
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZING PSEUDO-BOOLEAN POLYNOMIALS US-
ING HYPERGRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The challenge of solving NP-hard combinatorial optimization problems with deep
learning has attracted considerable interest. Modern graph neural networks are
capable of efficiently solving problem instances in an unsupervised manner, how-
ever the graph structure limits the scope of their application. We present a novel
approach, hereafter referred to as PB-HGNN, which employs unsupervised Hy-
pergraph Neural Networks (HGNNs) to solve the polynomial unconstrained bi-
nary optimization (PUBO) problem. By representing the high-order terms of the
pseudo-Boolean polynomials as hyperedges in a hypergraph, the HGNN is enable
to capture intricate variable interdependencies beyond pairwise interactions. As a
result, our framework provides the possibility of solving a wide range of discrete
problems that have not previously been addressed by neural networks. We eval-
uate PB-HGNN on random higher-order pseudo-Boolean polynomials, including
the Sherrington-Kirkpatrick model, and max-3-SAT instances. Our results show
that PB-HGNN outperforms baselines on these problems and is capable of solving
large-scale PUBO instances.

1 INTRODUCTION

A pseudo-Boolean function is a mapping f : Bn → R, where B = {0, 1} is a Boolean domain.
All pseudo-boolean functions can be uniquely represented as multilinear pseudo-Boolean polyno-
mials Hammer & Rudeanu (1968); Boros & Hammer (2002) of the following form:

f(x1, ..., xn) =
∑
S⊆[n]

cS
∏
j∈S

xj , x ∈ Bn. (1)

The general problem to optimize (1) is known as Polynomial Unconstrained Binary Optimization
(PUBO) problem. deg(f) = maxcS ̸=0 |S| is the degree of pseudo-boolean polynomial. deg(f) = 2
yields the well-known Quadratic Unconstrained Binary Optimization (QUBO) problem. Recently,
there has been a resurgence of interest in encoding various Combinatorial Optimization (CO) prob-
lems as QUBOs Lucas (2014); Glover et al. (2022). This is largely due to the development of
specialized computational devices such as quantum annealing Boixo et al. (2013) and coherent
Ising machines Wang et al. (2013), which exploit the interaction between QUBO solutions and the
fundamental states of physical systems of the Ising Hamiltonian Vadlamani et al. (2020). In the
last few years, new heuristic algorithms based on unsupervised graph neural networks (GNNs) were
proposed for solving CO problems formulated as QUBO Schuetz et al. (2022a); Pugacheva et al.
(2024); Ichikawa (2024). They encode a problem’s binary variables as graph nodes and its nonzero
quadratic terms as edges, and then train a GNN to minimize the continuous relaxation of the QUBO
objective.

In this paper, we address the higher-order PUBO problem, when deg(f) ≥ 3. In combinatorial
optimization, it has been widely applied for modeling a maximum satisfiability Christian et al.
(2014), uncapacitated facility location Goldengorin et al. (2003); Beresnev (1973); Hammer (1968),
and the p-median AlBdaiwi et al. (2009) problems. Other important applications occur in statistical
mechanics Bernasconi (1987); Liers et al. (2010) , computer vision Ishikawa (2011); Fix et al.
(2015), protein folding Babbush et al. (2014), etc. Classical approaches for optimizing higher-
order f rely on reducing the polynomial degree through quadratization methods Verma et al. (2021);
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Figure 1: Hypergraph representation of f(x1, . . . , x5) = 5x2x3 + 2x3x4x5 − 7x1x2x3x4

Chancellor et al. (2016). By introducing additional variables, the problem can be reformulated as
an integer linear program or a QUBO, which can then be solved using corresponding traditional
algorithms.

While in quantum and quantum-inspired optimization it is now standard to solve PUBO di-
rectly—without reducing to QUBO—via higher-order Ising Hamiltonians Chermoshentsev et al.
(2021); Stein et al. (2023); Kanao & Goto (2022), the neural combinatorial optimization literature
still predominantly relies on explicit QUBO reductions or other objectives. In this work we in-
troduce PB-HGNN, a hypergraph-based unsupervised framework that operates natively on higher-
order pseudo-Boolean polynomials: each monomial xS becomes a hyperedge on S with weight
cS , as shown in the fig. 1, and a lightweight residual hypergraph block produces instance-specific
probabilities that are refined across epochs via an epoch-level memory. By staying in the origi-
nal higher-order domain, PB-HGNN preserves multi-way interactions and simplifies the modeling
pipeline.

