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ABSTRACT

It is widely observed that vanilla autoencoders can have low manifold learning ac-
curacy given a noisy or small training dataset. Recent work has discovered that it
is important to regularize the decoder that explicitly parameterizes the manifold,
where a neighborhood graph is employed for decoder regularization. However,
one caveat of this method is that it is not always straightforward to construct a cor-
rect graph. Alternatively, one may consider naive graph-free regularization meth-
ods such as minimizing the norm of the decoder’s Jacobian or Hessian, but these
norms are not coordinate-invariant (i.e. reparametrization-invariant) and hence do
not capture any meaningful geometric quantity of the manifold nor result in geo-
metrically meaningful manifold regularization effects. Another recent work called
the isometric regularization implicitly forces the manifold to have zero intrinsic
curvature, resulting in some geometrically meaningful regularization effects. But,
since the intrinsic curvature does not capture how the manifold is embedded in the
data space from an extrinsic perspective, the regularization effects are often lim-
ited. In this paper, we propose a minimum extrinsic curvature principle for man-
ifold regularization and Minimum Curvature Autoencoder (MCAE), a graph-
free coordinate-invariant extrinsic curvature minimization framework for autoen-
coder regularization. Experiments with various standard datasets demonstrate that
MCAE improves manifold learning accuracy compared to existing methods, es-
pecially showing strong robustness to noise.

1 INTRODUCTION

Autoencoders are widely used to identify, given a set of high-dimensional data, the underlying lower-
dimensional manifold structure and its coordinate space, simultaneously (Kramer, 1991). The de-
coder explicitly parameterizes the data manifold as a mapping from a lower-dimensional coordinate
space (i.e., latent space) to the high-dimensional data space, and the encoder maps data points to
their corresponding coordinates (i.e., latent values). However, vanilla autoencoders trained to recon-
struct the given training data often learn manifolds that severely overfit to noisy training data or are
wrong in regions where there are fewer data, impairing their manifold learning performances.

It has been recently discovered by Lee et al. (2021) that autoencoder regularization methods that
focus on regularizing the latent space distributions determined entirely by the encoders (Kingma &
Welling, 2013; Tolstikhin et al., 2018; Makhzani et al., 2015; Rifai et al., 2011) are not sufficient
to learn correct manifolds, yet it is important to properly regularize the decoders that parameterize
the manifolds. In (Lee et al., 2021), neighborhood graphs constructed from data are successfully
utilized to regularize the local geometry and connectivity of the manifold, significantly improving
the manifold learning accuracy. However, the underlying premise behind this method is that the
graph has to be accurate, yet constructing a correct graph may not be always straightforward.

There are some graph-free methods such as the denoising autoencoder (Vincent et al., 2010) and
reconstruction contractive autoencoder (Alain & Bengio, 2014) that regularize not only an encoder
but also a decoder. They can learn manifolds that are robust to noise to some extent, but when the
noise level is large, the performance is often less-than-desirable, and they do not always produce
correct manifolds, especially in regions where there are fewer data (discussed in more detail in
Section 4.2).

Since the decoder needs to be regularized, one may come up with some naive regularization strate-
gies such as minimizing the norm of the decoder’s Jacobian or Hessian, considering them as mea-
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Figure 1: Left: Two decoders f and f ′ parameterize the same data manifold where the norm of
Jacobian of f ′ is smaller than that of f , i.e., ∥Jf∥ > ∥Jf ′∥. Right: A curve and developable surface
embedded in R3 have zero intrinsic curvatures.

sures of the manifold’s smoothness. However, these norms do not properly capture any geometric
quantity of the manifold because they are not reparametrization-invariant (or coordinate-invariant).
As shown in Figure 1 (Left), just by increasing the volume of the latent space without actually chang-
ing the manifold, i.e., re-parametrizing the manifold f 7→ f ′, the above norms can be minimized.

Just recently, a coordinate-invariant geometric distortion measure has been introduced to regularize
the decoder to be a geometry-preserving mapping, which is called the isometric regularization (LEE
et al., 2022), so that the data space geometry is preserved in the latent space. Minimizing this dis-
tortion measure implicitly forces the learned manifold to have zero intrinsic curvature – which only
depends on distances measured within the manifold (e.g., a cylinder’s side surface has zero intrin-
sic curvature unlike the spherical surface) –, resulting in some geometrically meaningful manifold
regularization effects.

The intrinsic curvature, however, does not capture how the manifold lies in the data space1, and thus
minimizing the manifold’s intrinsic curvature may not be enough to learn correct manifolds. For
example, curves and developable surfaces 2 in R3 always have zero intrinsic curvatures, e.g., Fig-
ure 1 (Right), regardless of how severely they are curved from an extrinsic point of view (Do Carmo,
2016).

The main contribution of this paper is a coordinate-invariant extrinsic curvature minimization
framework for autoencoder regularization, which we refer to a Minimum Curvature Autoencoder
(MCAE), that is graph-free and effectively improves the manifold learning accuracy given a noisy
or small training dataset. Specifically, we develop a coordinate-invariant extrinsic curvature measure
of the learned manifold, by investigating how smoothly tangent space changes on the manifold, and
use it as a regularization term.

To make things more explicit, let M be a manifold of dimension m embedded in RD. Consider
a mapping T that maps a point x in M to its tangent space TxM, a linear subspace that has the
dimension of m attached at x, i.e., T (x) = TxM. The set of all linear subspaces of dimension m
in RD forms a manifold called the Grassmann manifold denoted by Gr(m,RD) (Bendokat et al.,
2020), and thus the mapping T can be viewed as a mapping between two Riemannian manifolds, i.e.,
T : M → Gr(m,RD). By using the Dirichlet energy (Eells & Lemaire, 1978), a natural smoothness
measure of mappings between two Riemannian manifolds defined in a coordinate-invariant way, we
formulate an extrinsic curvature measure. We also propose a practical estimation strategy of the
curvature measure that can be used for high-dimensional problems, reducing computation costs.

