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Abstract

Normalizing flows are a promising tool for modeling probability distributions in
physical systems. While state-of-the-art flows accurately approximate distributions
and energies, applications in physics additionally require smooth energies to com-
pute forces and higher-order derivatives. Furthermore, such densities are often
defined on non-trivial topologies. A recent example are Boltzmann Generators for
generating 3D-structures of peptides and small proteins. These generative models
leverage the space of internal coordinates (dihedrals, angles, and bonds), which is
a product of hypertori and compact intervals. In this work, we introduce a class of
smooth mixture transformations working on both compact intervals and hypertori.
Mixture transformations employ root-finding methods to invert them in practice,
which has so far prevented bi-directional flow training. To this end, we show that
parameter gradients and forces of such inverses can be computed from forward
evaluations via the inverse function theorem. We demonstrate two advantages of
such smooth flows: they allow training by force matching to simulation data and
can be used as potentials in molecular dynamics simulations.

1 Introduction

Generative learning using normalizing flows (NF) [50, 42, 39] has become a widely applicable tool
in the physical sciences which has e.g. been used for sampling lattice models [36, 37, 31, 4, 1],
approximating the equilibrium density of molecular systems [38, 29, 56, 58] or estimating free energy
differences [55, 10].

Such models approximate a target density µ via diffeomorphic maps f(·;θ) : Ω ⊂ Rd → Ω by
transforming samples z ∼ p0(z) of a base density into samples x = f(z;θ) such that they follow
the push-forward density

x ∼ pf (x;θ) := p0
(
f−1(x;θ)

) ∣∣det ∂xf
−1(x;θ)

∣∣ . (1)

Flows can be trained on data by maximizing the likelihood or via minimizing of the reverse KL
divergence DKL [pf (·;θ)‖µ] if µ is known up to a normalizing constant.

While NFs are usually introduced as smooth diffeomorphisms, most applications like density estima-
tion or sampling only require C1-smooth transformations. Higher-order smoothness of flows has not
been discussed so far and can become a challenge as soon as multi-modal transformations on other
topologies than Rd are discussed.
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Ck-smoothness of NFs with k > 1 is especially important for applications in physics. Physical
models usually come in the form of differential equations, where the derivatives bear a physical
meaning that is often crucial to fit, evaluate, or interpret the model. Thus, the construction of
expressive, smooth flow architectures will likely open up new avenues of research in this domain.

Boltzmann Generators A recent application of NFs to a physical problem are Boltzmann Genera-
tors (BG) [38], which we see as the main application area for the methods introduced in this paper.
They are generative models trained to sample conformations of molecules in equilibrium, which
follow a Boltzmann-type distribution µ(x) ∝ exp(−u(x)). Here u is the dimensionless potential
energy defined by the molecular system and the thermodynamic state (e.g. Canonical ensemble at a
certain temperature) it is simulated in. BGs can be trained by a combination of MLE on possibly
biased trajectory data and simultaneous minimization of the reverse KL divergence to the target
density µ(x). This bi-directional training scheme can achieve sampling of low-energy equilibrium
structures. After training, BGs can be used e.g. for importance sampling or for providing efficient
proposals when being used in MCMC applications [45].

In the context of BGs, the negative gradient of the log push-forward density with respect to x corre-
sponds to the atomistic forces. Access to well-behaved forces is pivotal in most classical molecular
computations: they simplify optimization of molecular models, drive molecular dynamics (MD)
simulations, enable computations of macroscopic observables, and facilitate multiscale modeling.

In this work, we will primarily focus on two important implications of smooth flow forces. First,
we show that they enable the training of NFs via force matching (FM), i.e. minimizing the force
mean-squared error with respect to reference data. In combining FM with density estimation, NFs
are pushed to match the distributions and their derivatives, which implicitly leads to favorable
regularization. Second, we apply flow forces to drive dynamics simulations. Such simulations are
required in many applications to not only sample the target distribution but also compute dynamical
observables such as transition rates or diffusivities.