We evaluate PB-HGNN on two representative benchmarks: random higher-order PUBO instances
and MAX-3-SAT (via the standard PUBO mapping) and compare against standart algorithm GNN
solvers, including QUBO-based that solve problem after the quadratization procedure. Across set-
tings, PB-HGNN attains competitive or superior solution quality while remaining simple and scal-
able.

Contributions.

• Direct higher-order modeling for UL. We propose PB-HGNN, the first unsupervised neural
framework that solves PUBO without quadratization, capturing k-way structure directly.

• Memory-driven architecture. We utlize a compact epoch-level memory that carries infor-
mation across iterations, stabilizing instance-specific training with minimal overhead.

• Empirical validation. On random PUBO and MAX-3-SAT, PB-HGNN matches or sur-
passes quadratization-based GNN baselines.

2 COMBINATORIAL OPTIMIZATION WITH UNSUPERVISED LEARNING

Unsupervised Learning (UL). Neural approaches to CO include supervised prediction Prates
et al. (2019); Gasse et al. (2019) and reinforcement learning (RL) Khalil et al. (2017); Kool et al.
(2019); supervised methods require labeled near-optimal solutions and often struggle to generalize,
whereas RL avoids labels but is often sample-inefficient on large state spaces. A complementary
route is unsupervised, instance-specific learning: optimize a differentiable model through which the
decision variables are produced, and update model parameters to improve the instance’s objective,
rather than updating the variables directly. This reparameterization often yields smoother search
trajectories and fewer stalls in poor local minima Wang et al. (2022), and, by training on the in-
stance itself, encodes useful inductive bias without requiring labeled solutions. In effect, UL turns
the solver into a trainable generator of candidates that can be optimized end-to-end with standard
gradient methods.
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GNN-based UL Many CO problems are naturally defined on graphs, where solutions select sub-
sets of nodes/edges; this makes graph neural networks appealing as the learnable maps that produce
instance-specific decisions Cappart et al. (2021). Unsupervised GNN solvers include recurrent archi-
tectures for constrained satisfaction problems such as RUN-CSP Tönshoff J & M (2021); instance-
specific training for SAT Amizadeh et al. (2018); and Erdős Goes Neural (EGN) Karalias & Loukas
(2020), which learns distributions over solutions inspired by the probabilistic method, later extended
via entry-wise concave relaxations Wang et al. (2022) and meta-learning variants. Min et al. (2023)
train GNN with a surrogate unsupervised loss to produce an edge ‘heat map’, and a local search then
decodes a TSP tour from it. Heydaribeni et al. (2024) first proposed using hypergraph neural net-
works for unsupervised combinatorial optimization. Their method, HypOp, models each constraint
as a hyperedge in a constraint hypergraph and trains a HyperGNN as a learnable transformation
function, with a simulated annealing step for mapping continuous relaxations back to discrete so-
lutions. These methods differ in how they parametrize decisions, which unsupervised signals they
optimize (constraint-violation penalties, differentiable surrogates), and how they control discretiza-
tion (e.g., temperature schedules or annealing), but all share the goal of learning instance-specific
heuristics directly from the objective without labeled solutions.

QUBO A prominent UL line reduces the target CO to QUBO, which is the problem to minimize
a pseudo-Boolean polynomial 1 f(x) of degree two Hammer (1968):

min
x∈{0,1}n

xTQx, (2)

PI-GNN Schuetz et al. (2022a) replaces binary variables by probabilities pθ ∈ [0, 1]n output by
a GNN and uses the relaxed QUBO as a differentiable loss, enabling general solvers whenever
a QUBO formulation exists; follow-ups adapt this paradigm to specific tasks (e.g., graph color-
ing Schuetz et al. (2022b); Wang et al. (2023)). To direct relaxation toward discrete solutions while
keeping a smooth landscape, Ichikawa (2024) proposes a principled annealing schedule by loss
regularization, that first facilitates exploration and then promotes automatic rounding. Pugacheva
et al. (2024) proposed the novel GNN architecture design that feeds model outputs back into the
next forward pass: Apply previous node states as dynamic node features and concatenate them with
static features across epochs, improving stability and convergence of the UL procedure. Our work
follows this UL paradigm but extends it to hypergraphs to natively capture higher-order terms in the
objective function.

