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ABSTRACT

Tech companies (e.g., Google or Facebook) often use randomized online experi-
ments and/or A/B testing primarily based on the average treatment effects to com-
pare their new product with an old one. However, it is also critically important
to detect qualitative treatment effects such that the new one may significantly out-
perform the existing one only under some specific circumstances. The aim of this
paper is to develop a powerful testing procedure to efficiently detect such qualita-
tive treatment effects. We propose a scalable online updating algorithm to imple-
ment our test procedure. It has three novelties including adaptive randomization,
sequential monitoring, and online updating with guaranteed type-I error control.
We also thoroughly examine the theoretical properties of our testing procedure
including the limiting distribution of test statistics and the justification of an effi-
cient bootstrap method. Extensive empirical studies are conducted to examine the
finite sample performance of our test procedure.

1 INTRODUCTION

Tech companies use randomized online experiments, or A/B testing to compare their new product
with a well-established one. Most works in the literature focus on the average treatment effects
(ATE) between the new and existing products (see Kharitonov et al., 2015; Johari et al., 2015; 2017;
Yang et al., 2017; Ju et al., 2019, and the references therein). In addition to ATE, sometimes we
are interested in locating the subgroup (if exists) that the new product performs significantly better
than the existing one, as early as possible. Consider a ride-hailing company (e.g., Uber). Suppose
some passengers are in the recession state (at a high risk of stopping using the companys app) and
the company comes up with certain strategy to intervene the recession process. We would like to if
there are some subgroups that are sensitive to the strategy and pin-point these subgroups if exists. It
motivates us to consider the null hypothesis that the treatment effect is nonpositive for all passenger.

Such a null hypothesis is closely related to the notion of qualitative treatment effects in medical
studies (QTE, Gail & Simon, 1985; Roth & Simon, 2018; Shi et al., 2020a), and conditional moment
inequalities in economics (see for example, Andrews & Shi, 2013; 2014; Chernozhukov et al., 2013;
Armstrong & Chan, 2016; Chang et al., 2015; Hsu, 2017). However, these tests are computed offline
and might not be suitable to implement in online settings. Moreover, it is assumed in those papers
that observations are independent. In online experiment, one may wish to adaptively allocate the
treatment based on the observed data stream in order to maximize the cumulative reward or to detect
the alternative more efficiently. The independence assumption is thus violated. In addition, an
online experiment is desired to be terminated as early as possible in order to save time and budget.
Sequential testing for qualitative treatment effects has been less explored.

In the literature, there is a line of research on estimation and inference of the heterogeneous treatment
effects (HTE) (Athey & Imbens, 2016; Taddy et al., 2016; Wager & Athey, 2018; Yu et al., 2020).
In particular, Yu et al. (2020) proposed an online test for HTE. We remark that HTE and QTE are
related yet fundamentally different hypotheses. There are cases where HTE exists whereas QTE
does not. See Figure 1 for an illustration. Consequently, applying their test will fail in our setting.

The contributions of this paper are summarized as follows. First, we propose a new testing procedure
for treatment comparison based on the notion of QTE. When the null hypothesis is not rejected,
the new product is no better than the control for any realization of covariates, and thus it is not
useful at all. Otherwise, the company could implement different products according to the auxiliary
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Figure 1: Plots demonstrating QTE. X denotes the observed covariates, A denotes the received treatment and
Y denotes the associated reward. In the ride-hailing example,X is a feature vector describing the characteristics
of a passenger, A is a binary strategy indicator and Y is the passenger’s number of rides in the following two
weeks. In the left panel, the treatment effect does not depend on X . Neither HTE nor QTE exists in this case.
In the middle panel, HTE exists. However, the treatment effect is always negative. As such, QTE does not
exist. In the right penal, both QTE and HTE exist.

covariates observed, to maximize the average reward obtained. We remark that there are plenty cases
where the treatment effects are always nonpositive (see Section 5 of Chang et al., 2015; Shi et al.,
2020a). A by-product of our test is that it yields a decision rule to implement personalization when
the null is rejected (see Section 3.1 for details). Although we primarily focus on QTE in this paper,
our procedure can be easily extended to testing ATE as well (see Appendix D for details).

Second, we propose a scalable online updating algorithm to implement our test. To allow for se-
quential monitoring, our procedure leverages idea from the α spending function approach (Lan &
DeMets, 1983) originally designed for sequential analysis in a clinical trial (see Jennison & Turnbull,
1999, for an overview). Classical sequential tests focus on ATE. The test statistic at each interim
stage is asymptotically normal and the stopping boundary can be recursively updated via numerical
integration. However, the limiting distribution of the proposed test statistic does not have a tractable
analytical form, making the numerical integration method difficult to apply. To resolve this issue,
we propose a scalable bootstrap-assisted procedure to determine the stopping boundary.

Third, we adopt a theoretical framework that allows the maximum number of interim analyses K
to diverge as the number of observations increases, since tech companies might analyze the results
every few minutes (or hours) to determine whether to stop the experiment or continue collecting
more data. It is ultimately different from classical sequential analysis where K is fixed. Moreover,
the derivation of the asymptotic property of the proposed test is further complicated due to the
adaptive randomization procedure, which makes observations dependent of each other. Despite
these technical challenges, we establish a nonasymptotic upper bound on the type-I error rate by
explicitly characterizing the conditions needed on randomization procedure, K and the number of
samples observed at the initial decision point to ensure the validity of our test.

2 BACKGROUND AND PROBLEM FORMULATION

We propose a potential outcome framework (Rubin, 2005) to formulate our problem. Suppose that
we have two products including the control and the treatment. The observed data at time point
t consists of a sequence of triples {(Xi, Ai, Yi)}N(t)

i=1 , where N(·) is a counting process that is
independent of the data stream {(Xi, Ai, Yi)}+∞i=1 , Ai is a binary random variable indicating the
product executed for the i-th experiment, Xi ∈ Rp denotes the associated covariates, and Yi stands
for the associated reward (the larger the better by convention). We allowAi to depend onXi and past
observations {(Xj , Aj , Yj)}j<i so that the randomization procedure can be adaptively changed. In
addition, define Y ∗i (0) and Y ∗i (1) to be the potential outcome that would have been observed if the
corresponding product is executed for the i-th experiment. Suppose that {(Xi, Y

∗
i (0), Y ∗i (1))}+∞i=1

are independently and identically distributed copies of (X,Y ∗(0), Y ∗(1)). Let X be the support of
X and Q0(x, a) = E{Y ∗(a)|X = x} for a = 0, 1, we focus on testing the following hypotheses:

H0 : Q0(x, 1) ≤ Q0(x, 0),∀x ∈ X versus H1 : Q0(x, 1) > Q0(x, 0),∃x ∈ X.
Notice that when there are no covariates, i.e., X = ∅, the hypotheses are reduced to H0 : τ0 ≤ 0
versus H1 : τ0 > 0, where τ0 corresponds to ATE, i.e, τ0 = E{Y ∗(1) − Y ∗(0)}. In general, we
require X to be a compact set. We consider a large linear approximation spaceQ for the conditional
mean function Q0. Specifically, let Q = {Q(x, a;β0, β1) = ϕ>(x)βa : β0, β1 ∈ Rq} be the
approximation space, where ϕ(x) is a q-dimensional vector composed of basis functions on X. The
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dimension q is allowed to diverge with the number of observations in order to alleviate the effects
of model misspecification. The use of linear approximation space simplifies the computation of our
testing procedure. When Q0 is well approximated, it suffices to test

H0 : ϕ>(x)(β∗1 − β∗0) ≤ 0,∀x ∈ X versus H1 : ϕ>(x)(β∗1 − β∗0) > 0,∃x ∈ X. (1)

For clarity, here we assume Q0(x, a) = Q(x, a;β∗0 , β
∗
1) for some β∗0 and β∗1 . In Appendix B, we al-

low the approximation error infβ0,β1∈Rp supx∈X,a∈{0,1} |Q0(x, a)−Q(x, a;β0, β1)| to be nonzero.

Let Fj denote the sub-dataset {(Xi, Ai, Yi)}1≤i≤j for j ≥ 1 and F0 = ∅. Throughout this paper,
we assume that the following two assumptions hold.

(A1) Yi = AiY
∗
i (1) + (1−Ai)Y ∗i (0) for ∀i ≥ 1.

(A2) Ai is independent of Y ∗i (0), Y ∗i (1), {(Xk, Y
∗
k (0), Y ∗k (1))}k>i given Xi and Fi−1, for any i.

Assumption (A1) is referred to be the stable unit treatment value assumption (Rubin, 1974) and As-
sumption (A2) is the sequential randomization assumption (Zhang et al., 2013) and is automatically
satisfied in a randomized study where the treatments are independently generated of the observed
data. (A2) essentially assumes there is no unmeasured confounders. These assumptions guaran-
tee that both regression coefficients (defined through potential outcomes) are estimable from the
observed dataset as shown in the following lemma.

Lemma 1 Let I(·) denotes the indicator function. Under (A1)-(A2), we have

E[I(Ai = a){Yi − ϕ>(Xi)β
∗
a}] = 0, ∀a ∈ {0, 1}, i ≥ 1.

3 ONLINE SEQUENTIAL TESTING FOR QTE

3.1 TEST STATISTICS AND THEIR LIMITING DISTRIBUTION

We first present our test statistic for testing H0. In view of Lemma 1, we estimate βa by using the
ordinary least squares estimator

β̂a(t) = Σ̂−1
a (t)

 1

N(t)

N(t)∑
i=1

I(Ai = a)ϕ(Xi)Yi


at each time point t for a ∈ {0, 1}, where Σ̂a(t) = N−1(t)

∑N(t)
i=1 I(Ai = a)ϕ(Xi)ϕ

>(Xi). A
generalized inverse might be used even if Σ̂a(t) is not invertible. Consider the following test statistic
S(t) = supx∈X ϕ

>(x){β̂1(t)− β̂0(t)}. Under H0, we expect S(t) to be small. A large S(t) can be
interpreted as the evidence against H0. As such, we reject H0 for large S(t). We remark that when
H0 is rejected, we can apply the decision rule d(x) = arg maxa∈{0,1} ϕ

>(x)β̂a(t) for personalized
recommendation.

To determine the rejection region, we next discuss the limiting distribution of S(t). Under H0,

S(t) ≤ sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}+ sup
x∈X

ϕ>(x)(β∗1 − β∗0)

≤ sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}. (2)

Both equalities hold when β∗0 = β∗1 . Suppose there exists some function π∗(·, ·) defined on
{0, 1} × X that satisfies EX |

∑n
i=1 n

−1πi−1(a,X) − π∗(a,X)| P→ 0,∀a ∈ {0, 1} as n → ∞,
where πn(·, ·) = Pr(An = a|Xn = x,Fn−1), and the expectation EX is taken with respect to
X . This condition implies that the treatment assignment mechanism cannot be arbitrary (see the
discussion below Theorem 1 for details). Then we will show

B(t) ≡
√
N(t){β̂1(t)− β∗1 − β̂0(t) + β∗0}

d→ N(0,
∑

a∈{0,1}

Σ−1
a ΦaΣ−1

a ), as N(t)→∞, (3)

where Σa = Eπ∗(a,X)ϕ(X)ϕ>(X), Φa = Eπ∗(a,X)σ2(a,X)ϕ(X)ϕ>(X), and σ2(a, x) =
E[{Y ∗(a) − ϕ>(X)βa}2|X = x], for any x ∈ X. According to equation 3, the right-hand-side
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(RHS) of equation 2 is to converge in distribution to the maximum of some Gaussian random vari-
ables. This observation forms the basis of our test.

We next discuss the sequential implementation of our test. Assume that the interim analyses are
conducted at time points t1, t2, . . . , tK ∈ [0, . . . , T ] such that 0 < t1 < t2 < · · · < tK = T .
We allow K to grow with the number of observations. In the most extreme case, one may set
tk = inft{N(t) ≥ N(tk−1)+1},∀k ≥ 2. That is, we make a decision regarding the null hypothesis
upon the arrival of each observation. In addition, we assume that t1 is large so that there are enough
number of samples N(t1) to guarantee the validity of the normal approximation for B(t1). We
remark that in typical tech companies such as Amazon, Facebook, etc., massive data are collected
even within a short time interval. Large sample approximation is validated in these applications.

To guarantee our test controls the type-I error, we reject H0 and terminate the experiment at tk if√
N(tk)S(tk) ≥ zk for some k = 1, . . . ,K with some suitably chosen z1, . . . , zK > 0 that satisfy

Pr
(

max
k∈{1,...,K}

{
√
N(tk)S(tk)− zk} > 0

)
≤ α+ o(1)

for a given significance level α > 0 under H0. In view of equation 2, it suffices to find {zk}k that
satisfy

Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
> 0

}
≤ α+ o(1), (4)

where the stochastic process B(·) is defined in equation 3.