Experiments on diverse image and motion capture data confirm that, compared to existing graph-
free regularized autoencoders, our MCAE improves manifold learning accuracy for noisy and small
training datasets. In particular, our experiments show that even compared to the methods specially
designed to be robust to input perturbations such as the DAE (Vincent et al., 2010) and RCAE (Alain
& Bengio, 2014), the MCAE shows comparable or even in some cases significantly higher robust
manifold learning performance.

1Manifold’s intrinsic properties are defined without involving any embedding.
2A developable surface can be formed by bending or rolling a planar surface without stretching or tearing.
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2 GEOMETRIC PRELIMINARIES

2.1 GRASSMANN MANIFOLD

In this section, we review the Grassmann manifold and its Riemannian geometry from a matrix-
analytic perspective. The Grassmann manifold is defined as the set of all m dimensional linear
subspaces of the Euclidean space RD, denoted by Gr(m,RD); this can be identified with the set of
orthogonal rank-m projection matrices as follows:

Gr(m,RD) = {P ∈ RD×D | PT = P, P 2 = P, rank(P ) = m}, (1)

which is an m(D − m) dimensional manifold; which associates P ∈ Gr(m,RD) with the linear
subspace range(P ) ⊂ RD. This is an implicit parametrization of the Grassmann manifold consid-
ered as being embedded in the Euclidean space RD×D. For more formal and detailed descriptions
of the Grassmann manifold, we refer to (Bendokat et al., 2020).

Given a rank-m matrix J ∈ RD×m, one may want to consider its range, an m-dimensional lin-
ear subspace in RD, as an element of the Grassmann manifold. The embedding E : RD×m →
Gr(m,RD) such that E(J) = J(JTJ)−1JT properly converts J to the element of (1). We note that
(i) range(J) = range(E(J)) and (ii) E(J) = E(JA) for any m×m invertible matrix A ∈ Rm×m

since the transformation J 7→ JA does not change the range.

Next, we introduce the basic Riemannian structure of the Grassmann manifold. At a point P ∈
Gr(m,RD), the tangent space is defined as follows:

TP Gr(m,RD) := {V ∈ RD×D | V T = V, V P + PV = V }, (2)

which can be derived from (1) by differentiating the constraints. One canonical choice of the Rie-
mannian metric is given as follows:

⟨V1, V2⟩ :=
1√
2

Tr(V T
1 V2) for V1, V2 ∈ TP Gr(m,RD). (3)

This metric is invariant under the orthogonal transformation, i.e., ⟨V1, V2⟩ = ⟨RV1, RV2⟩ for any
D ×D orthogonal matrix R.

2.2 DIRICHLET ENERGY FOR MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS

This section introduces the Dirichlet energy for mappings between two Riemannian manifolds. Let
M and N be Riemannian manifolds of dimension m and n; we will consider a differentiable map-
ping f : M → N . We will assume x ∈ M is explicitly parametrized by local coordinates as
x ∈ Rm and the Riemannian metric at x ∈ M is expressed as m × m positive-definite matrix
G(x) = (gij(x)) ∈ Rm×m, and N is embedded in the Euclidean space of higher dimension as
N ⊂ Rd (d ≫ n) and the Riemannian metric at y ∈ N is given as ⟨·, ·⟩y for y ∈ N (e.g. Grass-
mann manifold). The mapping f is expressed as f : Rm → N ⊂ Rd such that y = f(x).

The Dirichlet energy, a global measure of how much the mapping f changes, is defined as follows:∫
M

m∑
i=1

m∑
j=1

gij(x)⟨ ∂f
∂xi

(x),
∂f

∂xj
(x)⟩f(x)

√
det G(x) dx1 · · · dxm, (4)

where gij(x) denotes (i, j)-th element of the inverse of G(x) and
√

det G(x) dx1 · · · dxm is the
Riemannian volume form, which corresponds to the integral functional from the theory of harmonic
maps; this integral is an intrinsic quantity (i.e., coordinate-invariant). We note that the integrand is
a local measure of how much the mapping f changes. We refer to the extensive literature on the
theory and applications of harmonic maps, e.g., (Eells & Lemaire, 1978; 1988; Park & Brockett,
1994; Jang et al., 2020; LEE et al., 2022).

3 MINIMUM CURVATURE AUTOENCODERS

In this section, we propose a regularized autoencoder based on the principle of minimum curvature
manifold learning. Throughout, we consider a data space RD and latent space Rm (D ≫ m) and
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denote a parametric encoder by gϕ : RD → Rm such that z = gϕ(x), and a parametric decoder by
fθ : Rm → RD such that x = fθ(z). The manifold parametrized by the decoder will be denoted by
Mθ, and the Jacobian of the decoder by Jθ(z) =

∂fθ
∂z (z). Given a set of data points {xi ∈ RD}Ni=1,

the empirical data distribution will be denoted by p̂(x) := 1
N

∑N
i=1 δ(x − xi) and the latent space

distribution encoded by gϕ by p̂ϕ(z) :=
1
N

∑N
i=1 δ(z−gϕ(xi)). The subscripts show what variables

each function or geometric object depends on, either θ or ϕ.

3.1 COORDINATE-INVARIANT EXTRINSIC CURVATURE MEASURE

In this section, we formulate a coordinate-invariant (i.e., reparametrization-invariant) extrinsic cur-
vature measure of the manifold Mθ embedded in RD. We begin by introducing the notion of
coordinate-invariance:
Definition 1. Given a manifold M of dimension m embedded in RD, let f : Rm → M be its explicit
parametrization. A functional F(f) is coordinate-invariant (i.e., reparametrization-invariant) if,
given any invertible mapping or coordinate transformation (i.e., reparametrization) h : Rm → Rm,
F(f) = F(f ◦ h−1).

The coordinate-invariance is necessary to properly measure any geometrically meaningful quantity
of the manifold. For example, the integration of the Frobenius norm of Jθ in coordinate space Rm is
not coordinate-invariant, and hence does not capture any geometrically meaningful quantity of Mθ.