3 PRELIMINARIES: HYPERGRAPH NEURAL NETWORKS

A hypergraph H = (V,E) generalizes a graph by allowing each hyperedge e ∈ E to connect
an arbitrary subset of nodes e ⊆ V . This structure naturally captures higher-order relations that
are not representable with simple pairwise edges and is widely used across machine learning and
network science Kim et al. (2024); Estrada (2005). Let |V | = n and |E| = m. We write the binary
incidence matrix A ∈ {0, 1}n×m with Ai,e = 1 iff i ∈ e, and define node and hyperedge degrees
by dv(i) =

∑
eAi,e and de(e) =

∑
iAi,e, respectively. When hyperedges carry attributes (e.g.,

weights, types), we denote them by ae.

Message passing on hypergraphs. Hypergraph Neural Networks (HGNNs) extend GNN message
passing by alternating node→edge and edge→node aggregations Feng et al. (2019). At layer ℓ, with
node features X(ℓ)∈Rn×dℓ , a general two-step update can be written as

(node→edge) U (ℓ)
e = AGGe

{
ϕ(ℓ)n (X

(ℓ)
i ) : i ∈ e

}
,

(edge→node) X
(ℓ+1)
i = σ

(
ψ(ℓ)
n

( ⊕
e∋i

ϕ(ℓ)e (U (ℓ)
e , ae)

))
,

where ϕn, ϕe, ψn are learnable maps, AGGe and ⊕ are permutation-invariant set aggregators (e.g.,
mean/sum), and σ is an activation. This template covers a broad family of HGNNs: different normal-
izations, stabilizers (e.g., BatchNorm), and choices of aggregators/MLPs lead to different concrete
architectures Feng et al. (2019); Kim et al. (2024).
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A common instantiation (mean/sum). A widely used choice (which we adopt further) applies
linear maps before each hop and uses mean on the node→edge step and sum on the edge→node
step:

U (ℓ)
e =

1

|e|
∑
i∈e

W
(ℓ)
1 X

(ℓ)
i , X

(ℓ+1)
i = σ

(
BN

(∑
e∋i

W
(ℓ)
2 U (ℓ)

e

))
,

with trainable W (ℓ)
1 ∈Rdℓ×dh , W (ℓ)

2 ∈Rdh×dℓ+1 , and an optional BatchNorm (“BN”) for stability.
Hyperedge attributes can modulate messages, e.g., by multiplying each U (ℓ)

e with a scalar weight we

or with learned embeddings Dong et al. (2020); Chien et al. (2022). Stacking two such hops with a
residual (skip) connection yields a residual hypergraph block:

X̂(ℓ+1) = BN
(∑

e∋iW
(ℓ)
2 U

(ℓ)
e

)
, X(ℓ+1) = σ

(
X̂(ℓ+1) + Skip(X(ℓ))

)
.

Alternative normalizations based on degree matrices (e.g., variants derived from Dv and De) are
also common and can be plugged into either hop to control scale and improve conditioning Zhou
et al. (2006). The generic template above is agnostic to these choices and encompasses classical
HGNNs and related approximations.

4 PB-HGNN: HYPERGRAPH NEURAL NETWORKS FOR PSEUDO-BOOLEAN
OPTIMIZATION

In this section, we describe a detailed explanation of the proposed framework.

Hypergraph Construction. Given a pseudo-Boolean polynomial 1 of degree d ≥ 3, we con-
struct a hypergraph H = (V, E) where V = {v1, v2, . . . , vn} represents the set of variables
{x1, x2, . . . , xn} and E = {eS : S ⊆ {1, 2, . . . , n}, cS ̸= 0} represents hyperedges, weighted
by wS = cS , corresponding to polynomial terms cS

∏
i∈S xi. An illustrative example on a small

pseudo-Boolean polynomial is shown in Figure 1. This representation preserves the exact structure
of higher-order dependencies.

Continuous Relaxation. In the literature on unsupervised learning for QUBO (e.g., PI-GNN and
related approaches), it is common to replace the binary decision variables xi ∈ {0, 1} by continuous
probabilities pi ∈ [0, 1]. A neural network is then trained to output these probabilities, which
represent the likelihood that variable i is assigned the value 1. The resulting continuous objective is

L(p) =
∑
S⊆[n]

cS
∏
i∈S

pi, p ∈ [0, 1]n. (3)

While this relaxation is usually motivated from a machine learning perspective, it coincides exactly
with the multilinear extension Calinescu et al. (2007) of the underlying pseudo-Boolean function.
This connection provides both an algebraic and a probabilistic interpretation of L(p).
Lemma 1 (Multilinear extension of pseudo-Boolean polynomials). Let f : {0, 1}n → R be a
pseudo-Boolean polynomial 1. Then its multilinear extension coincides with L(p) in equation 3.