To determine {zk}k, we need to derive the asymptotic distribution of the left-hand-side (LHS) of
equation 4. To this end, define a mean-zero Gaussian process G(t) with covariance function

Cov(G(t), G(t′)) = N1/2(t)N−1/2(t′)
∑

a∈{0,1}

Σ−1
a ΦaΣ−1

a , ∀0 < t ≤ t′.

In the following, we show that the LHS of equation 4 can be uniformly approximated by G(·), for
any {zk}k=1,...,K . To establish our theoretical results, we need some regularity conditions on ϕ(·).
To save space, we summarize these assumptions in (A3) and put them in Appendix B.

Theorem 1 Assume (A1)-(A3) hold. For a = 0, 1, assume infx∈X π
∗(a, x) > 0 and |Y ∗(a)| is

bounded almost surely. Assume there exists some 0 < α0 ≤ 1 such that for any sequence {jn}n that
satisfies jα0

n / logα0 jn � q2, the following event occurs with probability at least 1−O(j−α0
n ),

sup
a∈{0,1}

E

∣∣∣∣∣
k∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ≤ O(1)qk1−α0 logα0 k, ∀k ≥ jn, (5)

where O(1) denotes some positive constant. Assume Nα0(t1)/ logα0 N(t1) � q2 and N(t1) �
logN(T ) almost surely. Then conditional on the counting process N(·), there exists some constant
c > 0 such that

sup
z1,...,zK

∣∣∣∣Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tK)− zk
)
> 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tK)− zk
)
> 0

}∣∣∣∣
≤ c

[
q3/4N−1/8(t1) log15/8{KN(t1)}+ qN−α0/3(t1) log(5+α0)/3{KN(t1)}

]
.

Theorem 1 implies that the approximation error depends on the number of observations obtained
up to the first decision point N(t1), the maximum number of interim analyses K, the total number
of basis functions q, and α0, which characterizes the convergence rate of the treatment assignment
mechanism

∑n
i=1 n

−1πi−1. Clearly, the error will decay to zero when the followings hold with
probability tending to 1,

q = O(Nα∗(t1)), for some 0 ≤ α∗ < min(1/6, α0/3), (6)

log(K)� min{N1/15−2α∗/5(t1), N (α0−3α∗)/(5+α0)(t1)}. (7)
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In Appendix C, we show that α0 = 1/2, when an ε-greedy strategy is used for randomization to
balance the trade-off between exploration and exploitation. In this case, 6 requires q to grow at a
slower rate than N1/6(t1). This condition is automatically satisfied when q is bounded. Condition
7 is satisfied when K grows polynomially fast with respect to N(t1). In addition to ε-greedy,
other adaptive allocation procedures (e.g., upper confidence bound or Thompson sampling) could
be applied as well.

As discussed in the introduction, the derivation of Theorem 1 is nontrivial. One way to obtain the
magnitude of the approximation error is to apply the strong approximation theorem for multidimen-
sional martingales (see Morrow & Philipp, 1982; Zhang, 2004). However, the rate of approximation
typically depends on the dimension and decays fast as the dimension increases. To derive Theorem
1, we view {ϕ>(x)B(tK)}x∈X,k∈{1,...,κ} as a high-dimensional martingale and adopt the Gaussian
approximation techniques that have been recently developed by Belloni & Oliveira (2018). In view
of equation 2, an application of Theorem 1 yields the following result.

Theorem 2 Assume that the conditions of Theorem 1 hold, equation 6 and equation 7 hold with
probability tending to 1. Then for any z1, . . . , zk that satisfy

Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− zk
)
> 0

}
= α+ o(1), (8)

as N(t1) diverges to infinity, we have under H0,

Pr
(

max
k∈{1,...,K}

{
√
N(tk)S(tk)− zk} > 0

)
≤ α+ o(1).

The above equality holds when β∗0 = β∗1 .

Theorem 2 suggests that the type-I error rate of the proposed test can be well controlled. It remains
to find critical values {zk}1≤k≤K that satisfy equation 8. In the next section, we propose a bootstrap-
assisted procedure to determine these critical values.

3.2 BOOTSTRAP STOPPING BOUNDARY

We first outline a method based on the wild bootstrap (Wu, 1986) to approximate the limiting dis-
tribution of {S(tk)}k. Then we discuss its limitation and present our proposal, a scalable bootstrap
algorithm to determine the stopping boundary.

The idea is to generate bootstrap samples {β̂MB
a (tk)}a,k that have asymptotically the same joint dis-

tribution as {β̂a(tk)− β∗a}a,k. Then the joint distribution of {S(tk)}k can be well-approximated by
the conditional distribution of {ŜMB(tk)}k given the data, where ŜMB(t) = supx∈X ϕ

>(x){β̂MB
1 (t)−

β̂MB
0 (t)} for any t. Specifically, let {ξi}+∞i=1 be a sequence of i.i.d. standard normal random variables

independent of {(Xi, Ai, Yi)}+∞i=1 . For a ∈ {0, 1}, define

β̂MB
a (t) = Σ̂−1

a (t)

 1

N(t)

N(t)∑
i=1

I(Ai = a)ϕi(X){Yi − ϕ>(Xi)β̂(t)}ξi

 , ∀a ∈ {0, 1}.
Both the asymptotic means of

√
N(t)β̂MB

a (t) and
√
N(t)(β̂a(t) − β∗a) are zero. In addition, their

covariance functions are asymptotically the same. By design, {β̂MB
a (tk)}a,k is multivariate nor-

mal. Similar to equation 3, we can show {β̂a(tk) − β∗a}a,k is asymptotically multivariate normal.
Consequently, the limiting distributions of {β̂MB

a (tk)}a,k and {β̂a(tk) − β∗a}a,k are asymptotically
equivalent. As such, the bootstrap approximation is valid.

However, calculating β̂MB
a (tk) requires O(N(tk)) operations. The time complexity of the resulting

bootstrap algorithm is O(BN(tk)) up to the k-th interim stage, where B is the total number of
bootstrap samples. This can be time consuming when {N(tk)−N(tk−1)}Kk=1 are large. To facilitate
the computation, we observe that in the calculation of β̂MB

a , the random noise is generated upon the
arrival of each observation. This is unnecessary as we aim to approximate the distribution of β̂a(·)
only at finitely many time points.
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We next present our proposal. Let {ei,a}i=1,...,K,a=0,1 be a sequence of i.i.d N(0, Iq) random
vectors independent of the observed data, where Iq denotes the q × q identity matrix. At the k-
th interim stage, we compute ŜMB∗(tk) = supx∈X ϕ

>(x){β̂MB∗
1 (tk) − β̂MB∗

0 (tk)}, where β̂MB∗
a (tk)

equals

1

N(tk)

k∑
j=1

 N(tj)∑
i=N(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ(Xi)
>β̂a(tj)}2Σ̂−1

a (tj)

1/2

ej,a.

For any k1 and k2, the conditional covariance of
√
N(tk1){β̂MB∗

1 (tk1) − β̂MB∗
0 (tk1)} and√

N(tk2){β̂MB∗
1 (tk2)− β̂MB∗

0 (tk2)} equals

1√
N(tk1)N(tk2)

1∑
a=0

k1∑
j=1

N(tj)∑
i=N(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ̂−1
a (tj).

Under the given conditions in Theorem 1, it is to converge to√
N(tk1)√
N(tk2)

1∑
a=0

Σ−1
a Φ(a)Σ−1

a = Cov(G(tk1), G(tk2)).

This means {
√
N(tk)(β̂MB*

1 (tk) − β̂MB*
0 (tk))}k and {G(tk)}k have the same asymptotic distribu-

tion. Consequently, {
√
N(tk)ŜMB∗(tk)}Kk=1 can be used to approximate the joint distribution of

{supx∈X ϕ
>(x)G(tk)}Kk=1.

To choose {zk}k that satisfies equation 8, we adopt the α-spending approach that allocates the total
allowable type I error at each interim stage according to an error-spending function. This guarantees
our test controls the type-I error. We begin by specifying an α spending function α(t) that is non-
increasing and satisfies α(0) = 0, α(T ) = α. Popular choices of α(·) include

α1(t) = α log

(
1 + (e− 1)

t

T

)
, α2(t) = 2− 2Φ

(
Φ−1(1− α/2)

√
T√

t

)
,

α3(t) = α

(
t

T

)θ
, for θ > 0, α4(t) = α

1− exp(−γt/T )

1− exp(−γ)
, for γ 6= 0,

(9)

where Φ(·) denotes the cumulative distribution function of a standard normal variable and Φ−1(·) is
its quantile function. Based on α(·), we iteratively calculate ẑk, k = 1, . . . ,K as the solution of

Pr∗
{

max
j∈{1,...,k−1}

(√
N(tj)Ŝ

MB∗(tj)− ẑj
)
≤ 0,

√
N(tk)ŜMB∗(tk) > ẑk

}
= α(tk)− α(tk−1), (10)

and reject H0 when
√
N(tk)S(tk) > ẑk holds for some k.

The validity of the bootstrap test is summarized in Theorems 3 and 4 below.

Theorem 3 Assume the conditions in Theorem 1 hold. Assume q = O(Nα∗(t1)) for some 0 <
α∗ < 1/3, almost surely. Then conditional on the counting process N(·), we have

sup
z1,...,zK

∣∣∣∣Pr∗
{

max
k∈{1,...,K}

(√
N(tk)ŜMB∗(tk)− zk

)
> 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− zk
)
> 0

}∣∣∣∣
≤ c

[
q1/2N−1/6(t1) log11/6{KN(t1)}+ qN−α0/3(t1) log(5+α0)/3{KN(t1)}

]
for some constant c > 0 with probability at least 1 − O(N−α0(t1)), where Pr∗(·) denotes the
probability measure conditional on the data stream {Xi, Ai, Yi}+∞i=1 .

Theorem 4 Assume the conditions in Theorem 3 hold. Then conditional onN(·), the critical values
{ẑk}k satisfy ∣∣∣∣Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− ẑk
)
> 0

}
− α

∣∣∣∣
≤ c

[
q1/2N−1/6(t1) log11/6{KN(t1)}+ qN−α0/3(t1) log(5+α0)/3{KN(t1)}

]
, (11)

for some constant c > 0.
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When the RHS of equation 11 is op(1), it follows from Theorems 2 and 4 that our test is valid.
The conditional distribution in equation 10 can be approximated by the empirical distribution of
Bootstrap samples.

Finally, we remark that our test can be online updated as batches of observations arrive at the end
of each interim stage. A pseudocode summarizing our procedure is given in Algorithm 1 in the
appendix. The spatial complexity of the proposed algorithm is O(B), where B is the number of
bootstrap samples. The time complexity is O(Bk + N(tk)) up to the k-th interim stage. Suppose
N(tj)−N(tj−1) = n for any 1 ≤ j ≤ K, we have Bk +N(tk) = (B + n)k � Bnk = BN(tk)
for large n and B. Hence, our procedure is much faster compared to the standard wild bootstrap.

4 NUMERICAL STUDIES

4.1 SIMULATION STUDIES

In this section, we conduct Monte Carlo simulations to examine the finite sample properties of the
proposed test. We generated the potential outcomes as Y ∗i (a) = 1 + (Xi1−Xi2)/2 + aτ(Xi) + εi,
where εi’s are i.i.d N(0, 0.52). The covariates Xi = (Xi1, Xi2, Xi3)> were generated as fol-
lows. We first generated X∗i = (X∗i1, X

∗
i2, X

∗
i3)> from a multivariate normal distribution with

zero mean and covariance matrix equal to {0.5|i−j|}i,j . Then we set Xij = X∗ijI(X∗ij | ≤
2) + 2sgn(X∗ij)I(X∗ij | > 2). We consider two randomization designs. In the first design, the
treatment assignment is nondynamic and completely random. Specifically we set πi(a, x) = 0.5,
for any a, x and i. In the second design, we use an ε-greedy strategy to generate the treatment with
ε = 0.3. In addition, we set N(T1) = 2000 and N(Tj)−N(Tj−1) = 2n for 2 ≤ j ≤ K and some
n > 0. We consider two combinations of (n,K), corresponding to (n,K) = (200, 5) and (20, 50).

We set the significance level α = 0.05 and choose B = 10000. We set τ(Xi) = φδ{(Xi1 +

Xi2)/
√

2}X2
i3 for some function φδ parameterized by some δ ≥ 0. We consider two scenarios for

φδ . Specifically, we set φδ(x) = δx2/3 in Scenario 1 and φδ = δ cos(πx) in Scenario 2. For each
setting, we further consider four cases by setting δ = 0, 0.1, 0.15, 0.2, 0.25 and 0.3. When δ = 0,
H0 holds. Otherwise, H1 holds. For all settings, we construct the basis function ϕ(·) using additive
cubic splines. For each univariate spline, we set the number of internal knots to be 4. These knots
are equally spaced between [−2, 2].

