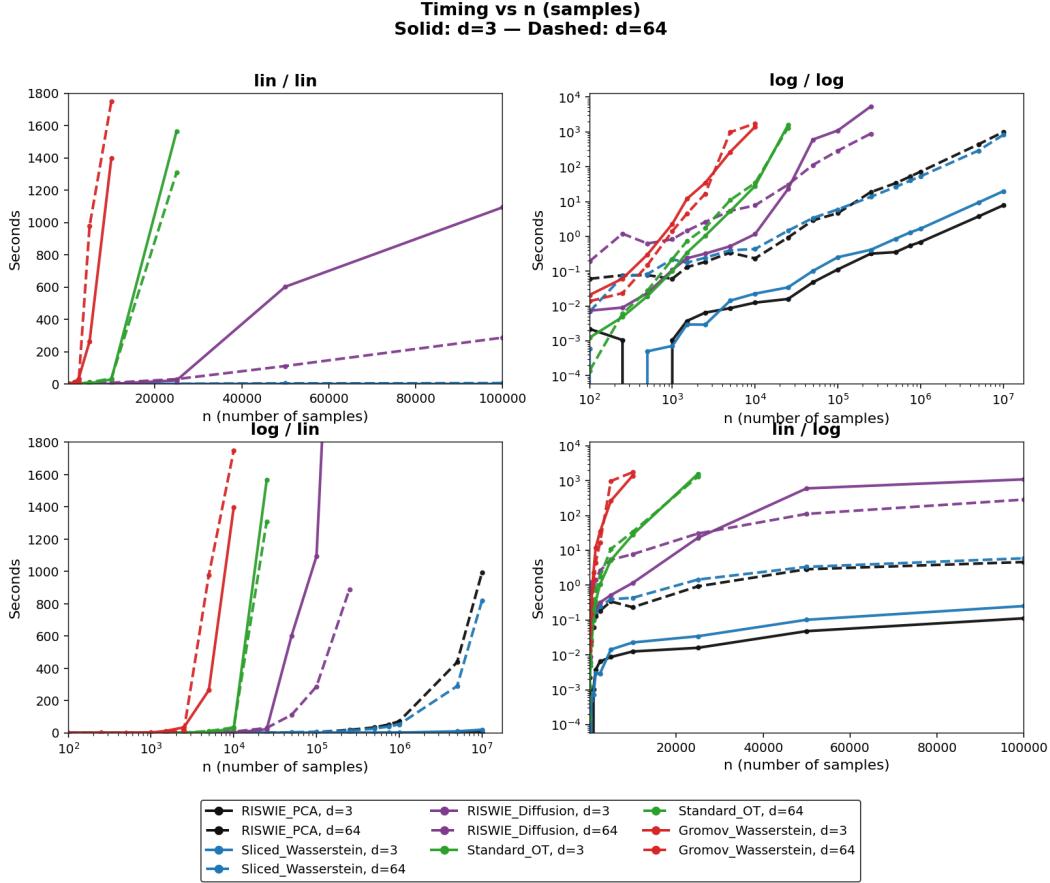
For Diffusion Map embeddings,

$$O\left(\underbrace{n^2 d}_{\text{kernel build}} + \underbrace{kn^2}_{\text{top-}k \text{ eigens}} + \underbrace{kn \log n}_{\text{sort once}} + \underbrace{\frac{k^2 n}{k^2 \text{ sorted } W_2^2 \text{ calls}}}_{\text{Hungarian}} + \underbrace{k^3}_{\text{Hungarian}}\right) = O(n^2 d).$$

Both of the above embedding choices are computationally efficient when used with the proposed scheme, with PCA-RISWIE being nearly linear in the number of samples. With $n \geq d$, these

approaches are faster than standard Optimal Transport, Gromov-Wasserstein, and equivalent asymptotically to Sliced Wasserstein with d projection axes. However, because random sampling can perform poorly in higher dimensions, one might instead choose a superlinear number of axes (such as $d \log d$), in which case RISWIE becomes asymptotically faster.

A.2 Timing Results



For our timing experiments, we set the number of projection axes for Sliced Wasserstein to $\max(10, d \log d)$ and the number of embedding functions of RISWIE-PCA to d . The former is done to make Sliced Wasserstein robust to bad sampling directions as they are not data dependent. For diffusion-based RISWIE, we implement diffusion maps by building a sparse neighborhood graph with $k = \lceil d \log n \rceil$ neighbors, then apply heat-kernel affinities and symmetric normalization before computing the top d eigenvectors.

A.3 FAUST Full Experiment

Tables for this experiment include clustering pipelines, where abbreviations like “avg, precomp”, “dist rows”, and “RBF of dist” refer to specific clustering setups described in the table caption and glossary.

Table 3: Description of clustering pipelines used in the experiments.

Pipeline Label	Description
KMeans (dist rows)	KMeans on rows of the pairwise distance matrix as Euclidean vectors.
KMedoids (precomputed dist)	KMedoids using the full precomputed pairwise distance matrix.
Agglomerative (avg, precomp)	Average-linkage agglomerative clustering on the precomputed distance matrix.
Spectral (RBF of dist)	Spectral clustering using an RBF kernel of the distance matrix: $A_{ij} = \exp(-D_{ij}^2/(2\sigma^2))$ with $\sigma = \text{median}(D[D > 0])$.
MDS-2D + KMeans	2D MDS embedding of distances followed by KMeans.
MDS-3D + KMeans	3D MDS embedding of distances followed by KMeans.
MDS-2D + Spectral	2D MDS embedding, RBF kernel on embedded points, then Spectral clustering.
t-SNE-2D + KMeans	2D t-SNE on precomputed distances (perplexity 10), then KMeans.
t-SNE-3D + KMeans	3D t-SNE on precomputed distances, then KMeans.
t-SNE-2D + Spectral	2D t-SNE followed by RBF kernel and Spectral clustering.
t-SNE-3D + Spectral	3D t-SNE followed by RBF kernel and Spectral clustering.

Table 4: V-measure (mean \pm std) by method and distance function on MPI-FAUST pose clustering.

Distance Pipeline	Euclidean	Gromov	OT	RISWIE	Sliced
Agglomerative (avg, precomp)	0.2214 \pm 0.0252	0.6568 \pm 0.0586	0.6715 \pm 0.0164	0.8094 \pm 0.0268	0.5478 \pm 0.0346
KMeans (dist rows)	0.3778 \pm 0.0257	0.5930 \pm 0.0478	0.5967 \pm 0.0259	0.7839 \pm 0.0192	0.4331 \pm 0.0292
Spectral (RBF of dist)	0.3721 \pm 0.0248	0.5630 \pm 0.0412	0.5757 \pm 0.0225	0.8138 \pm 0.0190	0.6291 \pm 0.0387
t-SNE-2D + KMeans	0.4066 \pm 0.0274	0.6649 \pm 0.0447	0.6480 \pm 0.0264	0.8612 \pm 0.0270	0.6329 \pm 0.0351
t-SNE-2D + Spectral	0.3907 \pm 0.0308	0.6481 \pm 0.0482	0.6136 \pm 0.0215	0.8196 \pm 0.0183	0.6173 \pm 0.0275

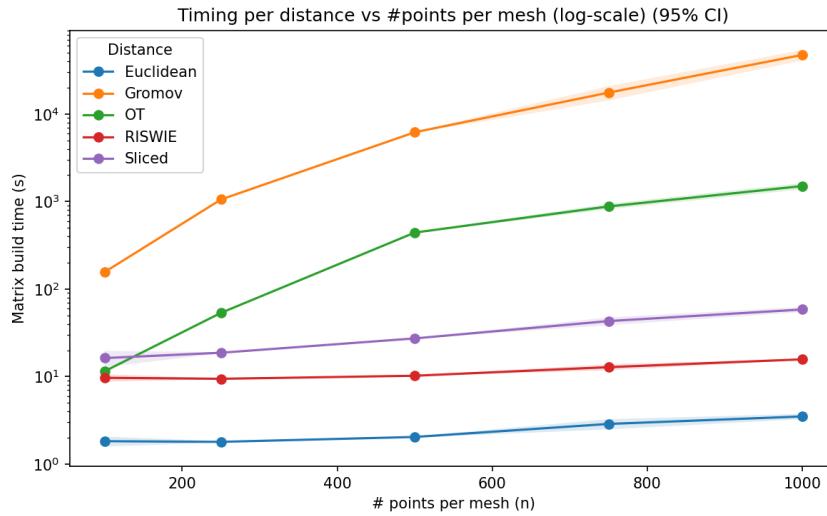


Figure 2: Matrix-build time versus number of points per mesh n (log-scale). RISWIE grows gently with n and stays well below Sliced/OT, while Gromov–Wasserstein is the slowest by far.

Table 5: Accuracy by Method and Distance Function

Method	RISWIE	Gromov	OT	Euclidean	Sliced
KMeans (dist rows)	0.7200	0.5700	0.5600	0.3500	0.3600
Spectral (RBF of dist)	0.7800	0.7500	0.5300	0.3200	0.6000
Agglomerative (avg, precomp)	0.7200	0.5300	0.4600	0.1400	0.4500
MDS-2D + KMeans	0.7300	0.5800	0.5400	0.3100	0.4200
MDS-2D + Spectral	0.5800	0.4600	0.4300	0.3200	0.3300
MDS-3D + KMeans	0.7800	0.7000	0.5000	0.3200	0.4300
MDS-3D + Spectral	0.7300	0.6700	0.5200	0.3100	0.4200
t-SNE-2D + KMeans	0.8700	0.8200	0.6500	0.4100	0.6100
t-SNE-2D + Spectral	0.7200	0.6800	0.5600	0.4100	0.5300
t-SNE-3D + KMeans	0.8000	0.7500	0.5300	0.3500	0.5200
t-SNE-3D + Spectral	0.7600	0.6800	0.5700	0.3000	0.5000

