
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZING PSEUDO-BOOLEAN POLYNOMIALS US-
ING HYPERGRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The challenge of solving NP-hard combinatorial optimization problems with deep
learning has attracted considerable interest. Modern graph neural networks are
capable of efficiently solving problem instances in an unsupervised manner, how-
ever the graph structure limits the scope of their application. We present a novel
approach, hereafter referred to as PB-HGNN, which employs unsupervised Hy-
pergraph Neural Networks (HGNNs) to solve the polynomial unconstrained bi-
nary optimization (PUBO) problem. By representing the high-order terms of the
pseudo-Boolean polynomials as hyperedges in a hypergraph, the HGNN is enable
to capture intricate variable interdependencies beyond pairwise interactions. As a
result, our framework provides the possibility of solving a wide range of discrete
problems that have not previously been addressed by neural networks. We eval-
uate PB-HGNN on random higher-order pseudo-Boolean polynomials, including
the Sherrington-Kirkpatrick model, and max-3-SAT instances. Our results show
that PB-HGNN outperforms baselines on these problems and is capable of solving
large-scale PUBO instances.

1 INTRODUCTION

A pseudo-Boolean function is a mapping f : Bn → R, where B = {0, 1} is a Boolean domain.
All pseudo-boolean functions can be uniquely represented as multilinear pseudo-Boolean polyno-
mials Hammer & Rudeanu (1968); Boros & Hammer (2002) of the following form:

f(x1, ..., xn) =
∑
S⊆[n]

cS
∏
j∈S

xj , x ∈ Bn. (1)

The general problem to optimize (1) is known as Polynomial Unconstrained Binary Optimization
(PUBO) problem. deg(f) = maxcS ̸=0 |S| is the degree of pseudo-boolean polynomial. deg(f) = 2
yields the well-known Quadratic Unconstrained Binary Optimization (QUBO) problem. Recently,
there has been a resurgence of interest in encoding various Combinatorial Optimization (CO) prob-
lems as QUBOs Lucas (2014); Glover et al. (2022). This is largely due to the development of
specialized computational devices such as quantum annealing Boixo et al. (2013) and coherent
Ising machines Wang et al. (2013), which exploit the interaction between QUBO solutions and the
fundamental states of physical systems of the Ising Hamiltonian Vadlamani et al. (2020). In the
last few years, new heuristic algorithms based on unsupervised graph neural networks (GNNs) were
proposed for solving CO problems formulated as QUBO Schuetz et al. (2022a); Pugacheva et al.
(2024); Ichikawa (2024). They encode a problem’s binary variables as graph nodes and its nonzero
quadratic terms as edges, and then train a GNN to minimize the continuous relaxation of the QUBO
objective.

In this paper, we address the higher-order PUBO problem, when deg(f) ≥ 3. In combinatorial
optimization, it has been widely applied for modeling a maximum satisfiability Christian et al.
(2014), uncapacitated facility location Goldengorin et al. (2003); Beresnev (1973); Hammer (1968),
and the p-median AlBdaiwi et al. (2009) problems. Other important applications occur in statistical
mechanics Bernasconi (1987); Liers et al. (2010) , computer vision Ishikawa (2011); Fix et al.
(2015), protein folding Babbush et al. (2014), etc. Classical approaches for optimizing higher-
order f rely on reducing the polynomial degree through quadratization methods Verma et al. (2021);

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

x1

x2

x3

x4

x5

−7
5

2

Figure 1: Hypergraph representation of f(x1, . . . , x5) = 5x2x3 + 2x3x4x5 − 7x1x2x3x4

Chancellor et al. (2016). By introducing additional variables, the problem can be reformulated as
an integer linear program or a QUBO, which can then be solved using corresponding traditional
algorithms.

While in quantum and quantum-inspired optimization it is now standard to solve PUBO di-
rectly—without reducing to QUBO—via higher-order Ising Hamiltonians Chermoshentsev et al.
(2021); Stein et al. (2023); Kanao & Goto (2022), the neural combinatorial optimization literature
still predominantly relies on explicit QUBO reductions or other objectives. In this work we in-
troduce PB-HGNN, a hypergraph-based unsupervised framework that operates natively on higher-
order pseudo-Boolean polynomials: each monomial xS becomes a hyperedge on S with weight
cS , as shown in the fig. 1, and a lightweight residual hypergraph block produces instance-specific
probabilities that are refined across epochs via an epoch-level memory. By staying in the origi-
nal higher-order domain, PB-HGNN preserves multi-way interactions and simplifies the modeling
pipeline.

We evaluate PB-HGNN on two representative benchmarks: random higher-order PUBO instances
and MAX-3-SAT (via the standard PUBO mapping) and compare against standart algorithm GNN
solvers, including QUBO-based that solve problem after the quadratization procedure. Across set-
tings, PB-HGNN attains competitive or superior solution quality while remaining simple and scal-
able.

Contributions.

• Direct higher-order modeling for UL. We propose PB-HGNN, the first unsupervised neural
framework that solves PUBO without quadratization, capturing k-way structure directly.

• Memory-driven architecture. We utlize a compact epoch-level memory that carries infor-
mation across iterations, stabilizing instance-specific training with minimal overhead.

• Empirical validation. On random PUBO and MAX-3-SAT, PB-HGNN matches or sur-
passes quadratization-based GNN baselines.