We denote our test by BAT, short for bootstrap-assisted test. We run our experiments on a single
computer instance with 40 Intel(R) Xeon(R) 2.20GHz CPUs. It takes 1-2 seconds on average to
compute each test. In Table 1 (see Appendix G), we report the rejection probabilities and average
stopping times (defined as the average number of samples consumed when the experiment is termi-
nated) of the proposed test aggregated over 400 simulations when α1(·) is chosen as the spending
function. In Figure 2, we plot the rejection probabilities of our tests and the average stopping times
of the experiments. It can be seen that the type-I error rates are close to the nominal level in all
cases. The power of our test increases as δ increases, demonstrating its consistency. In addition,
when δ > 0, our experiments are stopped early in all cases.

To further evaluate our method, we compare it with a test based on the law of iterated logarithm
(denoted by LIL). LIL determines the decision boundary based on an always valid finite error bound
(see Appendix F for details about the competing method). It can be seen from Figure 2 that our
method has much larger power than the law of iterated logarithm approach.

4.2 REAL DATA ANALYSIS

In this section, we apply the proposed method to a Yahoo! Today Module user click log dataset1,
which contains 45,811,883 user visits to the Today Module, during the first ten days in May 2009.
For the ith visit, the dataset contains an ID of the new article recommended to the user, a binary
response variable Yi indicating whether the user clicked the article or not, and a five dimensional
feature vector summarizing information of the user. Due to privacy concerns, feature definitions and
article names were not included in the data. Each feature vector sums up to 1. Therefore, we took
the first three and the fifth elements to form the covariates Xi. For illustration, we only consider a

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49
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Figure 2: Rejection probabilities and average stopping times of the proposed test when α1(·) is chosen as
the spending function. From left to right: Scenario 1 with random design, Scenario 1 with ε-greedy design,
Scenario 2 with random design and Scenario 2 with ε-greedy design.

subset of data that contains visits on May 1st where the recommended article ID is either 109510
or 109520. These two articles were being recommended most on that day. This gives us a total of
405888 visits. On the reduced dataset, define Ai = 1 if the recommended article is 109510 and
Ai = 0 otherwise.

We first conduct A/A experiments (which compare these two articles against themselves) to examine
the validity of our test. The A/A experiments are done when every 2000 more users are available, we
randomly assign 1000 users to arm A, and the other 1000 users in arm B. We expect our test will not
rejectH0 in A/A experiments, since the articles being recommended are the same. Then, we conduct
A/B experiment to test the QTE of these two articles. The test statistics and their corresponding
critical values are plotted in Figure 3. On average it takes several seconds to implement our test. It
can be seen that our test is able to be reject H0 after obtaining the first one-third of the observations,
in the A/B experiment. In the A/A experiments, we fail to reject H0, as expected.

5 DISCUSSION

In this paper, we propose a new testing procedure for evaluating the performance of technology prod-
ucts in tech companies based on the notion of qualitative treatment effects. Currently, we only focus
on comparing two products. It would be practically useful to develop a multiple testing procedure
under settings with multiple treatment options. These topics warrant further investigations.

Figure 3: Critical values and test statistics.
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Input: Number of bootstrap samples B, an α spending function α(·).
Initialize: n = 0, Σ̂0 = Σ̂1 = Op+1, γ̂0 = γ̂1 = 0p+1, β̂0,b = β̂1,b = 0p+1, and a set
I = {1, . . . , B}.
For k = 1 to K do

Initialize: m = 0 and Φ̂0 = Φ̂1 = Op+1.
Step 1: Online update of β̂a
For i = N(tk−1) + 1 to N(tk) do
n = n+ 1 and m = m+ 1;
Σ̂a = (1− n−1)Σ̂a + n−1ϕ(Xi)ϕ

>(Xi)I(Ai = a), a = 0, 1;
γ̂a = (1− n−1)γ̂a + n−1ϕ(Xi)YiI(Ai = a), a = 0, 1;

Compute β̂a = Σ̂−1
a γ̂a for a ∈ {0, 1} and S = supx∈X ϕ

>(x)(β̂1 − β̂0);
Step 2: Bootstrap
For i = N(tk−1) + 1 to N(tk) do

Φ̂a = Φ̂a + Σ̂−1
a ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a}2Σ̂−1
a I(Ai = a), a = 0, 1;

For b = 1, . . . , B do
Generate two independent N(0, Ip+1) Gaussian vectors e0, e1;
β̂a,b = (1−mn−1)β̂a,b + n−1Φ̂

1/2
a ea, a = 0, 1;

Compute Ŝb = supx∈X ϕ
>(x)(β̂1,b − β̂0,b);

Step 3: Reject or not
Set z to be the upper {α(t)− |I|c/B|}/(1− |Ic|/B)-th percentile of {Ŝb}b∈I ;
Update I as I ← {b ∈ I : Ŝb ≤ z}.
If S > z: Reject H0 and terminate the experiment.
Algorithm 1: the Pseudocode that summarizing the online bootstrap testing procedure.

Baqun Zhang, Anastasios A Tsiatis, Eric B Laber, and Marie Davidian. Robust estimation of opti-
mal dynamic treatment regimes for sequential treatment decisions. Biometrika, 100(3):681–694,
2013.

Li-xin Zhang. Strong approximations of martingale vectors and their applications in Markov-
chain adaptive designs. Acta Math. Appl. Sin. Engl. Ser., 20(2):337–352, 2004. ISSN
0168-9673. doi: 10.1007/s10255-004-0173-z. URL https://doi.org/10.1007/
s10255-004-0173-z.

A NOTATIONS

We introduce some general notations used in the appendix. For any matrix Mat, we use ‖Mat‖p to
denote the matrix norm induced by the corresponding `p norm of vectors, for 1 ≤ p ≤ +∞. For
two nonnegative sequences {s1,n}n and {s2,n}n, we will use the notation s1,n � s2,n to represent
that s1,n ≤ c̄s2,n for some universal constant c̄ > 0 whose value is allowed to change from place to
place. When a matrix Mat is degenerate, Mat−1 denotes the Moore-Penrose inverse of Mat. For any
vector ψ, we use ψ(i) to denote its i-th element.

In Algorithm 1, we use Op+1 to denote a (p + 1) × (p + 1) zero matrix and 0p+1 to denote a
(p+ 1)-dimensional zero vector.

B MORE ON THE BASIS FUNCTION

B.1 CONDITION (A3)

(A3). Assume λmin[Eϕ(X)ϕ>(X)] � 1, λmax[Eϕ(X)ϕ>(X)] � 1, supx ‖ϕ(x)‖1 = O(q1/2),
lim infq infx∈X ‖ϕ(x)‖2 > 0. In addition, assume

sup
x,y∈X
x 6=y

‖ϕ(x)− ϕ(y)‖2
‖x− y‖2

� q1/2. (12)
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When a tensor-product B-spline is used (see Section 6 of Chen & Christensen, 2015, for
a brief overview of tenor-product B-splines), (A3) is automatically satisfied. Specifically,
λmin[Eϕ(X)ϕ>(X)] � 1, λmax[Eϕ(X)ϕ>(X)] � 1 follow from Theorem 3.3 of (Burman &
Chen, 1989). supx ‖ϕ(x)‖1 = O(q1/2) follows by noting that the absolute value of each element
in ϕ(x) is bounded by some universal constant. lim infq infx∈X ‖ϕ(x)‖2 > 0 follows from the ar-
guments used in the proof of Lemma E.4 of Shi et al. (2020b). The last condition in equation 12
holds by noting that each function in the vector ϕ(·) is Lipschitz continuous when a tensor-product
B-spline is used.

B.2 ON THE APPROXIMATION ERROR

The proposed test remains valid as long as the approximation error satisfies

inf
β0,β1∈Rp

sup
x∈X,a∈{0,1}

|Q0(x, a)−Q(x, a;β0, β1)| = o({N(T )}−1/2), (13)

with probability tending to 1. In the following, we introduce some sufficient conditions for equa-
tion 13.

Suppose the Q-function Q0(·, a) is p-smooth (see the definition of p-smoothness in Stone, 1982),
for a ∈ [0, 1]. When a tensor-product B-spline or Wavelet basis is used for ϕ(·), then there exist
some β∗0 and β∗1 that satisfy

inf
β0,β1∈Rp

sup
x∈X,a∈{0,1}

|Q0(x, a)−Q(x, a;β0, β1)| = O(q−p/d).

See Section 2.2 of Huang (1998) for detailed discussions on the approximation power of these basis
functions. Condition equation 13 is thus automatically satisfied when

q � {N(T )}d/(2p),
with probability tending to 1.

C ADAPTIVE RANDOMIZATION

In practice, the company might want to allocate more traffic to a better treatment based on the
observed data stream. The ε-greedy strategy is commonly used to balance the trade-off between ex-
ploration and exploitation. For a given 0 < ε0 < 1, consider the following randomization procedure:
for some integer N0 > 0 and any j ≥ N0, a ∈ {0, 1}, x ∈ X, we set

πj−1(a, x) = (1− ε0)aI{ϕ>(x)(β̂1,j−1 − β̂0,j−1) > 0}+ ε0(1− a)I{ϕ>(x)(β̂1,j−1 − β̂0,j−1) ≤ 0},
where

β̂a,j = Σ̂−1
a,j

1

j

j∑
i=1

{I(Ai = a)ϕ(Xi)Yi} and Σ̂a,j =
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi).

It is immediate to see that Σ̂a(t) = Σ̂a,n(t) and β̂a(t) = β̂a,n(t). Define

π∗(a, x) = (1− ε0)aI{ϕ>(x)(β1 − β0) > 0}+ ε0(1− a)I{ϕ>(x)(β1 − β0) ≤ 0}
for any a ∈ {0, 1} and x ∈ X.

Lemma 2 Assume (A1)-(A3) hold. Assume infx∈X π
∗(a, x) > 0 and |Y ∗(a)| is bounded almost

surely, for a ∈ {0, 1}. Assume Pr(|ϕ>(X)(β1 − β0)| ≤ ε) ≤ L0ε, for some constant L0 > 0 and
any ε > 0. Then for any {jn}n that satisfies

√
jn/
√

log jn � q2, the following event occurs with
probability at least 1−O(j−1

n ),∑
a∈{0,1}

EFi−1

∣∣∣∣∣
k∑
i=1

{πi−1(a,X)− π∗(a,X)}

∣∣∣∣∣ � q√k log k, ∀k ≥ jn.

Lemma 2 implies that Condition equation 5 in Theorem 1 automatically holds with α0 = 1/2, when
the epsilon-greedy strategy is used. When ϕ>(X)(β1 − β0) is a continuous random variable, the
assumption Pr(|ϕ>(X)(β1−β0)| ≤ ε) ≤ L0ε for any ε > 0 in Lemma 2 is satisfied if ϕ>(X)(β1−
β0) has a bounded probability density function. When ϕ>(X)(β1− β0) is discrete, this assumption
is satisfied if infx∈X |ϕ>(x)(β1 − β0)| > 0.
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D TESTING THE AVERAGE TREATMENT EFFECTS

D.1 THE ALGORITHM

We focus on testing the following hypothesis,

H0 : EY ∗i (1) ≤ EY ∗i (0) versus H1 : EY ∗i (1) > EY ∗i (0).

Under (A1) and (A2), it suffices to test

H0 : EQ(Xi, 1) ≤ EQ(Xi, 0) versus H1 : EQ(Xi, 1) > EQ(Xi, 0).

We similarly use basis approximations to model the Q-function. Our proposal is summarized in the
following algorithm. We next conduct simulation studies to evaluate this algorithm.

Input: Number of bootstrap samples B, an α spending function α(·).
Initialize: n = 0, Σ̂0 = Σ̂1 = Op+1, γ̂0 = γ̂1 = 0p+1, β̂0,b = β̂1,b = 0p+1, ϕ̄ = 0 and a set
I = {1, . . . , B}.
For k = 1 to K do

Initialize: m = 0, φ̂ = 0 and Φ̂0 = Φ̂1 = Op+1.