Table 6: V-measure by Method and Distance Function

Method	RISWIE	Gromov	OT	Euclidean	Sliced
KMeans (dist rows)	0.8058	0.6802	0.5957	0.4007	0.4373
Spectral (RBF of dist)	0.8238	0.8303	0.5790	0.3220	0.6437
Agglomerative (avg, precomp)	0.8082	0.7420	0.6763	0.2137	0.6092
MDS-2D + KMeans	0.7454	0.6721	0.5506	0.2986	0.4386
MDS-2D + Spectral	0.7065	0.5958	0.4921	0.3161	0.3510
MDS-3D + KMeans	0.8231	0.7879	0.5818	0.2870	0.4892
MDS-3D + Spectral	0.7789	0.7422	0.5700	0.3162	0.4676
t-SNE-2D + KMeans	0.8829	0.8577	0.6779	0.4138	0.6246
t-SNE-2D + Spectral	0.8291	0.7896	0.6357	0.3954	0.6022
t-SNE-3D + KMeans	0.7832	0.7606	0.5847	0.3486	0.5281
t-SNE-3D + Spectral	0.7754	0.7039	0.5843	0.2856	0.4686

A.4 Cells Full Experiment

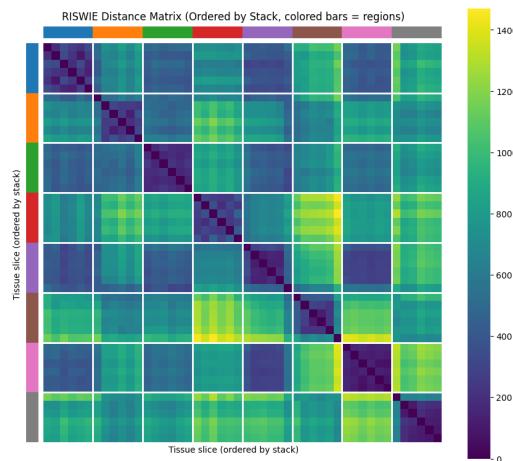


Figure 3: RISWIE Distance matrix for the HuBMAP tissue slices. Each block along the diagonal corresponds to slices from the same tissue stack. Within a block, RISWIE distances are consistently near zero, indicating strong invariance to small perturbations and local alignment of slices from the same sample. Across blocks, RISWIE captures larger geometric variation between tissues from different regions, producing higher inter-block distances.

Table 7: Adjusted Rand Index (ARI) by Method and Distance Function

Method	RISWIE	Gromov	OT	Euclidean	Sliced
KMeans (dist rows)	0.5844	0.3910	0.3673	0.1359	0.1618
Spectral (RBF of dist)	0.6825	0.6154	0.3312	0.0944	0.4277
Agglomerative (avg, precomp)	0.5526	0.4197	0.3796	0.0171	0.3498
MDS-2D + KMeans	0.5454	0.3906	0.3067	0.0486	0.1723
MDS-2D + Spectral	0.4363	0.2881	0.2318	0.0696	0.1078
MDS-3D + KMeans	0.6531	0.5645	0.3336	0.0499	0.2214
MDS-3D + Spectral	0.5576	0.5028	0.3427	0.0732	0.2026
t-SNE-2D + KMeans	0.7965	0.7416	0.4946	0.1765	0.4116
t-SNE-2D + Spectral	0.6436	0.5718	0.4102	0.1480	0.3569
t-SNE-3D + KMeans	0.6529	0.6085	0.3552	0.1013	0.3136
t-SNE-3D + Spectral	0.6107	0.4572	0.3301	0.0584	0.2254

Table 8: Normalized Mutual Information (NMI) by Method and Distance Function

Method	RISWIE	Gromov	OT	Euclidean	Sliced
KMeans (dist rows)	0.8058	0.6802	0.5957	0.4007	0.4373
Spectral (RBF of dist)	0.8238	0.8303	0.5790	0.3220	0.6437
Agglomerative (avg, precomp)	0.8082	0.7420	0.6763	0.2137	0.6092
MDS-2D + KMeans	0.7454	0.6721	0.5506	0.2986	0.4386
MDS-2D + Spectral	0.7065	0.5958	0.4921	0.3161	0.3510
MDS-3D + KMeans	0.8231	0.7879	0.5818	0.2870	0.4892
MDS-3D + Spectral	0.7789	0.7422	0.5700	0.3162	0.4676
t-SNE-2D + KMeans	0.8829	0.8577	0.6779	0.4138	0.6246
t-SNE-2D + Spectral	0.8291	0.7896	0.6357	0.3954	0.6022
t-SNE-3D + KMeans	0.7832	0.7606	0.5847	0.3486	0.5281
t-SNE-3D + Spectral	0.7754	0.7039	0.5843	0.2856	0.4686

We compute the all-pairs RISWIE distance matrix between point clouds from different tissue types and vertical slices. Each block in the matrix compares all slices of one tissue to all slices of another. Since each slice may be arbitrarily rotated or reflected, a rigid-invariant distance should yield low pairwise values within diagonal blocks (same tissue), despite variations in orientation or sampling. Figure 3 highlights RISWIE’s robustness to such transformations, showing consistently low intra-tissue distances.

To evaluate RISWIE’s effectiveness in recovering biologically meaningful groupings, we perform balanced partitioning of tissue slices into spatial stacks based on the computed pairwise distances between tissue slices. We use a farthest-point seeding strategy to encourage diversity among initial stack centers and apply a greedy assignment procedure to add tissue slices to a cluster that they are most similar to.

In other words, we are trying to minimize

$$\mathcal{L}(\mathcal{S}_1, \dots, \mathcal{S}_K) = \sum_{k=1}^K \sum_{\substack{i,j \in \mathcal{S}_k \\ i < j}} D_{\text{Input Distance}}(X_i, X_j)$$

where $\mathcal{X} = \{X_1, X_2, \dots, X_n\}$ is the set of tissue slices and we want to partition them into stacks $\mathcal{S}_1, \dots, \mathcal{S}_K$, each of size n/K .

Table 9: Clustering performance using RISWIE with no subsampling. Accuracy, V-measure, ARI, and NMI are reported across clustering pipelines.

Method	Accuracy	V-measure	ARI	NMI
KMeans (dist rows)	0.7500	0.8469	0.6446	0.8469
KMedoids (precomputed dist)	0.8200	0.8296	0.6966	0.8296
Spectral (RBF of dist)	0.7900	0.8343	0.6921	0.8343
Agglomerative (avg, precomp)	0.7800	0.8549	0.6655	0.8549
MDS-2D + KMeans	0.7500	0.7756	0.5934	0.7756
MDS-2D + KMedoids	0.7500	0.7666	0.5878	0.7666
MDS-2D + Spectral	0.6600	0.7531	0.5121	0.7531
MDS-3D + KMeans	0.7300	0.7517	0.5608	0.7517
MDS-3D + KMedoids	0.7100	0.7541	0.5776	0.7541
MDS-3D + Spectral	0.7200	0.7843	0.5382	0.7843
t-SNE-2D + KMeans	0.8300	0.8498	0.7348	0.8498
t-SNE-2D + KMedoids	0.8300	0.8498	0.7348	0.8498
t-SNE-2D + Spectral	0.7000	0.8339	0.6081	0.8339
t-SNE-3D + KMeans	0.7600	0.7850	0.6276	0.7850
t-SNE-3D + KMedoids	0.7700	0.7633	0.6116	0.7633
t-SNE-3D + Spectral	0.6400	0.7145	0.4688	0.7145

Algorithm 2: Stack Assignment via RISWIE, Farthest-Point Seeding, and Greedy Assignment

Input: Set of $n = 48$ regions (point clouds) $\{X_i\}$
Output: Optimal grouping of regions into K balanced stacks

Step 1: Compute Distance Matrix

```

for  $i = 1$  to  $n$  do
  for  $j = i + 1$  to  $n$  do
     $D_{ij} \leftarrow \text{RISWIE\_distance}(X_i, X_j)$  ;
     $D_{ji} \leftarrow D_{ij}$  ;
  
```

Step 2: Farthest Point Seeding and Greedy Assignment

```

for  $s = 1$  to  $n$  do // Try each region as first seed
   $S \leftarrow [s]$  // Seed indices
  while  $|S| < K$  do
    Select  $t = \arg \max_{t \notin S} \min_{u \in S} D_{tu}$  ;
    Append  $t$  to  $S$  ;
  
```

Initialize K stacks, each with one seed from S ;

while unassigned regions remain do

```

  for each unassigned region  $r$ , and each stack  $k$  not full do
    Compute cost  $c_{r,k} = \sum_{b \in \text{stack}_k} D_{r,b}$  ;
    Assign  $r^*$  to stack  $k^*$  minimizing  $c_{r,k}$ , breaking ties arbitrarily ;
  
```

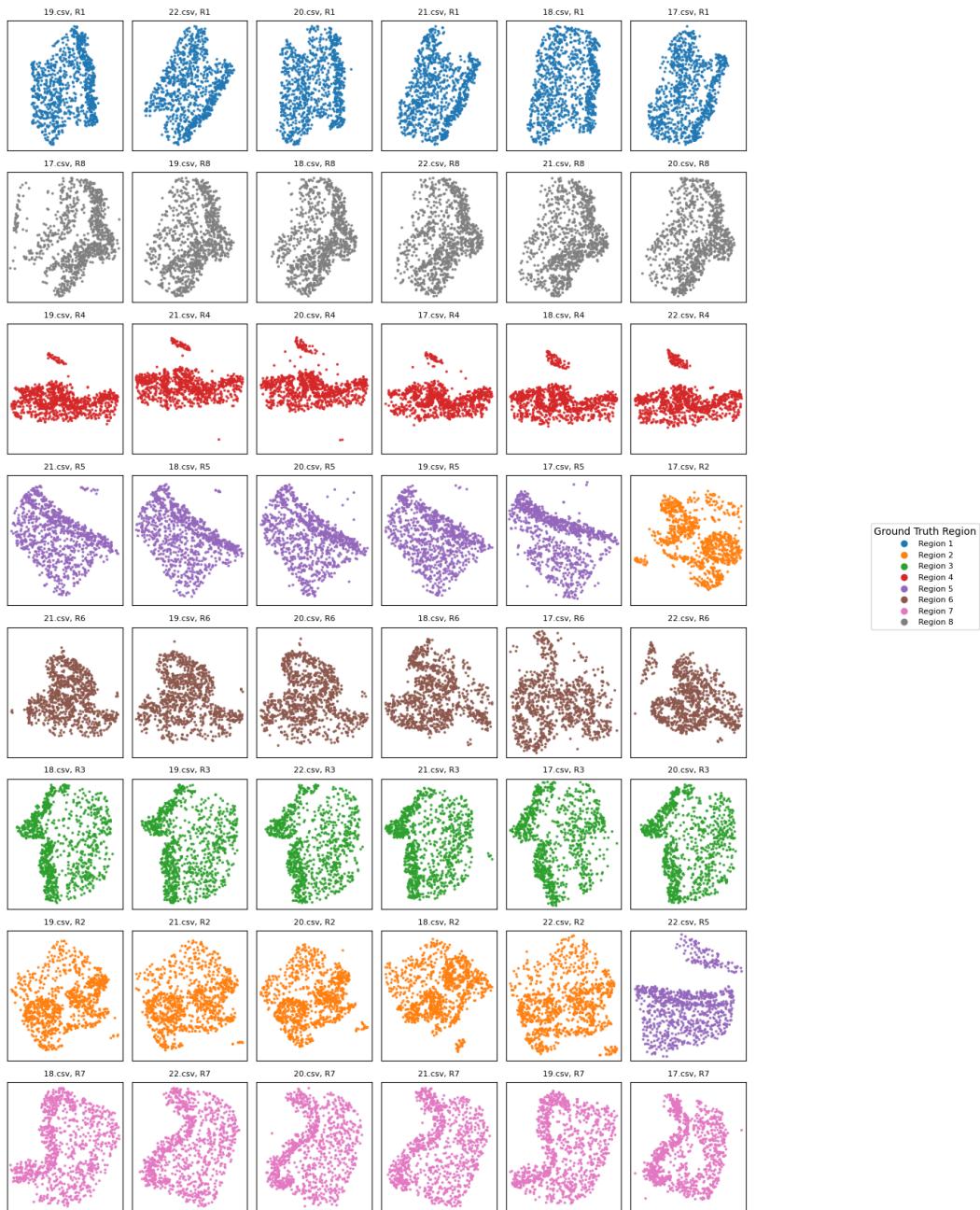
Compute total within-stack sum $C_s = \sum_{k=1}^K \sum_{i,j \in S_k, i < j} D_{ij}$;
 Store stacks and C_s ;