2 COMBINATORIAL OPTIMIZATION WITH UNSUPERVISED LEARNING

Unsupervised Learning (UL). Neural approaches to CO include supervised prediction Prates
et al. (2019); Gasse et al. (2019) and reinforcement learning (RL) Khalil et al. (2017); Kool et al.
(2019); supervised methods require labeled near-optimal solutions and often struggle to generalize,
whereas RL avoids labels but is often sample-inefficient on large state spaces. A complementary
route is unsupervised, instance-specific learning: optimize a differentiable model through which the
decision variables are produced, and update model parameters to improve the instance’s objective,
rather than updating the variables directly. This reparameterization often yields smoother search
trajectories and fewer stalls in poor local minima Wang et al. (2022), and, by training on the in-
stance itself, encodes useful inductive bias without requiring labeled solutions. In effect, UL turns
the solver into a trainable generator of candidates that can be optimized end-to-end with standard
gradient methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GNN-based UL Many CO problems are naturally defined on graphs, where solutions select sub-
sets of nodes/edges; this makes graph neural networks appealing as the learnable maps that produce
instance-specific decisions Cappart et al. (2021). Unsupervised GNN solvers include recurrent archi-
tectures for constrained satisfaction problems such as RUN-CSP Tönshoff J & M (2021); instance-
specific training for SAT Amizadeh et al. (2018); and Erdős Goes Neural (EGN) Karalias & Loukas
(2020), which learns distributions over solutions inspired by the probabilistic method, later extended
via entry-wise concave relaxations Wang et al. (2022) and meta-learning variants. Min et al. (2023)
train GNN with a surrogate unsupervised loss to produce an edge ‘heat map’, and a local search then
decodes a TSP tour from it. Heydaribeni et al. (2024) first proposed using hypergraph neural net-
works for unsupervised combinatorial optimization. Their method, HypOp, models each constraint
as a hyperedge in a constraint hypergraph and trains a HyperGNN as a learnable transformation
function, with a simulated annealing step for mapping continuous relaxations back to discrete so-
lutions. These methods differ in how they parametrize decisions, which unsupervised signals they
optimize (constraint-violation penalties, differentiable surrogates), and how they control discretiza-
tion (e.g., temperature schedules or annealing), but all share the goal of learning instance-specific
heuristics directly from the objective without labeled solutions.

QUBO A prominent UL line reduces the target CO to QUBO, which is the problem to minimize
a pseudo-Boolean polynomial 1 f(x) of degree two Hammer (1968):

min
x∈{0,1}n

xTQx, (2)

PI-GNN Schuetz et al. (2022a) replaces binary variables by probabilities pθ ∈ [0, 1]n output by
a GNN and uses the relaxed QUBO as a differentiable loss, enabling general solvers whenever
a QUBO formulation exists; follow-ups adapt this paradigm to specific tasks (e.g., graph color-
ing Schuetz et al. (2022b); Wang et al. (2023)). To direct relaxation toward discrete solutions while
keeping a smooth landscape, Ichikawa (2024) proposes a principled annealing schedule by loss
regularization, that first facilitates exploration and then promotes automatic rounding. Pugacheva
et al. (2024) proposed the novel GNN architecture design that feeds model outputs back into the
next forward pass: Apply previous node states as dynamic node features and concatenate them with
static features across epochs, improving stability and convergence of the UL procedure. Our work
follows this UL paradigm but extends it to hypergraphs to natively capture higher-order terms in the
objective function.

3 PRELIMINARIES: HYPERGRAPH NEURAL NETWORKS

A hypergraph H = (V,E) generalizes a graph by allowing each hyperedge e ∈ E to connect
an arbitrary subset of nodes e ⊆ V . This structure naturally captures higher-order relations that
are not representable with simple pairwise edges and is widely used across machine learning and
network science Kim et al. (2024); Estrada (2005). Let |V | = n and |E| = m. We write the binary
incidence matrix A ∈ {0, 1}n×m with Ai,e = 1 iff i ∈ e, and define node and hyperedge degrees
by dv(i) =

∑
eAi,e and de(e) =

∑
iAi,e, respectively. When hyperedges carry attributes (e.g.,

weights, types), we denote them by ae.

Message passing on hypergraphs. Hypergraph Neural Networks (HGNNs) extend GNN message
passing by alternating node→edge and edge→node aggregations Feng et al. (2019). At layer ℓ, with
node features X(ℓ)∈Rn×dℓ , a general two-step update can be written as

(node→edge) U (ℓ)
e = AGGe

{
ϕ(ℓ)n (X

(ℓ)
i) : i ∈ e

}
,

(edge→node) X
(ℓ+1)
i = σ

(
ψ(ℓ)
n

(⊕
e∋i

ϕ(ℓ)e (U (ℓ)
e , ae)

))
,

where ϕn, ϕe, ψn are learnable maps, AGGe and ⊕ are permutation-invariant set aggregators (e.g.,
mean/sum), and σ is an activation. This template covers a broad family of HGNNs: different normal-
izations, stabilizers (e.g., BatchNorm), and choices of aggregators/MLPs lead to different concrete
architectures Feng et al. (2019); Kim et al. (2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A common instantiation (mean/sum). A widely used choice (which we adopt further) applies
linear maps before each hop and uses mean on the node→edge step and sum on the edge→node
step:

U (ℓ)
e =

1

|e|
∑
i∈e

W
(ℓ)
1 X

(ℓ)
i , X

(ℓ+1)
i = σ

(
BN

(∑
e∋i

W
(ℓ)
2 U (ℓ)

e

))
,

with trainable W (ℓ)
1 ∈Rdℓ×dh , W (ℓ)

2 ∈Rdh×dℓ+1 , and an optional BatchNorm (“BN”) for stability.
Hyperedge attributes can modulate messages, e.g., by multiplying each U (ℓ)

e with a scalar weight we

or with learned embeddings Dong et al. (2020); Chien et al. (2022). Stacking two such hops with a
residual (skip) connection yields a residual hypergraph block:

X̂(ℓ+1) = BN
(∑

e∋iW
(ℓ)
2 U

(ℓ)
e

)
, X(ℓ+1) = σ

(
X̂(ℓ+1) + Skip(X(ℓ))

)
.

Alternative normalizations based on degree matrices (e.g., variants derived from Dv and De) are
also common and can be plugged into either hop to control scale and improve conditioning Zhou
et al. (2006). The generic template above is agnostic to these choices and encompasses classical
HGNNs and related approximations.

4 PB-HGNN: HYPERGRAPH NEURAL NETWORKS FOR PSEUDO-BOOLEAN
OPTIMIZATION

In this section, we describe a detailed explanation of the proposed framework.