For i = N(tk−1) + 1 to N(tk) do
n = n+ 1, m = m+ 1 and ϕ̄ = n−1(n− 1)ϕ̄+ n−1ϕ(Xi);
Σ̂a = (1− n−1)Σ̂a + n−1ϕ(Xi)ϕ

>(Xi)I(Ai = a), a = 0, 1;
γ̂a = (1− n−1)γ̂a + n−1ϕ(Xi)YiI(Ai = a), a = 0, 1;

Compute β̂a = Σ̂−1
a γ̂a for a ∈ {0, 1} and S = ϕ̄>(β̂1 − β̂0);

For i = N(tk−1) + 1 to N(tk) do
φ̂ = φ̂+ [{ϕ(Xi)− ϕ̄}>(β̂1 − β̂0)]2.
Φ̂a = Φ̂a + Σ̂−1

a ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a}2Σ̂−1

a I(Ai = a), a = 0, 1;
For b = 1, . . . , B do

Generate two independent N(0, Ip+1) Gaussian vectors e0, e1, N(0, 1) random variable e2;
β̂a,b = (1−mn−1)β̂a,b + n−1Φ̂

1/2
a ea + n−1φ̂1/2e2, a = 0, 1;

Compute Ŝb = ϕ̄>(β̂1,b − β̂0,b);

Set z to be the upper {α(t)− |I|c/B|}/(1− |Ic|/B)-th percentile of {Ŝb}b∈I ;
Update I as I ← {b ∈ I : Ŝb ≤ z}.
If S > z:

Reject H0 and terminate the experiment;

D.2 NUMERICAL STUDIES

In this section, we compare our procedure with the always valid test for testing ATE (Johari et al.,
2015). We generate the potential outcomes with the same model, except that εi’s are i.i.d N(0, 1).
However, we set N(T1) = 1000 and N(Tj) − N(Tj−1) = 2n for 2 ≤ j ≤ K and some n > 0.
We consider two combinations of (n,K), corresponding to (n,K) = (100, 5) and (10, 50). For all
settings, we use a linear function to approximate Q.

In Table 2 (see Appendix G) and Figure 4, we show the rejection probabilities and average stopping
times of the proposed test aggregated over 400 simulations, when α1(·) is chosen as the spending
function. It can be seen that our method behaves better than the always valid test when the effect
size is small, and comparable when the effect size is large. The always valid test fails in the adaptive
randomization settings, as the type-I error rates are around 50% under the null hypothesis.

E PROOFS

Note that we require X to be a compact set. To simplify the proof, we assume X = [0, 1]d.
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Figure 4: Rejection probabilities and average stopping times of the proposed test when α1(·) is
chosen as the spending function.

E.1 PROOF OF LEMMA 1

Set F0 = ∅. We state the following lemma before proving Lemma 1.

Lemma 3 For any j ≥ 1, (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fj−1.

For any a ∈ {0, 1}, i ≥ 1, notice that

EI(Ai = a){Yi − ϕ>(Xi)βa} = EI(Ai = a){Y ∗i (a)− ϕ>(Xi)βa}
= EEXi,Fi−1 [I(Ai = a){Y ∗i (a)− ϕ>(Xi)βa}],

where the first equation is due to Assumption (A1) and EXi,Fi−1 denotes the conditional expectation
given Fi−1 and Xi. By Assumption (A2), we have

EXi,Fi−1 [I(Ai = a){Y ∗i (a)− ϕ>(Xi)βa}] = {EXi,Fi−1I(Ai = a)}[EXi,Fi−1{Y ∗i (a)− ϕ>(Xi)βa}].

The second term on the RHS equals zero due to Lemma 3 and our model assumption
E{Y ∗i (a)|Xi} = ϕ>(Xi)βa. The proof is hence completed.

E.2 PROOF OF THEOREM 1

Let n(·) be the realization of the counting process N(·). We will show the assertion in Theorem 1
holds for any such realizations that satisfy n(t1) < n(t2) < · · · < n(tK). The case where some of
the n(tk)’s are the same can be similarly discussed.

For any j ≥ 1, define σ(Fj) to be the σ-algebra generated by Fj . For a ∈ {0, 1}, define

Σ̂a,j =
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi) and β̂a,j = Σ̂−1

a,j

(
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)Yi

)
.

It is immediate to see that Σ̂a(t) = Σ̂a,n(t) and β̂a(t) = β̂a,n(t). Define δn = qn−α0 logα0 n. We
state the following lemmas before proving Theorem 1.

Lemma 4 There exists some constant 0 < ε0 < 1 such that λmin[Eϕ(X)ϕ>(X)] ≥ ε0,
λmax[Eϕ(X)ϕ>(X)] ≤ ε−1

0 , supx ‖ϕ(x)‖2 ≤ supx ‖ϕ(x)‖1 ≤ ε−1
0

√
q, mina∈{0,1} λmin[Σa] ≥

ε0, maxa∈{0,1} ‖βa‖2 ≤ ε−1
0 , maxa∈{0,1} |Y ∗(a)| ≤ ε−1

0 and supx maxa∈{0,1} |ϕ>(x)βa| ≤ ε−1
0 .

Lemma 5 Assume the conditions in Theorem 1 hold. Then for any sequence {jn}n that satisfies
jα0
n / logα0(jn) � q2, we have with probability at least 1 − O(j−α0

n ) that for any a ∈ {0, 1} and

14
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any k ≥ jn,

‖(Σ̂a,k − Σa)‖2 � qδk +
√
qk−1 log k, (14)

‖(Σ̂−1
a,k − Σ−1

a )‖2 � qδk +
√
qk−1 log k. (15)

Lemma 6 Assume the conditions in Theorem 1 hold. The for any sequence {jn}n that satisfies
jn/ log(jn) � q, we have with probability at least 1 − O(j−1

n ) that for any a ∈ {0, 1} and any
k ≥ jn, ∥∥∥∥∥

k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

�
√
qk log k.

For a ∈ {0, 1},

β̂a,k − βa = Σ̂−1
a

[
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi − ϕ>(Xi)βa}

]
,

and hence ∥∥∥∥∥β̂a,k − βa − Σ−1
a

[
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi − ϕ>(Xi)βa}

]∥∥∥∥∥
2

(16)

≤ ‖Σ̂−1
a,k − Σ−1

a ‖2

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

� (qδk +
√
qk−1 log k)q1/2k−1/2 log1/2 k, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ), by Lemma 5 and Lemma 6. Define

B∗(t) =
1√
n(t)

n(t)∑
i=1

[Σ−1
1 ϕ(Xi)Ai{Yi − ϕ>(Xi)β1} − Σ−1

0 ϕ(Xi)(1−Ai){Yi − ϕ>(Xi)β0}].

It follows that

‖B∗(tk)−B(tk)‖2 � {q3/2δn(tk) + q
√
n−1(tk) log n(tk)}n−1/2(tk) log1/2 n(tk),∀k ≥ 1, (17)

with probability at least 1−O(n−α0(t1)), and hence

‖ sup
x∈X

ϕ>(x)B∗(tk)− sup
x∈X

ϕ>(x)B(tk)‖2 ≤ c̄{q2δn(tk) + q3/2
√
n−1(tk) log n(tk)}

√
n−1(tk) log n(tk),

∀k ≥ 1,

with probability at least 1−O(n−α0(t1)), for some constant c̄ > 0, by equation 41. Under the given
conditions on q and n(t1), we have

q
√
n−1(tk) log n(tk) = o(1), ∀k ≥ 1,

and hence

‖ sup
x∈X

ϕ>(x)B∗(tk)− sup
x∈X

ϕ>(x)B(tk)‖2 ≤ c̄{qδn(tk) +
√
qn−1(tk) log n(tk)}, ∀k ≥ 1,

Thus, for any given z1, z2, . . . , zK , we obtain

Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B∗(tk)− zk,−
)
≤ 0

}
−O(n−α0(t1))

≤ Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
(18)

≤ Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B∗(tk)− zk,+
)
≤ 0

}
+O(n−α0(t1)),

15
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where

zk,− = zk − c̄{qδn(tk) +
√
qn−1(tk) log n(tk)},

zk,+ = zk + c̄{qδn(tk) +
√
qn−1(tk) log n(tk)}.

For any i ≥ 1, 1 ≤ k ≤ K, define a q-dimensional vector

ξi,k =
1√
n(tk)

[Σ−1
1 ϕ(Xi)Ai{Yi − ϕ>(Xi)β1} − Σ−1

0 ϕ(Xi)(1−Ai){Yi − ϕ>(Xi)β0}]I(i ≤ n(tk)),

or equivalently,

ξi,k =
1√
n(tk)

[Σ−1
1 ϕ(Xi)Ai{Y ∗i (1)− ϕ>(Xi)β1} − Σ−1

0 ϕ(Xi)(1−Ai){Y ∗i (0)− ϕ>(Xi)β0}]I(i ≤ n(tk)),

by Condition (A1). Let ξi = (ξ>i,1, ξ
>
i,2, · · · , ξ>i,K)> andMj =

∑j
i=1 ξi. The sequence {Mi}i≥1

forms a multivariate martingale with respect to the filtration {σ(Fi) : i ≥ 1}, since

E(ξi,k|Fi) = [{E(ξi,k|Ai, Xi,Fi)}|Fi] = 0,

by (A2). Let n(t0) = 0. For any i such that n(tk−1) < i ≤ n(tk) for some 1 ≤ k ≤ K, we have

‖ξi‖∞ ≤
1√
n(tk)

{‖Σ−1
1 ϕ(Xi){Y ∗i (1)− ϕ>(Xi)β1}‖2 + ‖Σ−1

0 ϕ(Xi){Y ∗i (0)− ϕ>(Xi)β0}‖2}

≤ 4
√
qn−1/2(tk)ε−3

0 ,

where the second inequality is due to Lemma 4. Therefore,

E‖ξi‖3∞ �
q3/2

n3/2(tk)
.

It follows that
n(tK)∑
i=1

E‖ξi‖3∞ =

K∑
k=1

n(tk)∑
i=n(tk−1)+1

E‖ξi‖3∞ � q3/2
K∑
k=1

n(tk)− n(tk−1)

n3/2(tk)
(19)

≤ q3/2√
n(t1)

+ q3/2
K∑
k=2

n(tk)− n(tk−1)

n3/2(tk)
≤ q3/2n−1/2(t1) + q3/2

∫ +∞

n(t1)

x−3/2dx = 3q3/2n−1/2(t1).

Define a sequence of independent Gaussian vectors {ηi}i≥1 that satisfy ηi ∼ N(0,E(ξiξ
>
i |Fi−1))

for any i ≥ 1. Then the distribution of ηi is the same as(
I(i ≤ n(t1))√

n(t1)
Z>,

I(i ≤ n(t2))√
n(t2)

Z>, · · · , I(i ≤ n(tK))√
n(tK)

Z>

)
,

where Z is a p-dimensional mean-zero Gaussian vector with covariance matrix

Cov[
∑

a∈{0,1}

Σ−1
a ϕ(Xi)I(Ai = a){Y ∗i (a)− ϕ>(Xi)βa}|Fi−1] (20)

=
∑

a∈{0,1}

Σ−1
a E[ϕ(Xi)ϕ

>(Xi)I(Ai = a){Y ∗i (a)− ϕ>(Xi)βa}2|Fi−1]Σ−1
a

=
∑

a∈{0,1}

Σ−1
a E{ϕ(Xi)ϕ

>(Xi)I(Ai = a)σ2(a,Xi)|Fi−1}Σ−1
a

=
∑

a∈{0,1}

Σ−1
a E{ϕ(Xi)ϕ

>(Xi)πi−1(a,Xi)σ
2(a,Xi)|Fi−1}Σ−1

a

≡
∑

a∈{0,1}

Σ−1
a EFi−1πi−1(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a ,

16
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where the second equality follows from (A2) and Lemma 3, the third equality is due to the definition
of πi−1 and the last equality follows from Lemma 3.

Similar to equation 19, we can show that

n(tK)∑
i=1

E‖ηi‖3∞ � q3/2n−1/2(t1). (21)

Using similar arguments in equation 20, we can show that for any 1 ≤ k1 ≤ k2 ≤ K,

n(tK)∑
i=1

E{ξi,k1ξ>i,k2 |Fi−1} =
1√

n(tk1)n(tk2)

n(tk1
)∑

i=1

∑
a∈{0,1}

Σ−1
a EFi−1πi−1(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a .

Let

V (k1, k2) =
1√

n(tk1)n(tk2)

n(tk1
)∑

i=1

∑
a∈{0,1}

Σ−1
a EFi−1π∗(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a

=
1√

n(tk1)n(tk2)

n(tk1
)∑

i=1

∑
a∈{0,1}

Σ−1
a ΦaΣ−1

a =

√
n(tk1)√
n(tk2)

∑
a∈{0,1}

Σ−1
a ΦaΣ−1

a .

Consider an arbitrary sequence of Rp+1 vectors {bk}1≤k≤K . Under the given conditions, we have∣∣∣∣∣∣b>k1
n(tK)∑

i=1

E(ξi,k1ξ
>
1,k2 |Fi−1)− V (k1, k2)

 bk2

∣∣∣∣∣∣
� 1

n(tk1)

∑
a∈{0,1}

∥∥∥∥∥∥
n(tk1

)∑
i=1

EFi−1{πi−1(a,X)− π∗(a,X)}σ2(a,X)ϕ(X)ϕ>(X)

∥∥∥∥∥∥
2

‖bk1‖2‖bk2‖2.

