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ABSTRACT

The LogSumExp function, also known as the free energy, plays a central role
in many important optimization problems, including entropy-regularized optimal
transport and distributionally robust optimization (DRO). It is also the dual to the
Kullback-Leibler (KL) divergence, which is widely used in machine learning. In
practice, when the number of exponential terms inside the logarithm is large or
infinite, optimization becomes challenging since computing the gradient requires
differentiating every term. Previous approaches that replace the full sum with a
small batch introduce significant bias. We propose a novel approximation to Log-
SumExp that can be efficiently optimized using stochastic gradient methods. This
approximation is rooted in a sound modification of the KL divergence in the dual,
resulting in a new f -divergence called the safe KL divergence. The accuracy of
the approximation is controlled by a tunable parameter and can be made arbitrarily
small. Like the LogSumExp, our approximation preserves convexity. Moreover,
when applied to an L-smooth function bounded from below, the smoothness con-
stant of the resulting objective scales linearly with L. Experiments in DRO and
continuous optimal transport demonstrate the advantages of our approach over
state-of-the-art baselines and the effective treatment of numerical issues associ-
ated with the standard LogSumExp and KL.

1 INTRODUCTION

Optimization problems arising in various fields involve the LogSumExp function, or, more generally,
the log-partition functional

F (φ;µ) := ln

∫
eφ(x) dµ(x) ∈ (−∞,∞] (1)

mapping a measurable function φ to (−∞,∞] based on a probability measure µ. The goal in such
optimization problems is to minimize an objective involving F w.r.t. φ over some class.

LogSumExp function appears commonly in optimization objectives, e.g., multiclass classifica-
tion with softmax probabilities (Bishop & Nasrabadi, 2006), semi-dual formulation of entropy-
regularized optimal transport (OT) (Peyré & Cuturi, 2019; Genevay et al., 2016), minimax problems
(Pee & Royset, 2011), distributionally robust optimization (DRO) (Hu & Hong; Ben-Tal et al., 2013;
Kuhn et al., 2024), maximum likelihood estimation (MLE) for exponential families and graphical
models (Wainwright et al., 2008), variational Bayesian methods (Khan & Nielsen, 2018; Khan &
Rue, 2023), information geometry (Amari & Nagaoka, 2000), KL-regularized Markov decision pro-
cesses (Tiapkin et al., 2024). Such optimization problems are characterized by two challenges. First,
the decision variable φ (or a parameter θ defining φ) often has large or infinite dimension. Second,
the support of the measure µ can be large or even infinite. The first challenge is usually addressed by
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the use of first-order methods, especially stochastic gradient descent (SGD), with cheap iterations.
Unfortunately, there is no universal way to tackle the second challenge. If the number of expo-
nential terms under the logarithm is large or infinite, i.e., the Monte Carlo estimate log

∑N
i=1 e

φ(x)

for a large N , the gradient computation requires differentiating each term, and, to the best of our
knowledge, no cheap unbiased stochastic gradient have been proposed.

In the current work, we propose a general-purpose approach to tackle both mentioned challenges. To
that end, we use a SoftPlus approximation of F (φ;µ) that allows using stochastic gradient methods
while remaining close to the original objective. We start with a variational formulation analogous to
the one in the Gibbs principle, but with the KL-divergence replaced with another f -divergence – the
safe KL divergence. The corresponding variational problem can be of interest itself, as it possesses
some properties which can be beneficial compared to the KL penalty — e.g., uniform density bound.
Moreover, it can be also viewed as an approximation of a conditional value at risk functional (CVaR).
In fact, the same functional (with different parameters) appeared in Soma & Yoshida (2020) in the
context of smooth CVaR approximation. Thus, we demonstrate that it generates a family of problems
including CVaR and LogSumExp minimization as limit cases.

Related works. We are not aware of any universal way to efficiently treat optimization objectives
involving the LogSumExp functional (1), especially in infinite-dimensional settings. This func-
tional appeared in different applications and was treated on a case-by-case basis. Bouchard (2007)
studies three upper bounds on LogSumExp for approximate Bayesian inference. One of them is
a particular case of the approximation proposed in the present work. Titsias (2016) constructs a
bound on softmax probabilities and shows that it leads to a bound on LogSumExp in the context
of multiclass classification. Nielsen & Sun (2016) approximate LogSumExp in the context of esti-
mating divergences between mixture models. Their approximation combines LogSumExp bounds
based on min and max. Hu & Hong and, susequently, Levy et al. (2020) study DRO problems
with f -divergences. They propose a batch-based approximation. When the ambiguity set is the unit
simplex, and KL divergence penalty is used, the original objective is the LogSumExp of the losses
over the entire dataset, while the approximation replaces it with the average of LogSumExp terms
computed on individual batches. This approximation introduces bias, which can only be reduced by
using large batch sizes.

Contributions. Our main contributions are as follows:

1. We introduce a general-purpose and computationally efficient approach for handling the Log-
SumExp function in large-scale optimization problems by proposing a novel relaxation of
this function. The proposed relaxation preserves key properties of the original LogSum-
Exp function, such as convexity and smoothness, and enables the use of stochastic gradient
methods for machine learning tasks. Furthermore, our method only requires a simple and
tunable scalar parameter, allowing the relaxation to be made arbitrarily close to the original
LogSumExp objective as desired.

2. We provide the theoretical backbone of this approximation, demonstrating that it is due to
a modified version of the KL-divergence in the dual formulation. We termed the resulting
f -divergence the (Overflow-)Safe KL divergence. It can be applied to various applications
where KL-divergence is used.