The multilinear extension admits a natural probabilistic view: if X = (X1, . . . , Xn) with Xi ∼
Bernoulli(pi) independently, then

L(p) = E[f(X)].

Hence the relaxed objective evaluates the expected value of the original discrete function under
independent randomized rounding with marginals p. This interpretation is crucial in practice: opti-
mizing L(p) corresponds to searching for probability distributions over feasible solutions that yield
high-quality discrete outcomes upon sampling or rounding.

The continuous variables are parametrized by a hypergraph neural network: p = σ(Fθ(H, X(0)))
where σ is the sigmoid function, Fθ is the HGNN with parameters θ, and X(0) ∈ Rn×d0 are node
embeddings.
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Figure 2: The PB-HGNN framework high-level design. (1) PUBO Instance: the input is a pseudo-
Boolean polynomial and its probabilistic extension used for training. (2) Hypergraph Construction:
each nonzero monomial becomes a hyperedge on its variables with weight equal to the coefficient.
(3) PB-HGNN: a hypergraph neural network predicts probabilities by minimizing probabilistic ex-
tension. (4) Solution: After obtaining probabilities on the final iteration (epoch) T, a discrete assign-
ment is obtained by thresholding.

Unsupervised Learning. The full PB-HGNN training framework is illustrated in Figure 3. Start-
ing from the pseudo-Boolean polynomial, we construct the hypergraph H = (V, E) as described
above. Each node vi ∈ V is initialized with an embedding X(0)

i ∈ Rd0 , drawn from a normalized
random distribution or from problem-specific features if available. These embeddings are propa-
gated through a stack of hypergraph convolutional and residual layers,

X(ℓ+1) = ϕℓ
(
X(ℓ),H; θℓ

)
,

where ϕℓ denotes the ℓ-th HGNN layer parameterized by θℓ. After L layers, we obtain node-level
hidden states X(L). A final projection layer followed by a sigmoid activation produces probabilities

p = σ
(
X(L)Wout + 1 bout

)
∈ [0, 1]n, X(L) ∈ Rn×dL , Wout ∈ RdL×1, bout ∈ R.

These probabilities are interpreted as soft assignments of binary variables. The loss L(p) is com-
puted directly from p and the polynomial coefficients, as detailed in the previous subsection.

Training proceeds in an unsupervised manner: given p, we evaluate the lossL(p), perform backprop-
agation through all layers of the network, and update the HGNN parameters θ = {θℓ,Wout, bout}
using stochastic gradient descent (AdamW in our implementation). This iterative process contin-
ues until convergence or early stopping, yielding a trained PB-HGNN that maps a problem instance
to a set of variable probabilities. After that, probabilities p are projected to a discrete solution by
applying an indicator function,

xi = 1{ pi > τ }, τ ∈ (0, 1),

with τ = 0.5 as the standard threshold. This simple rounding yields a binary assignment that can
optionally be refined by local search.

4.1 PB-HGNN ARCHITECTURE

Memory-augmented hypergraph convolution. The performance of unsupervised neural solvers
for combinatorial optimization depends critically on the underlying GNN architecture. In
PB-HGNN we employ a memory-augmented hypergraph convolution block as the core unit. Along-
side the static node embeddings X(0) ∈ Rn×d0 , each node i carries a compact hidden memory
mt

i ∈Rdm (dm≪d), and we collect these row-wise into M t ∈Rn×dm . At epoch t, the block takes
[X(0) ∥M t ] as input, performs hypergraph message passing with a residual (skip) connection, pro-
duces probabilities pt, and updates the memory by projecting the current hidden states:

mt+1
i = tanh

(
Wm hti

)
, Wm ∈ Rd×dm .

where hti ∈ Rd denotes the block’s output representation of node i at epoch t, and Wm ∈Rd×dm .
We detach M t+1 from the computation graph before the next epoch, preventing backpropagation
across epochs and keeping the per-epoch training cost stable. Thus the model refines its predictions
over training iterations without recomputing from scratch.
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Conceptually, our design is a lightweight variant of the iterative refinement strategy Pugacheva et al.
(2024). In QI-GNN, refinement is performed across epochs by feeding the previous epoch’s pre-
dicted probabilities back into the model as additional node features. PB-HGNN follows the same
high-level idea to carry information across epochs, but does so via a compact hidden memory: in-
stead of using raw predictions, we propagate a learned state M t obtained from the current hidden
representations and detached before the next epoch. This keeps the signal low-dimensional, re-
duces noise from raw outputs, and yields a simple, stable refinement mechanism embedded in the
architecture.