Define a matrix V as

V =


V (1, 1) V (1, 2) . . . V (1,K)
V (2, 1) V (2, 2) . . . V (2,K)

...
...

...
V (K, 1) V (K, 2) . . . V (K,K)

 . (22)

It follows that∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� sup
a∈{0,1}
j≥n(t1)

∥∥∥∥∥1

j

j∑
i=1

EFi−1{πi−1(a,X)− π∗(a,X)}σ2(a,X)ϕ(X)ϕ>(X)

∥∥∥∥∥
2

.

Using similar arguments in proving equation 14, we can show the RHS of the above equation is
upper bounded by

ε−2
0 q sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ,
and hence by ε−2

0 qδn(t1), with probability at least 1−O(n−α0(t1)). Therefore, we have

λmin

V + δn(t1)IKp×Kp −
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)

 ≥ 0, (23)

with probability at least 1−O(n−α0(t1)), where IKp×Kp denotes a Kp×Kp identity matrix.

17
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Moreover, notice that

sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣
is bounded between 0 and 1. For any a ∈ {0, 1} and any z > 0, we have

E sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣
≤ E sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ I
 sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ≤ z


+ Pr

 sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ > z

 .

Under the given conditions, we have

E sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ � δn(t1) +O(n−α0(t1)).

Therefore, we obtain

E

∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� qn−α0(t1) + qδn(t1),

or

E

∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� qδn(t1), (24)

since n−α0(t1) � δn(t1). Combining equation 19 with equation 21, equation 23 and equation 24,
an application of Theorem 2.1 in Belloni & Oliveira (2018) yields that

|Eψ(Mn(tK))− Eψ(N(0,V ))| (25)

� c0(ψ)n−α0(t1) + c2(ψ)qδn(t1) + c3(ψ)q3/2n−1/2(t1),

for any thrice differential function ψ(·), and

c0(ψ) = sup
z,z′∈RpK

|ψ(z)− ψ(z′)| and ci = sup
z∈RpK

∑
j1,··· ,ji

|∂j1∂j2 · · · ∂jiψ(z)|, i = 2, 3,

where ∂jg(z) denotes the partial derivative ∂g(z)/∂z(j) for any function g(·) and z(j) stands for the
j-th element of z.

Let Xk,0 be an ε-net of X that satisfies the following: for any x ∈ X, there exists some x0 ∈ X0

such that ‖x− x0‖2 ≤ ε. Set ε =
√
d/n4(t1). Since X = [0, 1]d, there exists some X0 with

|X0| ≤ n4d(t1), (26)

where |X0| denotes the number of elements in X0. Under Condition (A3), we have

sup
x∈X

inf
x0∈X0

‖ϕ(x)− ϕ(x0)‖2 �
√
q

n4(t1)
.

18
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It follows that

sup
‖ν‖2=1

| sup
x∈X

ϕ>(x)ν − sup
x∈X0

ϕ>(x)ν| �
√
q

n4(t1)
. (27)

Using similar arguments in showing equation 17, we can show the following event occurs with
probability at least 1−O(n−1(t1)),

‖B∗(tk)‖2 � q1/2 log1/2 n(tk), ∀k ≥ 1.

This together with equation 27 yields∣∣∣∣ max
k∈{1,...,K}

sup
x∈X

ϕ>(x)B∗(tk)− max
k∈{1,...,K}

sup
x∈X0

ϕ>(x)B∗(tk)

∣∣∣∣
≤ max

k∈{1,...,K}

∣∣∣∣sup
x∈X

ϕ>(x)B∗(tk)− sup
x∈X0

ϕ>(x)B∗(tk)

∣∣∣∣ � q log n1/2(tK)

n4(t1)
,

with probability at least 1 − O(n−1(t1)). Under the given conditions, we have n(t1) �
max(q, log n(tK)). It follows that there exists some constant c̄∗ > 0 such that∣∣∣∣ max

k∈{1,...,K}
sup
x∈X

ϕ>(x)B∗(tk)− max
k∈{1,...,K}

sup
x∈X0

ϕ>(x)B∗(tk)

∣∣∣∣ ≤ c̄∗n−2(t1), (28)

with probability at least 1−O(n−1(t1)).

Define

z∗k,− = zk − c̄{qδn(tk) +
√
qn−1(tk) log n(tk)} − c̄∗n−2(t1),

z∗k,+ = zk + c̄{qδn(tk) +
√
qn−1(tk) log n(tk)}+ c̄∗n−2(t1).

Combining equation 28 with equation 18 yields

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,−
)
≤ 0

}
−O(n−α0(t1))

≤ Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
(29)

≤ Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,+
)
≤ 0

}
+O(n−α0(t1)).

Notice thatMn(tK) = {B∗(t1)>, B∗(t2)>, · · · , B∗(tK)>}>. By equation 26 and Lemma 4, there
exist a set of vectors d1, d2, . . . , dL ∈ RqK with L ≤ n4d(t1)K, maxj ‖dj‖1 ≤ ε−1

0 q1/2 and a
function k(·) that maps {1, . . . , L} into {1, . . . ,K} such that

max
k∈{1,...,K}

{
sup
x∈X0

ϕ>(x)B∗(tk)− νk
}

= max
1≤j≤L

{d>jMn(tK) − νk(j)}, (30)

for any {νk}Kk=1. For any η > 0, m ∈ RqK , consider the function φη,{νk}k : RqK → R, defined as

φη,{νk}k(m) =
1

η
log


L∑
j=1

exp[η{d>j m− ηνk(j)}]

 .

It has the following property:

max
1≤j≤L

{d>j m− νk(j)} ≤ φη,{νk}k(m) ≤ max
1≤j≤L

{d>j m− νk(j)}+ η−1 logL

≤ max
1≤j≤L

{d>j m− νk(j)}+ η−1{logK + 4d log n(t1)}

= max
1≤j≤L

[d>j m− {νk(j) − η−1 logK − η−14d log n(t1)}].

19
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It follows that

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,+
)
≤ 0

}
≤ Pr

{
φη,{z∗∗k,+}k(Mn(tK)) ≤ 0

}
, (31)

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,−
)
≤ 0

}
(32)

= Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− (z∗k,− − 3δ)

)
≤ 3δ

}
≥ Pr

{
φη,{z∗∗k,−}k(Mn(tK)) ≤ 3δ

}
,

where
z∗∗k,+ = z∗k,+ + η−1{logK + 4d log n(t1)} and z∗∗k,− = z∗k,− − 3δ.

The value of δ will be specified later. In addition, with some calculations, we have

∂jφη,{νk}k(m) =

∑L
i=1 d

(j)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

) ,

∂j1∂j2φη,{νk}k(m) = η

∑L
i=1 d

(j1)
i d

(j2)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

)
− η

∏
l=1,2

{∑L
i=1 d

(jl)
i exp

(
η[d>i m− νk(i)]

)}
{∑L

i=1 exp
(
η[d>i m− νk(i)]

)}2 ,

∂j1∂j2∂j3φη,{νk}k(m) = η2

∑L
i=1 d

(j1)
i d

(j2)
i d

(j3)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

)
− 3η2

{∑L
i=1 d

(j1)
i d

(j2)
i exp

(
η[d>i m− νk(i)]

)}{∑L
i=1 exp

(
η[d>i m− νk(i)]

)}
×

{∑L
i=1 d

(j3)
i exp

(
η[d>i m− νk(i)]

)}{∑L
i=1 exp

(
η[d>i m− νk(i)]

)}
+ 2η2

∏
l=1,2,3

(∑L
i=1 d

(jl)
i exp

(
η[d>i m− νk(i)]

))
{∑L

i=1 exp
(
η[d>i m− νk(i)]

)}3 .

Since maxi ‖di‖1 ≤ ε−1
0 q1/2, we obtain that∑

j

|∂jφη,{νk}k(m)| ≤ ε−1
0 q1/2,

∑
j1,j2

|∂j1∂j2φη,{νk}k(m)| ≤ 2ηε−2
0 q, (33)

∑
j1,j2,j3

|∂j1∂j2∂j3φη,{νk}k(m)| ≤ 6η2ε−3
0 q3/2.

By Lemma 5.1 of Chernozhukov et al. (2016), for any δ > 0, there exists some function gδ(·) : R→
R with ‖g′δ‖∞ ≤ δ−1, ‖g′′δ ‖∞ ≤ K0δ

−2, ‖g′′′δ ‖∞ ≤ K0δ
−3 for some constant K0 > 0 such that

I(z0 ≤ 0) ≤ gδ(z0) ≤ I(z0 ≤ 3δ), ∀δ ∈ R.
It follows that

I(φη,{νk}k(m) ≤ 0) ≤ g ◦ φη,{νk}k(m) ≤ I(φη,{νk}k(m) ≤ 3δ),

for any m ∈ RqK . Combining this together with equation 30, equation 31 and equation 32, we
obtain that

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,+
)
≤ 0

}
≤ Egδ ◦ φη,{z∗∗k,+}k(Mn(tK)), (34)

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,−
)
≤ 0

}
≥ Egδ ◦ φη,{z∗∗k,−}k(Mn(tK)). (35)
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Consider the function gδ ◦ φη,{νk}k . Apparently, we have

sup
δ,η,{νk}k

c0(gδ ◦ φη,{νk}k) ≤ 1. (36)

By equation 33, we can show that

sup
δ,η,{νk}k

c2(gδ ◦ φη,{νk}k) � δ−2q + δ−1ηq,

sup
δ,η,{νk}k

c3(gδ ◦ φη,{νk}k) � δ−3q3/2 + δ−2ηq3/2 + δ−1η2q3/2.
(37)

Set δ = η−1{logK + 4d log n(t1)}, we obtain

sup
η,{νk}k

ci(gδ ◦ φη,{νk}k) � qi/2ηi{logiK + logi n(t1)}, i = 2, 3.

Combining equation 37 together with equation 25 and equation 36 yields

sup
δ,η,{νk}k

|Egδ ◦ φη,{νk}k(Mn(tK))− Egδ ◦ φη,{νk}k(N(0,V ))|

� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

This together with equation 34 and equation 35 yields

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,+
)
≤ 0

}
− Egδ ◦ φη,{z∗∗k,+}k(N(0,V )) (38)

� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Egδ ◦ φη,{z∗∗k,−}k(N(0,V ))− Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,−
)
≤ 0

}
(39)

� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

Similar to equation 31-equation 35, we can show

Egδ ◦ φη,{z∗∗k,+}k(N(0,V )) ≤ Pr
(
φη,{z∗∗k,+}k(N(0,V )) ≤ 3δ

)
≤ Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗k(j),+} ≤ 3δ

)
= Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗∗k(j),+} ≤ 0

)
,

Egδ ◦ φη,{z∗∗k,−}k(N(0,V )) ≥ Pr
(
φη,{z∗∗k,−}k(N(0,V )) ≤ 0

)
≥ Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗∗k(j),−} ≤ 0

)
,

where

z∗∗∗k,+ = z∗k,+ + η−1{logK + 4d log n(t1)}+ 3δ and z∗∗∗k,− = z∗k,− − η−1{logK + 4d log n(t1)} − 3δ,

for each k. Notice that for any {νk}k, we have

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− νk
)
≤ 0

}
= Pr

(
max

1≤j≤L
{d>j N(0,V )− νk(j)} ≤ 0

)
.

This together with equation 38 and equation 39 yields

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,+
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,+

)
≤ 0

}
� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,−

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)− z∗k,−
)
≤ 0

}
� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).
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In view of equation 29, we have shown that

Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,+

)
≤ 0

}
� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,−

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

The covariance matrix Cov(G(tk)) is given by
∑
a∈{0,1} Σ−1

a ΦaΣ−1
a and is nonsingular by Lemma

4. In addition, we have ‖ϕ(x)‖2 ≥ c̄,∀x ∈ X0, by Condition A3. Thus, there exists some constant
c∗ > 0 such that

c∗ ≤ ϕ>(x)

 ∑
a∈{0,1}

Σ−1
a ΦaΣ−1

a

1/2

ϕ(x), ∀x ∈ X0.

By Theorem 1 of Chernozhukov et al. (2017), we obtain that

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,+

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− z∗∗∗k,−

)
≤ 0

}
� η−1{logK + log n(t1)}3/2 + qδn(t1){logK + log n(t1)}1/2 +

√
qn−1(t1) log n(t1){logK + log n(t1)}1/2.

Thus, we obtain∣∣∣∣Pr
{

max
k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− zk
)
≤ 0

}∣∣∣∣
� n−1/2(t1)q3η3{log3K + log3 n(t1)}+ q2η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1)

+ η−1{logK + log n(t1)}3/2 + qδn(t1){logK + log n(t1)}1/2 +
√
qn−1(t1) log n(t1){logK + log n(t1)}1/2.