Now, we define a coordinate-invariant extrinsic curvature measure of Mθ. The core idea is to define
a local measure of the extrinsic curvature by measuring how fast the tangent space TxMθ changes
within the neighborhood of x, and then integrate it over the manifold to define a global curvature
measure. For this purpose, let a pair of mappings, encoder gϕ and decoder fθ, be a coordinate
system for Mθ, and consider a mapping T : Rm → Gr(m,RD) such that T (z) is the element of the
Grassmann manifold (1) whose range is equal to Tfθ(z)Mθ. We note that the range of the Jacobian
matrix Jθ(z) ∈ RD×m is TxMθ, hence, by using the embedding E : RD×m → Gr(m,RD) such
that E(Jθ) := Jθ(J

T
θ Jθ)

−1JT
θ , we can explicitly write the mapping T as T (z) = E(Jθ(z)).

Let Mθ be assigned with the Riemannian metric induced from the ambient space Euclidean metric,
so that the metric expressed in the coordinate space is JT

θ (z)Jθ(z), and Gr(m,RD) be assigned with
the Riemannian metric in (3). We use the dirichlet energy in (4) of the mapping T as a coordinate-
invariant extrinsic curvature measure, where the integral is replaced by the expectation over p̂ϕ(z):
Definition 2. Given an encoder gϕ, decoder fθ, and empirical distribution in coordinate space
p̂ϕ(z), the global extrinsic curvature measure of Mθ with respect to p̂ϕ(z) is defined as

C(θ, ϕ) := Ez∼p̂ϕ(z)[

m∑
i=1

m∑
j=1

(JT
θ Jθ)

−1
ij Tr(

∂

∂zi
(E(Jθ))

∂

∂zj
(E(Jθ)))]. (5)

Proposition 1. The curvature measure C(θ, ϕ) in Definition 2 is coordinate-invariant, i.e., for an-
other pair of encoder gϕ′ := h ◦ gϕ and decoder fθ′ := fθ ◦ h−1 with any invertible map or
coordinate transformation h such that z′ = h(z), the measure is invariant, i.e., C(θ, ϕ) = C(θ′, ϕ′).

Proof. The proof is given in the Appendix A.2

Our definition of the curvature generalizes classical definition of the curvature of a curve embedded
in R3 from differential geometry (Kühnel, 2015) (please see Appendix A.3 for more details).

With the proposed curvature measure, we define a regularized autoencoder where the loss func-
tion consists of the following two terms i) reconstruction error term for manifold learning and ii)
regularization term C(θ, ϕ) for curvature minimization:

min
θ,ϕ

Ex∼p̂(x)[∥x− fθ ◦ gϕ(x)∥2] + α C(θ, ϕ), (6)

where α is the regularization coefficient, which we refer to as the Minimum Curvature Autoen-
coder (MCAE).
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3.2 PRACTICAL IMPLEMENTATIONS

This section introduces two practical strategies for computation of the curvature measure (5).

Augmented Distribution: In (5), the local curvature measure is expected over the empirical latent
space distribution. However, the influence of the measure is then limited to regions where data
is available; thus the manifold’s curvature in regions where data is no data may not be properly
regularized. In practice, we use data augmentation to resolve this issue. Following (Chen et al.,
2020; LEE et al., 2022), we use the modified mix-up data-augmentation method with a parameter
η > 0, where p̂ϕ(z) is augmented by z = δz1 + (1− δ)z2 such that zi ∼ pϕ(z), i = 1, 2, where δ is
uniformly sampled from [−η, 1 + η]. We set η = 0.2 throughout.

Stochastic Trace Estimation: At first glance, the curvature measure (5) seems computationally
very expensive, because it involves the computation of the full Jacobian Jθ of a deep neural network
and derivative of the Jacboaidn ∂Jθ

∂z , and we even need to backpropagate through them when using
the standard stochastic gradient descent algorithms. To efficiently compute the measure in practice,
we use the Hutchinson’s trace estimator (Hutchinson, 1989), i.e., Tr(A) = Ev∼N (0,I)[v

TAv], then
the curvature measure C(θ, ϕ) has the following expression:

C(θ, ϕ) = Ez∼p̂ϕ(z),v∼N (0,Im),w∼N (0,ID)[v
T ∂(wTE(Jθ))

∂z

∂(E(Jθ)w)

∂z
G−1

θ v], (7)

where Ik is the k × k identity matrix and Gθ = JT
θ Jθ. To implement this computationally

efficiently, we use the Jacobian-vector and vector-Jacboian products in multiple times: (i) for
E(Jθ)w = JθG

−1
θ JT

θ w, we first use the vector-Jacobian product for JT
θ w and the Jacobian-vector

product for Jθ(G−1
θ JT

θ w), and (ii) for ∂(E(Jθ)w)
∂z v and ∂(E(Jθ)w)

∂z (G−1
θ v), we use the Jacobian-vector

products. These techniques make the computation of (5) tractable for high-dimensional complex
problems. Surprisingly, for the estimation of (7), using one sample of v and w at each z ∼ p̂ϕ(z)
was sufficient to train MCAE in our later experiments. When the latent space is high-dimensional,
the matrix inverse computation G−1

θ takes up most of the computation time. Using an approximate
inverse can significantly reduce the computation time, see the Appendix A.6.

4 EXPERIMENTS

4.1 PARAMETER SWEEP

We first provide an empirical study on the effect of the most important parameter of MCAE, the reg-
ularization coefficient α. Intuitively, as α increases, the tendency to minimize the extrinsic curvature
of the manifold becomes stronger, so the learned manifold will become closer to a linear subspace.
And, if α is too small, the learned manifold will not be different from that of the vanilla autoencoder;
hence it is important to select an appropriate value for α depending on the dataset.

Figure 2 shows how α affects the learned manifold in MCAE with two examples. In the upper figure,
given noisy two-dimensional data points, we train MCAEs with one-dimensional latent spaces. In
the lower figure, given sparse three-dimensional data points constrained on the 2-sphere S2 := {x ∈
R3 | ∥x∥ = 1}, we train MCAEs with one-dimensional latent spaces, where the decoder outputs are
normalized to be in S2. As can be seen, α = 0.01 and α = 0.0001 are good values for the upper
and lower examples, respectively. In practice, we can find the optimal value of α with a proper
validation criteria (e.g., mean reconstruction error for validation data).

