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ABSTRACT

Semantic segmentation, a crucial task in computer vision,
often relies on labor-intensive and costly annotated datasets
for training. In response to this challenge, we introduce
FuseNet, a dual-stream framework for self-supervised se-
mantic segmentation that eliminates the need for manual
annotation. FuseNet leverages the shared semantic depen-
dencies between the original and augmented images to create
a clustering space, effectively assigning pixels to semanti-
cally related clusters, and ultimately generating the segmen-
tation map. Additionally, FuseNet incorporates a cross-modal
fusion technique that extends the principles of CLIP by re-
placing textual data with augmented images. This approach
enables the model to learn complex visual representations,
enhancing robustness against variations similar to CLIP’s
text invariance. To further improve edge alignment and spa-
tial consistency between neighboring pixels, we introduce an
edge refinement loss. This loss function considers edge infor-
mation to enhance spatial coherence, facilitating the grouping
of nearby pixels with similar visual features. Extensive ex-
periments on skin lesion and lung segmentation datasets
demonstrate the effectiveness of our method. Codebase.

Index Terms— Self-supervised, CLIP, Segmentation.

1. INTRODUCTION

Recently, deep learning methods have achieved cutting-edge
results in various computer vision tasks, including semantic
segmentation [1]. However, training deep learning models
typically requires large and well curated annotated datasets
due to the millions of trainable parameters involved. The col-
lection of such training data primarily relies on manual an-
notation, which is often quite costly, especially in the context
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of semantic segmentation, due to the need for pixel-level pre-
cision. Recently, self-supervised learning has emerged as a
promising alternative to traditional well-curated labeled data.
By extracting meaningful representations from the inherent
structure of unlabeled data, it eliminates the reliance on super-
vised loss functions that require manual annotations. This ap-
proach has demonstrated success in a variety of medical imag-
ing applications, including dermatological imaging [2] and
radiology scans [3], among others. It is also important to ac-
knowledge that semantic segmentation is intricately interwo-
ven with local texture and global image context dependencies.
Numerous studies have shown that simultaneous learning of
local and global representations can significantly improve the
accuracy of dense predictions [1, 2, 4]. In a related study, Ahn
et al. [5] introduced the SGSCN network, which uses mul-
tiple loss functions to group spatially connected pixels with
similar features, enabling an iterative learning of pixel fea-
tures and clustering assignments from a single image. Taher
et al. [6] developed the Context-Aware instance Discrimina-
tion (CAiD) framework to improve instance discrimination
learning in medical images. CAiD extracts detailed and dis-
criminative information from different local contexts in un-
labeled medical images. Karimi et al. [3] presented a dual-
branch transformer network that captures both global context
and local details. This network utilizes self-supervised learn-
ing by considering semantic relationships between different
scales, ensuring inter-scale consistency, and enforcing spatial
stability within each scale for self-supervised content cluster-
ing. Another approach [2] aimed to address the lack of local
and boundary representations by combining the CNN and vi-
sion transformer features. He et al. [7] introduced Geometric
Visual Similarity Learning, a method that incorporates topo-
logical invariance to measure inter-image similarity and cre-
ate consistent representations of semantic regions.

Motivated by the existing research in this field, we aim
to address the following question: How can we leverage
self-supervised techniques to model local and global con-
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https://github.com/xmindflow/FuseNet
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Fig. 1: A general overview of the proposed FuseNet (left) and the cross-attention module (right).

sistency and enhance semantic segmentation? To address
this challenge, we introduce FuseNet, a novel self-supervised
approach to semantic segmentation that aims to achieve a bal-
ance between local texture details and global context depen-
dencies. Our contributions include: ➊ A self-supervised
approach for semantic segmentation that minimizes the re-
liance on expensive manual annotations. ➋ Integration of
self-supervised learning to simultaneously capture local and
global image characteristics. ➌ Introduction of cross-modal
fusion, which enhances the model’s ability to handle complex
scenarios. ➍ Improved edge alignment and spatial consis-
tency between adjacent pixels.