Respecting Topological Constraints Many physical models operate on nontrivial topologies, i.e.
the d-dimensional hyper-torus Td, which can become an obstacle in constructing smooth flows.

An important example are BGs for peptides and small proteins which require an internal coordinate
(IC) transformation to achieve low-energy sampling of structures [38]. This non-trainable layer
transforms Euclidean coordinates x ∈ Rn×3 into a representation given by distances d ∈ [a1, b1]×
. . . × [an−1, bn−1], angles α ∈ [0, π]n−2 and dihedral torsion angles τ ∈ Tn−3. As molecular
energies are often invariant to translation and rotation, IC transformations are useful as they are
bijective with the equivalence class of all-atom coordinates that are identical up to global rotations and
translations. The learning problem can then be reduced to modeling the joint distribution µ(d,α, τ )
which is supported on the nontrivial topological space XIC := I2n−3 × Tn−3, where I = [0, 1]
denotes the closed unit interval.

Recent work [38, 56] suggested to model the density within an open set Ω ⊂ XIC, leverage C∞-
smooth normalizing flows defined on Rd and then prevent significant mass around singular points
using regularizing losses. Such an approach however can lead to bias and ill-behaved training and
requires a-priori knowledge of the support of the densities. Later work [9] approached the problem
using C1-smooth splines flows which leads to accurate samples, however results in broken forces.

To overcome these limitations while still benefiting from the merits of prior work, such as bi-
directional training and fast forward/inverse transformations we formulate the following desiderata
for flow transformations on-top of IC layers: (A) They must have support on Id and Td. (B) They
should beC∞-smooth. (C) They must allow bi-directional training. (D) Forward and inverse direction
must be efficient to evaluate.

Satisfying (D) can be achieved using coupling layers [11, 12]. This reduces the problem to finding
element-wise conditional transformations satisfying (A-C).

Contributions In this work we propose the following novelties:

• We present a new C∞-smooth transformation with compact support which can simulta-
neously be used for expressive transformations on Id as well as the hypertorus Td. This
satisfies (A) and (B).

2



• We present novel algorithm which allows optimizing non-analytic inverse directions of flows
that can only be evaluated via black-box root finding methods. This satisfies (C).

• We show that training of smooth flows through combinations of force matching, density
estimation, and energy-based training can achieve nearly perfect equilibrium densities.

• We show that forces of such smooth flows can be used in dynamical simulations.

2 Related Work

While related work exist for each of the requirements (A-D) above, none of them provides a frame-
work that addresses all of them. Specifically, multi-modality in element-wise flow transformations
has been approached using splines [13, 35], monotonoic polynomials [26, 41], monotonic neural
networks which directly approximate an inverse CDF transformation [22, 8], mixtures of unimodal
transformations [21, 43] and stochastic transition steps [56, 7].

Flows on non-trivial manifolds have been discussed for hypertori and -spheres [43], Lie groups
[16, 4], hyperbolic spaces [3] as well as on general manifolds [15, 18, 33, 32, 5, 27]. Applications of
flows for molecular systems include approximation of the equilibrium density [38, 56, 29], generation
of molecular conformations [58, 44] and free energy differences [55, 10]. Using forces to train neural
network potentials of molecules was done e.g. in [53, 24].

Backpropagation through black-box functions was generally discussed in [19]. More related to our
work is Bai et al. [2] who discuss training models whose outputs are obtained through fix-point
equations. Finally Shirobokov et al. [46] discuss backpropagation through black-box simulators using
surrogate models.

Using force-matching for training generative models is rarely used in machine learning due to absence
of an (unnormalized) target density. However, a common method to train unnormalized energy-based
models purely on data is given by score-matching (SM) [25, 47]. SM assumes an unknown density
for the data distribution and attempts to match forces implicitly, e.g. via sliced [49] or denoising
[52] score-matching. A survey on score-matching and its relation to other approaches of training
energy-based models on data is e.g. given in Song and Kingma [48].