Hypergraph Construction. Given a pseudo-Boolean polynomial 1 of degree d ≥ 3, we con-
struct a hypergraph H = (V, E) where V = {v1, v2, . . . , vn} represents the set of variables
{x1, x2, . . . , xn} and E = {eS : S ⊆ {1, 2, . . . , n}, cS ̸= 0} represents hyperedges, weighted
by wS = cS , corresponding to polynomial terms cS

∏
i∈S xi. An illustrative example on a small

pseudo-Boolean polynomial is shown in Figure 1. This representation preserves the exact structure
of higher-order dependencies.

Continuous Relaxation. In the literature on unsupervised learning for QUBO (e.g., PI-GNN and
related approaches), it is common to replace the binary decision variables xi ∈ {0, 1} by continuous
probabilities pi ∈ [0, 1]. A neural network is then trained to output these probabilities, which
represent the likelihood that variable i is assigned the value 1. The resulting continuous objective is

L(p) =
∑
S⊆[n]

cS
∏
i∈S

pi, p ∈ [0, 1]n. (3)

While this relaxation is usually motivated from a machine learning perspective, it coincides exactly
with the multilinear extension Calinescu et al. (2007) of the underlying pseudo-Boolean function.
This connection provides both an algebraic and a probabilistic interpretation of L(p).
Lemma 1 (Multilinear extension of pseudo-Boolean polynomials). Let f : {0, 1}n → R be a
pseudo-Boolean polynomial 1. Then its multilinear extension coincides with L(p) in equation 3.

The multilinear extension admits a natural probabilistic view: if X = (X1, . . . , Xn) with Xi ∼
Bernoulli(pi) independently, then

L(p) = E[f(X)].

Hence the relaxed objective evaluates the expected value of the original discrete function under
independent randomized rounding with marginals p. This interpretation is crucial in practice: opti-
mizing L(p) corresponds to searching for probability distributions over feasible solutions that yield
high-quality discrete outcomes upon sampling or rounding.

The continuous variables are parametrized by a hypergraph neural network: p = σ(Fθ(H, X(0)))
where σ is the sigmoid function, Fθ is the HGNN with parameters θ, and X(0) ∈ Rn×d0 are node
embeddings.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The PB-HGNN framework high-level design. (1) PUBO Instance: the input is a pseudo-
Boolean polynomial and its probabilistic extension used for training. (2) Hypergraph Construction:
each nonzero monomial becomes a hyperedge on its variables with weight equal to the coefficient.
(3) PB-HGNN: a hypergraph neural network predicts probabilities by minimizing probabilistic ex-
tension. (4) Solution: After obtaining probabilities on the final iteration (epoch) T, a discrete assign-
ment is obtained by thresholding.

Unsupervised Learning. The full PB-HGNN training framework is illustrated in Figure 3. Start-
ing from the pseudo-Boolean polynomial, we construct the hypergraph H = (V, E) as described
above. Each node vi ∈ V is initialized with an embedding X(0)

i ∈ Rd0 , drawn from a normalized
random distribution or from problem-specific features if available. These embeddings are propa-
gated through a stack of hypergraph convolutional and residual layers,

X(ℓ+1) = ϕℓ
(
X(ℓ),H; θℓ

)
,

where ϕℓ denotes the ℓ-th HGNN layer parameterized by θℓ. After L layers, we obtain node-level
hidden states X(L). A final projection layer followed by a sigmoid activation produces probabilities

p = σ
(
X(L)Wout + 1 bout

)
∈ [0, 1]n, X(L) ∈ Rn×dL , Wout ∈ RdL×1, bout ∈ R.

These probabilities are interpreted as soft assignments of binary variables. The loss L(p) is com-
puted directly from p and the polynomial coefficients, as detailed in the previous subsection.

Training proceeds in an unsupervised manner: given p, we evaluate the lossL(p), perform backprop-
agation through all layers of the network, and update the HGNN parameters θ = {θℓ,Wout, bout}
using stochastic gradient descent (AdamW in our implementation). This iterative process contin-
ues until convergence or early stopping, yielding a trained PB-HGNN that maps a problem instance
to a set of variable probabilities. After that, probabilities p are projected to a discrete solution by
applying an indicator function,

xi = 1{ pi > τ }, τ ∈ (0, 1),

with τ = 0.5 as the standard threshold. This simple rounding yields a binary assignment that can
optionally be refined by local search.

4.1 PB-HGNN ARCHITECTURE

Memory-augmented hypergraph convolution. The performance of unsupervised neural solvers
for combinatorial optimization depends critically on the underlying GNN architecture. In
PB-HGNN we employ a memory-augmented hypergraph convolution block as the core unit. Along-
side the static node embeddings X(0) ∈ Rn×d0 , each node i carries a compact hidden memory
mt

i ∈Rdm (dm≪d), and we collect these row-wise into M t ∈Rn×dm . At epoch t, the block takes
[X(0) ∥M t] as input, performs hypergraph message passing with a residual (skip) connection, pro-
duces probabilities pt, and updates the memory by projecting the current hidden states:

mt+1
i = tanh

(
Wm hti

)
, Wm ∈ Rd×dm .

where hti ∈ Rd denotes the block’s output representation of node i at epoch t, and Wm ∈Rd×dm .
We detach M t+1 from the computation graph before the next epoch, preventing backpropagation
across epochs and keeping the per-epoch training cost stable. Thus the model refines its predictions
over training iterations without recomputing from scratch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Conceptually, our design is a lightweight variant of the iterative refinement strategy Pugacheva et al.
(2024). In QI-GNN, refinement is performed across epochs by feeding the previous epoch’s pre-
dicted probabilities back into the model as additional node features. PB-HGNN follows the same
high-level idea to carry information across epochs, but does so via a compact hidden memory: in-
stead of using raw predictions, we propagate a learned state M t obtained from the current hidden
representations and detached before the next epoch. This keeps the signal low-dimensional, re-
duces noise from raw outputs, and yields a simple, stable refinement mechanism embedded in the
architecture.