4.2 COMPARISON TO OTHER REGULARIZATION METHODS

In this section, we compare the proposed MCAE with other regularized autoencoders and highlight
the differences. Please refer to Appendix A.1 for more detailed comparisons.

Comparison to Isometrically Regularized Autoencoders: In the Isometrically Regularized Au-
toencoder (IRAE) (LEE et al., 2022), the decoder is regularized to be a scaled isometry; similar to
(6), a regularization term that measures how far fθ from being a scaled isometry is added to the
reconstruction error term with the regularization coefficient α. This regularization implicitly forces
the learned manifold Mθ to have zero intrinsic curvature, but not the extrinsic curvature; therefore
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Figure 2: Learned manifold becomes flatter as the regularization coefficient α increases. Upper:
Learned data manifolds of 1d sin-curve and noisy training data points. Lower: Learned data mani-
folds of 1d S-curve projected to the 2-sphere and sparse training data points.

it is at first glance expected that, when learning a one-dimensional manifold, the IRVE should not
have any meaningful manifold regularization effect (since one-dimensional manifolds always have
zero intrinsic curvatures).

Counterintuitively, as shown in Figure 3(a), our experiments show that the extrinsic curvature of the
one-dimensional manifold learned by IRAE decreases as α increases. If the decoder’s hypothesis
space was a set of arbitrary smooth functions, this result would not have been obtained, but since the
hypothesis space defined as the set of neural networks is smaller, the isometric regularization seems
to reduce the extrinsic curvature at the expense of obtaining the isometric representations. Fig-
ure 3(b) shows how the reconstruction MSE for clean test data varies as a function of the extrinsic
curvature of the learned manifold by IRAE and MCAE. As the curvature decreases or the regular-
ization coefficient increases (from left to right), the test reconstruction MSE decreases, reaches a
minimum, and then increases again. We note that the graph of MCAE lies lower than that of IRAE,
implying that the MCAE can learn a more accurate manifold than the IRAE.

Figure 3: (a) Learned manifold by IRAE becomes flatter as the regularization coefficient α increases.
(b) Test data reconstruction MSE (i.e., manifold learning accuracy) as a function of the extrinsic
curvature obtained by IRAE and MCAE.

Figure 4: Learning by DAE and
RCAE for examples in Figure 2.

Comparison to Denoising and Reconstruction Contrac-
tive Autoencoders: Denoising Autoencoder (DAE) (Vin-
cent et al., 2010) and Reconstruction Contractive Autoencoder
(RCAE) (Alain & Bengio, 2014) are intuitive and straightfor-
ward regularization methods for learning manifolds robust to
input perturbations. As shown in Figure 4 (Upper), the DAE
and RCAE learn manifolds robust to noise to some extent.
However, as shown in Figure 4 (Lower), for the projected S-
curve example in Figure 2 (Lower), they still learn wrong man-
ifolds in regions where there are fewer data and do not improve
the vanilla autoencoder. On the other hand, the MCAE explic-
itly regularizes the learned manifold to have a small curvature
globally and improves the manifold learning accuracy.
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Table 1: Averages and standard errors of the test data set reconstruction MSEs (5 times run)
for the sincurve example in Figure 2 (Upper) with various Gaussian noise of standard deviations
0.1, 0.2, 0.3, the lower the better. The best results are marked in bold. The numbers are written in
units of 10−3.

Noise AE VAE DAE RCAE DCAE DHAE IRAE MCAE
0.1 3.98 ± 0.22 2.05 ± 0.36 2.23 ± 0.26 2.95 ± 0.44 2.81 ± 0.21 2.68 ± 0.31 1.63 ± 0.25 1.28 ± 0.13
0.2 22.7 ± 2.9 6.34 ±0.72 6.99 ± 1.04 12.5 ± 1.1 10.9 ± 1.02 14.9 ± 2.87 6.59 ± 1.09 4.56 ± 0.69
0.3 68.5 ± 17.3 13.5 ± 2.3 17.8 ± 3.4 30.5 ± 7.9 30.7 ± 4.8 46.9 ± 12.5 20.2 ± 5.1 9.80 ± 1.55

Quantitative Comparisons of Noise Robustness: As seen from the above examples, besides the
proposed MCAE, the IRAE, DAE, RCAE all have the robustness properties to noise. We quanti-
tatively compare the robust manifold learning performance given noisy input training data with the
sincurve example in Figure 2 (Upper) with various noise levels, i.e., Gaussian noise with standard
deviations of 0.1, 0.2, 0.3. In addition to the IRAE, DAE, RCAE, we compare the MCAE with
the vanilla Autoencoder (AE) and other regularized autoencoders such as the Variational Autoen-
coder (VAE) (Kingma & Welling, 2013), Decoder Contractive Autoencoder (DCAE), and Decoder
Hessian Contractive Autoencoder (DHAE), where the DCAE and DHAE minimize the decoder’s
Jacobian norm and the decoder’s Hessian norm, respectively. Table 1 shows the averages and stan-
dard errors of the test data set reconstruction MSEs, the lower the better. The MCAE produces the
lowest errors regardless of the noise level.

4.3 IMAGE DATA

Figure 5: De-noising examples (noise
level 0.3).

Grayscale Image: First, we investigate the manifold
learning performance of MCAE compared to the other
regularized autoencoders with the standard grayscale im-
age data (MNIST, Fashion-MNIST, KMNIST) as the num-
ber of training + validation data and noise level varies.
We use two-layer fully connected neural networks (512
nodes per layer) for both encoder and decoder with ELU
activation functions, and the latent space dimensions are
16, 32, 32, respectively.

Figure 6 shows the test reconstruction MSEs as a func-
tion of the number of training (80%) + validation (20%)
data. For all methods, the error decreases as the number
of data increases; MCAEs mostly produce the lowest er-
rors except for some MNIST cases. Figure 7 shows the
Peak Signal-to-Noise Ratios (PSNRs) computed with the
clean test set data (the higher the better) as a function of
the standard deviation of the Gaussian noise added to the
training data (the number of training data is 8000). The PSNR decreases as the noise level increases;
MCAEs mostly produce the highest PSNRs. Figure 5 shows some de-noising examples with cor-
rupted input data of MNIST and FMNIST.