3. We empirically demonstrate the effectiveness of our approach on tasks, including computing
continuous entropy-regularized OT and various DRO formulations1. Our method outper-
forms existing state-of-the-art baselines in these applications and circumvents the overflow
issue (Remark 3.1). It can also be combined with existing techniques. Therefore, it serves as
a versatile tool for solving large-scale optimization problems.

4. Additionally, we provide insights into a few remarkable connections between the proposed
approximation and existing notions such as the conditional value-at-risk.

Notation. Given a, a1, . . . , an ∈ R, we define LogSumExp(a1, . . . , an) := log(
∑n

i=1 e
ai) and

SoftPlus(a) := log(1 + ea). Given a measurable space X , by P(X ) we denote the space of prob-
ability measures on X , and by C(X ) the space of continuous functions on X . Let µ, ν ∈ P(X ).
Define Kullback–Leibler (KL) divergence as

DKL(µ, ν) :=

{∫
X log dµ

dν (x) dµ(x) µ ≪ ν,

+∞ otherwise,

1The source code is available at https://github.com/egorgladin/logsumexp-approx.
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where log is the natural logarithm and µ ≪ ν denotes that µ is absolutely continuous w.r.t. ν.

2 SOFTPLUS APPROXIMATION OF LOG-PARTITION FUNCTION

In this section, we present our approximation to the log-partition function (1) and describe its theo-
retical properties. Recall that by the Gibbs variational principle

F (φ;µ) = sup

{∫
φ(x) dν(x)−DKL(ν, µ) : ν ∈ P(X ),

∫
|φ(x)| dν(x) < ∞

}
(2)

with the minimum attained at the Gibbs measure dν∗(x) = eφ(x)−F (φ;µ)dµ(x), once F (φ;µ) < ∞
(Polyanskiy & Wu, 2025, Proposition 4.7).

We are going to construct an approximation of F with better regularity properties by changing DKL

to another f -divergence. Specifically, for any 0 < ρ < 1, let us define the following.
Definition 2.1 (Safe KL entropy). We define the safe KL entropy generator fρ : [0,∞) → R by

fρ(t) :=

{
t log t+ 1 + 1−ρt

ρ log(1− ρt), 0 ≤ t ≤ 1
ρ ,

+∞, otherwise.
(3)

The resulting fρ-divergence, which we refer to as the safe KL divergence, is given by

Dρ(ν, µ) :=

{∫
fρ

(
dν
dµ (x)

)
dµ(x), ν ≪ µ,

+∞, otherwise.
(4)

Figure 1: fρ(t) for different values of ρ.

It is easy to see that fρ(t) → f0(t) := t log t + 1 − t
as ρ → 0. Since f0 induces the standard KL-divergence,
Dρ is its approximation with accuracy regulated by the
parameter ρ.

Using the variational representation, we define

Fρ(φ;µ) := sup

{∫
φ(x) dν(x)−Dρ(ν, µ) :

ν ∈ P(X ),

∫
|φ(x)| dν(x) < ∞

}
. (5)

(i.e., Fρ(·;µ) is the convex conjugate of Dρ(·, µ)). Note
that the last term in fρ prevents the density dν

dµ from being
too large. In particular, it can not be greater than 1

ρ . This
can make the safe KL divergence a reasonable choice for
unbalanced OT or DRO, as it imposes a hard constraint

on the reweighting unlike the standard DKL. Moreover, it can also be used instead of the entropy
penalization in regularized OT (cf. capacity constrained transport in (Benamou et al., 2015, sec-
tion 5.2)).

Again, by the convex duality and the variational principle (see Birrell et al., 2022, Theorem 6), we
state the following properties.
Lemma 2.2. The functional Fρ defined by (5) has an equivalent variational representation

Fρ(φ;µ) = inf
α∈R

α+

∫
f∗
ρ (φ(x)− α) dµ(x).

It is straightforward to check the following.
Lemma 2.3. The conjugate function to fρ is a rescaled SoftPlus, specifically,

f∗
ρ (s) := sup

t∈R+

st− fρ(t) =
1

ρ
log (1 + ρes)− 1.

Therefore, we obtain

Fρ(φ;µ) = inf
α∈R

α− 1 +
1

ρ

∫
log

(
1 + ρeφ(x)−α

)
dµ(x). (6)
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In essence, we have replaced the exponential function with a rescaled SoftPlus. Furthermore, it is
easy to see that the optimal α∗ satisfies∫

eφ(x)−α∗

1 + ρeφ(x)−α∗ dµ(x) = 1, (7)

in particular, α∗ < F (φ;µ). Moreover, the maximum in (5) is attained at dν∗ρ(s) =

eφ(x)−α∗

1 + ρeφ(x)−α∗ dµ(x). Note that 0 <
dν∗

ρ (x)

dµ(x) < 1
ρ , which is due to the fact that the derivative of

t log t explodes at 0, preventing reaching the constraint.

The next proposition (proved in Appendix A) ensures that Fρ is a valid approximation of F .
Proposition 2.4. Let µ ∈ P(X ) and φ be a measurable function on X .

(i) For all 0 < ρ ≤ ρ′ < 1, it holds Fρ′(φ;µ) ≤ Fρ(φ;µ).
(ii) As ρ → 0+, Fρ(φ;µ) → F0(φ;µ) := F (φ;µ).