Setting η = min(q−3/4n1/8(t1) log−3/8{Kn(t1)}, q−1n−α0/3(t1) log−α0/3−1/6{Kn(t1)}) yields
the desired results. The proof is hence completed.

E.3 PROOF OF LEMMA 3

The assertion trivially holds for j = 1. We prove it holds for any j ≥ 2, by induction. By (A2),
we have (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ A1|X1. Since (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (X1, Y

∗
1 (0), Y ∗1 (1)), this fur-

ther implies (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ A1 and hence (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (X1, A1, Y

∗
1 (0), Y ∗1 (1)).

By (A1), Y1 is completely determined by A1, Y ∗1 (0) and Y ∗1 (1). Therefore, we obtain
(Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ F1.

Suppose we have shown that (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fk for some k < j − 1. To prove

(Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fk+1, it suffices to show (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (Xk+1, Ak+1, Yk+1).

By (A1), Yk+1 is determined by Ak+1, Y ∗k+1(0) and Y ∗k+1(1). Since (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥

(Xk+1, Y
∗
k+1(0), Y ∗k+1(1)), it suffices to show (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ Ak+1. This is implied by

(Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Ak+1|Xk+1,Fk and that (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ Xk+1,Fk. The proof is

hence completed.

E.4 PROOF OF LEMMA 4

The assertions

ε0 ≤ λmin[Eϕ(X)ϕ>(X)] ≤ λmax[Eϕ(X)ϕ>(X)] ≤ ε−1
0 , (40)

and

sup
x
‖ϕ(x)‖1 ≤ ε−1

0

√
q, (41)
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for some 0 < ε0 < 1 are directly implied by the conditions that λmin[Eϕ(X)ϕ>(X)] � 1,
λmax[Eϕ(X)ϕ>(X)] � 1, supx ‖ϕ(x)‖1 ≤ ε−1

0

√
q. Since ‖ϕ(x)‖2 ≤ ‖ϕ(x)‖1, we obtain

supx ‖ϕ(x)‖2 ≤ supx ‖ϕ(x)‖1 ≤ ε−1
0

√
q.

Under the condition infa,x π
∗(a, x) > 0, we can similarly show that λmin[Σa] ≥ ε0 for some ε0 > 0.

Since |Y ∗(0)| and |Y ∗(1)| are bounded, there exists some constant 0 < ε0 < 1 that satisfies
maxa∈{0,1} |Y ∗(a)| ≤ ε−1

0 . Notice that ϕ>(x)βa = E{Y ∗(a)|X = x}. Boundedness of |Y ∗(a)|
implies that the conditional mean E{Y ∗(a)|X} is a bounded random variable as well. As a result,
we obtain supx∈X maxa∈{0,1} |ϕ>(x)βa| ≤ ε−1

0 .

Notice that βa = Σ−1
a Eϕ>(X)Y ∗(a). Since λmin[Σa] is bounded away from 0, it suffices to show

‖Eϕ>(X)Y ∗(a)‖2 = O(1), or equivalently,

sup
ν∈Rp,‖ν‖2=1

|Eν>ϕ(X)Y ∗(a)| = O(1).

By Cauchy-Schwarz inequality, it suffices to show

sup
ν∈Rp,‖ν‖2=1

E|Y ∗(a)|2E|ν>ϕ(X)|2 = O(1).

Since |Y ∗(a)| = O(1) almost surely, we have by the condition λmax[Eϕ(X)ϕ>(X)] = O(1) that

sup
ν∈Rp,‖ν‖2=1

E|ν>ϕ(X)|2 = sup
ν∈Rp,‖ν‖2=1

ν>Eϕ(X)ϕ>(X)ν ≤ λmax[Eϕ(X)ϕ>(X)] = O(1).

The proof is hence completed.

E.5 PROOF OF LEMMA 5

E.5.1 PROOF OF EQUATION 14

Notice that

‖j(Σ̂1,j − Σ1)‖2 =

∥∥∥∥∥
j∑
i=1

{Aiϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(1, X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

(42)

+j

∥∥∥∥∥EFi−1ϕ(X)ϕ>(X)

(
1

j

j∑
i=1

πi−1(1, X)− π∗(1, X)

)∥∥∥∥∥
2

.

By Lemma 4, we have∥∥∥∥∥EFi−1ϕ(X)ϕ>(X)

(
1

j

j∑
i=1

πi−1(1, X)− π∗(1, X)

)∥∥∥∥∥
2

≤ ε−2
0 qEFi−1

∣∣∣∣∣1j
j∑
i=1

πi−1(1, X)− π∗(1, X)

∣∣∣∣∣
≤ ε−2

0 q2j−α0 logα0 j, ∀j ≥ jn,
with probability at least 1−O(j−α0

n ).

Consider the first term on the RHS of equation 42. For any i ≥ 1, defineMi = ϕ(Xi)ϕ
>(Xi){Ai−

πi−1(1, Xi)}. Notice that {Mi}i≥1 forms a martingale difference sequence with respect to the
filtration {σ(Fi−1) : i ≥ 2}, since

E[ϕ(Xi)ϕ
>(Xi){Ai − πi−1(Xi)}|Fi−1] (43)

= EFi−1 [E(ϕ(Xi)ϕ(Xi)
>{Ai − πi−1(Xi)}|Fi−1, Xi)] = 0,

where EFi,Xi denotes the conditional expectation given Xi and Fi. Here, the first equality is due to
that Xi ⊥⊥ Fi−1, implied by Lemma 3. Under the given conditions on the basis function ϕ(·), using
similar arguments in proving Equation (C.15) of Shi et al. (2020b), we can show that the following
event occurs with probability at least 1−O(j−2),∥∥∥∥∥

j∑
i=1

Mi

∥∥∥∥∥
2

�
√
qj log(j).
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Notice that
∑
k≥j k

−2 ≤ j−2 +
∑
k>j{k(k− 1)}−1 = j−2 + j−1. Thus, the following occurs with

probability at least 1−O(j−1
n ),∥∥∥∥∥

j∑
i=1

{Aiϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(1, X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qj log j, ∀j ≥ jn. (44)

It follows that

‖(Σ̂1,k − Σ1)‖2 � qδk +
√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0). Similarly, we can show

‖(Σ̂0,k − Σ0)‖2 � qδk +
√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ). The proof is hence completed.

E.5.2 PROOF OF EQUATION 15

When jn satisfies jα0
n / logα0(jn)� q2, it follows from equation 14 and equation 40 that

λmin[Σ̂a,k] ≥ λmin[Σa]− ‖Σ̂a,k − Σa‖2 ≥ 2−1ε0, ∀k ≥ jn, (45)

with probability at least 1 − O(j−α0
n ). Combining equation 40 with equation 45 and equation 14,

we obtain

‖Σ̂−1
a,k − Σ−1

a ‖2 = ‖Σ̂−1
a,k(Σ̂a,k − Σa)Σ−1

a ‖2 ≤ λmin[Σa]λmin[Σ̂a,k)‖Σ̂a,k − Σa‖2
� qδk +

√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ). The proof is hence completed.

E.6 PROOF OF LEMMA 6

For any l ∈ {1, . . . , q} and i ≥ 1, define Mi(l) = ϕ(l)(Xi)Ai{Yi − ϕ>(Xi)β1}. Here, ϕ(l)(Xi)
corresponds to the l-th element of ϕ(Xi). Similar to equation 43, we can show {Mi(l)}i≥1 forms a
martingale difference sequence with respect to the filtration {σ(Fi−1) : i ≥ 1}. By equation 43, we
have for any l,

E{ϕ(l)(Xi)}2 ≤ λmax[ϕ(Xi)ϕ
>(Xi)] ≤ ε−1

0 . (46)

Notice that

E{M2
i (l)|Fi−1} = E[{ϕ(l)(Xi)}2Ai{Y ∗i (1)− ϕ>(Xi)β1}2|Fi−1]

≤ E[{ϕ(l)(Xi)}2{Y ∗i (1)− ϕ>(Xi)β1}2|Fi−1] = Eσ2(1, Xi){ϕ(l)(Xi)}2

≤ 4ε−2
0 E{ϕ(l)(Xi)}2 ≤ 4ε−3

0 ,

where the first equality is due to (A1), the first inequality is due to that A is bounded between 0 and
1, the second equality follows from Lemma 3, the second inequality follows from Lemma 4, and the
last inequality is due to equation 46. It follows that

k∑
i=1

E{M2
i (l)|Fi−1} ≤ 4kε−3

0 . (47)

Similarly, by (A1) and Lemma 4, we have

k∑
i=1

M2
i (l) ≤ 4ε−2

0

k∑
i=1

{ψ(l)(Xi)}2. (48)

Similar to equation 44, we can show with probability at least 1−O(j−1) that

k∑
i=1

[M2
i (l)− E{M2

i (l)|Fi−1}] �
√
qk log k, ∀k ≥ j.
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Thus, for any sequence jn that satisfies jn/ log(jn)� q, we have by equation 47 that
k∑
i=1

M2
i (l) +

k∑
i=1

E{M2
i (l)|Fi−1} ≤ c̄k, ∀k ≥ jn,

for some constant c̄ > 0, with probability at least 1−O(j−1
n ). It follows that

Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}


≥ Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




− O(j−1
n ) ≥ Pr

 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}


−O(j−1

n )

− Pr

 ⋃
k≥jn

{|
k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




≥ 1− Pr

 ⋃
k≥jn

{|
k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




− O(j−1
n ).

By Bonferroni’s inequality and Theorem 2.1 of Bercu & Touati (2008), we have

Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}

 ≥ 1−O(j−1
n )

−
∑
k≥jn

Pr

{| k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂ ⋂
k′≥jn

{
k′∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k′}




≥ 1−O(j−1
n )−

∑
k≥jn

Pr

(
{|

k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k

})

≥ 1−O(j−1
n )− 2

∑
k≥jn

exp

(
−4c̄k log k

2c̄k

)
= 1−O(j−1

n )−
∑
k≥jn

2k−2. (49)

The last term on the RHS of equation 49 is 1 − O(j−1
n ). To summarize, we have shown that the

following event occurs with probability at least 1−O(j−1
n ),⋂

k≥jn

{
|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k

}
.

By Bonferroni’s inequality, we have⋂
k≥jn

{∥∥∥∥∥
k∑
i=1

ϕ(Xi)Ai{Yi − ϕ>(Xi)β1}

∥∥∥∥∥
2

≤ 2
√
c̄qk log k

}
,

with probability at least 1−O(j
−1/2
n ). Similarly, we can show⋂

k≥jn

{∥∥∥∥∥
k∑
i=1

ϕ(Xi)(1−Ai){Yi − ϕ>(Xi)β0}

∥∥∥∥∥
2

≤ c
√
qk log k

}
,

for some constant c > 0, with probability at least 1−O(j−1
n ). The proof is hence completed.
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E.7 PROOF OF THEOREM 3

We state the following lemmas before presenting the proof.

Lemma 7 Assume the conditions in Theorem 3 hold. Then for any sequence {jn}n that satisfies
jα0
n / logα0 jn � q2, we have with probability at least 1−O(j−α0

n ) that

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log k, ∀a ∈ {0, 1},∀k ≥ jn.

Lemma 8 Assume the conditions in Theorem 3 hold. Then for any sequence {jn}n that satisfies
jα0
n / logα0 jn � q2, we have with probability at least 1−O(j−α0

n ) that∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}2 − Φa

∥∥∥∥∥
2

� qδk + q1/2k−1/2
√

log k,

∀a ∈ {0, 1}, k ≥ jn.

Similar to the proof of Theorem 1, we will show the assertion in Theorem 3 holds for any n(·)
that correspond to the realizations of N(·) that satisfy n(t1) < n(t2) < · · · < n(tK). For any
1 ≤ k1 ≤ k2 ≤ K, define

V̂ (k1, k2) =
√
n(tk1)n(tk2)Cov

(
β̂MB∗

1 (tk1)− β̂MB∗
0 (tk1), β̂MB∗

1 (tk2)− β̂MB∗
0 (tk2)|{(Xi, Ai, Yi)}+∞i=1

)
=

1√
n(tk1)n(tk2)

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ̂−1
a (tj),

and

V̂ =


V̂ (1, 1) V̂ (1, 2) . . . V̂ (1,K)

V̂ (2, 1) V̂ (2, 2) . . . V̂ (2,K)
...

...
...

V̂ (K, 1) V̂ (K, 2) . . . V̂ (K,K)

 .