Figure 6: Test set MSEs as a function of the number of training (80%) + validation (20%) data, the
lower the better.
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Figure 7: Test set Peak Signal-to-Noise Ratios (PSNR) as a function of the noise level, the higher
the better.

Figure 8: Corrupted SVHN and CI-
FAR10 images.

SVHN & CIFAR10 Image: We compare the manifold
learning performances of MCAE with other regularized
autoencoders for the SVHN and CIFAR10 image datasets
for both clean and corrupted training datasets. We use the
convolutional and transposed convolutional neural net-
works for encoder and decoder with ReLU activation
functions and the latent space dimensions are 64; the
number of training data is 8000. For the corrupted train-
ing dataset cases, we add three different types of noise:
(i) Gaussian, (ii) Shot, and (iii) Impulse noises adopted
from (Hendrycks & Dietterich, 2019); see Figure 8.

Figure 9: Density plots of the log-
normalized local curvatures of mani-
folds learned by vanilla AEs.

Table 2 shows the test set MSEs for experiments with the
clean training datasets, and Table 3 shows the PSNRs for
experiments with the corrupted training datasets, where
in both cases the metrics are computed with the clean test
data. From the results, we note that (i) MCAE shows
the second or third best results, (ii) MCAE does not im-
prove the vanilla AE for the SVHN clean training dataset
case, and (iii) for the corrupted training dataset cases,
RCAE produces better results than the MCAE unlike the
grayscale image data. Overall, compared to the grayscale
image data, the minimum curvature regularization is less
effective for SVHN and CIFAR10. One possible inter-
pretation is related to the limitation of MCAE (discussed
in the conclusion section), that the SVHN and CIFAR10
manifolds have locally very different curvatures and thus
it is difficult to find a proper constant regularization co-
efficient α in (6), because if we use a big enough α to correctly learn low curvature areas of the
manifold, then high curvature areas can be overly flattened, and vice versa. Figure 9 shows the
density plots of the log normalized local curvature of the learned manifolds by vanilla autoencoders,
i.e., log(κi) − log(κ), i = 1, . . . , N where κi is the local curvature at i-th training data points and
log(κ) = 1/N

∑
i log(κi), which is invariant to the scale of the mean curvature. As shown in Fig-

ure 9, the variance of the SVHN manifold’s local curvature is bigger than those of the others, which
supports the above interpretation.

Table 2: Test set MSEs of autoencoders trained with clean datasets, the lower, the better. The best
and second best results are marked in red and blue, respectively.

Dataset AE VAE DAE RCAE DCAE DHAE IRAE MCAE
SVHN 0.00228 0.00461 0.00228 0.00252 0.00255 0.00233 0.00213 0.00229

CIFAR10 0.01204 0.01533 0.01204 0.01119 0.01303 0.01244 0.01176 0.01125

4.4 HUMAN SKELETON POSE DATA

In this section, we evaluate the MCAE with the human skeleton pose data adopted from the
NTU RGB+D dataset (Shahroudy et al., 2016). A human pose skeleton data onsists of 25 three-
dimensional key points and thus is considered a 75-dimensional vector. There are 60 different action
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Table 3: Test data set PSNRs with various noise types, the higher, the better. The best and second
best results are marked in red and blue, respectively.

Dataset Noise type AE VAE DAE RCAE DCAE DHAE IRAE MCAE

SVHN
Gaussian 20.13 22.60 22.04 25.39 20.92 19.87 20.74 24.37

Shot 21.11 22.49 22.97 26.20 22.41 21.23 25.18 24.73
Impulse 19.33 19.06 20.28 23.31 19.18 19.25 19.71 20.18

CIFAR10
Gaussian 17.06 17.60 17.78 19.51 17.10 16.92 17.35 18.62

Shot 17.18 17.46 17.87 19.52 17.26 17.18 18.49 18.64
Impulse 16.71 16.03 16.93 18.49 16.58 16.59 16.62 17.04

classes (e.g., drinking water, brushing teeth), and each action data consists of a sequence of skeleton
poses. For each action class, we use randomly-selected 800 and 200 skeleton poses as training and
validation data, and 9000 poses as test data. We use two-layer fully connected neural networks (512
nodes per layer) for both encoder and decoder with ELU activation functions, and the latent space
dimension is 8.

Table 4 shows the averages and standard errors of the test data set reconstruction MSEs over 60
different action classes, the lower the better. MCAE mostly produces the lowest errors, especially
by a significant margin for noisy training data cases. Figure 10 shows some example reconstruction
results of noisy input skeleton data (noise level 0.05); MCAE shows the best de-noising results.

Table 4: Averages and standard errors of the test data set reconstruction MSEs with various Gaussian
noise of standard deviations 0.05, 0.1, the lower the better. The best and second best results are
marked in red and blue, respectively. The numbers are written in units of 10−3.

Noise AE VAE DAE RCAE DCAE DHAE IRAE MCAE
0 2.23 ± 0.09 2.95 ± 0.13 2.21 ± 0.09 2.17 ± 0.09 2.25 ± 0.09 2.22 ± 0.09 2.08 ± 0.09 2.11 ± 0.09

0.05 4.60 ± 0.04 4.32 ± 0.02 2.70 ± 0.01 2.98 ± 0.01 3.92 ± 0.03 4.07 ± 0.03 2.93 ± 0.02 2.20 ± 0.01
0.1 15.3 ± 0.2 13.5 ± 0.2 5.54 ± 0.17 7.50 ± 0.16 11.7 ± 0.2 12.5 ± 0.2 12.7 ± 0.2 3.09 ± 0.15

Figure 10: Human skeleton pose de-noising examples obtained by reconstructing noisy input data
(noise level 0.05). Example poses are from the action class “eat meal”.

5 CONCLUSION

In this paper, we have proposed a minimum extrinsic curvature principle for manifold regulariza-
tion and developed a Minimum Curvature Autoencoder (MCAE), by formulating a coordinate-
invariant (reparametrization-invariant) hence geometrically correct extrinsic curvature measure. Our
experiments show that the minimum curvature regularization can improve manifold learning accu-
racy for both noisy and small training datasets. The degree to which the performance is improved
depends on the datasets, and especially for the grayscale image and human skeleton pose datasets,
the MCAE outperforms the existing methods by a significant margin.