We discuss related work on flows for I and the unit circle in detail in Section 4.

3 Incorporating Forces into Flow Training

NFs are most commonly trained by minimizing the negative log likelihood (NLL),
LNLL(θ) := −Ex∼µ(x)[log pf (x;θ)] = DKL[µ||pf (·;θ)] + const, (2)

or by minimizing the reverse KL divergence (KLD)
LKLD(θ) := DKL[pf (·;θ)||µ] + const. (3)

BGs as discussed in Noé et al. [38] use a convex combination of the two in order to avoid mode-
collapse while still being able to achieve low-energy samples. If reference forces f(x) = −∂xu(x)
corresponding to samples x are available and f(·;θ) is at least C2-smooth, the optimization can
naturally be augmented by the force mean-squared error:

LFM(θ) := Ex∼µ(x)
[
‖f(x)− ∂x log pf (x;θ)‖22

]
. (4)

As was shown in Wang et al. [53] such force-matching can lead to unbiased potential surfaces even
if samples are not sampled from equilibrium. Similarly to Noé et al. [38] we can thus define a loss
function for smooth flows as the convex combination

L(θ) = ωnLNLL(θ) + ωkLKLD(θ) + ωfLFM(θ). (5)

4 Smooth flows on the closed interval and the unit circle

We now discuss how to achieve smooth flows on Id and Td. To unify the discussion we consider
the unit circle S1 to be the quotient space I/ ∼ using the relation x ∼ x′ ⇔ (x = x′) ∨ (x =
0 ∧ x′ = 1) ∨ (x′ = 0 ∧ x = 1). The d-dimensional hypertorus is given by the direct product
Td = S1× . . .×S1. Following the usual definition we say that f is Ck-smooth on a compact interval
[a, b] iff there exists a Ck-smooth continuation of f on an open set Ω ⊃ [a, b].
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Smooth flows on I Any smooth diffeomorphism on R or an open interval (a, b) ⊃ I can be
restricted to I and re-scaled to satisfy this requirement. Let f : Ω→ Ω be Ck-smooth for some open
set I ⊂ Ω ⊂ R. Then f̃(x) = (f(x)− f(0))/(f(1)− f(0)) defines a Ck-smooth diffeomorphism
on I. Simple C∞ transformations on R are given by affine transformations [12]. After re-scaling
any affine map will result in the same identity mapping and thus will not be able to model complex
densities. Powerful and computationally efficient multi-modal transformations on I can be achieved
using rational-quadratic splines [13]. Those are C1-smooth and thus will result in discontinuous
forces which can be disadvantageous for physical applications. Possible other C∞-smooth candidate
transformations with analytic forward evaluation are given by mixtures of logistic transformations
[21] or deep sigmoid/deep dense sigmoid flows [22]. Those are only continuous on (0, 1) and
thus special care has to be taken to avoid problematic behavior on the tails. Finally, multi-modal
C∞ transformations on R can be achieved using non-analytic methods [6, 54]. Yet, computational
costs (solving and backpropagating over ODEs, inverting quadrature integrations via bisections) and
numerical accuracy (non-anlytic forward passes) limit their applicability e.g. when used in deep
coupling layers which are required to capture multivariate correlations or when trying to match
densities up to high accuracy e.g. as necessary for molecular modeling.

Smooth flows on S1 Flows on the hypertorus were discussed in Rezende et al. [43] who introduced
necessary conditions for the transformations to define C0-continuous densities, such that they can
be used in density estimation tasks. In their work Rezende et al. [43] introduced three candidates
satisfying this condition: mixtures of non-compact projections (NCP), rational-quadratic circular
spline flows (CSF) and mixtures of Moebius transformations (MoMT). While NCPs and CSFs satisfy
C1-continuity and thus render forces discontinuous, only MoMTs define smooth densities. While
MoMTs trivially also define C∞-flows on I their periodicity would be limiting when applied to
non-periodic densities.