Select the stack assignment with lowest within-stack sum, summed across all stacks: $\sum_s C_s$;

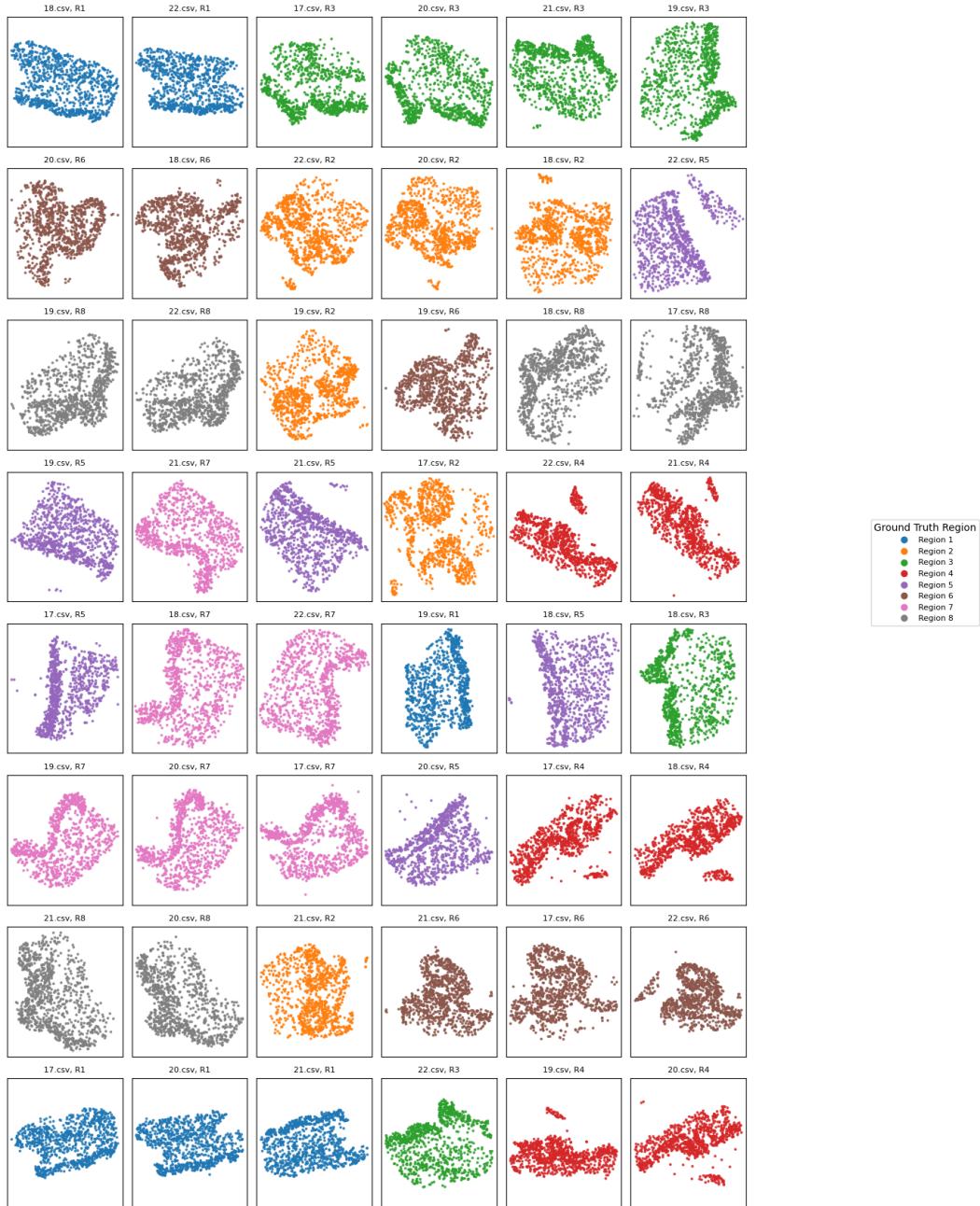
Step 3 (Optional): Random Seeds
 Optionally repeat the greedy assignment with some number random initializations of K stacks and take the lowest cost stack assignment across all completed stacks.

The assignment accuracy reported reflects the best label alignment between predicted and ground truth stacks, computed via Hungarian matching.

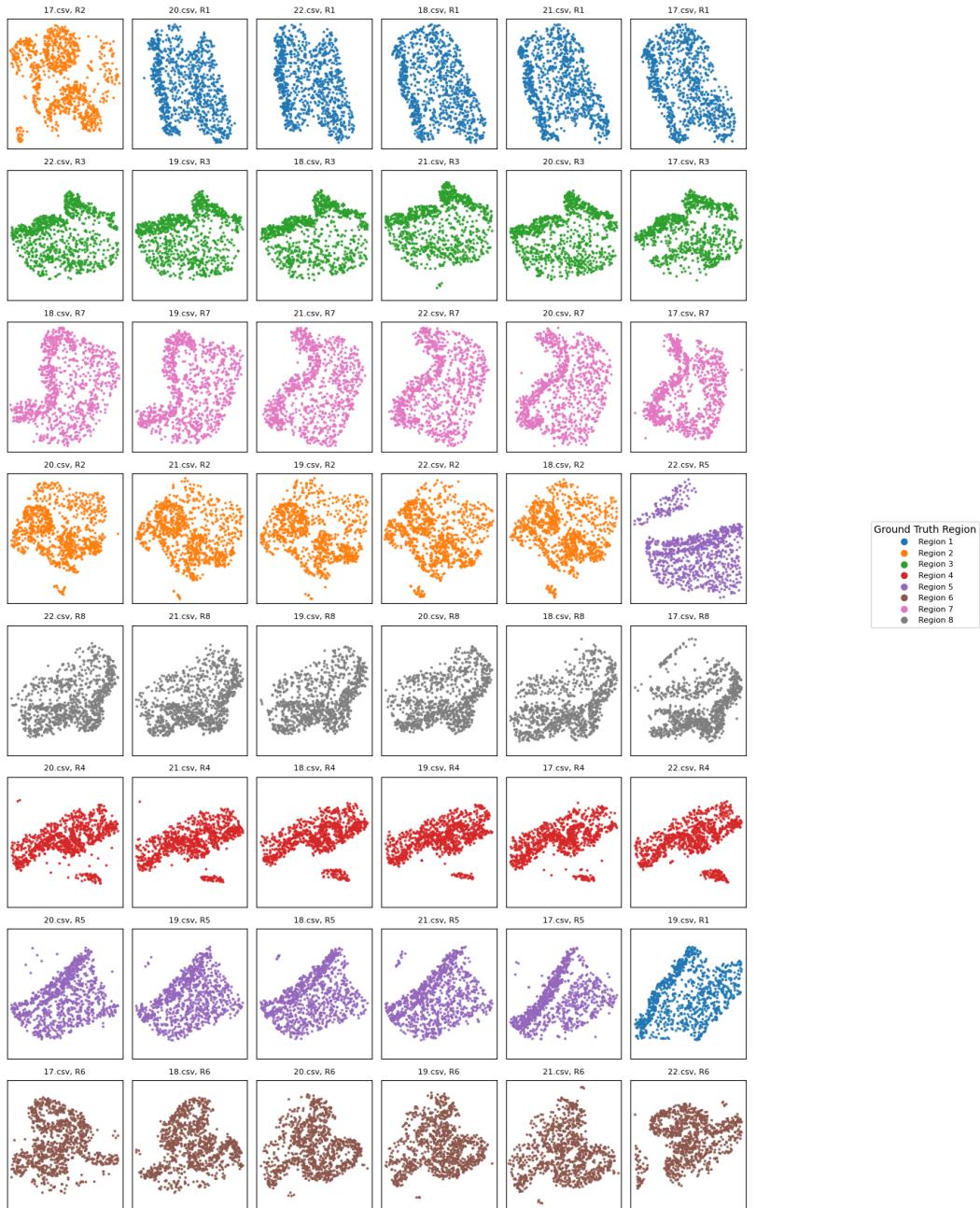
RISWIE Aligned: Each stack aligned to its first region (column 1)