Algorithm 1 PB-HGNN: one-epoch forward/backward with epoch-level memory

1: Input: hypergraph H = (V,E); node features X(0) = {x(0)i }; weights {we}; incidence
V (e), E(i); order emb. ϕ(·); memory M t = {mt

i}
2: Output: probabilities P t = {pti}; next memory M t+1 = {mt+1

i }
3: h0,ti ← [x

(0)
i ∥mt

i ]; zti← ReLU(Winh
0,t
i ) ▷ input fusion & projection

4: ute← 1
|e|

∑
i∈V (e)W1 z

t
i ▷ node→edge: mean aggregation

5: ãti←
∑

e∈E(i)

[
W2(u

t
e ⊙ ϕ(|e|))

]
· we ▷ edge→node: sum & modulation

6: ati← ReLU
(
BN1(ã

t
i)
)

▷ norm & activation
7: u′ te ← 1

|e|
∑

i∈V (e)W
′
1 a

t
i ▷ second pass: node→edge

8: b̃ti←
∑

e∈E(i)

[
W ′

2(u
′ t
e ⊙ ϕ(|e|))

]
· we ▷ second pass: edge→node

9: bti← BN2(b̃
t
i); hti← ReLU

(
bti + Skip(zti)

)
▷ residual (skip)

10: pti← σ
(
w⊤

outh
t
i + bout

)
▷ output head (sigmoid)

11: L←
∑

S cS
∏

j∈S p
t
j ▷ probabilistic relaxation loss

12: update Θ with AdamW using ∇ΘL ▷ backward
13: mt+1

i ← tanh(Wmh
t
i); detach all mt+1

i ▷ memory update for next epoch
14: return P t,M t+1

We use a single residual hypergraph–convolution block whose state is carried across epochs via
a compact per-node memory. For selected epoch, we show Algorithm 1 with details of the for-
ward/backword procedure. Alongside the static embeddings X(0) ∈ Rn×d0 , each node i keeps a
memory vector mt

i∈Rdm (dm≪d); we stack them row-wise as M t for input fusion. In each epoch
t, the block (i) concatenates features with memory and projects to the working width (line 3); (ii)
performs a two-hop message pass with mean node→edge aggregation (line 4) and sum edge→node
aggregation modulated by the hyperedge order embedding ϕ(|e|) and polynomial weight we (lines
5–6); (iii) repeats the two hops with independent parameters and applies BatchNorm and a residual
(skip) connection (lines 7–9). The output head produces per-node probabilities via a sigmoid (line
10), and the loss is the multilinear extension of the original polynomial evaluated at these probabil-
ities (line 11). We update parameters with AdamW (line 12), then update the per-node memories
by a tanh projection of the current hidden states and detach them before the next epoch to avoid
backpropagation through epochs (line 13). This realizes an iterative refinement mechanism across
epochs through a lightweight, learned hidden state rather than by feeding back raw predictions.

Training details. By default, we use a single residual hypergraph–convolution block with Batch-
Norm and ReLU, a linear output head with a sigmoid, and a compact per-node memory of size
dm = max{1, ⌊d/8⌋}, where d is the working hidden width. Node features X(0) ∈ Rn×d0 are
static: unless problem-specific features are provided, we initialize them with ℓ2-normalized Gaus-
sian vectors. Hyperedges are stored in a sparse incidence format and carry (i) the polynomial weight
we = cS and (ii) an order embedding ϕ(|e|); in our implementation we cap the order vocabulary at
|e| ≤ 5 for efficiency (higher orders are clamped). We optimize parameters θ with AdamW, apply
gradient clipping (max-norm 0.5), and use a REDUCELRONPLATEAU scheduler; early stopping is
triggered when the loss stabilizes. Mixed precision is enabled when available. The memory state
is propagated across epochs and detached before the next epoch to avoid backpropagation through
time. At inference, we decode by thresholding xi = 1{pi > τ} with default τ = 0.5. For effi-
ciency, we pre-compile loss terms by degree (vectorized for d = 1, batched for d = 2, tensorized

6
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for d ≥ 3). While the architecture naturally supports deeper stacks and alternative memory updates,
our experiments use this minimal configuration for speed and stability.