Algorithm 1 PB-HGNN: one-epoch forward/backward with epoch-level memory

1: Input: hypergraph H = (V,E); node features X(0) = {x(0)i }; weights {we}; incidence
V (e), E(i); order emb. ϕ(·); memory M t = {mt

i}
2: Output: probabilities P t = {pti}; next memory M t+1 = {mt+1

i }
3: h0,ti ← [x

(0)
i ∥mt

i]; zti← ReLU(Winh
0,t
i) ▷ input fusion & projection

4: ute← 1
|e|

∑
i∈V (e)W1 z

t
i ▷ node→edge: mean aggregation

5: ãti←
∑

e∈E(i)

[
W2(u

t
e ⊙ ϕ(|e|))

]
· we ▷ edge→node: sum & modulation

6: ati← ReLU
(
BN1(ã

t
i)
)

▷ norm & activation
7: u′ te ← 1

|e|
∑

i∈V (e)W
′
1 a

t
i ▷ second pass: node→edge

8: b̃ti←
∑

e∈E(i)

[
W ′

2(u
′ t
e ⊙ ϕ(|e|))

]
· we ▷ second pass: edge→node

9: bti← BN2(b̃
t
i); hti← ReLU

(
bti + Skip(zti)

)
▷ residual (skip)

10: pti← σ
(
w⊤

outh
t
i + bout

)
▷ output head (sigmoid)

11: L←
∑

S cS
∏

j∈S p
t
j ▷ probabilistic relaxation loss

12: update Θ with AdamW using ∇ΘL ▷ backward
13: mt+1

i ← tanh(Wmh
t
i); detach all mt+1

i ▷ memory update for next epoch
14: return P t,M t+1

We use a single residual hypergraph–convolution block whose state is carried across epochs via
a compact per-node memory. For selected epoch, we show Algorithm 1 with details of the for-
ward/backword procedure. Alongside the static embeddings X(0) ∈ Rn×d0 , each node i keeps a
memory vector mt

i∈Rdm (dm≪d); we stack them row-wise as M t for input fusion. In each epoch
t, the block (i) concatenates features with memory and projects to the working width (line 3); (ii)
performs a two-hop message pass with mean node→edge aggregation (line 4) and sum edge→node
aggregation modulated by the hyperedge order embedding ϕ(|e|) and polynomial weight we (lines
5–6); (iii) repeats the two hops with independent parameters and applies BatchNorm and a residual
(skip) connection (lines 7–9). The output head produces per-node probabilities via a sigmoid (line
10), and the loss is the multilinear extension of the original polynomial evaluated at these probabil-
ities (line 11). We update parameters with AdamW (line 12), then update the per-node memories
by a tanh projection of the current hidden states and detach them before the next epoch to avoid
backpropagation through epochs (line 13). This realizes an iterative refinement mechanism across
epochs through a lightweight, learned hidden state rather than by feeding back raw predictions.

Training details. By default, we use a single residual hypergraph–convolution block with Batch-
Norm and ReLU, a linear output head with a sigmoid, and a compact per-node memory of size
dm = max{1, ⌊d/8⌋}, where d is the working hidden width. Node features X(0) ∈ Rn×d0 are
static: unless problem-specific features are provided, we initialize them with ℓ2-normalized Gaus-
sian vectors. Hyperedges are stored in a sparse incidence format and carry (i) the polynomial weight
we = cS and (ii) an order embedding ϕ(|e|); in our implementation we cap the order vocabulary at
|e| ≤ 5 for efficiency (higher orders are clamped). We optimize parameters θ with AdamW, apply
gradient clipping (max-norm 0.5), and use a REDUCELRONPLATEAU scheduler; early stopping is
triggered when the loss stabilizes. Mixed precision is enabled when available. The memory state
is propagated across epochs and detached before the next epoch to avoid backpropagation through
time. At inference, we decode by thresholding xi = 1{pi > τ} with default τ = 0.5. For effi-
ciency, we pre-compile loss terms by degree (vectorized for d = 1, batched for d = 2, tensorized

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

for d ≥ 3). While the architecture naturally supports deeper stacks and alternative memory updates,
our experiments use this minimal configuration for speed and stability.

5 NUMERICAL EXPERIMENTS

5.1 RANDOM POLYNOMIALS

We consider synthetic pseudo-Boolean objectives of fixed degree k ≥ 3 with n binary variables.
Following prior work Chermoshentsev et al. (2021), we generate three standard classes of random
instances: (i) Class I (dense ±1): each k-tuple coefficient Ji1...ik is sampled i.i.d. from {±1}
with equal probability - it corresponds to the extended version of Sherrington–Kirkpatrick model.
Chermoshentsev et al. (2021). (ii) Class II (dense uniform): Ji1...ik ∼ Unif[−1, 1] i.i.d.; (iii) Class
III (sparse): start from Class II and independently drop each coefficient with probability 0.9 (set it
to zero), producing a sparse higher-order interaction tensor.

Let x ∈ {0, 1}n. A degree-k random polynomial reads

pk(x) =
∑

1≤i1<···<ik≤n

Ji1...ik xi1 · · ·xik , (4)

with coefficients Ji1...ik drawn according to the chosen class. When needed, we also include lower-
order terms to allow affine shifts:

p(x) = C∅ +
∑
i

Cixi +
∑
i<j

Cijxixj +
∑

i1<···<ik

Ji1...ik xi1 · · ·xik . (5)

The optimization task is minx∈{0,1}n p(x) (or equivalently, maximization with flipped signs). This
is a native PUBO instance with hyperedges e{i1,...,ik} weighted by Ji1...ik . ?

Figure 3: Outcome distributions at k = {3, 5} (PB-HGNN vs. SA). Columns correspond to the
three random PUBO classes, Each panel aggregates R=100 independent runs (different random
initializations) and shows the density of the normalized best objective reached within the same
compute budget. We omit QUBO GNNs for k = 5 since it requires very large number of variables
(tens thousands) in the QUBO reformulation

Experimental Setup and Results. We study random PUBO instances at fixed size n=100 and
degrees k ∈ {3, 5} for the three classes, as defined above(. For each (k, class) we generate 10

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

independent instances and, unless noted, report aggregates across these instances. PB-HGNN is
trained for 10,000 epochs with AdamW. We evaluate the discrete objective p(x) each epoch, and
keep the best-so-far value. As baselines, we use (i) a QUBO-GNN trained on a quadratized version
of the same instances with the same epoch budget and optimizer, and (ii) Simulated Annealing (SA)
on the PUBO form.