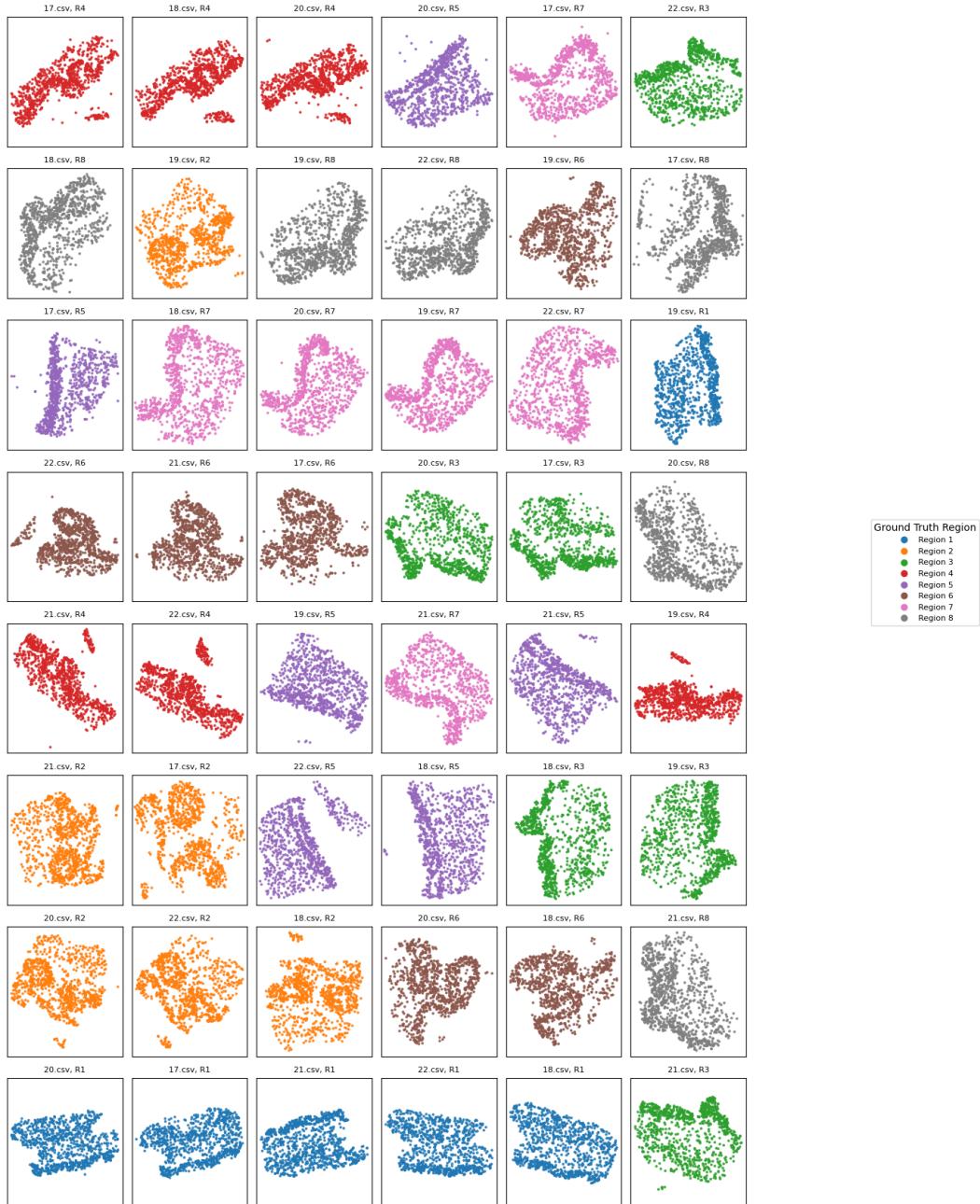
sliced Assignments (Each row = stack, cols = rotated tissues in that stack)
 Color = true region



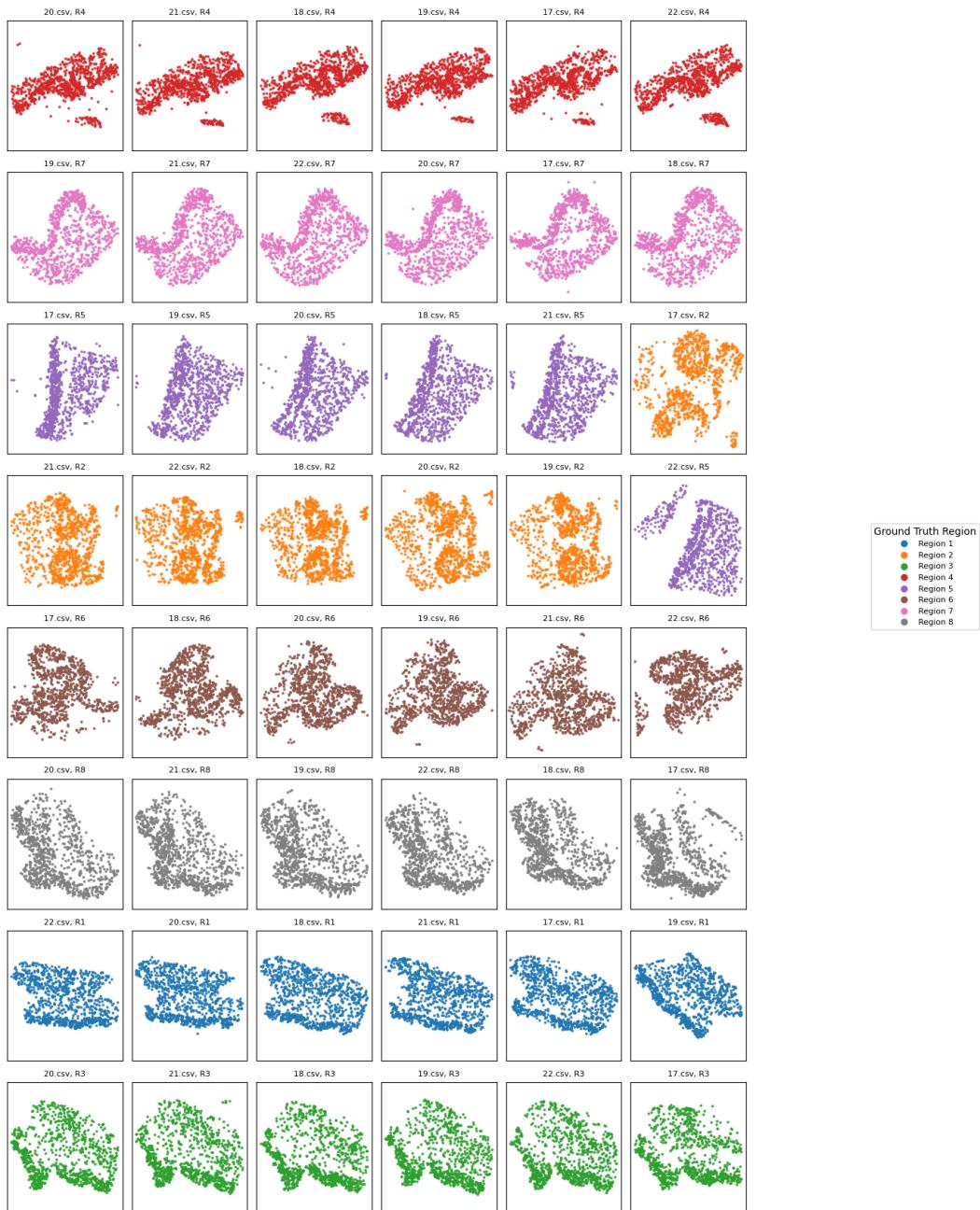
BOOSTED_SLICED Aligned: Each stack aligned to its first region (column 1)



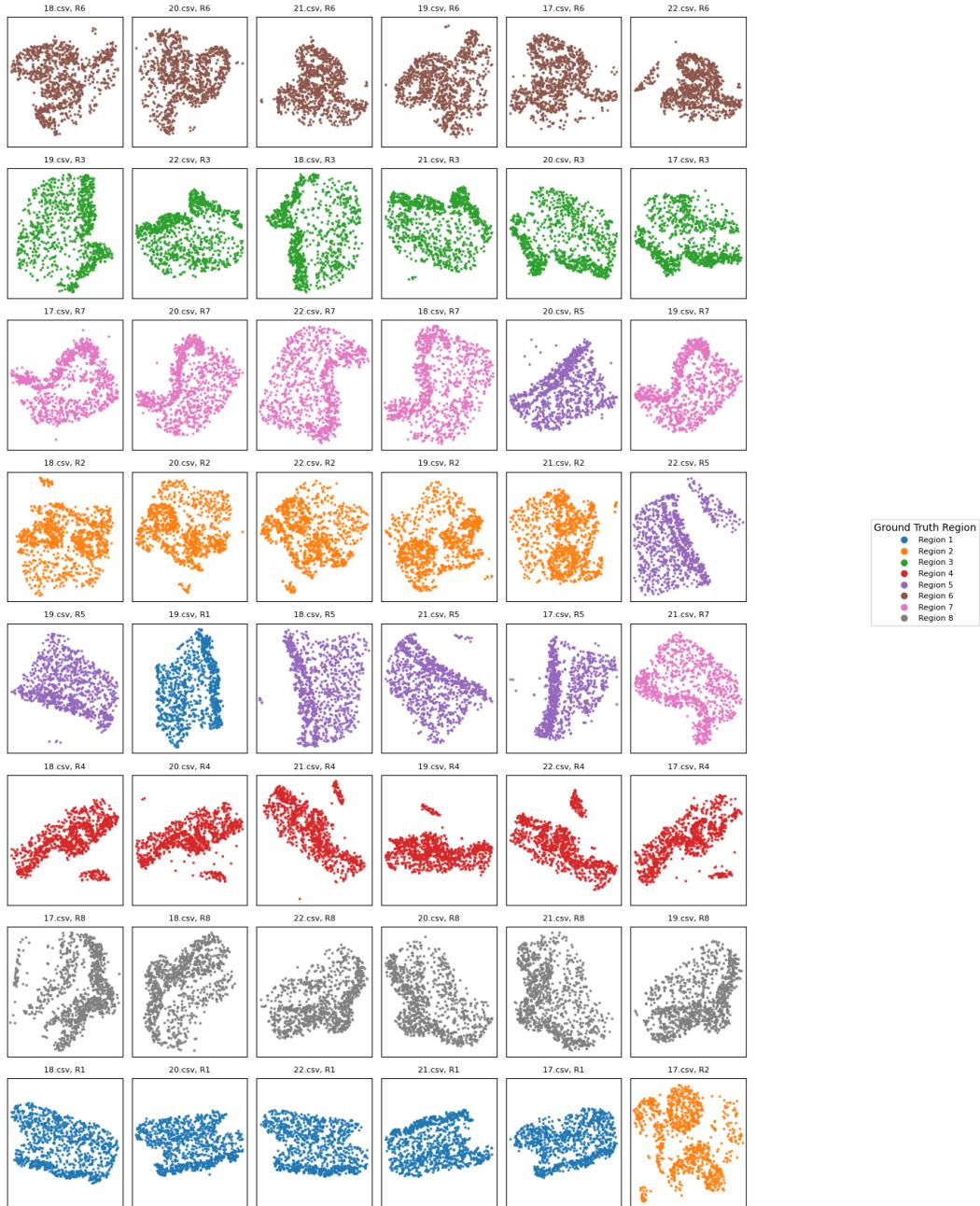
Assignment (Each row = stack, cols = rotated tissues in that stack)
Color = true region