5 NUMERICAL EXPERIMENTS

5.1 RANDOM POLYNOMIALS

We consider synthetic pseudo-Boolean objectives of fixed degree k ≥ 3 with n binary variables.
Following prior work Chermoshentsev et al. (2021), we generate three standard classes of random
instances: (i) Class I (dense ±1): each k-tuple coefficient Ji1...ik is sampled i.i.d. from {±1}
with equal probability - it corresponds to the extended version of Sherrington–Kirkpatrick model.
Chermoshentsev et al. (2021). (ii) Class II (dense uniform): Ji1...ik ∼ Unif[−1, 1] i.i.d.; (iii) Class
III (sparse): start from Class II and independently drop each coefficient with probability 0.9 (set it
to zero), producing a sparse higher-order interaction tensor.

Let x ∈ {0, 1}n. A degree-k random polynomial reads

pk(x) =
∑

1≤i1<···<ik≤n

Ji1...ik xi1 · · ·xik , (4)

with coefficients Ji1...ik drawn according to the chosen class. When needed, we also include lower-
order terms to allow affine shifts:

p(x) = C∅ +
∑
i

Cixi +
∑
i<j

Cijxixj +
∑

i1<···<ik

Ji1...ik xi1 · · ·xik . (5)

The optimization task is minx∈{0,1}n p(x) (or equivalently, maximization with flipped signs). This
is a native PUBO instance with hyperedges e{i1,...,ik} weighted by Ji1...ik . ?

Figure 3: Outcome distributions at k = {3, 5} (PB-HGNN vs. SA). Columns correspond to the
three random PUBO classes, Each panel aggregates R=100 independent runs (different random
initializations) and shows the density of the normalized best objective reached within the same
compute budget. We omit QUBO GNNs for k = 5 since it requires very large number of variables
(tens thousands) in the QUBO reformulation

Experimental Setup and Results. We study random PUBO instances at fixed size n=100 and
degrees k ∈ {3, 5} for the three classes, as defined above(. For each (k, class) we generate 10

7
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independent instances and, unless noted, report aggregates across these instances. PB-HGNN is
trained for 10,000 epochs with AdamW. We evaluate the discrete objective p(x) each epoch, and
keep the best-so-far value. As baselines, we use (i) a QUBO-GNN trained on a quadratized version
of the same instances with the same epoch budget and optimizer, and (ii) Simulated Annealing (SA)
on the PUBO form.

We visualize results with three figure sets. We show Outcome distributions 3 (2×3 grid): for
each panel we aggregate the final best-of-run objectives over R=100 runs (multiple random ini-
tializations) and display density histograms for PB-HGNN, QUBO-based GNN (that solves the
QUBO problem after quadratization) : we select Pugacheva et al. (2024) as it acheives the best
performance among QUBO GNNs, and Simulated Annealing, revealing both spread and tail be-
havior. To make values comparable across instances with different scales and sparsities, we report
p̃(x) = p(x)

/
∥c∥1, where ∥c∥1 =

∑
S |cS | is the ℓ1 norm of the PUBO coefficients for that in-

stance; lower is better. This scale-free normalization removes instance-dependent magnitude effects
(e.g., number of nonzeros, coefficient ranges), so the histograms reflect solver quality rather than
raw objective scale. Across all classes, SA is competitive and lies close to PB-HGNN under this
normalization, indicating that SA is not drastically worse at k=5. Across classes and both de-
grees, PB-HGNN consistently reaches lower objectives faster than the QUBO baselines and exhibits
tighter outcome distributions; the overhead plots highlight the rapidly growing variable/term counts
for higher k, underscoring the advantage of operating natively on the PUBO hypergraph.

5.2 MAX-3-SAT

Problem description. Given Boolean variables y1, . . . , yn ∈ {0, 1} and a 3-CNF formula with m
clauses Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3), each literal ℓrk being either a variable yirk or its negation ¬yirk ,
the goal in MAX-3-SAT is to assign truth values to the variables so as to maximize the number of
satisfied clauses. A clause is satisfied if at least one of its three literals is true, and violated if all
three are false. The canonical objective is therefore

max
y∈{0,1}n

m∑
r=1

1{Cr(y) = True} = m− min
y∈{0,1}n

m∑
r=1

1{Cr(y) = False}.