Limitations and Future Directions: In the current implementation of MCAE, the manifold’s ex-
trinsic curvature is minimized globally by using equal weights for all points. However, for manifolds
that have locally very different curvatures, it is difficult to find a proper weight parameter α in (6).
Ideally, low and high curvature areas of the manifold need to be regularized with higher and lower
weights, respectively. By exploiting local curvature estimation algorithms, e.g., diffusion-based
method (Bhaskar et al., 2022), developing a curvature regularization method with different local
weights will be an interesting future research direction.
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A APPENDIX

The appendix is organized as follows: (A.1) Related Works, (A.2) Proof of Proposition 1, (A.3) On
the Extrinsic Curvature, (A.4) Experiment Details, (A.5) Additional Experiment Results, and (A.6)
Computational Complexity.

A.1 RELATED WORKS: REGULARIZED AUTOENCODERS

The framework of autoencoding together with the recent advances in deep learning techniques used
for approximating arbitrary complex functions successfully addresses the manifold learning prob-
lem (Kramer, 1991). The core idea is to learn two mappings an encoder g : RD → Rm and a
decoder f : Rm → RD approximated with deep neural networks so that the composition of them
reconstructs the given data points xi ∈ RD, i.e., f ◦ g(xi) ≈ xi, for i = 1, · · · , N , and that the data
points approximately lie on the image of the decoder, which we refer to as the learned manifold.

Many existing autoencoder regularization methods have focused on the representation learning per-
spective of autoencoders and studied how to regularize the latent space distributions for purposes
like sampling, topology and geometry preserving, clustering, or capturing hierarchical structure (Ri-
fai et al., 2011; Kingma & Welling, 2013; Wang et al., 2014; Makhzani et al., 2015; Tolstikhin
et al., 2017; Chen et al., 2016; Tomczak & Welling, 2018; Klushyn et al., 2019; Moor et al., 2020;
Schönenberger et al.; Duque et al., 2020; Chen et al., 2021); since the latent space distributions
are entirely determined by the encoders, they mostly focus on regularizing the encoders but not
decoders.

As discovered in (Lee et al., 2021), to learn the accurate manifold in the presence of data noise
or given a small number of training data, regularization of the decoder is indeed more important,
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because it is the decoder that has information about how the manifold lies in the data space. Based
on the intuition that a local approximation of the decoder contains local geometric information on the
decoded manifold (i.e. learned manifold), e.g., a local linear approximation of f spans the tangent
space, a priori constructed neighborhood graph is employed to regularize the local approximation of
the decoder and hence the decoded manifold. This has shown improved manifold learning accuracy
for both noisy and small training dataset cases, however obviously, the performance largely depends
on the quality of the graph as in many other graph-based methods.

There are graph-free autoencoder regularization methods that regularize not only an encoder but also
the decoder. Denoising autoencoder (Vincent et al., 2010) is trained to reconstruct a corrupted input
to its clean version with the following loss

N∑
i=1

∥xi − f(g(xi + ϵ))∥2, (8)

for some noise variable ϵ. As a limit case in (Alain & Bengio, 2014), the Jacobian of the reconstruc-
tion function is minimized where the loss is defined as follows:

N∑
i=1

∥xi − f(g(xi))∥2 + α ∥∂f ◦ g
∂x

(xi)∥2F , (9)

where α is the regularization coefficient and ∥ · ∥F denotes the Frobenius norm. These by construc-
tion attempt to learn manifolds robust to noise, but we note that (i) they are designed to be robust to
noise during inference after being trained with clean data, but if training data points themselves are
noisy, the robust manifold learning performance decreases and (ii) their regularization effects are
limited to where data points are available.

Since regularizing the decoder that explicitly parameterizes the manifold is important, one may
consider minimizing the norm of decoder’s Jacobian as

N∑
i=1

∥xi − f(g(xi))∥2 + α ∥∂f
∂z

(g(xi))∥2F (10)

with the regularization coefficient α or the norm of decoder’s Hessian
∑

i,j ∥
∂2f

∂zi∂zj
(g(xi))∥2. How-

ever, these norms do not capture geometric quantities of the learned manifold because they are not
coordinate-invariant or reparmetrization-invariant, and thus they do not produce any meaningful
regularization effects.

For example, consider a coordinate transformation z′ = h(z) which converts the encoder as g 7→
g′ = h ◦ g and decoder as f 7→ f ′ = f ◦ h−1. The reconstruction loss is invariant since f ◦ g =
f ′◦g′, and hence the learned manifold is invariant, but the regularization term, the norm of decoder’s
Jacobian, is different:

∥∂f
′

∂z′
(g′(xi))∥2F = ∥∂f

∂z
(g(xi))

∂h−1

∂z′
(g′(xi))∥2F ̸= ∥∂f

∂z
(g(xi))∥2F . (11)

This implies that we can minimize the norm of decoder’s Jacobian just by increasing the norm of
Jacobian of h−1 without actually changing the learned manifold. A similar argument holds for the
Hessian norm.

Recent works (Chen et al., 2020; LEE et al., 2022) have suggested decoder regularization methods
for learning isometric representations that preserve geometry of the data space. A common goal is
to learn a decoder f : Rm → RD that satisfies

∂f

∂z
(z)T

∂f

∂z
(z) = cI for all z ∈ ν(Rm) (12)

for some positive scalar c, where I is the m × m identity matrix and ν(Rm) is the support of the
latent space data distribution. Such mappings are formally defined as scaled isometries in (LEE
et al., 2022), which are geometry-preserving mappings in the sense that latent space straight lines
are mapped to the geodesic curves in the learned manifold.

Regularizing the decoder to be a scaled isometry, beyond finding geometry-preserving represen-
tations, has an implicit manifold regularization effect. According to Gauss’s Theorema Egregium
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which states that “The Gaussian curvature of a surface is invariant under local isometry”, for scaled
isometries f to exist, the Gaussian curvature of the learned manifold should be the same as that
of the Euclidean space (i.e., zero). In other words, it has an implicit intrinsic curvature minimiza-
tion effect, which is different from the method proposed in this paper that explicitly minimizes the
extrinsic curvature.