(iii) If F (2φ;µ) < ∞, then for all 0 < ρ ≤ 1
4e

2F (φ;µ)−F (2φ;µ)

Fρ(φ;µ) ≥ F (φ;µ) +
ρ

2
− 4ρeF (2φ;µ)−2F (φ;µ). (8)

(iv) If φ(x) ≤ M for all x ∈ X , then Fρ(φ;µ) ≥ F (φ;µ)−ρeM−F (φ;µ) for ρ ∈
(
0, eF (φ;µ)−M

)
.

In particular, (i) and (iii) show that Fρ − O(ρ) ≤ F ≤ Fρ, and thus the parameter ρ allows one
to control the approximation accuracy. In the case of LogSumExp, the above proposition yields the
following simple bounds.
Corollary 2.5. Let a1, . . . , an ∈ R. Then for any 0 < ρ < 1

LogSumExp(a1, . . . , an)− ρ ≤ inf
α∈R

α− 1+
1

ρ

n∑
i=1

log(1 + ρeai−α) ≤ LogSumExp(a1, . . . , an).

For ρ = 1 our approximation coincides with Bouchard’s bound for LogSumExp (Bouchard, 2007).

2.1 LINKS TO CVAR

Recall that the conditional value at risk (CVaR) w.r.t. a probability measure µ ∈ P(X ) at level
ρ ∈ (0, 1), associated with a function φ, can be defined (in the case of continuous distribution) as

CVaRρ(φ;µ) := EX∼µ [φ(X)|φ(X) ≥ Q1−ρ] =
1

ρ

∫
φ(x)≥Q1−ρ

φ(x) dµ(x),

where Q1−ρ is the (1 − ρ)-quantile of φ(X), X ∼ µ (Rockafellar et al., 2000). Moreover, by
Theorem 1 in Rockafellar et al. (2000) CVaR also has the following variational formulation:

CVaRρ(φ;µ) = inf
α∈R

α+
1

ρ

∫
(φ(x)− α)+ dµ(x). (9)

Remarkably, in Soma & Yoshida (2020) the authors obtained a smooth approximation to CVaR
which, up to an additive constant, has the same form as Fρ. However, they considered the approx-
imation w.r.t. a different parameter—a ”temperature” inside SoftPlus. Finally, Levy et al. (2020)
proposed another similar smoothed version of CVaR (KL-regularized CVaR) in the context of DRO.
For our approximation, we obtain the following bounds.
Proposition 2.6. For all 0 < ρ < 1 and λ > 0

CVaRρ(φ;µ) + λ(log ρ− 1) ≤ λFρ(φ/λ;µ) ≤ CVaRρ(φ;µ) + λ

(
log ρ− 1 +

1

ρ

)
. (10)

2.2 THE CASE OF PARAMETRIC MODELS

In some applications, the function φ is defined as the parametric loss function L(x, θ) and the goal
is to minimize objective involving (1) w.r.t. parameter θ to find the best model from the parametric

4
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family. In this section, we study our approximation to (1) in this parametric setting. Fix some closed
parameter set Θ ⊂ Rd and a loss function L : X × Θ → R. Combining our approximation (6) and
the minimization w.r.t. parameter θ, we obtain the following minimization problem (note that we
shifted α by log ρ compared to (6))

min
θ∈Θ,α∈R

Gρ(θ, α) := α+ log ρ− 1 +
1

ρ

∫
log

(
1 + eL(x,θ)−α

)
dµ(x).

Clearly, Gρ is convex in α. Moreover, if L is convex in θ for µ-a.e. x, then Gρ is jointly convex,
meaning that our approximation preserves convexity.

Note that fρ(t) = 1
ρ ((ρt) log(ρt) + (1− ρt) log(1− ρt))+1−t log ρ. Thus, unlike the KL entropy

function t log t+ 1− t, fρ possesses the following favorable properties:
Lemma 2.7. The entropy function fρ is ρ-strongly convex. Its conjugate function f∗

ρ is 1
ρ -smooth.

The above properties are important from the computational optimization point of view. Recall that
d
dt log(1+et) = et

1+et =: σ(t). Thus, we immediately obtain the following formulas for the gradient:

∇θGρ(θ, α) =
1

ρ

∫
σ (L(x, θ)− α)∇θL(x, θ) dµ(x),

∂αGρ(θ, α) = 1− 1

ρ

∫
σ (L(x, θ)− α) dµ(x).

This yields, in particular, that the variance of the (naı̈ve) stochastic gradient is bounded by 1
ρ and

the second moment of ∇θL(X, θ), X ∼ µ. In the same way one can calculate the Hessian of
Gρ, see Appendix C. By Proposition C.2, if L(x, θ) is bounded from below, then Gρ is smooth on
Θ× (−∞, a] for any a ∈ R meaning that our approximation preserves smoothness of the loss L.

3 APPLICATIONS

In this section we consider several particular applications involving the objective (1) and show nu-
merically, that our general-purpose approach based on approximation (6) leads to better performance
of SGD-type algorithms than the baseline algorithms designed specifically for these applications.
The source code for all experiments is available at https://github.com/egorgladin/
logsumexp-approx.