We visualize results with three figure sets. We show Outcome distributions 3 (2×3 grid): for
each panel we aggregate the final best-of-run objectives over R=100 runs (multiple random ini-
tializations) and display density histograms for PB-HGNN, QUBO-based GNN (that solves the
QUBO problem after quadratization) : we select Pugacheva et al. (2024) as it acheives the best
performance among QUBO GNNs, and Simulated Annealing, revealing both spread and tail be-
havior. To make values comparable across instances with different scales and sparsities, we report
p̃(x) = p(x)

/
∥c∥1, where ∥c∥1 =

∑
S |cS | is the ℓ1 norm of the PUBO coefficients for that in-

stance; lower is better. This scale-free normalization removes instance-dependent magnitude effects
(e.g., number of nonzeros, coefficient ranges), so the histograms reflect solver quality rather than
raw objective scale. Across all classes, SA is competitive and lies close to PB-HGNN under this
normalization, indicating that SA is not drastically worse at k=5. Across classes and both de-
grees, PB-HGNN consistently reaches lower objectives faster than the QUBO baselines and exhibits
tighter outcome distributions; the overhead plots highlight the rapidly growing variable/term counts
for higher k, underscoring the advantage of operating natively on the PUBO hypergraph.

5.2 MAX-3-SAT

Problem description. Given Boolean variables y1, . . . , yn ∈ {0, 1} and a 3-CNF formula with m
clauses Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3), each literal ℓrk being either a variable yirk or its negation ¬yirk ,
the goal in MAX-3-SAT is to assign truth values to the variables so as to maximize the number of
satisfied clauses. A clause is satisfied if at least one of its three literals is true, and violated if all
three are false. The canonical objective is therefore

max
y∈{0,1}n

m∑
r=1

1{Cr(y) = True} = m− min
y∈{0,1}n

m∑
r=1

1{Cr(y) = False}.

We consider the equivalent minimization of the number of violated clauses (right-hand side), which
is convenient for our PUBO mapping. MAX-3-SAT is NP-hard and widely used as a benchmark
for discrete optimization; instances are often specified by their clause density α = m/n and may
be weighted (each clause has a weight) or unweighted (all weights = 1). Performance is typically
reported as the fraction of satisfied clauses or the number of violations at the returned assignment.

PUBO formulation. Let xi ∈ {0, 1} encode yi = True ⇐⇒ xi = 1. For a literal ℓ on xi, define
its falsity factor

ℓ(x) =

{
1− xi, ℓ = xi,

xi, ℓ = ¬xi.
A 3-clause Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3) is violated iff all three literals are false, hence

vr(x) =

3∏
k=1

ℓrk(x).

Thus MAX-3-SAT becomes the unconstrained pseudo-Boolean optimization

min
x∈{0,1}n

p(x) =

m∑
r=1

vr(x) = C∅ +
∑
i

Cixi +
∑
i<j

−Cijxixj +
∑

i<j<k

Cijkxixjxk,

where the coefficients {C∅, Ci, Cij , Cijk} follow from expanding the products and collecting like
terms. (Full coefficient formulas and derivation are provided in Appendix B.)

Experimental Setup and Results. We evaluate PB-HGNN on the MAX-3-SAT problem fol-
lowing the experimental design of Yau et al. citeyau2024are. We run Two settings are consid-
ered: (i) random unweighted instances with n = 100 variables and clause density α = m/n ∈

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Average number of unsatisfied clauses for Max-3-SAT on random instances with N = 100
variables and α ∈ {4.00, 4.15, 4.30}. Standard deviation is shown after ±. In parentheses: average
runtime per instance (seconds).

Method α = 4.00 α = 4.15 α = 4.30
WalkSAT 0.94±0.92 1.46±1.11 1.97±1.28
Survey Propagation 3.32±0.81 3.87±0.79 3.94±0.93
ErdősGNN 5.46±1.91 6.14±2.01 6.79±2.03
OptGNN 4.46±1.68 5.15±1.76 5.84±2.18
PB-HGNN (ours) 3.11±0.98 4.01±1.10 4.29±1.45

{4.00, 4.15, 4.30}, and (ii) benchmark instances from the UUF SATLIB dataset. In both cases, the
objective is to minimize the number of violated clauses.

For the random instance setting, each formula is generated on the fly with uniformly random clauses,
and results are averaged over multiple test instances. We directly replicate the baselines reported
in Yau et al. (2024): WalkSAT (classic stochastic local search solver), Survey Propagation Braunstein
et al. (2005), ErdősGNN Karalias & Loukas (2020), and unsupervised OptGNN Yau et al. (2024).
We then add a row for our PB-HGNN. Performance is measured as the average number of unsatisfied
clauses (lower is better). The results show that our method outperforms both neural solvers, while
being inferiour to the best classical problem-specific method.

For the second setting, we evaluate on the UUF benchmark SAT instances from SATLIB, com-
monly used to test incomplete Max-SAT solvers. We select 100 unsatisfiable instances from
uuf125.538.100 dataset, with problems of 100 variables and 538 clauses, and report the average
fraction of satisfied clauses across instances. We compare with local search sat-specific heuristics
WalkSAT and Heuristic Backbone Sampling (HBS), and neural baseline ErdősGNN Karalias &
Loukas (2020).

Table 2: Performance on UUF benchmark instances from SATLIB. We report average clause satis-
faction (higher is better). PB-HGNN results will be added in the last row.