A.2 PROOF OF PROPOSITION 1

Proof. Let’s denote by

c(θ, ϕ) =
∑
i,j

(JT
θ Jθ)

−1
ij Tr(

∂E(Jθ)

∂zi

∂E(Jθ)

∂zj
).

Given a coordinate transformation z′ = h(z) that maps (gϕ, fθ) 7→ (gϕ′ , fθ′) = (h ◦ gϕ, fθ ◦ h−1),
the following transformation rules hold: Jθ 7→ Jθ′ = Jθ · ∂h−1

∂z′ and ∂I
∂z 7→ ∂I

∂z′ = ∂I
∂z

∂h−1

∂z′ for
some scalar-valued function I(z). We note that, since E(J) = E(JA) for some arbitrary invertible
matrix A, the embedding is invariant, i.e., E(Jθ′) = E(Jθ). Let Iαβ denote the (α, β)-component
of E(Jθ), then, by using Tr(AB) =

∑
α,β AαβBβα and denoting ∂h−1

∂z′ by H ,

c(θ, ϕ) 7→ c(θ′, ϕ′) =
∑
i,j

(JT
θ′Jθ′)−1

ij

∑
α,β

∂Iαβ
∂z′i

∂Iβα
∂z′j

=
∑
α,β

∂Iαβ
∂z′

(JT
θ′Jθ′)−1

(∂Iβα
∂z′

)T
=

∑
α,β

∂Iαβ
∂z

H(HTJT
θ JθH)−1HT

(∂Iβα
∂z

)T
=

∑
α,β

∂Iαβ
∂z

(JT
θ Jθ)

−1
(∂Iβα

∂z

)T
=

∑
i,j

(JT
θ Jθ)

−1
ij

∑
α,β

∂Iαβ
∂zi

∂Iβα
∂zj

= c(θ, ϕ). (13)

A.3 ON THE EXTRINSIC CURVATURE MEASURE

In this section, we we will derive the expression of our extrinsic curvature measure∑
i,j

(JTJ)−1
ij Tr(

∂J(JTJ)JT

∂zi
∂J(JTJ)JT

∂zj
)

for a one-dimensional manifold, i.e., a curve, embedded in RD. Let x : R → RD be a smooth
curve and assume that it is parameterized by arc-length, i.e., ∥∂x

∂z ∥ = JTJ = 1. Then, the curvature
becomes

Tr((
∂JJT

∂z
)2) = Tr((

∂

∂z
(
∂x

∂z

∂x

∂z

T

))2)

= Tr((
∂2x

∂z2
∂x

∂z

T

+
∂x

∂z

∂2x

∂z2

T

)2)

= Tr(
∂2x

∂z2
∂x

∂z

T ∂2x

∂z2
∂x

∂z

T

+ 2
∂2x

∂z2
∂x

∂z

T ∂x

∂z

∂2x

∂z2

T

+
∂x

∂z

∂2x

∂z2

T
∂x

∂z

∂2x

∂z2

T

)

=
∂x

∂z

T ∂2x

∂z2
∂x

∂z

T ∂2x

∂z2
+ 2

∂x

∂z

T ∂x

∂z

∂2x

∂z2

T
∂2x

∂z2
+

∂2x

∂z2

T
∂x

∂z

∂2x

∂z2

T
∂x

∂z

= 2(
∂x

∂z

T ∂2x

∂z2
)2 + 2

∂2x

∂z2

T
∂2x

∂z2
. (14)
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Since ∂
∂z∥

∂x
∂z ∥ = 0 implies that ∂x

∂z

T ∂2x
∂z2 = 0, our curvature measure for an arc-length parameterized

curve x(z) is simplified to 2∥∂2x
∂z2 ∥ that is twice the norm of second derivative. This is equivalent to

the classical definition of the curvature of a curve.

A.4 EXPERIMENT DETAILS

Grayscale Image Data: The image size is 28 × 28 and the pixel values are normalized between
0 and 1. The encoder and decoder are two-layer fully connected neural networks with the ELU
activation functions and 512 nodes for each layer. The output layer is linear for the encoder and
sigmoid for the decoder. For clean dataset cases, we use the following early stopping criteria in
training: we stop the training if the mean reconstruction error for the validation dataset increases 10
times in a row; then we use the best model (i.e. the lowest validation errors) for evaluation. For noisy
dataset cases, assuming that we don’t have an access to the clean dataset during training, we do not
use the early stopping and trained the model for a sufficiently big number of epochs for convergence
(the number of epochs is 1000). The number of test data is 60000. For evaluation, we use clean test
data for noisy training dataset cases as well. The batch size is 100 and the learning rate is 0.001.

SVHN & CIFAR10 Image Data: The image size is 32 × 32 and the pixel values are normalized
between 0 and 1. For noisy training dataset experiments, we add noises as follows: (i) for Gaussian
noise, the standard deviation is 0.1, (ii) for Shot noise, we multiply 0.15 to noise variables sampled
from the Poisson distributions where λ are image pixel values, and (iii) for Impulse noise, with
5% probability we randomly add 1 to each pixel. The encoder and decoder are convolutional and
transposed convolutional neural networks with the ReLU activation functions, where, denoting a
convolution layer of input channel size ci, output channel size co, kernel size k, stride s, and padding
p by Conv2d(ci, co, k, s, p) and transposed convolution layer by ConvTrans2d(ci, co, k, s, p), the
following sequence of layers Conv2d(3, 128, 4, 2)-Conv2d(128, 256, 4, 2)-Conv2d(256, 512, 4,
2)-Conv2d(512, 1024, 2, 2)-Conv2d(1024, 64, 1) is used for encoder and ConvTrans2d(64, 1024,
8)-ConvTrans2d(1024, 512, 4, 2, 1)-ConvTrans2d(512, 256, 4, 2, 1)-ConvTrans2d(512, 3, 1) for
decoder. The output layer is linear for the encoder and sigmoid for the decoder. For clean dataset
cases, we use the following early stopping criteria in training: we stop the training if the mean
reconstruction error for the validation dataset increases 10 times in a row; then we use the best
model (i.e. the lowest validation errors) for evaluation. For noisy dataset cases, assuming that we
don’t have an access to the clean dataset during training, we do not use the early stopping and trained
the model for a sufficiently big number of epochs for convergence (the number of epochs is 100).
The number of test data is 63257 for SVHN and 10000 for CIFAR10. For evaluation, we use clean
test data for noisy training dataset cases as well. The batch size is 8 and the learning rate is 0.0001.