3.1 CONTINUOUS ENTROPY-REGULARIZED OT

The classical optimal transport (Monge–Kantorovich) problem consists in finding a coupling of
two probablility measures µ, ν ∈ P(X ) which minimizes the integral of a given measurable cost
function c : X × X → R+ (e.g., a distance), i.e., W (µ, ν) := infπ∈Π(ν,µ)

∫
c(x, z) dπ(x, z), where

Π(µ, ν) ⊂ P(X × X ) is the set of couplings (transport plans) of µ and ν (see Kantorovich, 1942;
Villani, 2008; Santambrogio, 2015). For simplicity of demonstration, we assume that the measures
are defined on the same space X , but the results extend trivially to the case of two different spaces.
Following Cuturi (2013), we consider entropy-regularized optimal transport (eOT) problem:

min
π∈Π(ν,µ)

∫
c(x, z) dπ(x, z) + εDKL(π, ν ⊗ µ) (11)

where ν ⊗ µ is the product measure. It is known that eOT admits the following dual and semi-dual
formulations (see, e.g., Genevay et al. (2016)):

Wε(µ, ν) = max
u,v∈C(X )

∫∫
fε(x, y, u, v) dµ(x) dν(y)︸ ︷︷ ︸

dual

= max
v∈C(X )

∫
hε(x, v) dµ(x)︸ ︷︷ ︸

semi-dual

,

where

fε(x, y, u, v) := u(x) + v(y)− ε exp

(
u(x) + v(y)− c(x, y)

ε

)
, (12)

hε(x, v) :=

∫
v(y)dν(y)− ε log

(∫
exp

(
v(y)− c(x, y)

ε

)
dν(y)

)
− ε, (13)
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Figure 2: Left: convergence of kernel SGD applied to the dual objective (12) (blue and orange) and
approximate semi-dual problem (14) (green, red and purple). Solid lines show average optimality
gap across 20 runs, shaded regions indicate ± one standard deviation. Y-axis uses logarithmic scale.
Middle: a zoomed-in view of blue and orange curves from the plot on the left. Right: examples
of divergent optimality gap curves obtained by running the baseline approach with the stepsize
parameter C = 10−2.

and ε > 0 is the regularization coefficient. Genevay et al. (2016) consider a reproducing kernel
Hilbert space (RKHS) H defined on X , with a kernel κ, and apply SGD to solve the dual problem.

Remark 3.1 (The overflow issue). The main drawback of this approach is the presence of the ex-
ponent in the dual objective (and consequently in the SGD updates, see Appendix B.1). Specifically,
exponents are prone to floating-point exceptions (Goldberg, 1991), especially if the regularization
parameter ε is relatively small, which is often the case. For example, if ε = 0.01 and z ≥ 7.1, then
ez/ε exceeds the representable range of a double-precision (float64) floating-point number — an
overflow happens. When single precision (float32) is used, an overflow happens even for z ≥ 0.89.

Our approach. If we consider instead the semi-dual formulation and use the approximation (6),
we arrive at the problem

max
v∈C(X )
α∈R

∫∫
h̃ε(x, y, v, α) dµ(x) dν(y) (14)

with h̃ε(x, y, v, α) := v(y)− α− ε

ρ
log

(
1 + ρe(v(y)−c(x,y)−α)/ε

)
− ε, (15)

which can also be solved by SGD. Analytic form of SGD iterates for objectives (12) and (15) can
be found in Appendix B.1. One can show, in the same way as in Genevay et al. (2016), that this
corresponds to the regularized OT problem (11) with Safe KL divergence Dρ rather than the usual
KL, i.e.

min
π∈Π(ν,µ)

∫
c(x, z) dπ(x, z) + εDρ(π, ν ⊗ µ).

Note that this problem, in turn, can be viewed as a combination of the entropy-regularized and the
capacity-constrained optimal transport. For ρ > 0, this approach is much more stable than the
previous one when used in SGD. We illustrate this in the following experiments.

Experiments. Consider a setup analogous to the one described in Section 5 of Genevay et al.
(2016). Specifically, µ is a 1D Gaussian, and ν is a mixture of two Gaussians (see Appendix B for
a plot of densities). Gaussian kernel κ(x, x′) = exp

(
−∥x−x′∥2

σ2

)
with a bandwidth hyperparameter

σ2 > 0 is used. The regularization coefficient is set to ε = 0.01. We consider kernel SGD applied to
the dual objective (12) as a baseline approach (Genevay et al., 2016). We compare it to the proposed
approach, namely, kernel SGD applied to the approximate semi-dual problem (14). For details on
how the optimality gap is estimated, see Appendix B.

When applying kernel SGD to the dual and approximate semi-dual formulations, we consider hyper-
parameters σ2 ∈ {0.1, 1, 10} (kernel bandwidth), C ∈ {10−4, 10−3, . . . , 10} (stepsize parameter),
and ρ ∈ {0.03, 0.1, 0.3} (approximation accuracy). Double floating-point precision is used. In the
experiment, the proposed approach works best with σ2 = 10, and C = 1 for ρ ∈ {0.03, 0.1},
C = 10 for ρ = 0.3. Baseline works best with σ2 ∈ {0.1, 1} and C = 10−3. Figure 2 (left) shows
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performance of the two approaches. For clarity, we provide a zoomed-in view of the curves gener-
ated by the baseline in the middle. As seen from the figures, the baseline is extremely slow, which
happens due to the small stepsize. Larger values of C lead to numerical instabilities as illustrated
by the plot on the right. Apparently, exponent causes a large magnitude of the gradient at a certain
step, which brings an iterate to a region where it stagnates. On the contrary, our approximate semi-
dual formulation permits larger stepsizes, which results in faster convergence. Indeed, the method
usually achieves a relatively low optimality gap in about 2 · 104 iterations, and plateaus after that.