We consider the equivalent minimization of the number of violated clauses (right-hand side), which
is convenient for our PUBO mapping. MAX-3-SAT is NP-hard and widely used as a benchmark
for discrete optimization; instances are often specified by their clause density α = m/n and may
be weighted (each clause has a weight) or unweighted (all weights = 1). Performance is typically
reported as the fraction of satisfied clauses or the number of violations at the returned assignment.

PUBO formulation. Let xi ∈ {0, 1} encode yi = True ⇐⇒ xi = 1. For a literal ℓ on xi, define
its falsity factor

ℓ(x) =

{
1− xi, ℓ = xi,

xi, ℓ = ¬xi.
A 3-clause Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3) is violated iff all three literals are false, hence

vr(x) =

3∏
k=1

ℓrk(x).

Thus MAX-3-SAT becomes the unconstrained pseudo-Boolean optimization

min
x∈{0,1}n

p(x) =

m∑
r=1

vr(x) = C∅ +
∑
i

Cixi +
∑
i<j

−Cijxixj +
∑

i<j<k

Cijkxixjxk,

where the coefficients {C∅, Ci, Cij , Cijk} follow from expanding the products and collecting like
terms. (Full coefficient formulas and derivation are provided in Appendix B.)

Experimental Setup and Results. We evaluate PB-HGNN on the MAX-3-SAT problem fol-
lowing the experimental design of Yau et al. citeyau2024are. We run Two settings are consid-
ered: (i) random unweighted instances with n = 100 variables and clause density α = m/n ∈
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Table 1: Average number of unsatisfied clauses for Max-3-SAT on random instances with N = 100
variables and α ∈ {4.00, 4.15, 4.30}. Standard deviation is shown after ±. In parentheses: average
runtime per instance (seconds).

Method α = 4.00 α = 4.15 α = 4.30
WalkSAT 0.94±0.92 1.46±1.11 1.97±1.28
Survey Propagation 3.32±0.81 3.87±0.79 3.94±0.93
ErdősGNN 5.46±1.91 6.14±2.01 6.79±2.03
OptGNN 4.46±1.68 5.15±1.76 5.84±2.18
PB-HGNN (ours) 3.11±0.98 4.01±1.10 4.29±1.45

{4.00, 4.15, 4.30}, and (ii) benchmark instances from the UUF SATLIB dataset. In both cases, the
objective is to minimize the number of violated clauses.

For the random instance setting, each formula is generated on the fly with uniformly random clauses,
and results are averaged over multiple test instances. We directly replicate the baselines reported
in Yau et al. (2024): WalkSAT (classic stochastic local search solver), Survey Propagation Braunstein
et al. (2005), ErdősGNN Karalias & Loukas (2020), and unsupervised OptGNN Yau et al. (2024).
We then add a row for our PB-HGNN. Performance is measured as the average number of unsatisfied
clauses (lower is better). The results show that our method outperforms both neural solvers, while
being inferiour to the best classical problem-specific method.

For the second setting, we evaluate on the UUF benchmark SAT instances from SATLIB, com-
monly used to test incomplete Max-SAT solvers. We select 100 unsatisfiable instances from
uuf125.538.100 dataset, with problems of 100 variables and 538 clauses, and report the average
fraction of satisfied clauses across instances. We compare with local search sat-specific heuristics
WalkSAT and Heuristic Backbone Sampling (HBS), and neural baseline ErdősGNN Karalias &
Loukas (2020).

Table 2: Performance on UUF benchmark instances from SATLIB. We report average clause satis-
faction (higher is better). PB-HGNN results will be added in the last row.

Method average, satisfied clauses
WalkSAT 536.42
HBS 536.11
ErdősGNN 528.75
PB-HGNN (ours) 534.30

6 CONCLUSIONS

We introduced PB-HGNN, an unsupervised hypergraph–neural framework that optimizes pseudo-
Boolean polynomials directly in their native higher-order form. By mapping each nonzero mono-
mial to a hyperedge with the corresponding coefficient, and training a memory-augmented HGNN
to minimize the probabilistic relaxation, our method manages to capture multi-way variable in-
teractions. Across representative benchmark families: random higher-order PUBO, including the
Sherrington–Kirkpatrick spin model, and MAX-3-SAT, PB-HGNN delivers competitive or superior
solution quality to GNN baselines built on reduced quadratic formulations. heuristics, while scaling
to thousands of variables. These results demonstrate that hypergraph message passing paired with
instance-specific unsupervised training is a novel and effective recipe for higher-order combinatorial
optimization.