Smooth compact bump functions In addition to this previous work we leverage a third way
to construct smooth transformations which works for both I and S1. Here we follow a general
construction principle for smooth bump functions e.g. as explained in Tu [51]. All proofs can be
found in the supplementary material.

First, define a Ck-smooth and strictly increasing ramp function ρ : I→ I with ρ(0) = 0 and ρ(1) = 1.
Second, define the generalized sigmoid

σ[ρ](x) :=
ρ(x)

ρ(x) + ρ(1− x)
. (6)

Then σ[ρ] will be a Ck-diffeomorphsim on I and furthermore all derivatives up to order k vanish at
the boundary. The first derivative defines a non-negative smooth bump function with support [0, 1]
and maximum at 0.5. We can introduce a concentration parameter a ∈ R>0 and a location parameter
b ∈ [0, 1], which makes g(x) := σ[ρ]

(
a · (x− b) + 1

2

)
a smooth bijection from [− 1

2a + b, 1
2a + b]

to [0, 1] with all values and higher-order derivatives vanishing outside the domain. Furthermore, by
introducing c ∈ (0, 1] and setting

f(x) := (1− c) ·
(
g(x)− g(0)

g(1)− g(0)

)
+ c · x, (7)

we can define flexible unimodal Ck-diffeomorphisms on [0, 1]. When used within coupling layers,
we let a, b, c be the output of some not further constrained neural network.

Ck and C∞ ramp functions There are many possible choices for ramp functions satisfying above
mentioned properties. A simple Ck ramp function is given by the k-th order monomial ρ(x) = xk.
More interestingly, C∞ smoothness on [0, 1] can be achieved using the ramp ρ(x) = exp

(
− 1
α·xβ

)
for x > 0 and ρ(x) = 0 for x ≤ 0. Here we set α > 0 and β > 1. We make α a trainable parameter.
Optimizing β is possible in principle, yet fixing β ∈ {1, 2} and treating it as a hyper-parameter
stabilized training and led to better results.

Smooth and efficient circular wrapping As discussed in Rezende et al. [43] and Falorsi et al. [16]
we can turn any Ck-smooth density p(x) with support on R into a Ck-smooth density on S1 using
the marginalization p̃(x) =

∑
k∈Z p(x+ k). This construction is generally problematic due to two
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reasons: (i) non-vanishing tails (e.g. if p(x) is Gaussian) require evaluating an infinite series which in
most cases has no analytic expression and can be numerically challenging (ii) smooth densities with
compact support in some interval [a, b], for example sigmoidal transforms, can introduce non-smooth
behavior at the interval boundaries.

Smooth and compactly supported transformations as introduced above do not suffer from this: (i) due
to compact support the series will always have a finite number of non-vanishing contributions, (ii) as
the transformations are Ck on all of R and all derivatives are compactly supported wrapping will
always result in a Ck-smooth density on S1.

Multi-modality via mixtures Similarly, as discussed in prior work [21, 43] any convex sum of
Ck-diffeomorphisms on I defines a Ck-diffeomorphism on I. Thus we can combine multiple of those
unimodal transformations defined in Eq. (7) to obtain arbitrarily complex multi-modal transformations
on I and S1, see Fig. 1.

a) b) c)

0 1
0

1

0 1
0

1

0 1
0

1

d) e) f)

0 1
0

1

0 1
0

1

0 1
0

1

Figure 1: Construction of mixture transformations on compact intervals (left) and hypertori (right).
The upper and lower row depict probability densities and cumulative distribution functions, respec-
tively. Multiple unimodal bump functions [a) and d)] are added to a small but finite density [b) and
e)] and combined to yield bijective multimodal transformations [c) and f)].