3.2 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH KL DIVERGENCE

One of the approaches to training a model that is robust to data distribution shifts and noisy ob-
servations is called Distributionally Robust Optimization (DRO) (Kuhn et al., 2024). In contrast to
the standard Empirical Risk Minimization (ERM) approach, which minimizes the average loss on
the training sample, DRO minimizes the risk for the worst-case distribution among those close to a
reference measure (e.g., empirical distribution). A prominent example is KL divergence DRO (Hu
& Hong), which is formulated as the saddle-point problem

min
θ∈Θ

max
p∈∆n

n∑
i=1

piℓi(θ)− λDKL(p, p̂), (16)

where θ ∈ Θ is the model parameters, ℓi(θ) is the respective loss on the i-th training example, ∆n

is the unit simplex in Rn, p̂ ∈ ∆n is the weight vector defining the empirical distribution (typically
p̂ = 1

n1), and DKL is the Kullback–Leibler divergence which discourages distributions that are
too far from the empirical one, λ > 0 is the penalty coefficient. For fixed θ, the solution of the
maximization problem is given by p∗i (θ) :=

eℓi(θ)/λ∑
j eℓj(θ)/λ

, which reduces the problem to

min
θ∈Θ

L(θ) := λ log
( 1

n

n∑
i=1

eℓi(θ)/λ
)
. (17)

However, when n is large, computing the full gradient ∇L(θ) =
∑n

i=1 p
∗
i (θ)∇ℓi(θ) becomes costly.

A straightforward approach (Levy et al., 2020) is to sample a batch D, compute the respective
softmax weights pDi (θ) := eℓi(θ)/λ∑

j∈D eℓj(θ)/λ
, and define a gradient estimator by

∇̃DL(θ) =
∑
i∈D

pDi (θ)∇ℓi(θ). (18)

However, this introduces a bias and requires using large batch sizes to keep it sufficiently small.

Our approach. Instead, we propose to use the approximation (6), which results in the problem

min
θ∈Θ
α∈R

G(θ, α) :=
1

n

n∑
i=1

{
α+

λ

ρ
log

(
1 + ρe(ℓi(θ)−α)/λ

)}
.

Like in the previous subsection, this can be interpreted as switching from DKL penalty in (16) to
Safe KL Dρ. The respective gradient estimators are

∇̃D
θ G(θ, α) :=

1

|D|
∑
i∈D

σρ

(
ℓi(θ)−α

λ

)
∇ℓi(θ), ∇̃D

αG(θ, α) := 1− 1

|D|
∑
i∈D

σρ

(
ℓi(θ)−α

λ

)
. (19)

Experiments. Consider California housing dataset (Pace & Barry, 1997) consisting of 20640 ob-
jects represented by 8 features. Let ℓi be the squared error of a linear model, ℓi(θ) = (yi − θ⊤xi)

2.
We use SGD with Nesterov acceleration and the gradient estimator (18) (Levy et al., 2020) as the
baseline approach for solving (17). As an alternative, accelerated SGD is used with our proposed
gradient estimator (19). We considered values of the stepsize η ∈ {10−8, 10−7, . . . , 10−4} and
approximation accuracy parameter ρ ∈ {10−4, 10−3, 10−2}. Momentum was set to 0.9 (without
tuning) and entropy penalty λ to 1. Least squares solution was used as a starting point for optimiza-
tion.
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(a) Batch size 10 (b) Batch size 100 (c) Batch size 1000

Figure 3: Convergence of SGD with Nesterov acceleration on the California housing dataset for the
baseline gradient estimator (18) and the proposed estimator (19). The plots show L(θ) versus the
number of epochs for the best hyperparameters for different batch sizes. Error bars indicate ± one
standard deviation over 20 runs.

Convergence curves for both approaches corresponding to the best hyperparameters (i.e., resulting
in smallest objective values) are displayed in Figure 3. Y-axis depicts the value of L(θ), X-axis
displays the number of epochs (i.e., full passes over the dataset), error bars denote ± one standard
deviation across 20 runs. We omit first few epochs to zoom in on smaller objective values. As
seen from the figure, convergence of the proposed approach is consistently good across all batch
sizes. As for the baseline, |D| = 10 requires small stepsize η = 10−6 to avoid divergence, and thus
results in slow convergence. Larger batches enable the increase of η up to 10−5. The baseline still
converges slower than the proposed approach with |D| = 100, but almost matches its performance
for |D| = 1000.

3.3 DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH UNBALANCED OT

In the KL divergence DRO described in the previous subsection, uncertainty set is limited to distri-
butions with the same support as the empirical measure µ = 1

n

∑
i δxi . Another popular approach,

Wasserstein DRO (WDRO) (Mohajerin Esfahani & Kuhn, 2018; Sinha et al., 2020), considers the
worst-case risk over shifts within a Wasserstein (OT) ball around a reference measure µ instead of
the KL-ball in (16), thus including continuous probability measures. Unfortunately, this approach is
not resilient to outliers that are geometrically far from the clean distribution since OT metric is sen-
sitive to them (Nietert et al., 2023). A natural generalization is to switch to semi-balanced OT (Liero
et al., 2018; Chizat et al., 2019; Kondratyev et al., 2016), which replaces a hard constraint on one of
the marginals with a mismatch penalty function, e.g.,

Wβ(ν, µ) = inf
π∈P(X×X )