BOOSTED_OT Aligned: Each stack aligned to its first region (column 1)



gromov Assignments (Each row = stack, cols = rotated tissues in that stack)
 Color = true region



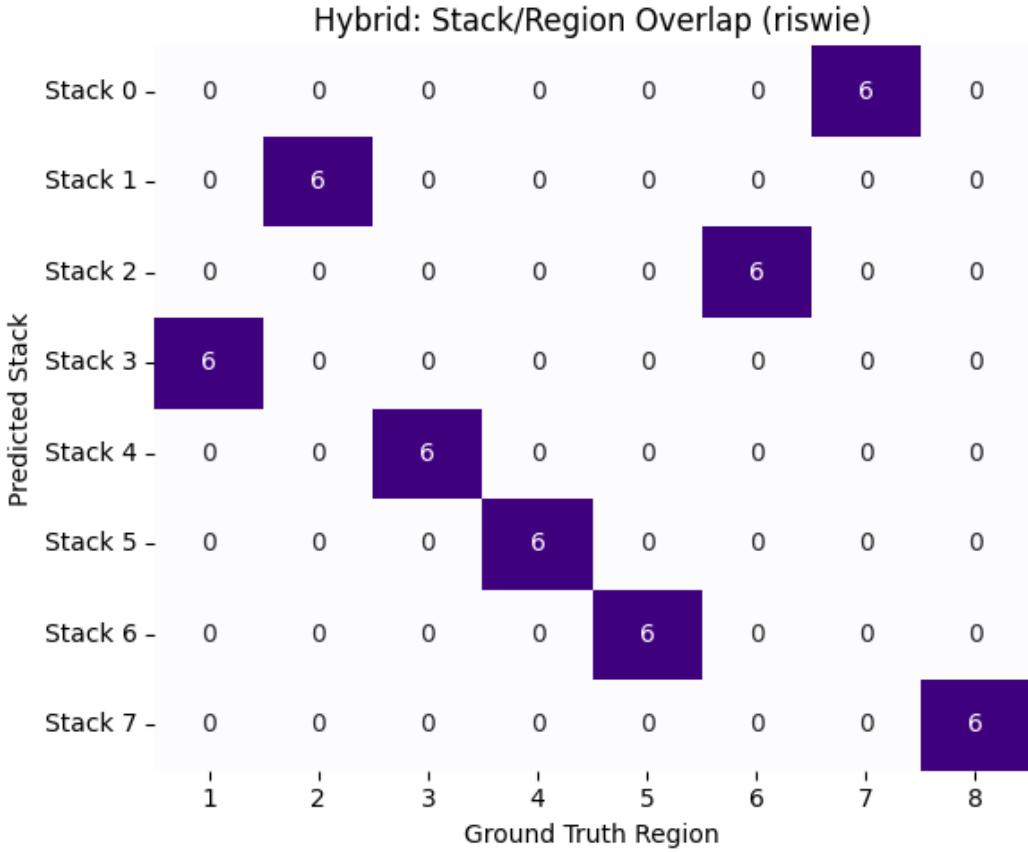


Figure 4: Hybrid Chosen Stack Assignment with RISWIE as the spatial distance and $\lambda = 0.5$

A.4.1 Hybrid Spatial–Marker Distance and Stack Assignment

To incorporate both spatial structure and marker expression in our region-level comparisons, and taking inspiration from Vayer et al. [2019], we define a hybrid distance matrix that interpolates between them.

For each pair of regions, we compute two quantities.

- A spatial distance using a selected geometric distance function (e.g., RISWIE, etc), applied to the cell coordinates within each region.
- A marker distance computed as the 2-Wasserstein distance between high-dimensional cell marker embeddings sampled from each region.

Let D_{ij}^{spatial} and D_{ij}^{marker} denote these pairwise dissimilarities, both scaled to $[0, 1]$ via min-max normalization.

We then define

$$D_{ij}^{\text{hybrid}} = \lambda \cdot D_{ij}^{\text{spatial}} + (1 - \lambda) \cdot D_{ij}^{\text{marker}},$$

where $\lambda \in [0, 1]$ is tunable.

We then use this hybrid distance matrix to perform stack assignment as before. Interestingly, $\lambda = 0.5$ is able to recover perfect stack accuracy using RISWIE as the spatial distance, while $\lambda = 1.0$ and $\lambda = 0.0$ were unable to.

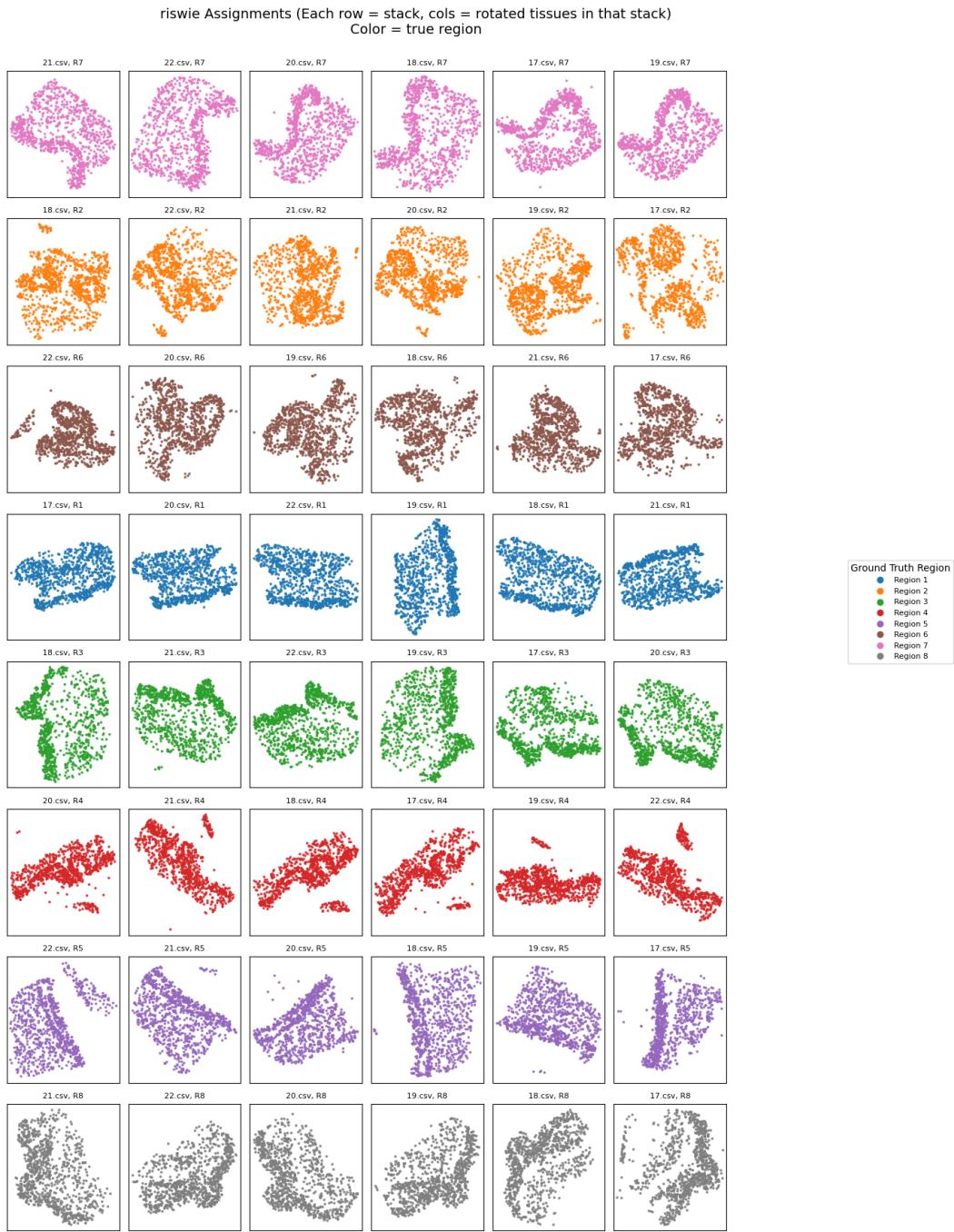


Figure 5: Unaligned Chosen Stack Assignment with RISWIE as the spatial distance and $\lambda = 0.5$

A.5 Ordering Agreement Between RISWIE and Gromov–Wasserstein

We also investigate how often the ordering induced by Gromov–Wasserstein aligns with that induced by RISWIE. Specifically, for the cell dataset, we compute the proportion of consistent orderings:

$$\frac{\sum \mathbb{I}[\text{sign}(\text{GW}(a, b) - \text{GW}(c, d)) = \text{sign}(D(a, b) - D(c, d))]}{\sum 1}$$

where the sum ranges over all unique pairs of upper-triangular (off-diagonal) entries in the pairwise distance matrix.

Gromov–Wasserstein and RISWIE agreed on the ordering of 87.4% of all 635,628 region pair comparisons. The mean (median) absolute percentile difference between the two metrics was 0.091 (0.064).

When restricting to region pairs separated by at least one Gromov–Wasserstein standard deviation, the ordering agreement increased to 99.4% (302,853 out of 304,720 pairs).

Note that we approximate Gromov–Wasserstein using the solver provided in the POT library [Flamary et al., 2021, 2024]. This does not guarantee exact agreement with the theoretical (NP-hard) Gromov–Wasserstein value.