9
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A PROOFS

Lemma 1. (Multilinear extension of pseudo-boolean polynomial). Let f : {0, 1}n → R be a
pseudo-Boolean polynomial

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi, x ∈ {0, 1}n. (6)

Then its multilinear extension coincides with L(p) in equation 3, i.e.,

F (p) =
∑
S⊆[n]

cS
∏
i∈S

pi, p ∈ [0, 1]n.

Proof. By definition, the multilinear extension of a set function f is

F (p) =
∑
S⊆[n]

f(S)
∏
i∈S

pi
∏
i/∈S

(1− pi).

Evaluating f(S) from its polynomial form gives

f(S) = f(1S) =
∑

T⊆[n]

cT
∏
j∈T

1S(j) =
∑
T⊆S

cT .

Substituting into F (p) yields

F (p) =
∑
S⊆[n]

( ∑
T⊆S

cT

)∏
i∈S

pi
∏
i/∈S

(1− pi).

Swapping the order of summation gives

F (p) =
∑

T⊆[n]

cT
∑
S⊇T

∏
i∈S

pi
∏
i/∈S

(1− pi).

For each fixed T , factor out
∏

i∈T pi and write U = S \ T :∑
S⊇T

∏
i∈S

pi
∏
i/∈S

(1− pi) =
(∏

i∈T

pi

) ∑
U⊆[n]\T

∏
i∈U

pi
∏
i/∈U

(1− pi).

The inner sum is the expansion of
∏

i∈[n]\T (pi + (1− pi)) = 1. Hence

F (p) =
∑

T⊆[n]

cT
∏
i∈T

pi,

which equals L(p) in equation 3.
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A.1 HYPERPARAMETER SETTINGS

Default hyperparameters optimized through extensive experiments: embedding dimension d = 16,
hidden dimension dh = 8, memory dimension dm = 2, number of layers L = 2, learning rate
α = 10−3 with ReduceLROnPlateau scheduling, dropout rate ρ = 0.05, weight decay λ2 = 10−6.

A.2 EFFICIENT LOSS COMPUTATION

Naively evaluating equation 3 costs O(nd). We pre-compile terms by degree:

L(p) =
D∑

d=0

C[d](p), (7)

where: - C[1](p) =
∑

i cipi (vectorized), - C[2](p) =
∑

i,j cijpipj (batched matrix ops), - C[d](p) =∑
S:|S|=d cS

∏
i∈S pi for d ≥ 3 (tensorized).

The hypergraph is stored in sparse index format

Esparse = {(i, e) : i ∈ e},

reducing complexity from O(nm) to O(|Esparse|).

B DERIVATION DETAILS FOR MAX 3 SAT PUBO

For a literal on variable xi, let the negation bit α ∈ {0, 1} indicate its sign (α = 0 for xi, α = 1 for
¬xi). Define s := 1− 2α ∈ {+1,−1}. Then the falsity factor can be written as

ℓ(x) = (1− α)− s xi.

For a clause Cr = (ℓr1 ∨ ℓr2 ∨ ℓr3) on indices Ir = {ir1, ir2, ir3} with signs {αr1, αr2, αr3} and
srk = 1− 2αrk, the violation indicator expands as

vr(x) =

3∏
k=1

(
(1− αrk)− srkxirk

)
= c

(r)
∅ +

∑
p∈Ir

c(r)p xp +
∑

{p,q}⊂Ir

c(r)pq xpxq + c(r)pqrxpxqxr,

with coefficients

c
(r)
∅ =

3∏
k=1

(1− αrk),

c
(r)
irk

= − srk
∏
ℓ ̸=k

(1− αrℓ),

c
(r)
irkirℓ

= srk srℓ
∏

j ̸=k,ℓ

(1− αrj),

c
(r)
ir1ir2ir3

= − sr1sr2sr3.
Summing over clauses yields

p(x) =

m∑
r=1

vr(x) = C∅ +
∑
i

Cixi +
∑
i<j

Cijxixj +
∑

i<j<k

Cijkxixjxk,

where C∅ =
∑

r c
(r)
∅ , Ci =

∑
r c

(r)
i , Cij =

∑
r c

(r)
ij , and Cijk =

∑
r c

(r)
ijk. Equivalently, one may

enumerate all 23 sign patterns of a clause and record the resulting monomials; both approaches are
algebraically identical.
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