5 Optimizing non-analytic inverse flows

A drawback of mixture-based flows is their lack of an analytic inverse. Prior work such as [21, 43]
suggested to rely on black-box inversion methods like a bisection search to sample from trained
models. While this leads to accurate samples, the discrete nature of such black-box oracles does not
allow to minimize L(θ) as defined in Eq. (5).

A possible remedy to this can be derived using the inverse function theorem. Let f(·;θ) : Ω ⊂ R→ Ω
be a scalar diffeomorphism and let furthermore x = f−1(y;θ) be obtained via a black-box inversion
algorithm. To minimize losses depending on x(y;θ) or log |∂yx(y;θ)| we need to compute gradients
with respect to y and θ. Here we derive the following relations for the derivatives (all details in
supplementary material):

∂yx(y;θ) = (∂xf(x;θ))
−1 (8)

∂θx(y;θ) = − (∂xf(x;θ))
−1
∂θf(x;θ) (9)

∂y log |∂yx(y;θ)| = − (∂xf(x;θ))
−1

log |∂xf(x;θ)| (10)

∂θ log |∂yx(y;θ)| = − (∂xf(x;θ))
−1

(log |∂xf(x;θ)| ∂θf(x;θ)− ∂θ∂xf(x;θ)) (11)

We remark that (8) corresponds to the implicit reparameterization gradient as introduced in Figurnov
et al. [17]. Using these rules, we can first compute x via a black-box oracle for any input y and then
compute all necessary gradients using forward evaluations and derivatives of f(·;θ). Derivatives
of f(·;θ) are usually accessible for computing the log Jacobian of the transformation. We can
obtain higher-order derivatives using automatic differentiation. It is easy to see that this construction
extends to multivariate diffeomorphisms with diagonal Jacobian as used in coupling layers. It can be
generalized to arbitrary higher order derivatives using the Faà di Bruno formula, e.g. when aiming
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to do force matching through a black-box inversion algorithm. As our experiments only require
losses involving second order derivatives for the inverse direction we leave this for future work. Note
that Equations (8) - (11) can be applied to any other element-wise flow transformation that lacks an
analytic inverse and is not tied to mixture models.

Another problem of bisection is its sequential execution which can become prohibitively slow during
training. E.g. achieving an error of 10−6 requires around 20 iterations. To obtain speedup on GPUs
we suggest to generalize the classic binary search to searching in a grid of K bins simultaneoulsy (see
details in Supp. Mat.). For K = 2 it results in the usual bisection method. However, by leveraging
vectorized execution we can reduce the number of iterations by a factor O (1/ logK) at the expense
of increasing memory by a factor O (K). Practical speedup depends on the actual number of parallel
workers and thus depending on dimensionality, batch size and number of mixture components the
optimal choice of K varies.

6 Experiments

The numerical experiments in this work are tailored to show the benefits of smooth flows over
non-smooth flows. Therefore, we mainly compare mixtures of bump functions to neural spline flows
[13], which exhibit state-of-the-art generative performance but whose densities are only first-order
continuously differentiable.

6.1 Illustrative Toy Example

a) b) c)

Figure 2: a) Reference density and corresponding force field as approximated by b) a C1-smooth
NSF and c) a C∞-smooth flow using the mixture of bump functions introduced in Sec. 4.

To highlight the difference in terms of smoothness, the two flow architectures were applied to a
two-dimensional toy example. Fig. 2 a) depicts the reference energy and forces on samples from
the ground-truth distribution. Both flows were trained through density estimations on those samples
(see SI for details). The smooth flows and spline flows matched the density well, which demonstrates
their expressivity. However, the force field of the spline flow contained dramatic outliers, while the
forces of the smooth flow matched the regular behavior of the reference forces.