Method average, satisfied clauses
WalkSAT 536.42
HBS 536.11
ErdősGNN 528.75
PB-HGNN (ours) 534.30

6 CONCLUSIONS

We introduced PB-HGNN, an unsupervised hypergraph–neural framework that optimizes pseudo-
Boolean polynomials directly in their native higher-order form. By mapping each nonzero mono-
mial to a hyperedge with the corresponding coefficient, and training a memory-augmented HGNN
to minimize the probabilistic relaxation, our method manages to capture multi-way variable in-
teractions. Across representative benchmark families: random higher-order PUBO, including the
Sherrington–Kirkpatrick spin model, and MAX-3-SAT, PB-HGNN delivers competitive or superior
solution quality to GNN baselines built on reduced quadratic formulations. heuristics, while scaling
to thousands of variables. These results demonstrate that hypergraph message passing paired with
instance-specific unsupervised training is a novel and effective recipe for higher-order combinatorial
optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bader F. AlBdaiwi, Diptesh Ghosh, and Boris Goldengorin. Data aggregation for p-median prob-
lems. Journal of Combinatorial Optimization, 21(3):348–363, June 2009. ISSN 1573-2886. doi:
10.1007/s10878-009-9251-8.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An un-
supervised differentiable approach. In International Conference on Learning Representations,
2018. URL https://api.semanticscholar.org/CorpusID:53544639.

Ryan Babbush, Alejandro Perdomo-Ortiz, Bryan O’Gorman, William Macready, and Alan Aspuru-
Guzik. Construction of energy functions for lattice heteropolymer models: Efficient encodings
for constraint satisfaction programming and quantum annealing, April 2014. ISSN 1934-4791.
URL http://dx.doi.org/10.1002/9781118755815.ch05.

Vladimir L. Beresnev. On a problem of mathematical standardization theory. Upr Sist, (5):11:43–54
(in Russian), 1973.

J. Bernasconi. Low autocorrelation binary sequences: statistical mechanics and configu-
ration space analysis. Journal de Physique, 48(4):559–567, 1987. ISSN 0302-0738.
doi: 10.1051/jphys:01987004804055900. URL http://dx.doi.org/10.1051/jphys:
01987004804055900.

Sergio Boixo, Tameem Albash, Federico M. Spedalieri, Nicholas Chancellor, and Daniel A. Lidar.
Experimental signature of programmable quantum annealing. Nature Communications, 4(1), June
2013. ISSN 2041-1723. doi: 10.1038/ncomms3067. URL http://dx.doi.org/10.1038/
ncomms3067.

Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1–3):155–225, November 2002. ISSN 0166-218X. doi: 10.1016/s0166-218x(01)00341-9.

A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm for satisfiability.
Random Structures amp; Algorithms, 27(2):201–226, March 2005. ISSN 1098-2418. doi: 10.
1002/rsa.20057. URL http://dx.doi.org/10.1002/rsa.20057.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In IPCO, pp. 182–196, 2007. URL https://doi.
org/10.1007/978-3-540-72792-7_15.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 4348–
4355, 8 2021. doi: 10.24963/ijcai.2021/595. URL https://doi.org/10.24963/ijcai.
2021/595.

N. Chancellor, S. Zohren, P. A. Warburton, S. C. Benjamin, and S. Roberts. A direct mapping of
max k-sat and high order parity checks to a chimera graph. Scientific Reports, 6(1), November
2016. ISSN 2045-2322. doi: 10.1038/srep37107. URL http://dx.doi.org/10.1038/
srep37107.

Dmitry A. Chermoshentsev, Aleksei O. Malyshev, Mert Esencan, Egor S. Tiunov, Douglas Men-
doza, Alán Aspuru-Guzik, Aleksey K. Fedorov, and Alexander I. Lvovsky. Polynomial uncon-
strained binary optimisation inspired by optical simulation. 6 2021.

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=hpBTIv2uy_E.

Kofler Christian, Greistorfer Peter, Wang Haibo, and Kochenberger Gary. A penalty function ap-
proach to max 3-sat problems. Karl-Franzens-University Graz, 2014.

Yihe Dong, Will Sawin, and Yoshua Bengio. Hnhn: Hypergraph networks with hyperedge
neurons. ArXiv, abs/2006.12278, 2020. URL https://api.semanticscholar.org/
CorpusID:219965680.

10

https://api.semanticscholar.org/CorpusID:53544639
http://dx.doi.org/10.1002/9781118755815.ch05
http://dx.doi.org/10.1051/jphys:01987004804055900
http://dx.doi.org/10.1051/jphys:01987004804055900
http://dx.doi.org/10.1038/ncomms3067
http://dx.doi.org/10.1038/ncomms3067
http://dx.doi.org/10.1002/rsa.20057
https://doi.org/10.1007/978-3-540-72792-7_15
https://doi.org/10.1007/978-3-540-72792-7_15
https://doi.org/10.24963/ijcai.2021/595
https://doi.org/10.24963/ijcai.2021/595
http://dx.doi.org/10.1038/srep37107
http://dx.doi.org/10.1038/srep37107
https://openreview.net/forum?id=hpBTIv2uy_E
https://api.semanticscholar.org/CorpusID:219965680
https://api.semanticscholar.org/CorpusID:219965680

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Juan A. Estrada, Rodriguez-Velazquez. Complex networks as hypergraphs. 2005. doi: 10.48550/
ARXIV.PHYSICS/0505137. URL https://arxiv.org/abs/physics/0505137.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural net-
works. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI
Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33013558. URL https:
//doi.org/10.1609/aaai.v33i01.33013558.

Alexander Fix, Aritanan Gruber, Endre Boros, and Ramin Zabih. A hypergraph-based reduction for
higher-order binary markov random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(7):1387–1395, July 2015. ISSN 2160-9292. doi: 10.1109/tpami.2014.2382109.
URL http://dx.doi.org/10.1109/TPAMI.2014.2382109.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

Fred Glover, Gary Kochenberger, Rick Hennig, and Yu Du. Quantum bridge analytics i: a tutorial
on formulating and using qubo models. Annals of Operations Research, 314(1):141–183, April
2022. ISSN 1572-9338. doi: 10.1007/s10479-022-04634-2.

Boris Goldengorin, Diptesh Ghosh, and Gerard Sierksma. Branch and peg algorithms for the simple
plant location problem. Computers amp; Operations Research, 30(7):967–981, June 2003. ISSN
0305-0548. doi: 10.1016/s0305-0548(02)00049-7.