2. PROPOSED METHOD
We present FuseNet (see Figure 1), a dual-stream, self-
supervised approach for image segmentation, which obvi-
ates the need for manual annotations. In FuseNet, while
one stream processes the original image, the other handles
its augmented counterpart, fostering data diversity, and en-
hancing robustness, invariance, and segmentation quality for
real-world scenarios. Crucially, our framework facilitates the
exchange of information between these two pathways before
finally fusing their insights, which contributes to the model’s
enhanced performance. Our approach also incorporates data-
driven loss functions, facilitating effective content clustering.

2.1. Network Architecture
Dual-path architectures have proven their effectiveness in
self-supervised learning by leveraging the benefits of dual
data views, leading to reduced overfitting and enhanced gen-
eralization [3]. They employ both the original and trans-
formed data to enrich feature representations, fostering ro-
bustness. Inspired by this architecture, we have developed
a dual-stream framework that simultaneously processes the
original and augmented data, thereby enhancing adaptabil-
ity and resilience across diverse scenarios. First, we apply
data augmentation to the image (∈ RH×W×C), utilizing
techniques such as ColorJitter and GaussianBlur, to create
an augmented version of the image. This process is effec-
tive because it introduces controlled variations, i.e. color
changes and blurring, which help the model learn to be

invariant to different transformations while preserving the
overall structural and semantic information. Notably, we
refrain from employing transformation augmentation tech-
niques that could potentially compromise the quality of the
outcomes. Subsequently, both the original and augmented
images are then simultaneously fed into a shared weight en-
coder, which consists of a 3× 3 convolutional layer followed
by batch normalization (BN), a 1 × 1 depth-wise convolu-
tion, and another BN layer. This straightforward architecture
is designed to facilitate the embedding of the input images
into a high-dimensional feature space, enabling the model to
capture intricate and localized patterns within the data. The
subsequent projection block plays a crucial role in disentan-
gling and refining meaningful, invariant features within the
input data. Post-projection batch normalization is employed
to standardize feature distributions, effectively alleviating in-
ternal covariate shifts and enhancing network generalization
and training stability. The projection block is as follows:

Projection = LN(Linear2(GELU(Linear1(x)) + x), (1)

where LN denotes LayerNorm layer. Next, the PatchEm-
bed and NormLayer are utilized to segment the input fea-
tures into smaller patches and normalize these patches, re-
spectively. The normalization is achieved by dividing the
patch features by their L2 norms. This process yields two to-
kenized sequences, denoted as I ∈ R(H

p
W
p )×p2C and A ∈

R(H
p

W
p )×p2C , where p represents the patch size set as H

8 .
These feature maps are then used for cross-modal fusion.

To facilitate effective information exchange between the
image features and the augmented image features derived
from the projection heads, we employ the cross-attention
module as illustrated in Figure 1. This enhancement strength-
ens the model’s ability to grasp and utilize the shared at-
tributes and dissimilarities between the original and aug-
mented views of the data, fostering a more comprehensive
understanding of the data’s distribution, cross-modal rela-
tionships, and local dependencies. To give greater emphasis
to the input image features, we apply a coefficient weight α to
scale these features. The cross-attention weight is also shared
between the two streams. In the image stream, x1 represents



to the original image features and x2 represents the aug-
mented image features. In the augmented image stream, the
roles of x1 and x2 are reversed. The detailed implementation
of the cross-attention block is depicted in Equation 2:

Q,K = Proj(LN(x1)),V = Proj(LN(x2)),

X = [LN(x1)||LN(x2)],

E = ρq(Q)(ρk(K)T V),

T = X + LN(Conv1× 1(E)),
Output = T + MixFFN(LN(T)), (2)

where proj refers to a linear projection layer, ρk and ρk are
SoftMax normalization functions, and MixFFN is a feed-
forward network adopted from [8].