6.2 Runtime Comparison

While the rational-quadratic splines are analytically invertible, mixture transformations obviously
increase computational cost of the inversion due to the iterative root-finding procedure. To quantify
this gap in performance, the inverse evaluation of a spline flow was compared with a modified
version, where the analytic inverse was replaced by the multi-bin bisection from Section 5. The
performance of the bisection was evaluated for different numbers of bins K = 2m, m = 1, . . . , 8,
and the most efficient K was picked for each input size (“dim”). Both transformations were coupled
to a conditioner with the same input size (dim) and 64 hidden neurons.

For small tensor dimensions (2-32), the optimal multi-bin bisection employed up to 256 bins on
the GPU, which resulted in only a factor of 2-3 slowdown compared to analytic inversion. For
larger dimensions (2048), the parallelization over multiple bins became less effective, leading to
one order of magnitude difference in computational cost. The compute times and optimal bin sizes
were comparable for the inverse network pass and its backward-pass. More details on these runtime
comparisons can be found in the supplementary material.
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6.3 Smooth Flows Enable Boltzmann Generator Training through Force Matching

To demonstrate the advantages of smooth flows, we train a Boltzmann generator (BG) for a small
molecule, alanine dipeptide, which is described in the supplementary material. This is a common
test case for molecular computations and was previously considered for sampling with normalizing
flows in [56, 9, 30]. The molecular system has 60 degrees of freedom (global rotation and translation
excluded). Its potential energy surface is highly sensitive to small displacements [30] and contains
singularities.

a) b)

c)

Figure 3: a) Generated sample structures. b) Torsion distribution after training through root-finding.
c) Smooth normalizing flow trained on alanine dipeptide through a combination of force matching
and density estimation. The top and bottom row show the performance on 10,000 samples each from
the holdout test set and from the flow, respectively. Left: joint distribution of backbone torsion angles.
Center: scatter plot of flow vs. target force components. Right: energy histograms for the flow energy
and the target energy. (Flow energies were shifted by a constant so that the minimum energy matched
with the minimum energy from the molecular potential).

In previous work [56, 9, 30], BGs for alanine dipeptide used stochastic augmentation of the base
space. The introduction of noise variables facilitates creating expressive normalizing flows but
prevents computation of deterministic forces. Some have also used spline flows to sample molecular
configurations [55, 10].

As a proof-of-concept for the force matching loss, we trained smooth flows for alanine dipeptide
using a 1000:1 weighting between the force matching residual and the negative log likelihood, see
supplementary material for details on the flow and training setup. No stochastic augmentation or
energy-based training was used and no reweighting was conducted for postprocessing.

Figure 3 c) compares the flow distribution with the target Boltzmann distribution on the test data
from MD and on flow samples. The left column shows that the flow has almost perfectly learned
the nontrivial joint distribution between the two backbone torsion angles φ and ψ, including the
sparsely populated metastable region around φ ≈ 1. In contrast to previous work that used affine
coupling layers [56], the modes are cleanly separated, see also Fig. SI-3 for a direct comparison. The
center column compares flows forces with target forces. Those forces are highly sensitive to small
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perturbations of the molecular configurations. Nevertheless, they matched up to a root-mean square
deviation of 25 and 46 kBT /nm in the target ensemble and the generated ensemble, respectively. Note
that the training was stopped after 10 epochs, where the validation force matching residual had not yet
fully converged, so that even further improvements may be possible with longer training or extensive
hyperparameter optimization. A more detailed analysis of the forces and sampling efficiency of the
BGs is shown in supplementary material, Figure SI-4. Smooth flows trained by a combination of
density estimation and FM attain a favorable sampling efficiency of 42%, compared to 25% and
< 1% for spline and RealNVP flows, respectively.

Finally, the right column of Figure 3 c) depicts the distribution of flow and target energies evaluated
on the same samples. The flow energies were shifted so that the minimum energy matched with the
molecular mechanics energy. It has not escaped our notice that this constant offset (189 kBT on the
test set and 190 kBT on the flow samples) corresponds to the log partition function, a quantity whose
intractability has complicated research in statistical mechanics for decades.