π1=ν

∫
c(x, z) dπ(x, z) + β DKL(π2, µ),

where π1 and π2 are first and second marginals of π, respectively, β > 0 is the marginal penalty
parameter. Intuitively, this discrepancy measure allows to ignore some points (e.g., outliers) by
paying a small price for mismatch in marginals. The (penalty-form) DRO problem can be written as

min
θ∈Θ

max
ν∈P(X )

∫
ℓ(θ, x) dν(x)− λWβ(ν, µ),

where λ > 0 is the Lagrangian penalty parameter. Using standard duality, Wang et al. (2024) showed
that when µ = 1

n

∑
i δxi

is the empirical distribution, this is equivalent to

min
θ∈Θ

F (θ) := λβ log
( 1

n

n∑
i=1

eℓ̂i(θ)/(λβ)
)

with ℓ̂i(θ) := sup
z∈X

{ℓ(θ; z)− λc(z, xi)}, (20)

8
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Figure 4: Performance of ERM and two DRO approaches on MNIST with noisy labels. Left: ERM
accuracy on the noisy validation set vs. clean test set. Middle: validation vs. test accuracy for DRO
approaches. Right: training loss F (θ) from (20).

To avoid the costly gradient computation of LogSumExp, the authors drop the logarithm and use
SGD to optimize the sum of exponents,

min
θ∈Θ

1

n

n∑
i=1

eℓ̂i(θ)/(λβ). (21)

The major downside of this approach is that the exponent terms have a large variance, and SGD
is prone to floating-point exceptions (overflow) unless a very small stepsize is tuned, which slows
down the convergence and can be time-consuming and unstable in practice.

Our approach. To overcome this issue, we propose leveraging the approximation (6), which leads
to the problem

min
θ∈Θ
α∈R

1

n

n∑
i=1

{
α+

λβ

ρ
log

(
1 + ρe(ℓ̂i(θ)−α)/(λβ)

)}
, (22)

where ρ > 0 is a parameter controlling the accuracy of the approximation. This approximation
can be efficiently optimized with SGD. Note that our method can also be applied to other DRO
algorithms such as Sinkhorn DRO (Wang et al., 2021), which we omit to avoid redundancy.

Experiments. We consider MNIST dataset (Deng, 2012) with train and validation labels corrupted
by feature-dependent noise (see Algan & Ulusoy, 2020) (noise ratio 25%), and original (clean) test
labels. Let θ denote weights of a CNN with two convolutional layers (32 and 64 channels, kernel
size 3, ReLU activations, and 2×2 max pooling), followed by a fully connected classifier with one
hidden layer of 128 units, and let ℓ(θ; z) be its cross entropy loss on object z. In the experiment, SGD
(with batch size 1) is applied to problems (21) (baseline) and (22) (proposed approach). We consider
values of the stepsize η ∈ {10−6, 10−5, 10−4, 10−3}. Parameters λ and β were set to 1 since smaller
values required a smaller stepsize and resulted in a slow convergence, while larger values pushed
the model towards fitting the noisy distribution instead of the true one. Approximation accuracy
parameter ρ in (22) was set to 0.1. For the inner maximization problem in (20), just 5 iterations
of Nesterov’s accelerated gradient method were sufficient to reach plateau in terms of the objective
value. Additionally, we used SGD for the usual empirical risk minimization (ERM) to observe the
effects of conventional (non-robust) training on noisy data.

Figure 4 demonstrates the performance of different approaches with best hyperparameter η (10−3

for ERM, 10−4 for the proposed approach, and 10−5 for the baseline). Shaded regions indicate
± one standard deviation across 10 runs, except that for the baseline approach (21) we excluded a
single run that caused a floating-point exception. The plot on the left illustrates that ERM fits to the
corrupted data well (accuracy on the noisy validation set is increasing) which results in decreasing
accuracy on the clean test set. In contrast, the plot in the middle shows that an increase in validation
accuracy results in the increase in test accuracy for both DRO approaches, which indicates that they
are more capable at learning the underlying clean distribution. The plot on the right shows the train
loss F (θ) from (20). As seen from the figure, the proposed approach converges faster than the
baseline. This is caused by the fact that the baseline requires a small stepsize to avoid overflows.

9
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4 CONCLUSION

We introduce a novel approximation to the log partition function (and in particular, to LogSum-
Exp), which arises in numerous applications across machine learning and optimization. In the dual
formulation, it corresponds to the safe KL divergence. Our LogSumExp approximation preserves
convexity and smoothness, and can be efficiently minimized using stochastic gradient methods. Im-
portantly, the respective gradient estimator has controllable bias independent of batch size, in con-
trast to prior approaches. Our empirical results highlight the practical advantages of the proposed
approximation across tasks in continuous entropy-regularized OT and DRO. An important direc-
tion for future work is to leverage the approximation for other applications, where the LogSumExp
function and duality of the KL divergence play a role.
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A PROOFS FOR SECTION 2

Proof of Proposition 2.4. (i,ii) Consider the function g(t) := ln(1+t)
t . It is decreasing and convex

on (0,∞), g(t) → 1 and g′(t) → −1
2 as t → 0+. Note that

Fρ(φ;µ) = inf
α∈R

α− 1 +

∫
eφ(x)−αg

(
ρeφ(x)−α

)
dµ(x).

Then (i) follows immediately from (6) and the monotonicity of g. The monotone convergence
theorem yields (ii) since

F (φ;µ) = inf
α∈R

α− 1 +

∫
eφ(x)−α dµ(x).