A.6 Main Theorems

Throughout the appendix, we will denote the RISWIE distance by D unless stated otherwise (such as for the Gaussian closed form, denoted D_G).

Theorem 1 (Rigid-Invariance). *Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, and $T(x) = Rx + t$ an affine transformation for $R \in O(d)$, $t \in \mathbb{R}^d$. Suppose either:*

- (i) (PCA) *All nonzero eigenvalues of the centered covariance of μ are unique (so μ has finite second moments); or*
- (ii) (Diffusion map) *The embedding returns the same set of eigenvectors (up to sign) for a given matrix (i.e., deterministic eigensolver for fixed input).*

Then

$$D(\mu, \nu) = D(T_\# \mu, \nu).$$

In particular, $D(\mu, T_\# \mu) = 0$.

Theorem 2 (Pseudometric). *For any $X, Y, Z \in \mathcal{P}_2(\mathbb{R}^d)$ and for any embedding procedure, the RISWIE distance is a pseudometric.*

Theorem 3 (RISWIE Distance for Gaussians under PCA Embeddings). *Let $A \sim \mathcal{N}(\omega_A, \Sigma_A)$ and $B \sim \mathcal{N}(\omega_B, \Sigma_B)$ be Gaussian probability measures on \mathbb{R}^d with finite second moments so that they admit eigendecompositions $\Sigma_A = U_A \Lambda_A U_A^\top$ and $\Sigma_B = U_B \Lambda_B U_B^\top$, where $\Lambda_A = \text{diag}(\lambda_1^A, \dots, \lambda_d^A)$ and $\Lambda_B = \text{diag}(\lambda_1^B, \dots, \lambda_d^B)$ with $\lambda_1^A > \dots > \lambda_d^A \geq 0$ and $\lambda_1^B > \dots > \lambda_d^B \geq 0$. Denote*

$$\mathbf{a} := (\sqrt{\lambda_1^A}, \dots, \sqrt{\lambda_d^A}), \quad \mathbf{b} := (\sqrt{\lambda_1^B}, \dots, \sqrt{\lambda_d^B}).$$

Then, the RISWIE distance (using all d PCA axes) admits the closed-form:

$$D^2(A, B) = \frac{1}{d} \|\mathbf{a} - \mathbf{b}\|_2^2.$$

Theorem 4 (RISWIE–GW Comparison for Gaussians). *Let A and B satisfy the same assumptions as in Theorem 3 and additionally be full rank. Define $\alpha := \min_i(a_i + b_i)$. Then the RISWIE distance under PCA embeddings satisfies:*

(i)

$$D^2(A, B) \leq \frac{\text{GW}_2^2(A, B)}{8d \alpha^2} + \frac{\|\Sigma_A\|_F \|\Sigma_B\|_F}{d \alpha^2} \left(1 - \frac{1}{\sqrt{d}}\right)$$

(ii)

$$\begin{aligned} D^2(A, B) &\leq \frac{1}{2\sqrt{d}} \sqrt{GW_2^2(\mu, \nu) - 4(\text{tr}(\Lambda_0) - \text{tr}(\Lambda_1))^2 - 4(\|\Lambda_0\|_F - \|\Lambda_1\|_F)^2} \\ &\leq \frac{GW_2(A, B)}{2\sqrt{d}} \end{aligned}$$

A.7 Additional Theorems and Proofs

Proof of Theorem 1. RISWIE is defined on centered embeddings (the means are subtracted), so translation t has no effect on the pushforwards; we may assume $t = 0$ w.l.o.g.

PCA: Let $\Sigma_\mu = U\Lambda U^\top$ be the eigendecomposition of the covariance where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$ and the eigenvalues are ordered $\lambda_1 > \dots > \lambda_r > 0 = \lambda_{r+1} = \dots = \lambda_d$

Applying $T(x) = Rx + t$, the covariance of $T_\# \mu$ is

$$\Sigma_{T_\# \mu} = R\Sigma_\mu R^\top = (RU)\Lambda(RU)^\top$$

Seen on an individual eigenvector level,

$$\Sigma_\mu u = \lambda u \implies \Sigma_{T_\# \mu}(Ru) = R\Sigma_\mu R^\top(Ru) = R(\Sigma_\mu u) = \lambda(Ru),$$

Thus, the eigenvalues of $\Sigma_{T_\# \mu}$ are equal to those of Σ_μ and its eigenvectors are interpreted as orthogonally transformed versions of those of μ . For the eigenvectors corresponding to the non-zero eigenvalues, the transformation is unique up to sign. The two covariance matrices have the same distribution of eigenvalues (unique non-zero eigenvalues, some number of zero eigenvalues), so the only ambiguity in finding a non-zero eigenvalue eigenvector is the sign. For the zero-eigenvalue eigenvectors, which may have multiplicity, there is more to say.

For the zero-eigenvalue eigenspace, any orthonormal basis spans the kernel. Projections of μ onto any direction in this subspace yield Dirac masses at zero. Although there is some ambiguity in choosing them, we only use these eigenvectors to induce distributions on the real line, so the end effect is the same. Also, the sign ambiguity doesn't matter either (reflection of a Dirac mass at zero is still a Dirac mass at 0).

For the non-zero eigenvalue eigenvectors, the projection of rotated data onto rotated eigenvectors induces the same distribution. That is,

$$\text{for all } x \in \mathbb{R}^d : \quad \langle Rx, Ru \rangle = \langle x, u \rangle, \quad \text{so for any sample } \{x_i\}, \quad \{\langle Rx_i, Ru \rangle\}_i = \{\langle x_i, u \rangle\}_i$$

This assumes that we chose the optimal relative sign difference, because otherwise one of these multisets is reflected across 0. The element in the cost matrix for this pairing removes the ambiguity regarding the sign and recovers the correct relative sign between them. That is, for projections onto non-zero eigenvalue eigenvectors, we knew the induced distributions were unique up to sign, and s handles the relative difference in sign.

$$c(\pm u, \pm Ru) = \min_{s \in \{\pm 1\}} W_2^2(\{\langle x_i, u \rangle\}_{i=1}^n, \{s \langle Rx_i, Ru \rangle\}_{i=1}^n)$$

Notationally, what we are illustrating is that there is sign ambiguity in how each axis is obtained from PCA (up to sign), but regardless of that, the cost matrix entry will be the same.

W_2 is a metric, so W_2^2 is 0 if and only if the two multisets are equal. Thus, for one of these two terms in the minimization, W_2^2 will be 0. This is because Wasserstein is invariant under simultaneous reflection, so we only need to consider two cases instead of four.

As stated earlier, the zero eigenvalues all yield Dirac masses at 0, and the cost matrix entry between them will be 0.

Thus, if $\pi(i)$ is defined to pair axes with the same eigenvalue to axes of the same eigenvalue, each $c_{i,\pi(i)}$ will be 0. This is feasible because they have the same eigenvalue distribution. This can be done uniquely for the top r eigenvectors, and in any such way for the remaining indices $r+1, \dots, d$. The end result is that identical (up to sign) multisets are paired together, and scored as 0 cost, and any Diracs are paired together for 0 cost.

$$c_{i,\pi(i)} = \min_{s \in \{\pm 1\}} W_2^2 \left(\{ \langle x_j, u_i \rangle \}_j, \{ s \langle Rx_j, v_{\pi(i)} \rangle \}_j \right) = 0,$$

Thus, $D^2(\mu, T_{\#}\mu) = 0 \implies D(\mu, T_{\#}\mu) = 0$ as

$$D^2 \leq \frac{1}{k} \sum_{j=1}^k c(u_j, v_{\pi(j)}) = 0$$

as we constructed one such signed permutation that is minimized over and RISWIE is non-negative.

Note that we can take only the top k eigenvectors (truncated SVD) and still obtain rigid-invariance by defining the same bijection π but truncating the two sets of eigenvectors, keeping only the top k by eigenvalue in each. This will also result in a RISWIE distance of 0.

We have directly shown the special case that when two distributions differ by a rigid transformation that their distance is 0. It is a simple generalization to show that arbitrary rigid transformations applied to one of two different distributions do not change the RISWIE distance.

That is, for two measures μ, ν (still making simple non-zero covariance eigenvalue assumptions), any for any rigid maps $T(x) = Rx$, $S(y) = Qy$,

$$D(\mu, \nu) = D(T_{\#}\mu, \nu) = D(\mu, S_{\#}\nu) = D(T_{\#}\mu, S_{\#}\nu)$$

This is because the RISWIE distance is just a function of the 1D marginals. The 1D marginals are actually the same up to sign for the same distribution before and after a rigid transformation. Thus, when we do axis-pairing, it doesn't matter whether a distribution was rigidly transformed or not. RISWIE will optimize over signs and remove that ambiguity.

Diffusion Maps: Define the kernel

$$K_{ij} = k \left(\frac{\|x_i - x_j\|^2}{\varepsilon} \right) \quad (\text{e.g. } k(s) = e^{-s})$$

Rigid transformations preserve pairwise distances

$$\|T(x_i) - T(x_j)\| = \|Rx_i + t - (Rx_j + t)\| = \|R(x_i - x_j)\| = \|x_i - x_j\|$$

Consequently, the construction of the kernel matrix itself is rigid-invariant. If we called the kernel matrix K' (build from $\{T(x_i)\}$), then $K' = K$.

As such, given that the entire diffusion procedure (writing the degree matrix E , Laplacian L , EVD, etc) is entirely derived from the kernel matrix, the embedded distributions should be exactly the same.

$$E' = \text{diag}(K\mathbf{1}) = E, \quad L'_{\text{rw}} = E^{-1}K = L_{\text{rw}}, \quad L'_{\text{sym}} = I - E^{-1/2}KE^{-1/2} = L_{\text{sym}}.$$

Let $L_{\text{sym}}\Phi = \Phi\Lambda$ be an eigendecomposition.

Point i is embedded with diffusion coordinates

$$\Psi_t(i) = (\lambda_1^t \phi_1(i), \dots, \lambda_k^t \phi_k(i))^{\top}$$

for some fixed time t .

Given that the construction of L_{sym} is rigid-invariant, the eigenvectors returned by an eigensolver for L_{sym} and L'_{sym} should be the same. Whether this is true in practice depends on the implementation

of numerical eigensolvers. It would suffice to assume a simple spectrum, which would ensure that the eigenvectors are unique up to sign, but it is not necessary. As such, we only assume that the eigensolver used is deterministic.