The energy distribution of the flow tracked the ground truth exponential distribution almost perfectly
even though no target energies or forces were evaluated on the flow samples during training. This
close-to-perfect match demonstrates that including force information into the training process presents
an efficient means for regularization. Figure 3 a) shows representative conformations generated by
the BG, which confirm the high quality of the molecular structures.

6.4 Boltzmann Generator Training through Black-Box Root-Finding

Table 1: Test set metrics of alanine dipeptide training with different losses: negative log likelihood
(NLL), force matching error (FME), and reverse Kullback-Leibler divergence (KLD). Weighted loss
functions were used as defined in Eq. (5) with weight factors ωk, ωf and ωn = 1− ωk − ωf . Metrics
were recorded after 10 training epochs. Statistics are means and 2× standard errors over 10 replicas
for each experiment. The lowest value with respect to each metric is highlighted in bold type.

ωk = 0 ωk = 0 ωk = 0.1 ωk = 0.1
Metric Method ωf = 0 ωf = 0.001 ωf = 0 ωf = 0.001

NLL
spline -210.32 - -196.40 48.13

(±0.16) (± 1.53) (± 95.37)

smooth -211.04 -211.40 -206.33 -208.70
(± 0.09) (± 0.05) (±2.04) (± 1.93)

FME ×104
spline 12.13 - 313.64 1498.98

(± 4.94) (± 107.92) (± 1935.72)

smooth 1.04 0.32 5.80 0.48
(± 0.08) (± 0.02) (± 2.30) (± 0.05)

KLD
spline 263.77 - 230.08 1205.69

(± 3.21) (± 12.38) (± 36.25)

smooth 193.91 195.17 219.03 207.81
(± 0.39) (± 0.43) (± 22.16) (± 11.64)

Two experiments were conducted to demonstrate that flows can be trained through a black-box
root-finding algorithm.

First, the BG from section 6.3 was trained with all smooth transformations operating in the inverse
direction. Consequently, inverse problems had to be solved when computing the negative log
likelihood with respect to data, while the sampling occurred analytically. Figure 3 b) shows the joint
marginal distribution of the backbone torsions on the BG samples. The distribution matches the data
and the smooth flows that were trained in forward mode (see Fig. 3). This result shows that training
with gradients computed from the inverse function theorem is feasible.

Second, flows were trained by different combinations of density estimation, force matching, and
energy-based training, where computing ∂θLKLD requires the gradients of the inverse flow. The
training of spline flows with inclusion of the force matching error (ωf > 0) was notoriously unstable.
This led to 10/10 and 7/10 failed runs for ωk = 0 and ωk = 0.1, respectively. This is understandable
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from the discontinuity of the spline forces. Even the combination of NLL and KLD led to instabilities
for 2/10 runs. (Gradients were not clipped during training to enable a mostly unbiased comparison).
In contrast, all training runs with our smooth flows concluded successfully.

Table 1 shows the metrics on the test set after 10 training epochs using spline flows and smooth
flows (see SI for specifics about the flow architecture and training). With pure density estimation
(ωk = ωf = 0), both architectures achieved similar NLL. However, the smooth flow achieved much
lower FME and KLD. The NLL and FME were further improved when force data was presented to
the flow during training. Including reverse KLD in the loss yielded reasonable metrics for the smooth
flows, indicating that the backpropagation through root-finding was numerically stable. However,
the metrics were consistently worse than with pure NLL training for both types of flows (spline and
smooth) and were subject to large fluctuations. In contrast, including the FME proved to be a more
stable approach to include information about the target energy into the training.

6.5 Smooth Flows as Potentials in Molecular Dynamics

Figure 4: Total energy fluctuation in simulations with a classical force field and with two flows
that employed smooth transforms and neural spline transforms, respectively. For each potential, 10
simulations were run starting from 10 different initial configurations (grey color). One run each is
highlighted in black. Subfigures c) and d) show identical data on different scales.