Human Skeleton Pose Data: From the NTU RGB+D dataset, a set of human pose skeleton data
that consists of 25 key points is extracted and pre-processed to be aligned. Specifically, 10000 poses
are extracted from each action class (a total of 60 action classes is used), and they are rotated and
translated so that the 1-2 key points direction becomes z-axis and 1-13 key points direction becomes
the y-axis and the key point number 2 becomes the origin. The encoder and decoder are two-layer
fully connected neural networks with the ELU activation functions and 512 nodes for each layer.
The output layers are linear for both the encoder and decoder. For clean dataset cases, we use the
following early stopping criteria in training: we stop the training if the mean reconstruction error
for the validation dataset increases 10 times in a row; then we use the best model (i.e. the lowest
validation errors) for evaluation. For noisy dataset cases, assuming that we don’t have an access
to the clean dataset during training, we do not use the early stopping and trained the model for a
sufficiently big number of epochs for convergence (the number of epochs is 5000). The number of
test data is 9000. For evaluation, we use clean test data for noisy training dataset cases as well. The
batch size is 100 and the learning rate is 0.0001.

A.5 ADDITIONAL EXPERIMENT RESULTS

More Qualitative Results: Figure 11, 12, 13, 14, 15, 16 show additional de-noising results for
image data and human skeleton pose data.
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Figure 11: De-noising examples of grayscale image data (noise level 0.1).

Figure 12: De-noising examples of grayscale image data (noise level 0.2).

Figure 13: De-noising examples of grayscale image data (noise level 0.3).

Figure 14: De-noising examples of SVHN data.
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Figure 15: De-noising examples of CIFAR10 data.

Figure 16: De-noising examples of human pose data.

A.6 COMPUTATIONAL COMPLEXITY

In this section, we provide actual computation time of the curvature measure in (7) and backprop-
agation time with two-layer fully connected neural networks used for gray-scaled image data and
convolutional and transposed convolutional neural networks used for the SVHN and CIFAR10 im-
age data. Throughout this study, the NVIDIA GeForce RTX 3090 is used.
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Table 5: Per-batch computation time comparisons. For the FC net with 1×28×28 image, the latent
space dimension is 16 and the batch size is 100, and for the Conv net with 3 × 32 × 32 image, the
latent space dimension is 64 and the batch size is 8 (for GPU memory limitation).

FC net with 1 × 28 × 28 image Conv net with 3 × 32 × 32 image
Forward Computation Back-Propagation Forward Computation Back-Propagation

Reconstruction 0.00037 s 0.00045 s 0.00220 s 0.00114 s
Curvature 0.00967 s 0.00447 s 0.30147 s 0.06051 s

Table 6: Per-batch computation times of the intermediate operations in curvature measure (7) with
the Conv net with 3× 32× 32 image and 64-dimensional latent space.

JT
fθ

Jfθ
G−1

θ

∂(E(Jθ)w)

∂z v
∂(E(Jθ)w)

∂z (G−1
θ v)

0.00192 s 0.28353 s 0.00682 s 0.00647 s

Table 7: Per-batch computation times and percent errors of the approximate matrix inverse G−1
θ in

curvature measure (7) as the number of iteration increases with the Conv net with 3×32×32 image
and 64-dimensional latent space.

number of iterations ground truth 1 5 10 100 1000
time 0.28353 s 0.000256 s 0.000507 s 0.000807 s 0.005669 s 0.053519 s

percent error 0 % 99.83 % 97.69 % 71.35 % 0.0109 % 0.0095 %

Table 5 shows the per-batch computation time comparisons between reconstruction loss term and
curvature term in (7). Although the curvature computation has become feasible through the stochas-
tic trace estimation, compared to the original reconstruction loss term, it still takes much longer
time. Especially, looking at the forward computation time for the Conv net case, the curvature
computation is almost 100 to 150 times slower than the reconstruction term computation.

To see which part in the below curvature measure

C(θ, ϕ) = Ez∼p̂ϕ(z),v∼N (0,Im),w∼N (0,ID)[v
T ∂(wTE(Jθ))

∂z

∂(E(Jθ)w)

∂z
G−1

θ v]

requires a major computational cost, we compare the computation times of the following operations:
(i) the Riemannian metric Gθ = JT

fθ
Jfθ , (ii) the inverse of Gθ, (iii) the Jacobian-vector product for

∂(E(Jθ)w)
∂z v, and (iv) the Jacobian-vector product for ∂(E(Jθ)w)

∂z (G−1
θ v).

Table 6 shows the per-batch computation times of the intermediate operations in curvature measure
(7) for the Conv net case. As can be seen, the inverse computation takes up most of the total compu-
tation time. To reduce the computation time of the matrix inverse, one can consider an approximate
inverse computation method. For example, given Gθ, let us define a function f : Rm×m → Rm×m

such that
f(X) = X−1 −Gθ. (15)

To find the root of f , we can use the standard Newton-Raphson method:

Xn+1 = 2Xn −XnGθXn, (16)

which is known as the Newton-Schulz iteration method for the matrix inversion. We can get an
approximation of G−1

θ by iteratively applying the above, where it gets closer to the true inverse as
we increase the number of iteration.

Table 7 shows the per-batch computation times and percent errors of the approximate matrix inverse
G−1

θ in curvature measure (7) as the number of iteration increases with the Conv net case. The
percent error is computed as 100 ∗ ∥G−1

true − G−1
est ∥F /∥G−1

true∥F . When the number of iterations is
set to be 100, the percent error is only 0.01 % while significantly reducing the computation time as
0.28353 s → 0.005669 s. It is highly recommended to use the approximate matrix inverse when the
latent space dimension is high.
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