Peter L. Hammer. Plant location—a pseudo-boolean approach. Isr J Technol, pp. 6:330–332, 1968.

Peter L. Hammer and Sergiu Rudeanu. Boolean Methods in Operations Research and Related Areas.
Springer Berlin Heidelberg, 1968. ISBN 9783642858239. doi: 10.1007/978-3-642-85823-9.
URL http://dx.doi.org/10.1007/978-3-642-85823-9.

Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, and Farinaz Koushanfar. Dis-
tributed constrained combinatorial optimization leveraging hypergraph neural networks. Na-
ture Machine Intelligence, 6(6):664–672, May 2024. ISSN 2522-5839. doi: 10.1038/
s42256-024-00833-7. URL http://dx.doi.org/10.1038/s42256-024-00833-7.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization, 2024.

H Ishikawa. Transformation of general binary mrf minimization to the first-order case. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 33(6):1234–1249, June 2011. ISSN 2160-
9292. doi: 10.1109/tpami.2010.91. URL http://dx.doi.org/10.1109/TPAMI.2010.
91.

Taro Kanao and Hayato Goto. Simulated bifurcation for higher-order cost functions. Applied Physics
Express, 16(1):014501, dec 2022. doi: 10.35848/1882-0786/acaba9. URL https://dx.doi.
org/10.35848/1882-0786/acaba9.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 6659–6672.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning com-
binatorial optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6348–6358, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

11

https://arxiv.org/abs/physics/0505137
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1609/aaai.v33i01.33013558
http://dx.doi.org/10.1109/TPAMI.2014.2382109
http://dx.doi.org/10.1007/978-3-642-85823-9
http://dx.doi.org/10.1038/s42256-024-00833-7
http://dx.doi.org/10.1109/TPAMI.2010.91
http://dx.doi.org/10.1109/TPAMI.2010.91
https://dx.doi.org/10.35848/1882-0786/acaba9
https://dx.doi.org/10.35848/1882-0786/acaba9
https://proceedings.neurips.cc/paper_files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 6534–6544,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi:
10.1145/3637528.3671457. URL https://doi.org/10.1145/3637528.3671457.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Frauke Liers, Enzo Marinari, Ulrike Pagacz, Federico Ricci-Tersenghi, and Vera Schmitz. A
non-disordered glassy model with a tunable interaction range. Journal of Statistical Mechan-
ics: Theory and Experiment, 2010(05):L05003, May 2010. ISSN 1742-5468. doi: 10.1088/
1742-5468/2010/05/l05003. URL http://dx.doi.org/10.1088/1742-5468/2010/
05/L05003.

Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2, 2014. ISSN
2296-424X. doi: 10.3389/fphy.2014.00005.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=lAEc7aIW20.

Marcelo Prates, Pedro H. C. Avelar, Henrique Lemos, Luis C. Lamb, and Moshe Y. Vardi. Learning
to solve np-complete problems: A graph neural network for decision tsp. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):4731–4738, Jul. 2019. doi: 10.1609/aaai.v33i01.
33014731. URL https://ojs.aaai.org/index.php/AAAI/article/view/4399.

Daria Pugacheva, Yuriy Zotov, Andrei Ermakov, and Igor Lyskov. Unsupervised graph neural
networks with recurrent features for solving combinatorial optimization problems, 2024. URL
https://openreview.net/forum?id=9qtswuW5ux.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimiza-
tion with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377,
April 2022a. doi: 10.1038/s42256-022-00468-6. URL https://doi.org/10.1038/
s42256-022-00468-6.

Martin J. A. Schuetz, J. Kyle Brubaker, Zhihuai Zhu, and Helmut G. Katzgraber. Graph color-
ing with physics-inspired graph neural networks. Phys. Rev. Res., 4:043131, Nov 2022b. doi:
10.1103/PhysRevResearch.4.043131. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.4.043131.

Jonas Stein, Farbod Chamanian, Maximilian Zorn, Jonas Nüßlein, Sebastian Zielinski, Michael
Kölle, and Claudia Linnhoff-Popien. Evidence that pubo outperforms qubo when solving con-
tinuous optimization problems with the qaoa. In Proceedings of the Companion Conference
on Genetic and Evolutionary Computation, GECCO ’23 Companion, pp. 2254–2262, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701207. doi:
10.1145/3583133.3596358. URL https://doi.org/10.1145/3583133.3596358.

Wolf H Tönshoff J, Ritzert M and Grohe M. Graph neural networks for maximum constraint sat-
isfaction. Frontiers in Artificial Intelligence, 3, 2021. doi: 10.3389/frai.2020.580607. URL
https://doi.org/10.3389/frai.2020.580607.

Sri Krishna Vadlamani, Tianyao Patrick Xiao, and Eli Yablonovitch. Physics successfully im-
plements lagrange multiplier optimization. Proceedings of the National Academy of Sciences,
117(43):26639–26650, October 2020. ISSN 1091-6490. doi: 10.1073/pnas.2015192117. URL
http://dx.doi.org/10.1073/pnas.2015192117.

Amit Verma, Mark Lewis, and Gary Kochenberger. Efficient qubo transformation for higher degree
pseudo boolean functions, 2021. URL https://arxiv.org/abs/2107.11695.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning
for combinatorial optimization with principled objective relaxation. 2022. URL https:
//openreview.net/forum?id=HjNn9oD_v47.

12

https://doi.org/10.1145/3637528.3671457
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
http://dx.doi.org/10.1088/1742-5468/2010/05/L05003
http://dx.doi.org/10.1088/1742-5468/2010/05/L05003
https://openreview.net/forum?id=lAEc7aIW20
https://ojs.aaai.org/index.php/AAAI/article/view/4399
https://openreview.net/forum?id=9qtswuW5ux
https://doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1038/s42256-022-00468-6
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043131
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043131
https://doi.org/10.1145/3583133.3596358
https://doi.org/10.3389/frai.2020.580607
http://dx.doi.org/10.1073/pnas.2015192117
https://arxiv.org/abs/2107.11695
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiangyu Wang, Xueming Yan, and Yaochu Jin. A graph neural network with negative message
passing for graph coloring, 2023.