Finally, the outputs from both streams are combined
by summation, resulting in a soft prediction map P ∈
RH×W×K , where K represents the number of clusters. To
obtain the final semantic segmentation map Y of the same
dimensions, we apply he ArgMax function to determine the
cluster index for each spatial location. During training, our
network iteratively minimizes the cross-entropy loss, which
quantifies the discrepancy between the soft prediction map
and the segmentation map. Equation 3 shows the cross-
entropy loss in our framework:

Lce (P,Y) = − 1

H ×W

H×W∑
i=1

K∑
j=1

Yi,j log (Pi,j) . (3)

Our approach leverages cross-entropy loss to learn cluster
distribution by bolstering the network’s confidence in group-
ing similar pixels. However, it faces challenges in modeling
local spatial relationships, which can impact performance in
merging adjacent clusters. To address this limitation, we in-
troduce two additional regularization terms: the cross-modal
fusion loss and the edge refinement loss.

2.2. Cross-Modal Fusion
In addition to cross-entropy loss, we introduce a cross-modal
fusion approach that enhances the integration of information
from both original and augmented image data. This approach
encourages the model to develop a unified understanding of
both augmented images and their corresponding originals,
fostering robust learning. Our approach extends the princi-
ples of CLIP [9] by substituting textual data with augmented
images, introducing novel advantages specific to our model.
This adaptation enables our model to acquire intricate visual
representations, effectively aligning with the complexity of
the data at hand. The controlled variations introduced by aug-
mentations promote robustness, similar to CLIP’s invariance
to textual variations, which is critical for real-world data with
unpredictable transformations. The CLIP loss is as follows:
Logit = (I ·AT )/T,

Target = SoftMax((I · IT +A ·AT )/2T ),

LCLIP =
(
Lce(Logit,Target) + Lce(LogitT ,TargetT )

)
/2,
(4)

where T is a temperature parameter. The CLIP loss in
our framework aims to align the feature representations of
the original image with its augmented counterpart. This
alignment strengthens the model’s ability to comprehend the
shared features and differences between these two perspec-
tives of the same data.

2.3. Edge Refinement
To improve edge alignment and promote spatial consistency
among adjacent pixels, we introduce the edge refinement loss.
This loss function aims to minimize the discrepancy between
the segmentation map and its downsampled and subsequently
upsampled counterpart, which generates an edge map. By
minimizing this loss, our edge refinement technique enhances
spatial coherence, encouraging the grouping of neighboring
pixels with similar visual features. This approach involves
downsampling an image by a factor of β and then upsam-
pling it. This allows us to prioritize key objects within the
image and then accurately delineate object boundaries by sub-
tracting the upsampled image from the original segmentation
map. As a result, this method leads to improved consistency
in spatial relationships and more precise object boundary de-
lineation. The edge refinement loss is defined as follows:

LBoundary =
∑
i,j

(|(Down-Up-Y)i,j − Yi,j | , (5)

where (Down-Up-Y)i,j and Yi,j , and shows the Downsampled-
Upsampled-segmentation map and segmentation map at pixel
location (i, j), respectively.

2.4. Joint Objective
The final loss function used in our training process is a com-
bination of three distinct loss terms, as outlined below:

Ljoint = λ1Lce + λ2LCLIP + λ3LBoundary, (6)

where in order to control the relative importance of each loss
term, we introduce weighting factors λ1, λ2, and λ3.

3. EXPERIMENTS
3.1. Experimental Setup
Dataset: First, we followed the same strategy outlined in [5]
and utilized the PH2 dataset, introduced by Mendonça et
al. [10], which comprises 200 RGB images of melanocytic le-
sions. This dataset encompasses a wide range of lesion types,
presenting a challenging real-world problem. We used all
200 samples in our evaluation. Second, we segmented lungs
within CT images using the publicly available lung analysis
dataset from Kaggle, described in [11], which includes 2D
and 3D CT images. We followed the dataset preparation and
evaluation approach outlined in [3].
Evaluation Methodology: To assess our approach, we
use a set of evaluation metrics, including the Dice (DSC)
score, XOR metric, and Hammoud distance (HM). These
metrics allow us to comprehensively compare our method
to two benchmark techniques: the unsupervised k-means
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Fig. 2: Visual comparison of different methods on the PH2 skin lesion segmentation and Lung datasets (left) and the impact of
individual loss functions (right).
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Fig. 3: Illustrating Edge Refinement Loss Impact: Visualiza-
tions show how this module enhances boundary information,
aiding effective object separation during training.