Thus, following the same argument as for PCA, if the k 1D distributions are the same whether or not a rigid transformation is applied to the distribution, then the RISWIE distance between any two shapes does not depend on arbitrary rigid transformations applied to them. So $D(\mu, \nu) = D(T_\# \mu, S_\# \nu)$ where diffusion map embeddings in D are implicitly used as well.

□

Proof of Theorem 2. Let \mathcal{E} be any deterministic k -dimensional embedding procedure. Then for any $X, Y, Z \in \mathcal{P}_2(\mathbb{R}^d)$, the RISWIE distance satisfies:

- (i) Non-negativity: $D(X, Y) \geq 0$,
- (ii) Symmetry: $D(X, Y) = D(Y, X)$,
- (iii) Triangle inequality: $D(X, Z) \leq D(X, Y) + D(Y, Z)$,

The square root of the average of W_2^2 distances is non-negative and symmetric.

$$\text{Let } R_{XY} = \operatorname{argmin}_{R \in \mathcal{O}_k^\pm} \frac{1}{k} \sum_{j=1}^k W_2^2(\alpha_j, \beta_{Rj}), \quad R_{YZ} = \operatorname{argmin}_{R \in \mathcal{O}_k^\pm} \frac{1}{k} \sum_{j=1}^k W_2^2(\beta_j, \gamma_{Rj}).$$

Define the composite signed permutation $R_{XZ} = R_{YZ} R_{XY} \in \mathcal{O}_k^\pm$. For each j , let

$$u_j = W_2(\alpha_j, \beta_{R_{XY}j}), \quad v_j = W_2(\beta_{R_{XY}j}, \gamma_{R_{XZ}j}), \quad w_j = W_2(\alpha_j, \gamma_{R_{XZ}j}).$$

By the one-dimensional triangle inequality,

$$w_j = W_2(\alpha_j, \gamma_{R_{XZ}j}) \leq W_2(\alpha_j, \beta_{R_{XY}j}) + W_2(\beta_{R_{XY}j}, \gamma_{R_{XZ}j}) = u_j + v_j.$$

Hence componentwise $w \leq u + v$, so

$$\|w\|_2 \leq \|u + v\|_2 \leq \|u\|_2 + \|v\|_2,$$

and dividing by \sqrt{k} gives

$$\sqrt{\frac{1}{k} \sum_{j=1}^k w_j^2} \leq \sqrt{\frac{1}{k} \sum_{j=1}^k u_j^2} + \sqrt{\frac{1}{k} \sum_{j=1}^k v_j^2}.$$

Since R_{XZ} is only a candidate for the minimization defining $D(X, Z)$,

$$D(X, Z) = \min_{R \in \mathcal{O}_k^\pm} \sqrt{\frac{1}{k} \sum_{j=1}^k W_2^2(\alpha_j, \gamma_{Rj})} \leq \sqrt{\frac{1}{k} \sum_{j=1}^k w_j^2} \leq D(X, Y) + D(Y, Z).$$

□

Remark 1. While RISWIE is designed to be invariant to rigid transformations, a RISWIE distance of zero does not necessarily imply that two point clouds are related by a rigid transformation. Heuristically, this is essentially always the case with data-dependent embeddings, but it is a theoretical limitation. We show a counterexample to this property for RISWIE using a poor choice of embeddings (coordinate extraction, i.e., projecting onto e_1 and e_2). Thus, it remains true that an embedding must be appropriately and reasonably chosen to yield meaningful RISWIE distances.

Proof of Theorem 3. Without loss of generality, consider the centered versions $A \sim \mathcal{N}(0, \Sigma_A)$ and $B \sim \mathcal{N}(0, \Sigma_B)$, as RISWIE is translation-invariant.

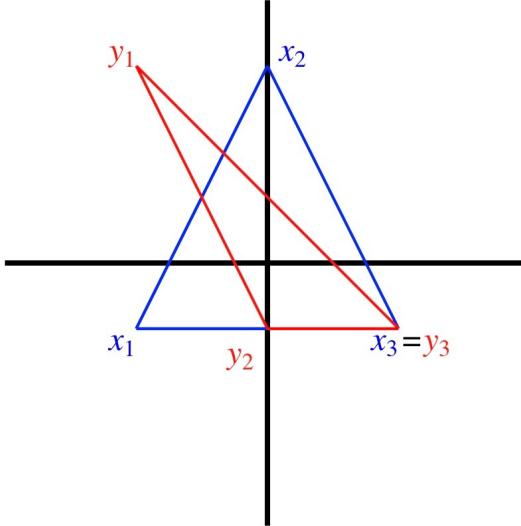


Figure 6: Using embeddings defined as the projection onto the standard basis vectors, these two point clouds of three points have RISWIE distance 0.

Projecting $A \sim \mathcal{N}(0, \Sigma_A)$ onto its i th PCA axis u_i yields a one-dimensional Gaussian, since $u_i^\top x \sim \mathcal{N}(0, \lambda_i^A)$. Similarly, projecting $B \sim \mathcal{N}(0, \Sigma_B)$ onto its j th PCA axis v_j yields, with $v_j^\top y \sim \mathcal{N}(0, \lambda_j^B)$. Take

$$a_i := \sqrt{\lambda_i^A}$$

and $b_j := \sqrt{\lambda_j^B}$. It is known that the squared Wasserstein-2 distance between $\mathcal{N}(0, \lambda_i^A)$ and $\mathcal{N}(0, \lambda_j^B)$ is $(a_i - b_j)^2$.

Thus, the RISWIE cost for a permutation $\pi \in S_d$ is

$$C(\pi) := \frac{1}{d} \sum_{i=1}^d (a_i - b_{\pi(i)})^2.$$

We claim this is minimized when both vectors are sorted in increasing order (i.e., $\pi^* = \text{id}$). Note that $a_1 \leq \dots \leq a_d$ (the a_i are sorted).

Indeed, consider swapping two positions, say $i < j$, and compare the change in costs between the two permutations:

$$\begin{aligned} \Delta &:= \left[(a_i - b_j)^2 + (a_j - b_i)^2 \right] - \left[(a_i - b_i)^2 + (a_j - b_j)^2 \right] \\ &= [a_i^2 - 2a_i b_j + b_j^2 + a_j^2 - 2a_j b_i + b_i^2] - [a_i^2 - 2a_i b_i + b_i^2 + a_j^2 - 2a_j b_j + b_j^2] \\ &= [-2a_i b_j + b_j^2 - 2a_j b_i + b_i^2] - [-2a_i b_i + b_i^2 - 2a_j b_j + b_j^2] \\ &= -2a_i b_j + b_j^2 - 2a_j b_i + b_i^2 + 2a_i b_i - b_i^2 + 2a_j b_j - b_j^2 \\ &= 2a_i(b_i - b_j) + 2a_j(b_j - b_i) \\ &= 2(a_j - a_i)(b_j - b_i). \end{aligned}$$

If $b_j < b_i$ (an inversion relative to the a -order, then $b_j - b_i < 0$ and hence $\Delta \leq 0$. So swapping b_i, b_j for the increasing sorted order does not increase the cost, and strictly decreases it unless $a_i = a_j$.

Thus, given any permutation, it can be improved by swapping inverted adjacent pairs. The only time we can't improve a solution is there are no inversions, i.e. when

$$b_{\pi(1)} \leq b_{\pi(2)} \leq \dots \leq b_{\pi(d)}$$

Since any permutation can be reduced to the identity via a sequence of such swaps, and each swap never increases the cost, the minimal cost is achieved by the identity permutation:

$$C(\text{id}) = \frac{1}{d} \sum_{i=1}^d (a_i - b_i)^2.$$

Therefore,

$$D_G^2(A, B) = \frac{1}{d} \|\mathbf{a} - \mathbf{b}\|_2^2,$$

as claimed. Here, we denote D_G to be the Gaussian closed form. \square

Proof of Theorem 4. We use the bounds from [Salmona et al., 2022]:

$$LGW_2^2(A, B) = 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 + 4(\|\Lambda_A\|_F - \|\Lambda_B\|_F)^2 + 4\|\Lambda_A - \Lambda_B\|_F^2,$$

$$GGW_2^2(A, B) = 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 + 8\|\Lambda_A - \Lambda_B\|_F^2 + 8(\|\Lambda_A\|_F^2 - \|\Lambda_A^{(n)}\|_F^2).$$

Here, LGW and GGW are lower and upper bounds for GW_2^2 . The results from Salmona et al. [2022] are general and apply to Gaussian measures defined on Euclidean spaces of differing dimensions. For clarity and interpretability, however, we focus on the case where both distributions lie in the same ambient space. As such, we have already dropped an additional term from the original formulation, which accounted for the difference in Frobenius norm between the full covariance eigenvalue matrix and its truncation to the lower-dimensional space. This term vanishes in our setting since both distributions lie in the same ambient space, and no truncation is required.

Let $a_i = \sqrt{\lambda_i^A}$, $b_i = \sqrt{\lambda_i^B}$, and $\alpha = \min_i(a_i + b_i)$. Note that $(\lambda_i^A - \lambda_i^B)^2 = (a_i + b_i)^2(a_i - b_i)^2 \geq \alpha^2(a_i - b_i)^2$ for all i .