Zhe Wang, Alireza Marandi, Kai Wen, Robert L. Byer, and Yoshihisa Yamamoto. Coherent
ising machine based on degenerate optical parametric oscillators. Phys. Rev. A, 88:063853,
Dec 2013. doi: 10.1103/PhysRevA.88.063853. URL https://link.aps.org/doi/10.
1103/PhysRevA.88.063853.

Morris Yau, Nikolaos Karalias, Eric Hanqing Lu, Jessica Xu, and Stefanie Jegelka. Are graph
neural networks optimal approximation algorithms? In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=SxRblm9aMs.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In B. Schölkopf, J. Platt, and T. Hoff-
man (eds.), Advances in Neural Information Processing Systems, volume 19. MIT Press,
2006. URL https://proceedings.neurips.cc/paper_files/paper/2006/
file/dff8e9c2ac33381546d96deea9922999-Paper.pdf.

A PROOFS

Lemma 1. (Multilinear extension of pseudo-boolean polynomial). Let f : {0, 1}n → R be a
pseudo-Boolean polynomial

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi, x ∈ {0, 1}n. (6)

Then its multilinear extension coincides with L(p) in equation 3, i.e.,

F (p) =
∑
S⊆[n]

cS
∏
i∈S

pi, p ∈ [0, 1]n.

Proof. By definition, the multilinear extension of a set function f is

F (p) =
∑
S⊆[n]

f(S)
∏
i∈S

pi
∏
i/∈S

(1− pi).

Evaluating f(S) from its polynomial form gives

f(S) = f(1S) =
∑

T⊆[n]

cT
∏
j∈T

1S(j) =
∑
T⊆S

cT .

Substituting into F (p) yields

F (p) =
∑
S⊆[n]

(∑
T⊆S

cT

)∏
i∈S

pi
∏
i/∈S

(1− pi).

Swapping the order of summation gives

F (p) =
∑

T⊆[n]

cT
∑
S⊇T

∏
i∈S

pi
∏
i/∈S

(1− pi).

For each fixed T , factor out
∏

i∈T pi and write U = S \ T :∑
S⊇T

∏
i∈S

pi
∏
i/∈S

(1− pi) =
(∏

i∈T

pi

) ∑
U⊆[n]\T

∏
i∈U

pi
∏
i/∈U

(1− pi).

The inner sum is the expansion of
∏

i∈[n]\T (pi + (1− pi)) = 1. Hence

F (p) =
∑

T⊆[n]

cT
∏
i∈T

pi,

which equals L(p) in equation 3.

13

https://link.aps.org/doi/10.1103/PhysRevA.88.063853
https://link.aps.org/doi/10.1103/PhysRevA.88.063853
https://openreview.net/forum?id=SxRblm9aMs
https://openreview.net/forum?id=SxRblm9aMs
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/dff8e9c2ac33381546d96deea9922999-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 HYPERPARAMETER SETTINGS

Default hyperparameters optimized through extensive experiments: embedding dimension d = 16,
hidden dimension dh = 8, memory dimension dm = 2, number of layers L = 2, learning rate
α = 10−3 with ReduceLROnPlateau scheduling, dropout rate ρ = 0.05, weight decay λ2 = 10−6.

A.2 EFFICIENT LOSS COMPUTATION

Naively evaluating equation 3 costs O(nd). We pre-compile terms by degree:

L(p) =
D∑

d=0

C[d](p), (7)

where: - C[1](p) =
∑

i cipi (vectorized), - C[2](p) =
∑

i,j cijpipj (batched matrix ops), - C[d](p) =∑
S:|S|=d cS

∏
i∈S pi for d ≥ 3 (tensorized).

The hypergraph is stored in sparse index format

Esparse = {(i, e) : i ∈ e},

reducing complexity from O(nm) to O(|Esparse|).

B DERIVATION DETAILS FOR MAX 3 SAT PUBO

For a literal on variable xi, let the negation bit α ∈ {0, 1} indicate its sign (α = 0 for xi, α = 1 for
¬xi). Define s := 1− 2α ∈ {+1,−1}. Then the falsity factor can be written as

ℓ(x) = (1− α)− s xi.

For a clause Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3) on indices Ir = {ir1, ir2, ir3} with signs {αr1, αr2, αr3} and
srk = 1− 2αrk, the violation indicator expands as

vr(x) =

3∏
k=1

(
(1− αrk)− srkxirk

)
= c

(r)
∅ +

∑
p∈Ir

c(r)p xp +
∑

{p,q}⊂Ir

c(r)pq xpxq + c(r)pqrxpxqxr,

with coefficients

c
(r)
∅ =

3∏
k=1

(1− αrk),

c
(r)
irk

= − srk
∏
ℓ ̸=k

(1− αrℓ),

c
(r)
irkirℓ

= srk srℓ
∏

j ̸=k,ℓ

(1− αrj),

c
(r)
ir1ir2ir3

= − sr1sr2sr3.
Summing over clauses yields

p(x) =

m∑
r=1

vr(x) = C∅ +
∑
i

Cixi +
∑
i<j

Cijxixj +
∑

i<j<k

Cijkxixjxk,

where C∅ =
∑

r c
(r)
∅ , Ci =

∑
r c

(r)
i , Cij =

∑
r c

(r)
ij , and Cijk =

∑
r c

(r)
ijk. Equivalently, one may

enumerate all 23 sign patterns of a clause and record the resulting monomials; both approaches are
algebraically identical.

14

	Introduction
	Combinatorial Optimization with Unsupervised Learning
	Preliminaries: Hypergraph Neural Networks
	PB-HGNN: Hypergraph Neural Networks for Pseudo-Boolean Optimization
	PB-HGNN architecture

	Numerical Experiments
	Random Polynomials
	MAX-3-SAT

	Conclusions
	Proofs
	Hyperparameter Settings
	Efficient Loss Computation

	Derivation details for MAX 3 SAT PUBO