We aim to bound the entrywise `∞ norm of V̂ − V where V is defined in equation 22. It
suffices to bound max1≤k1≤k2≤K supb1,b2∈Rp+1,‖b1‖2=‖b2‖2=1 |bT1 {V̂ (k1, k2) − V (k1, k2)}b2| =

max1≤k1≤k2≤K ‖V̂ (k1, k2) − V (k1, k2)‖2. For any k1, k2, we decompose V̂ (k1, k2) − V (k1, k2)
as

V̂ (k1, k2)− V (k1, k2) = V̂ (k1, k2)− V̂ ∗(k1, k2) + V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2) + V̂ ∗∗(k1, k2)− V (k1, k2),

where

V̂ ∗(k1, k2) =
1√

n(tk1)n(tk2)

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a ,

V̂ ∗∗(k1, k2) =
1√

n(tk1)n(tk2)

1∑
a=0

n(tk1
)∑

j=1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa}2Σ−1
a .

By Lemma 4 and Lemma 8, we obtain that

max
1≤k1≤k2≤K

‖V̂ ∗∗(k1, k2)− V (k1, k2)‖2

≤ max
1≤k1≤K

1∑
a=0

∥∥∥∥∥∥ 1

n(tk1)

n(tk1
)∑

j=1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa}2Σ−1
a − Σ−1

a ΦaΣ−1
a

∥∥∥∥∥∥
2

≤ max
1≤k1≤K

1

ε20

1∑
a=0

∥∥∥∥∥∥ 1

n(tk1)

n(tk1
)∑

j=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}2 − Φa

∥∥∥∥∥∥
2

� qδn(t1) + q1/2n−1/2(t1)
√

log n(t1), (50)
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with probability at least 1−O(n−α0(t1)).

Notice that√
n(tk1)n(tk2)V̂ ∗(k1, k2) =

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a

=

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa + ϕ>(Xi)βa − ϕ>(Xi)β̂a(tj)}2Σ−1
a

=

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){ϕ>(Xi)βa − ϕ>(Xi)β̂a(tj)}2Σ−1
a

+2

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa}ϕ>(Xi){βa − β̂a(tj)}Σ−1
a

+
√
n(tk1)n(tk2)V̂ ∗∗(k1, k2).

It follows that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2

≤ max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){ϕ>(Xi)βa − ϕ>(Xi)β̂a(tj)}2Σ−1
a

∥∥∥∥∥∥
2

+ max
1≤k1≤K

2

n(tk1)

∥∥∥∥∥∥
1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa}ϕ>(Xi)(βa − β̂a(tj))Σ
−1
a

∥∥∥∥∥∥
2

.

By Lemma 4, we obtain that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
(51)

� max
1≤k1≤K
a∈{0,1}

1

n(tk1)

∥∥∥∥∥∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){ϕ>(Xi)βa − ϕ>(Xi)β̂a(tj)}2︸ ︷︷ ︸

Ψ1,a,k1

∥∥∥∥∥∥∥∥∥∥∥
2

+ max
1≤k1≤K
a∈{0,1}

2

n(tk1)

∥∥∥∥∥∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}ϕ>(Xi){βa − β̂a(tj)}︸ ︷︷ ︸

Ψ2,a,k1

∥∥∥∥∥∥∥∥∥∥∥
2

.

By Lemmas 4 and 7, we have with probability at least 1−O(n−1(t1)) that

1

n(tk1)
‖Ψ1,a,k1‖2 � q2n−1(t1) log{n(t1)}

∥∥∥∥∥∥ 1

n(tk1)

n(tk1
)∑

i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)

∥∥∥∥∥∥
2

, (52)

∀1 ≤ k1 ≤ K, a ∈ {0, 1}.
Similar to Lemma 5, we can show there exists some constant c∗ > 0 that

1

n(tk1)

∥∥∥∥∥∥
n(tk1

)∑
i=1

[I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1{I(Ai = a)ϕ(Xi)ϕ

>(Xi)}]

∥∥∥∥∥∥
2

(53)

≤ c∗{qδn(tk1
) + q1/2n−1/2(tk1)

√
log n(tk1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1},
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with probability at least 1 − O(n−1(t1)). By Lemma 4, we can show with probability at least
1−O(n−1(t1)) that

max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
n(tk1

)∑
i=1

EFi−1{I(Ai = a)ϕ(Xi)ϕ
>(Xi)}

∥∥∥∥∥∥
2

= O(1).

This together with equation 52 and equation 53 yields
n−1(tk1)‖Ψ1,a,k1‖2 � q2n−1(t1) log{n(t1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1}, (54)

with probability at least 1−O(n−1(t1)).

Moreover, using similar arguments in proving Equation (C.15) of Shi et al. (2020b), we can show
that for any 1 ≤ k1 ≤ K, the following event occurs with probability at least 1−O(n−2(tk1)),

1

n(tk1)

∥∥∥∥∥∥
n(tk1

)∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}ϕ(l)(Xi)

∥∥∥∥∥∥
2

� q1/2n−1/2(tk1)
√

log n(tk1),

∀1 ≤ l ≤ q.
Since

∑K
k1=1 n

−2(tk1) ≤ n−1(t1), we obtain with probability at least 1−O(n−1(t1)) that

1

n(tk1)

∥∥∥∥∥∥
n(tk1

)∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}ϕ(l)(Xi)

∥∥∥∥∥∥
2

� q1/2n−1/2(tk1)
√

log n(tk1),

∀1 ≤ l ≤ q, 1 ≤ k1 ≤ K.
In addition, it follows from Lemma 7 that

n−1(tk1)‖Ψ2,a,k1‖2 � q3/2n−1(t1) log{n(t1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1}.

This together with equation 54 yields that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
� q2n−1(t1) log n(t1),

with probability at least 1−O(n−1(t1)). Under the given conditions, we have

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
� q1/2n−1/2(t1) log1/2 n(t1), (55)

with probability at least 1−O(n−1(t1)).

Moreover, with some calculations, we can show that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
≤

1∑
a=0

max
j≥1
‖Σ−1

a − Σ̂−1
a (tj)‖2

× max
1≤k1≤K

2

n(tk1)

∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1

a

∥∥∥∥∥∥
2

+

1∑
a=0

max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a

∥∥∥∥∥∥
2

× max
j≥1
‖Σ−1

a − Σ̂−1
a (tj)‖22.

In view of Lemma 4 and Lemma 5, we have with probability at least 1−O(n−α0(t1)) that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
≤ O(1)(qδn(t1) +

√
qn−1(t1) log n(t1))

× max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2︸ ︷︷ ︸

Ψ3,a,k1

∥∥∥∥∥∥∥∥∥∥∥
2

,
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where O(1) denotes some positive constant. Similar to equation 50 and equation 55, we can show
with probability at least 1−O(n−α0(t1)) that

max
a∈{0,1}

max
1≤k1≤K

∥∥∥∥ 1

n(tk1)
Ψ3,a,k1 −Ψa

∥∥∥∥
2

= o(1).

Similar to Lemma 4, we can show maxa∈{0,1} ‖Ψa‖2 = O(1). It follows that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
� qδn(t1) +

√
qn−1(t1) log n(t1),

with probability at least 1−O(n−α0(t1)). Combining this together with equation 50 and equation 55,
we obtain with probability at least 1−O(n−α0(t1)) that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V (k1, k2)
∥∥∥

2
� qδn(t1) +

√
qn−1(t1) log n(t1).

Consider the function gδ ◦ φη,{νk}k defined in the proof of Theorem 1. We fix δ = η−1{logK +
4d log n(t1)}. Based on Lemma A2 in Belloni & Oliveira (2018), we have with probability at least
1−O(n−α0(t1)) that

sup
{νk}k

∣∣∣E∗gδ ◦ φη,{νk}k(N(0, V̂ ))− Egδ ◦ φη,{νk}k(N(0,V ))
∣∣∣

� qη2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,

where E∗ denotes the expectation conditional on the observed data. For a given set of thresholds
{νk}k, using similar arguments in proving equation 31, equation 32, equation 34 and equation 35,
we can show with probability at least 1−O(n−α0(t1)) that

Pr∗
{

max
k∈{1,...,K}

(√
n(tk)ŜMB∗ − νk

)
≤ 0

}
≤ E∗gδ ◦ φη,{νk,+}k(N(0, V̂ ))

≤ Egδ ◦ φη,{νk,+}k(N(0,V )) +O(1)qη2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
≤ Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,+
)
≤ 0

}
+ O(1)qη2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,

and

Pr∗
{

max
k∈{1,...,K}

(√
n(tk)ŜMB∗ − νk

)
≤ 0

}
≥ E∗gδ ◦ φη,{νk,−}k(N(0, V̂ ))

≥ Egδ ◦ φη,{νk,−}k(N(0,V ))−O(1)qη2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
≥ Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,−
)
≤ 0

}
− O(1)qη2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,

where O(1) denotes some positive constant, and

νk,+ = νk + η−1{4d log n(t1) + logK}+ c̄∗n−2(t1), ν∗k,+ = νk,+ + 3η−1{4d log n(t1) + logK},
νk,− = νk − 3η−1{4d log n(t1) + logK} − c̄∗n−2(t1), ν∗k,− = νk,− − η−1{4d log n(t1) + logK}.

By Theorem 2 of Chernozhukov et al. (2017), we obtain that

Pr
{

max
k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,+
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,−
)
≤ 0

}
� η−1{log3/2 n(t1) + log3/2K}+ c̄∗n−2(t1){log1/2 n(t1) + log1/2K}.

29



Under review as a conference paper at ICLR 2021

It follows that

sup
{νk}k

∣∣∣∣Pr∗
{

max
k∈{1,...,K}

(√
n(tk)ŜMB∗ − νk

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− νk
)
≤ 0

}∣∣∣∣
� qη2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
+η−1{log3/2 n(t1) + log3/2K}+ c̄∗n−2(t1){log1/2 n(t1) + log1/2K},

with probability at least 1−O(n−α0(t1)). Set

η = min[q−1nα0/3(t1) log−(1+2α0)/6{Kn(t1)}, q−1/2n1/6(t1) log−1/3{Kn(t1)}],

we obtain the desired result.

E.8 PROOF OF LEMMA 7

Combining Lemma 6 with Lemma 4 yields that∥∥∥∥∥Σ−1
a

(
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi − ϕ>(Xi)βa}

)∥∥∥∥∥
2

� q1/2k−1/2
√

log k, ∀k ≥ jn, a ∈ {0, 1},

with probability at least 1−O(j−1
n ). Combining this together with equation 16 yields that

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log k, ∀k ≥ jn, a ∈ {0, 1},

with probability at least 1−O(j−1
n ). The proof is hence completed.

E.9 PROOF OF LEMMA 8

Notice that ∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)(Yi − ϕ>(Xi)βa)2 − Φa

∥∥∥∥∥
2

≤

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi − ϕ>(Xi)βa}2 − σ2(a,Xi)]

∥∥∥∥∥
2

+

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)σ

2(a,Xi)− Φa

∥∥∥∥∥
2

. (56)

Similar to the proof of Lemma 5, we can show that the second term on the RHS of equation 56 is
of the order O(qδk +

√
qk−1 log k), for any a ∈ {0, 1} and any k ≥ jn, with probability at least

1−O(j−α0
n ). As for the first term, notice that each element in the matrix

1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){(Yi − ϕ>(Xi)βa)2 − σ2(a,Xi)} (57)

corresponds to a martingale with respect to the filtration {σ(Fi−1) : i ≥ 1}, under (A1) and (A2).
Using similar arguments in proving Equation (C.15) of Shi et al. (2020b), we can show that∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi − ϕ>(Xi)βa}2 − σ2(a,Xi)]

∥∥∥∥∥
2

� q1/2k−1/2
√

log k,

∀a ∈ {0, 1}, k ≥ jn,

with probability at least 1−O(j−1
n ). The proof is hence completed.
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E.10 PROOF OF LEMMA 2

We begin by providing an upper bound for maxa∈{0,1} ‖β̂a,k − βa‖2. With some calculations, we
have

max
a∈{0,1}

‖β̂a,k − βa‖2 = max
a∈{0,1}

1

k

∥∥∥∥∥Σ̂−1
a,k

(
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

)∥∥∥∥∥
2

≤ max
a∈{0,1}

∥∥∥Σ̂−1
a,k

∥∥∥
2

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

.

By Lemma 6, we obtain with probability at least 1−O(j−1
n ) that

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

� q1/2k−1/2
√

log k, ∀k ≥ jn. (58)

Similarly, we can show with probability at least 1−O(j−1
n ) that

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

� q1/2k−1/2
√

log jn, (59)

∀1 ≤ k < jn.

Similar to equation 42, we have

max
a∈{0,1}

λmin[Σ̂a,k] ≥ min
a∈{0,1}

λmin

(
EFi−1ϕ(X)ϕ>(X)

1

k

k∑
i=1

πi−1(a,X)

)

− max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

.

Using similar arguments in proving equation 44, we can show that

max
a∈{0,1}

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qk log k, (60)

∀k ≥ jn,
with probability at least 1−O(j−1

n ). Similarly, we can show

max
a∈{0,1}

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qk log jn, (61)

∀1 ≤ k < jn,

with probability at least 1−O(j−1
n ).