A challenging test for the smoothness of a flow is its use as a potential energy in a dynamics simulation.
Especially simulations in the microcanonical ensemble are extremely sensitive to numerical errors as
the symplectic integration does not impose any additional stabilizing mechanism on the total energy.
This means that any inconsistencies between energies and forces on the scale of one integration step
easily cause drifting, strongly fluctuating, or exploding energies.

Therefore, we ran MD simulations using the flow energy uθ = − log pf (·;θ), from Section 6.3 as
the potential. For comparison, simulations were also run with spline flows that were trained purely
by density estimation. Simulations started from stable structures of an MD simulation and were
equilibrated in each potential for 1 ps using a Langevin thermostat with 10/ps friction coefficient.

Figure 4 depicts the evolution of the total energy over 5 ps simulations in the microcanonical ensemble.
As expected, the classical simulation kept the total energy roughly constant within a standard deviation
of 6× 10−4 kJ/mol per degree of freedom. Astoundingly, the smooth flow potentials also maintained
the energies within 8× 10−4 kJ/mol per degree of freedom using the same 1 fs time step. In contrast,
the simulations with spline flow potentials quickly fell apart with potential and kinetic energies
growing out of bounds. Those instabilities persisted even with an order-of-magnitude smaller time
step (not shown).

While the infeasibility of spline flows for this task was expected, the competitive behavior of smooth
flows with molecular mechanics force fields that were tailored for dynamics highlights their regularity
and the consistency of their forces.

7 Discussion

Limitations and outlook Despite the promising results we mention the following possible limita-
tions of the method in the present state and discuss possible improvements for future work:

First, smooth flows as implemented in this work impose numerical overhead in comparison to
non-smooth alternatives such as spline flows. While this can be considered a question of concrete
engineering it also opens search for more efficient smooth alternatives.
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In addition, the differentiation rules for black-box inverses provide correct algebraic gradients. Yet
for considerably multi-modal distributions maintaining numerical stability can become a challenge.
Future work should thus focus on studying and improving numerical stability of the bidirectional
training.

While potentials can be trained up to an accuracy where they allow for energy-conserving simulations,
it is yet to show that they also provide accurate equilibrium distribution for long-run simulations. At
this point a major bottleneck is the inferior evaluation performance per step of a flow-based force-field
compared to common force-field implementations.

Furthermore, internal coordinates are a very efficient representation space for smaller poly-peptides.
However, they are difficult to scale to large proteins, protein complexes or systems with non-trivial
topologies, e.g. proteins with disulfide bonds. Integrating recent advances in graph-based molecular
representations with force-matched flows will likely be required for a succesful modeling of such
systems.

Finally, training with forces improves the resulting potential compared to just training with samples.
However, for many MD data forces have not been stored and recomputing them requires a significant
computational overhead.

Conclusion We introduced a range of contributions which can improve upcoming work on applying
flows to physical problems.

The proposed approach for backpropagation through black-box root-finders can help to obviate the
search for analytically invertible transformations if bi-directional training is necessary. As we show
the method works especially well for relatively low-dimensional problems. Scaling the approach,
generalizing it to non-diagonal Jacobians and improving its numerics are interesting questions for
future work.

The MD simulation example shows that C∞-smooth flows on non-trivial topologies can open new
avenues of research as well as new applications for flows. By carefully respecting the topological
domain as well as the smoothness of the target potential we can approximate the equilibrium density
of a small peptide nearly perfectly. Finally, we showed that incorporating force information together
with MLE outperforms the state-of-the-art approach of combining MLE with minimizing of the
reverse KL divergence. It does not suffer from mode-collapse, yet includes information of the target
potential which is required to achieve low-energy samples.

Combined, these results could improve methods used for learning the mean potential surface of
coarse-grained molecules, pave the way to multi-scale flows for modeling large protein systems and
eventually help to accelerate simulations and sampling.
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