Now, let us prove (iii). Consider the optimal αρ, satisfying (7). By Jensen’s inequality∫
ln
(
1 + ρeφ(x)−αρ

)
dµ(x) = −

∫
ln

(
1− ρeφ(x)−αρ

1 + ρeφ(x)−αρ

)
dµ(x)

≥ − ln

(
1−

∫
ρeφ(x)−αρ

1 + ρeφ(x)−αρ
dµ(x)

)
= − ln(1− ρ),

thus

Fρ(φ;µ) = αρ − 1 +
1

ρ

∫
ln
(
1 + ρeφ(x)−αρ

)
dµ(x) ≥ αρ − 1− ln(1− ρ)

ρ
≥ αρ +

ρ

2
. (23)

It remains to get a lower bound on αρ. By the monotonicity of t
1+t we deduce that αρ ≥ α for any

α such that ∫
ρeφ(x)−α

1 + ρeφ(x)−α
dµ(x) ≥ ρ.

Since t
1+t ≥ t− t2,∫
ρeφ(x)−α

1 + ρeφ(x)−α
dµ(x) ≥

∫ (
ρeφ(x)−α − ρ2e2φ(x)−2α

)
dµ(x) = ρeF (φ;µ)−α − ρ2eF (2φ;µ)−2α.
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Denoting u := eF (φ;µ)−α, it is enough to find u such that

u− au2 ≥ 1, where a := ρeF (2φ;µ)−2F (φ;µ) ≤ 1

4
.

Thus, taking

u :=
1

2a

(
1−

√
1− 4a

)
≤ 1 + 4a,

we obtain
αρ ≥ F (φ;µ)− lnu ≥ F (φ;µ)− ln (1 + 4a) ≥ F (φ;µ)− 4a.

Combining this with (23), we get (8).

(iv) Finally, let φ(x) ≤ M for all x ∈ X . Then by concavity∫
ln

(
1 + ρeφ(x)−α

)
dµ(x) ≥

∫
eφ(x)−M ln

(
1 + ρeM−α

)
dµ(x) = eF (φ;µ)−M ln

(
1 + ρeM−α

)
for all α ∈ R. Therefore,

Fρ(φ;µ) ≥ min
α

α− 1 +
eF (φ;µ)−M

ρ
ln

(
1 + ρeM−α

)
= F (φ;µ)− 1− 1− ρeM−F (φ;µ)

ρeM−F (φ;µ)
ln

(
1− ρeM−F (φ;µ)

)
≥ F (φ;µ)− ρeM−F (φ;µ).

Here we used the inequality
1− t

t
ln(1− t) ≤ t− 1, 0 < t < 1.

Proof of Corollary 2.5. Set µn := 1
n

∑n
i=1 δai

∈ P(R). Then

LogSumExp(a1, . . . , an) = lnn+ ln

(∫
x dµn(x)

)
= lnn+ F (id;µn)

and

inf
α∈R

α− 1 +
1

ρ

n∑
i=1

ln(1 + ρeai−α) = inf
α∈R

α− 1 +
n

ρ

∫
ln(1 + ρex−α) dµn(x)

= inf
α∈R

α− 1 +
n

ρ

∫
ln

(
1 +

ρ

n
ex−α+lnn

)
dµn(x)

= lnn+ Fρ/n(id;µn).

Since

eF (id;µn)−maxi ai =

∑n
i=1 e

ai

nmaxi eai
≥ 1

n
>

ρ

n
,

Proposition 2.4(i,iv) yields

F (id;µn)− ρ ≤ Fρ/n(id;µn) ≤ F (id;µn).

The claim follows.

Proof of Proposition 2.6. As λ ln(1 + et/λ) > t+ := max{0, t}, we get

λFρ(φ/λ;µ) ≥ λ inf
α∈R

α− 1 +
1

ρ

∫ (
ln ρ+

φ(x)

λ
− α

)
+

dµ(x)

= λ(ln ρ− 1) + inf
α∈R

α+
1

ρ

∫
(φ(x)− α)+ dµ(x).

The infimum in the r.h.s. is the variational formula for CVaR (9), thus we get the first inequality
in (10). The second inequality can be obtained in a similar way using that λ ln(1 + et/λ) < t+ +
λ.
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Figure 5: Densities of source and target distributions in the eOT experiment.

B ADDITIONAL DETAILS ON THE EOT EXPERIMENT

B.1 SGD ITERATES FOR THE DUAL AND APPROXIMATE SEMI-DUAL FORMULATIONS

By the property of RKHS, if u ∈ H, then u(x) = ⟨u, κ(·, x)⟩H, and the derivatives of fε are as
follows:

∇ufε(x, y, u, v) = κ(·, x)− exp

(
u(x) + v(y)− c(x, y)

ε

)
κ(·, x),

∇vfε(x, y, u, v) = κ(·, y)− exp

(
u(x) + v(y)− c(x, y)

ε

)
κ(·, y).

Thus, the SGD iterates for the dual objective (12) take the simple form

(uk, vk) = (u0, v0) +

k∑
i=1

βi (κ (·, xi) , κ (·, yi)) (24)

with βi :=
C√
i

(
1− e

ui−1(xi)+vi−1(yi)−c(xi,yi)
ε

)
, (25)

where (xi, yi) are i.i.d. samples from µ⊗ν, and C > 0 is the initial stepsize. Similarly, SGD iterates
for (15) are computed as follows:

vk = v0 +

k∑
i=1

β̃iκ (·, yi) ,

αk = α0 −
k∑

i=1

β̃i with βi :=
C√
i

(
1− σρ

(
ui−1(xi)+vi−1(yi)−c(xi,yi)

ε

))
,

where σρ(t) :=
et

1+ρet .