clustering method and recent self-supervised strategies,
specifically DeepCluster [12], IIC [13], spatial guided self-
supervised strategy (SGSCN) [5], and MS-Former [3]. Fol-
lowing [5, 3, 2], we only consider the cluster with the highest
overlap with the ground truth map as the target class predic-
tion when evaluating our method. In addition, we optimize
the weighting factors λ1, λ2, and λ3 using [14] and set them
to 2.5, 0.5, and 0.5, respectively for both datasets. We set α
to 3 and the downsampling factor β to 16.

3.2. Results

Table 1: The performance of the proposed method is com-
pared to the SOTA approaches on the PH2 and Lung datasets.

Methods PH2 Lung Segmentation
DSC ↑ HM ↓ XOR ↓ DSC ↑ HM ↓ XOR ↓

k-means 71.3 130.8 41.3 92.7 10.6 12.6
DeepCluster [12] 79.6 35.8 31.3 87.5 16.1 18.8

IIC [13] 81.2 35.3 29.8 - - -
SGSCN[5] 83.4 32.3 28.2 89.1 16.1 34.3

MS-Former [3] 86.0 23.1 25.9 94.6 8.1 14.8
Lce 86.7 22.1 24.7 93.2 9.4 5.7

Lce + LB 87.8 20.3 21.5 93.6 9.0 5.4
Lce + LCLIP 87.9 20.2 21.6 93.7 9.1 5.6
Our Method 88.7 19.3 20.1 95.3 7.2 4.7

In Table Table 1, we present the segmentation results for
both the PH2 and Lung organ segmentation datasets. Our
method, FuseNet, achieves superior performance on both
skin lesion and lung segmentation tasks, as evidenced by the
higher DSC scores and lower HM and XOR values. Notably,
FuseNet outperforms SGSCN and MS-Former by leveraging
several key components. First, we use the CLIP method to

model the consistency between two views of the image, har-
nessing contextual information. Additionally, we introduce
an edge refinement loss function that minimizes the disparity
between the segmentation map and its downsampled and then
upsampled counterpart. This process generates an edge map,
which is crucial for separating overlapped boundaries, espe-
cially in the case of skin lesions with deformable shapes. Our
dual-stream method, guided by CLIP, is adept at modeling
local texture details and global context dependencies among
image views. This improves clustering, as shown in Table 1.
Going beyond quantitative metrics, we also present qualita-
tive results. Figure 2 illustrates the visual segmentation of
both datasets, highlighting the effectiveness of our model in
improving segmentation by increasing the number of true
positives and reducing the number of false positives.

4. ABLATION STUDY
To assess the individual impact of the CLIP module and the
spatial loss function within our architecture, we conducted a
systematic experimental analysis by selectively deactivating
these components (see Table 1). Our results show that a mod-
est 0.9% reduction in the DSC score was observed in the PH2

dataset when the CLIP module was excluded, underscoring
its significant contribution to segmentation accuracy. Simi-
larly, removing the edge refinement loss function resulted in
a 0.8% decline in DSC performance, emphasizing its crucial
role in maintaining spatial coherence. These findings are vi-
sually presented in Figure 2, illustrating the consequences of
excluding these modules on segmentation results. To further
elucidate the influence of our edge refinement loss, we pro-
vide visualizations of edge information throughout the train-
ing process, demonstrating how this module enhances bound-
ary information, ultimately facilitating effective object sepa-
ration (see Figure 3).

5. CONCLUSION
FuseNet excels in challenging medical image segmentation
scenarios, substantially improving segmentation quality. It
outperforms SOTA methods based on DSC score, HM, and
XOR metrics. Visual results highlight FuseNet’s ability to
increase true positives and reduce false positives, advancing
self-supervised medical image analysis and reducing the need
for expensive manual annotations.
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