Without loss of generality, assume ε0 ≤ 1/2. Notice that we have πi−1(a, x) ≥ ε0, for any a ∈
{0, 1}, x ∈ X and i ≥ N0. This together with Lemma equation 4 implies that

inf
a∈{0,1},n≥jn

λmin

(
EFi−1ϕ(X)ϕ>(X)

1

n

n∑
i=1

πi−1(a,X)

)
≥ n−N0

n
ε0 ≥

j −N0

j
ε0.

Combining this together with equation 60 and equation 61 yields

max
a∈{0,1}

λmin[Σ̂a,k] ≥ ε0

2
, ∀k ≥ L∗

√
q log jn,

for some constant L∗ ≥ 1, with probability at least 1−O(j−1
n ). This together with equation 58 and

equation 59 yields that

max
a∈{0,1}

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log max(k, jn), ∀k ≥ L∗
√
q log jn,
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with probability at least 1−O(j−1
n ).

By Condition (A3), we have

|ϕ>(X)(β̂1,k − β̂0,k − β1 + β0)| ≤ L̄qk−1/2 log1/2 max(k, jn), ∀k ≥ L∗
√
q log jn, (62)

for some constant L̄ > 0, with probability at least 1−O(j−1
n ).

For any z1, z2 ∈ R, we have I(z1 > 0) 6= I(z2 > 0) only when |z1 − z2| ≥ |z2|. Hence, under the
event defined in equation 62, the event I{ϕ>(X)(β̂1,k − β̂0,k) > 0} 6= I{ϕ>(X)(β1 − β0) > 0}
occurs only when

|ϕ>(X)(β1 − β0)| ≤ |ϕ>(X)(β̂1,k − β̂0,k − β1 + β0)| ≤ L̄qk−1/2
√

log max(k, jn),

for any k ≥ jn. Under the given conditions, we have

Pr
(
|ϕ>(X)(β1 − β0)| ≤ L̄qk−1/2 log1/2 max(k, jn)

)
≤ L̄L0qk

−1/2 log1/2 max(k, jn). (63)

Notice that when I{ϕ>(X)(β̂1,k − β̂0,k) > 0} = I{ϕ>(X)(β1 − β0) > 0}, we have
πk(a,X) = π∗(a,X). Thus, we obtain πk(a,X) = π∗(a,X) if |ϕ>(X)(β1 − β0)| >
L̄qk−1/2

√
log max(k, jn), for any k ≥ L∗

√
q log jn. Set k0 = L∗

√
q log jn. By equation 62

and equation 63, we have with probability at least 1−O(j−1
n ) that∑

a∈{0,1}

EFi−1

∣∣∣∣∣
k∑
i=1

{πi−1(a,X)− π∗(a,X)}

∣∣∣∣∣ ≤ ∑
a∈{0,1}

k0∑
i=1

EFi−1 |πi−1(a,X)− π∗(a,X)|

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)| ≤ 2L∗
√
q log jn

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)|I{|ϕ>(X)(β1 − β0)| > L̄qi−1/2 log1/2 i}

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)|I{|ϕ>(X)(β1 − β0)| ≤ L̄qi−1/2 log1/2 i}

≤ 2L∗
√
q log jn +

∑
a∈{0,1}

n∑
i=k0+1

Pr
(
|ϕ>(X)(β1 − β0)| ≤ L̄qi−1/2

√
log i

)
� qk1/2 log1/2 k, ∀k ≥ jn.

The proof is hence completed.

F COMPARISON OF THE BASELINE

Consider our test statistic S(t). Under H0, it can be bounded from above by

sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}. (64)

It suffices to provide an upper bound for the above expression. By Cauchy-Schwarz inequality,
equation 64 can be upper bounded by

sup
x∈X
‖ϕ(x)‖2‖β̂1(t)− β∗1 − β̂0(t) + β∗0‖2.

It suffices to provide anytime upper bound for ‖β̂1(t)− β∗1 − β̂0(t)− β∗0‖2.

Recall that

β̂1(t)− β∗1 − β̂0(t) + β∗0

=
1

N(t)

N(t)∑
i=1

[I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β

∗
1} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β
∗
0}].
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The above expression is asymptotically equivalent to

1

N(t)

N(t)∑
i=1

[I(Ai = 1)Σ−1
1 ϕ(Xi){Yi − ϕ>(Xi)β

∗
1} − I(Ai = 0)Σ−1

0 ϕ(Xi){Yi − ϕ>(Xi)β
∗
0}].

By the law of iterated logarithm, the `-th dimension of the above expression can be upper bounded
by

N−1/2(t)
√

2σ2
` log log{N(t)},

where
∑
` σ̂

2
` can be consistently estimated by

1

N(t)

N(t)∑
i=1

‖I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂1(t)} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂0(t)}‖22.

As such, the finite error bound is given by

sup
x∈X
‖ϕ(x)‖2

√
2 log log{N(t)}√

N(t)
×√√√√ 1

N(t)

N(t)∑
i=1

‖I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂1(t)} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂0(t)}‖22.

G ADDITIONAL TABLES AND FIGURES

method BAT LIL
Random Adaptive Random Adaptive

(n,K) δ rej probs E[stop] rej probs E[stop] rej probs E[stop] rej probs E[stop]

S1

(200, 5)

0.00 5.0(1.1) 3537(14) 6.2(1.2) 3534(15) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.10 17.2(1.9) 3400(24) 18.5(1.9) 3409(23) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.15 36.0(2.4) 3184(32) 35.5(2.4) 3189(32) 0.2(0.2) 3599(0) 0.0(0.0) 3600(0)
0.20 55.8(2.5) 2914(36) 60.0(2.4) 2908(36) 0.5(0.4) 3598(1) 0.8(0.4) 3595(3)
0.25 79.5(2.0) 2545(35) 81.5(1.9) 2528(34) 1.8(0.7) 3590(4) 2.8(0.8) 3585(5)
0.30 93.2(1.3) 2286(27) 95.2(1.1) 2280(26) 7.2(1.3) 3560(10) 7.5(1.3) 3549(11)

(20, 50)

0.00 5.2(1.1) 3879(18) 5.5(1.1) 3882(18) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.10 17.2(1.9) 3716(29) 24.0(2.1) 3651(32) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.15 39.5(2.4) 3394(40) 41.2(2.5) 3365(40) 0.0(0.0) 3960(0) 0.2(0.2) 3958(1)
0.20 61.8(2.4) 3021(44) 61.0(2.4) 3013(44) 0.8(0.4) 3949(6) 0.2(0.2) 3956(3)
0.25 84.0(1.8) 2588(39) 83.5(1.9) 2579(39) 4.8(1.1) 3919(11) 3.5(0.9) 3936(8)
0.30 95.8(1.0) 2281(28) 95.5(1.0) 2275(28) 12.8(1.7) 3847(18) 14.5(1.8) 3873(15)

S1

(200, 5)

0.00 5.0(1.1) 3537(14) 6.2(1.2) 3534(15) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.10 8.8(1.4) 3511(17) 8.8(1.4) 3515(16) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.15 25.5(2.2) 3346(26) 26.0(2.2) 3337(27) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.20 57.2(2.5) 3004(34) 60.2(2.4) 3000(34) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.25 87.2(1.7) 2569(32) 88.2(1.6) 2581(32) 2.0(0.7) 3594(4) 1.5(0.6) 3589(5)
0.30 98.0(0.7) 2224(21) 97.8(0.7) 2254(24) 10.2(1.5) 3559(9) 6.2(1.2) 3574(8)

(20, 50)

0.00 5.2(1.1) 3879(18) 5.5(1.1) 3882(18) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.10 8.2(1.4) 3839(21) 7.0(1.3) 3852(21) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.15 28.0(2.2) 3599(34) 27.8(2.2) 3627(33) 0.0(0.0) 3960(0) 0.2(0.2) 3956(3)
0.20 64.8(2.4) 3165(41) 62.0(2.4) 3168(41) 1.0(0.5) 3951(5) 0.8(0.4) 3955(4)
0.25 92.2(1.3) 2608(35) 90.2(1.5) 2597(36) 5.0(1.1) 3926(10) 2.8(0.8) 3936(8)
0.30 99.2(0.4) 2238(23) 99.2(0.4) 2250(24) 14.5(1.8) 3854(16) 13.8(1.7) 3868(15)

Table 1: QTE: rejection probabilities (multiplied by 100) and average stopping times under Sce-
narios 1 and 2 when α1(·) is chosen as the spending function. Standard errors are reported in the
parentheses.
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method BAT AVT
Random Adaptive Random Adaptive

(n,K) δ rej probs E[stop] rej probs E[stop] rej probs E[stop] rej probs E[stop]

S1

(200, 5)

0.00 5.2(1.1) 1763(8) 6.2(1.2) 1762(8) 0.2(0.2) 1800(0) 51.2(2.5) 1586(11)
0.10 27.5(2.2) 1644(15) 26.0(2.2) 1647(14) 6.8(1.3) 1771(6) 89.0(1.6) 1344(9)
0.15 45.5(2.5) 1511(17) 44.2(2.5) 1527(17) 19.0(2.0) 1718(10) 98.0(0.7) 1250(6)
0.20 62.5(2.4) 1391(18) 64.2(2.4) 1383(18) 42.8(2.5) 1581(15) 99.5(0.4) 1196(6)
0.25 80.2(2.0) 1263(17) 78.8(2.0) 1266(17) 72.8(2.2) 1394(17) 99.8(0.2) 1145(5)
0.30 88.2(1.6) 1176(14) 88.8(1.6) 1179(14) 89.2(1.5) 1216(14) 100.0(0.0) 1091(5)

(20, 50)

0.00 5.8(1.2) 1933(9) 5.0(1.1) 1936(9) 0.2(0.2) 1978(1) 51.5(2.5) 1621(17)
0.10 27.5(2.2) 1771(18) 27.5(2.2) 1771(18) 8.0(1.4) 1929(9) 89.2(1.5) 1276(13)
0.15 45.5(2.5) 1617(22) 45.8(2.5) 1630(21) 25.2(2.2) 1826(15) 97.8(0.7) 1166(7)
0.20 67.0(2.4) 1446(22) 65.5(2.4) 1459(22) 53.8(2.5) 1617(20) 99.0(0.5) 1105(6)
0.25 83.8(1.8) 1287(19) 82.5(1.9) 1288(19) 79.0(2.0) 1379(19) 99.8(0.2) 1061(4)
0.30 92.0(1.4) 1182(16) 91.5(1.4) 1193(16) 94.0(1.2) 1187(15) 100.0(0.0) 1030(2)

S2

(200, 5)

0.00 5.2(1.1) 1763(8) 6.2(1.2) 1762(8) 0.2(0.2) 1800(0) 51.2(2.5) 1586(11)
0.10 18.2(1.9) 1692(12) 16.8(1.9) 1699(12) 3.0(0.9) 1788(3) 82.2(1.9) 1406(10)
0.15 29.0(2.3) 1633(15) 25.2(2.2) 1642(15) 8.5(1.4) 1762(7) 91.8(1.4) 1323(9)
0.20 40.5(2.5) 1559(17) 42.0(2.5) 1548(17) 17.2(1.9) 1724(10) 97.8(0.7) 1257(7)
0.25 50.5(2.5) 1489(18) 49.8(2.5) 1492(18) 33.0(2.4) 1641(14) 99.0(0.5) 1218(6)
0.30 62.5(2.4) 1407(18) 62.5(2.4) 1413(18) 53.5(2.5) 1522(16) 99.5(0.4) 1181(6)

(20, 50)

0.00 5.8(1.2) 1933(9) 5.0(1.1) 1936(9) 0.2(0.2) 1978(1) 51.5(2.5) 1621(17)
0.10 19.0(2.0) 1839(16) 19.0(2.0) 1837(16) 3.5(0.9) 1961(5) 81.0(2.0) 1360(15)
0.15 28.5(2.3) 1763(19) 28.0(2.2) 1771(18) 11.5(1.6) 1911(10) 90.8(1.4) 1256(12)
0.20 39.0(2.4) 1680(21) 41.8(2.5) 1685(20) 24.0(2.1) 1830(15) 97.5(0.8) 1171(8)
0.25 50.7(2.5) 1592(22) 52.5(2.5) 1568(22) 44.2(2.5) 1688(19) 99.0(0.5) 1124(6)
0.30 65.2(2.4) 1479(22) 63.7(2.4) 1481(22) 63.5(2.4) 1539(20) 99.2(0.4) 1092(5)

Table 2: ATE: rejection probabilities (multiplied by 100) and average stopping times under Sce-
narios 1 and 2 when α1(·) is chosen as the spending function. Standard errors are reported in the
parentheses.

Figure 5: Alpha spending functions when θ = 0.5, γ = 1.0.
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