B.2 DENSITIES OF SOURCE AND TARGET DISTRIBUTIONS

Figure 5 shows the densities of source and target distributions (µ and ν, respectively) used in the
experiment in Section 3.1. Specifically, µ is a 1D Gaussian, and ν is a mixture of two Gaussians.

B.3 COMPUTING A PROXY FOR OPTIMALITY GAP

Optimality gap in the experiment is estimated as follows:

1. Test sets {xi}Ni=1 and {yi}Ni=1 of size N = 104 are sampled from µ and ν. The correspond-
ing empirical distributions are denoted µ̂ and ν̂, respectively.
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2. Similarly to Genevay et al. (2016), we obtain a proxy Ŵ for W (µ, ν) by solving the semi-
discrete eOT problem

max
v∈RN

EX∼µ ĥε(X,v)

with ĥε(x,v) :=
1

N

N∑
i=1

vi − ε log
( 1

N

N∑
i=1

e
vi−c(x,yi)

ε

)
− ε,

which corresponds to replacing the expectation EY∼ν in (13) with the average over the test
set EY∼ν̂ . We preform 10 runs of SGD, each consisting of 2 · 105 iterations, and define Ŵ

as largest achieved value on the test set, i.e., the largest EX∼µ̂ ĥε(X,v).

3. Finally, given a potential v ∈ C(X ), we estimate the optimality gap as Ŵ−EX∼µ̂ĥε(X,v),
where v = (v(y1), . . . , v(yN ))⊤ is the evaluation of v on the test set.

C PROPERTIES OF SOFTPLUS

Let F (x) = log(1 + ef(x)), then

∇F (x) = σ(f(x))∇f(x), (26)

∇2F (x) = σ(f(x))∇2f(x) + σ(f(x))
(
1− σ(f(x))

)
∇f(x)∇f(x)⊤. (27)

Suppose f(x) is L-smooth (possibly non-convex). Let us derive smoothness constant of F . We will
use the following

Lemma C.1. Consider function fa(x) = σ(x) + 2σ′(x)(x − a), x ≥ a with parameter a ≤ 0. It
holds fa(x) ≤ 2− a

2 .

Proof. By the properties of the sigmoid function σ(x), σ′(x) ≤ 1
4 and σ(x) ≤ 1. Therefore,

fa(x) ≤ 1 + x−a
2 . If x ≤ 2, the result follows. Let us now show that the derivative

d

dx
fa(x) = σ′(x)[3 + 2(1− 2σ(x))(x− a)]

is negative if x > 2. Indeed, due to monotonicity of the sigmoid function σ(x),

σ(x) > σ(2) > 0.88 ⇒ 2(1− 2σ(x)) < −3

2
.

Moreover, x− a > 2, so 3 + 2(1− 2σ(x))(x− a) < 0 and d
dxfa(x) < 0. Therefore, if x > 2, then

fa(x) < fa(2) ≤ 2− a
2 .

Proposition C.2. Let f ∈ C1(Rd) be L-smooth and bounded from below by f∗ ∈ R, then F (x) =
log(1 + ef(x)) is smooth with parameter{

4
3L if f∗ ≥ 0,(
4
3 − f∗

2

)
L if f∗ < 0.

(28)

Proof. W.l.o.g., we can assume that f ∈ C2. From (27) and Lemma C.1 we get

∥∇2F (x)∥ ≤ σ(f(x))∥∇2f(x)∥+ σ′(f(x))∥∇f(x)∥2

≤ Lσ(f(x)) + 2Lσ′(f(x))(f(x)− f∗)

= L
(
σ(f(x)) + 2σ′(f(x))f(x)

)
− 2Lσ′(f(x))f∗.

Analyzing the function h(t) :=
(
σ(t) + 2tσ′(t)

)
, one can show that maxt h(t) <

4
3 . Thus, in the

case f∗ ≥ 0, using the fact that σ′(t) > 0 we obtain

∥∇2F (x)∥ ≤ Lh(f(x)) ≤ 4

3
L.
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Now, consider the case f∗ < 0. Since σ′(t) = σ(t)(1− σ(t)) ≤ 1
4 ,

∥∇2F (x)∥ ≤ Lh(f(x))− 2Lσ′(f(x))f∗ ≤ 4

3
L− L

2
f∗.

The claim follows.

Remark C.3. The factor 1
2 in front of −f∗ in (28) can’t be improved. Indeed, consider f(x) =

1
2 (x− a)2 − 1

2a
2 with f∗ = − 1

2a
2. The second derivative of F (x) = log(1 + ef(x)) is

F ′′(x) = σ(f(x)) + σ(f(x)) (1− σ(f(x))) (x− a)2,

F ′′(0) = σ(0) + σ(0) (1− σ(0)) a2 =
1

2
+

a2

4
=

1

2
− f∗

2
.

Proposition C.4. If f is convex, then F (x) = log(1 + ef(x)) is also convex.

Proof. Trivially follows from (27).

D LLM USAGE DISCLOSURE

In the preparation of this manuscript, large language models (LLMs) were used to improve the
readability. All substantive contributions are solely by the authors.
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