Therefore,

$$\|\Lambda_A - \Lambda_B\|_F^2 = \sum_{i=1}^d (\lambda_i^A - \lambda_i^B)^2 \geq \alpha^2 \sum_{i=1}^d (a_i - b_i)^2 = d\alpha^2 D_G^2(A, B).$$

Since all other terms in LGW_2^2 are nonnegative,

$$LGW_2^2(A, B) \geq 4\|\Lambda_A - \Lambda_B\|_F^2 \geq 4d\alpha^2 D_G^2(A, B).$$

Similarly,

$$GGW_2^2(A, B) \geq 8\|\Lambda_A - \Lambda_B\|_F^2 \geq 8d\alpha^2 D_G^2(A, B).$$

Hence,

$$D_G^2(A, B) \leq \frac{GGW_2^2(A, B)}{8d\alpha^2}.$$

Additionally, Salmona et al. [2022] shows a bound on the difference between the upper and lower bounds:

$$GGW_2^2(A, B) - LGW_2^2(A, B) \leq 8\|\Sigma_A\|_F\|\Sigma_B\|_F \left(1 - \frac{1}{\sqrt{d}}\right).$$

Because $GW_2^2(A, B) \leq GGW_2^2(A, B)$, and $LGW_2^2(A, B) \leq GW_2^2(A, B)$, we may write

$$\begin{aligned} GGW_2^2(A, B) &= GW_2^2(A, B) + (GGW_2^2(A, B) - GW_2^2(A, B)) \\ &\leq GW_2^2(A, B) + (GGW_2^2(A, B) - LGW_2^2(A, B)). \end{aligned}$$

Plugging this into the previous bound,

$$\begin{aligned} D_G^2(A, B) &\leq \frac{GW_2^2(A, B)}{8d\alpha^2} + \frac{GGW_2^2(A, B) - LGW_2^2(A, B)}{8d\alpha^2} \\ &\leq \frac{GW_2^2(A, B)}{8d\alpha^2} + \frac{\|\Sigma_A\|_F\|\Sigma_B\|_F}{d\alpha^2} \left(1 - \frac{1}{\sqrt{d}}\right). \end{aligned}$$

For the second bound, note that for all i ,

$$(a_i - b_i)^2 = \left(\sqrt{\lambda_i^A} - \sqrt{\lambda_i^B} \right)^2 \leq |\lambda_i^A - \lambda_i^B|,$$

since by the factorization $a_i^2 - b_i^2 = (a_i - b_i)(a_i + b_i)$ and the triangle inequality,

$$|a_i - b_i| \leq |a_i + b_i| \implies (a_i - b_i)^2 \leq |a_i^2 - b_i^2| = |\lambda_i^A - \lambda_i^B|.$$

Thus,

$$D_G^2(A, B) = \frac{1}{d} \sum_{i=1}^d (a_i - b_i)^2 \leq \frac{1}{d} \sum_{i=1}^d |\lambda_i^A - \lambda_i^B|.$$

By Cauchy–Schwarz,

$$\sum_{i=1}^d |\lambda_i^A - \lambda_i^B| \leq \sqrt{d} \left(\sum_{i=1}^d (\lambda_i^A - \lambda_i^B)^2 \right)^{1/2} = \sqrt{d} \|\Lambda_A - \Lambda_B\|_F.$$

Thus,

$$D_G^2(A, B) \leq \frac{1}{\sqrt{d}} \|\Lambda_A - \Lambda_B\|_F.$$

But $GW_2^2(A, B) \geq 4\|\Lambda_A - \Lambda_B\|_F^2 + 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 + 4(\|\Lambda_A\|_F - \|\Lambda_B\|_F)^2$, so

$$\|\Lambda_A - \Lambda_B\|_F^2 \leq \frac{1}{4} (GW_2^2(A, B) - 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 - 4(\|\Lambda_A\|_F - \|\Lambda_B\|_F)^2).$$

Therefore,

$$\|\Lambda_A - \Lambda_B\|_F \leq \frac{1}{2} \sqrt{GW_2^2(A, B) - 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 - 4(\|\Lambda_A\|_F - \|\Lambda_B\|_F)^2}.$$

Putting this together,

$$D_G^2(A, B) \leq \frac{1}{2\sqrt{d}} \sqrt{GW_2^2(A, B) - 4(\text{tr}(\Lambda_A) - \text{tr}(\Lambda_B))^2 - 4(\|\Lambda_A\|_F - \|\Lambda_B\|_F)^2}.$$

□

Corollary 5 (Identity of Indiscernibles for Gaussians). *Under the same setting as above, $D_G(A, B) = 0$ if and only if there exists an orthogonal matrix R and translation t such that B is the distribution of $RX + t$ for $X \sim A$.*

Proof. $D_G(A, B) = 0$ if and only if there exists $R \in \mathcal{O}_d^\pm$ such that

$$\sqrt{\lambda_j^A} = \sqrt{\lambda_{Rj}^B}, \quad \forall j = 1, \dots, d,$$

or equivalently, $\lambda_j^A = \lambda_{Rj}^B$ for all j .

This means there exists a signed permutation R such that $\Lambda_A = R^\top \Lambda_B R$, i.e., the eigenvalues of Σ_A and Σ_B match up (possibly up to permutation and sign flip of axes). Without loss of generality, assuming A and B are centered Gaussians, it follows that their covariance matrices satisfy

$$\Sigma_B = R \Sigma_A R^\top.$$

Therefore, B is the law of RX for $X \sim A$, and more generally, the law of $TX + t$ for some orthogonal T and translation t .

Conversely, if B is the distribution of $TX + t$ for some orthogonal T and $t \in \mathbb{R}^d$, then A and B have matching covariance eigenvalues, so $D_G(A, B) = 0$.

□

Theorem 6 (Stability of RISWIE under Gaussian Covariance Perturbations). *If $\Sigma' = \Sigma_X + E$ with $E = E^\top$ and all eigenvalues of Σ_X, Σ' are $\geq \lambda_{\min} > 0$, then*

$$D_G(X, X') \leq \frac{\|E\|_2}{2\sqrt{\lambda_{\min}}}.$$

Proof. By Weyl's theorem for symmetric matrices (discussed by Shamrai [2025]), for each $i = 1, \dots, d$,

$$|\lambda_i(\Sigma') - \lambda_i(\Sigma_X)| \leq \|\Sigma' - \Sigma_X\|_2 = \|E\|_2 \leq \eta,$$

where we set $\eta := \|E\|_2$.

Consider the function $f(x) = \sqrt{x}$ for $x \geq 0$. By the mean value theorem, for each i , there exists ξ_i between $\lambda_i(\Sigma_X)$ and $\lambda_i(\Sigma')$ such that

$$\left| \sqrt{\lambda_i(\Sigma')} - \sqrt{\lambda_i(\Sigma_X)} \right| = f'(\xi_i) \cdot |\lambda_i(\Sigma') - \lambda_i(\Sigma_X)|.$$

Since $f'(x) = \frac{1}{2\sqrt{x}}$ and all eigenvalues of Σ_X and Σ' are at least λ_{\min} , we have $\xi_i \geq \lambda_{\min}$, and $f'(\xi_i)$ is decreasing, so

$$f'(\xi_i) = \frac{1}{2\sqrt{\xi_i}} \leq \frac{1}{2\sqrt{\lambda_{\min}}}.$$

Therefore,

$$\left| \sqrt{\lambda_i(\Sigma')} - \sqrt{\lambda_i(\Sigma_X)} \right| \leq \frac{1}{2\sqrt{\lambda_{\min}}} \cdot \eta.$$

Let $\sigma_i := \sqrt{\lambda_i(\Sigma_X)}$, $\sigma'_i := \sqrt{\lambda_i(\Sigma')}$, and collect them as vectors $\sigma = (\sigma_1, \dots, \sigma_d)$, $\sigma' = (\sigma'_1, \dots, \sigma'_d)$.

Then,

$$\|\sigma' - \sigma\|_2 \leq \sqrt{\sum_{i=1}^d \left(\frac{\eta}{2\sqrt{\lambda_{\min}}} \right)^2} = \frac{\eta}{2\sqrt{\lambda_{\min}}} \sqrt{d},$$

so

$$D_G(X, X') \leq \frac{1}{\sqrt{d}} \cdot \frac{\eta}{2\sqrt{\lambda_{\min}}} \sqrt{d} = \frac{\eta}{2\sqrt{\lambda_{\min}}}.$$

More generally, if the lower bound for each eigenvalue is $\min(\lambda_i(\Sigma_X), \lambda_i(\Sigma'))$, then by the same reasoning,

$$D_G(X, X') \leq \frac{\eta}{2} \sqrt{\sum_{i=1}^d \frac{1}{\min(\lambda_i(\Sigma_X), \lambda_i(\Sigma'))}}.$$

□

Theorem 7 (Consistency of empirical RISWIE). *Let $\hat{\mu}_n, \hat{\nu}_n$ denote empirical measures of size n drawn i.i.d. from $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, respectively. Then*

$$D(\hat{\mu}_n, \hat{\nu}_n) \xrightarrow{\text{a.s.}} D(\mu, \nu) \quad \text{as } n \rightarrow \infty.$$

Proof. Fix $R \in \mathcal{O}_k^\pm$. Since the projections ϕ_j and ψ_j are measurable and bounded, the pushforward measures $(\phi_j)_\# \hat{\mu}_n$ converge weakly almost surely to $(\phi_j)_\# \mu$ for each j , by the strong law of large numbers. Similarly, $(\psi_j)_\# \hat{\nu}_n$ converge weakly almost surely to $(\psi_j)_\# \nu$.

In one dimension, the Wasserstein-2 distance W_2 is continuous with respect to weak convergence plus convergence of second moments. Since the measures are supported on a bounded interval and have finite second moments by construction, we conclude that

$$W_2((\phi_j)_\# \hat{\mu}_n, (\psi_{Rj})_\# \hat{\nu}_n) \xrightarrow{\text{a.s.}} W_2((\phi_j)_\# \mu, (\psi_{Rj})_\# \nu) \quad \text{as } n \rightarrow \infty.$$

Averaging over $j = 1, \dots, k$ preserves almost sure convergence, and since the minimum of a finite collection of continuous functions is continuous, the minimum over $R \in \mathcal{O}_k^\pm$ also converges almost surely to its limit. Therefore,

$$D(\hat{\mu}_n, \hat{\nu}_n) \xrightarrow{\text{a.s.}} D(\mu, \nu) \quad \text{as } n \rightarrow \infty.$$

□

Remark 2 (Bias of the empirical RISWIE estimator). Let μ be Borel probability measure with finite second moments. Then, $D(\mu, \mu) = 0$, but

$$\mathbb{E}[D(\hat{\mu}_n, \hat{\mu}'_n)] > 0,$$

where $\hat{\mu}'_n$ is another independent sample of μ .

Proof. We have $D(\mu, \mu) = 0$, since projecting and optimally matching each direction trivially yields zero cost. However, the independent empirical marginals $\hat{\alpha}_j$ and $\hat{\alpha}'_j$ almost surely differ, and thus $W_2^2(\hat{\alpha}_j, \hat{\alpha}'_j) > 0$ almost surely for each j . Therefore, averaging and minimizing still yields strictly positive expectation:

$$\mathbb{E}[D(\hat{\mu}_n, \hat{\mu}'_n)] > 0.$$

□