
Beyond Accuracy: A Replication Fidelity Framework for Trust-
worthy LLM Evaluation in Social Science Applications

Anonymous authors
Paper under double-blind review

Abstract

Current LLM evaluation approaches do not always detect systematic biases
that undermine trustworthy deployment in social science applications. Using
family ideal vignettes from established surveys across China (n=5,186) and
the United States (n=5,906), we systematically compared five state-of-the-
art LLMs against human responses using a novel Replication Fidelity Index
(RFI). Our counter-intuitive finding reveals that successful replication re-
quires capturing human disagreement and variability rather than just central
tendencies—a fundamental limitation missed by standard accuracy metrics.
All models demonstrated systematic demographic biases: married individu-
als were consistently under-predicted across all LLMs, with 9 statistically
significant biases detected after Bonferroni correction. We introduce RFI
as a comprehensive evaluation framework decomposing model performance
into magnitude accuracy, direction consistency, pattern preservation, and
scale calibration. These findings illuminate critical blind spots in current
evaluation practices and provide an actionable framework for bias-aware
assessment of LLMs in social research applications.

1 Introduction

Large Language Models (LLM) increasingly serve as synthetic participants in social science
research. Recent work suggests that LLM-generated synthetic data can be biased that
standard evaluation approaches may not easily capture. For instance, Argyle et al. (2023)
demonstrate that LLM outputs reflect real-world biases, while Wang et al. (2025) reveal
”group flattening”—oversimplified representation of demographic groups that diminishes
within-group heterogeneity. Hu et al. (2024) show that models inherently exhibit social
identity biases, potentially reinforcing existing societal inequalities, and Shrestha et al.
(2025) find that while LLMs capture broad aggregate trends, they systematically fail to
replicate the nuance and precision characteristic of authentic human responses.

Current evaluation approaches focus on aggregate accuracy metrics, but for the so-
cial and political science, more sophisticated evaluations are needed. This paper proposes
a metric that is made up of four components: a) magnitude accuracy, b) directional
consistency of estimated coefficients, c) pattern preservation, and d) systematic scale
bias. In order to demonstrate the usefulness of this evaluation metric, we focus in on a
particular methodological approach commonly used in the social and political sciences:
Factorial Experiments. This method is extremely important in political science, because
it estimates nuanced attitude and behavior patterns. We use a particular study of family
ideals vignettes to demonstrate the usefulness of the composite evaluation metric. Aassve
et al. (2024) surveyed 20,141 respondents across eight countries. We use the resulting
data from this survey to evaluate the extent LLMs can authentically replicate established
human preference patterns when defined over a multi-dimensional concept. This provides a
rigorous methodological foundation: we leverage validated cross-cultural factorial survey
experiments (Auspurg and Hinz, 2015) that systematically vary family characteristics across
ten dimensions (i.e. factors) to assess genuine replication fidelity.

Our methodological innovation centers on experimental fidelity rather than prompt
optimization. We preserve the exact vignette text and rating instructions presented to
human respondents, adding only demographic persona information derived from authentic
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participant profiles. This approach eliminates prompt engineering confounds and provides
unbiased assessment of model suitability for real research applications—testing whether
LLMs can handle authentic research protocols rather than engineered tasks.

We employ five state-of-the-art LLMs (GPT-4, GPT-4.1, DeepSeek EN/CN, Claude 3.5)
across two very different cultural contexts, China and the US. Our contributions are
threefold: (1) We show that successful replication requires capturing human variability and
disagreement, not just central tendencies; (2) We introduce the Replication Fidelity Index as
a comprehensive bias-aware evaluation framework that decomposes model performance into
interpretable components; (3) We demonstrate systematic demographic biases across all
models, with married individuals consistently under-predicted, revealing critical blind spots
invisible to standard accuracy metrics.

2 Methodology

Experimental Design and Data. We analyze vignette experiments from China (n=5,186)
and the United States (n=5,906) following Aassve et al. (2024). Respondents evaluated
systematically varied family scenarios on a 0–10 scale of “successful family.” Eight
attributes were manipulated: (1) union status (married/cohabiting), (2) number of children
(0–3+), (3) income (below/average/above), (4) family communication (poor/good), (5)
grandparent contact (infrequent/frequent), (6) community respect (not respected/respected),
(7) gender roles (traditional/commonplace/egalitarian), and (8) work–family conflict
(male/female/neither/both conflicted). We estimated Average Component Marginal Effects
(ACMEs) via fixed-effects models.

Experimental Fidelity Protocol. LLMs received the exact vignette text and rating
instructions as human respondents (“On a scale of 0–10, to what extent does this describe
a successful family?”). To simulate realistic heterogeneity, we incorporated demographic
personas directly from authentic survey profiles (e.g., age, education, income, family
structure). This ensures evaluation reflects real-world respondent distributions rather
than engineered prompts (Full prompt and examples of persona and vignette in Appendix C).

Replication Fidelity Index (RFI). To compare model and human responses, we pro-
pose the Replication Fidelity Index, which decomposes performance into four bounded
components: (A) magnitude accuracy (RMSE of normalized effects), (B) directional
consistency (share of signs correctly predicted), (C) pattern preservation (correlation of
relative factor importance), and (D) scale bias (systematic inflation/deflation). These
components are combined into an interpretable index ranging from 0 (failure) to 1 (perfect
replication). Formal definitions and proofs of boundedness appear in Appendix B.
The final RFI score combines these components: RFI = 1 − [wA · A + wB · B + wC · C +
wD · D] where all components are bounded in [0,1], weights sum to 1, and the index provides
interpretable scores from 0 (complete failure) to 1 (perfect replication). Mathematical details
and formal boundedness proofs are in Appendix B.

Bias Detection Framework. To identify systematic demographic biases, we comple-
mented vignette analysis with subgroup tests, applying Bonferroni-corrected Fisher’s exact
tests across demographic categories using Fisher’s exact tests with Bonferroni correction
across 567 statistical comparisons. The 567 tests represent all viable combinations af-
ter filtering: (5 models × demographic categories × 2 bias directions)China + (5 models ×
demographic categories × 2 bias directions)USA, excluding combinations with insufficient
data.

3 Results

Critical Variability Gap Reveals Fundamental Limitation. Our analysis reveals a counter-
intuitive finding that challenges standard evaluation approaches: successful replication
requires capturing human disagreement patterns, not just central tendencies. Table 1
demonstrates this fundamental limitation—human ratings exhibit natural variance (σ =
2.4-2.6) with full 0-10 scale usage, while all LLMs show severely constrained distributions.
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DeepSeek models are particularly constrained (σ = 1.1-1.3, limited to 3-8 range), while GPT-4
comes closest to human variability (σ = 2.0) but still falls short of authentic disagreement
patterns.

Table 1: Summary Statistics Reveal Critical Variability Gap

Model China (n=5,186) USA (n=5,906)
Mean Std Range Mean Std Range

Ground Truth 5.27 2.40 0-10 5.88 2.64 0-10
DeepSeek (CN) 5.63 1.10 3-8 5.63 1.15 3-9
DeepSeek (EN) 5.45 1.17 3-9 5.37 1.29 3-9
GPT-4 5.52 2.02 2-9 5.52 2.07 2-10
Claude 3.5 4.48 1.34 2-9 5.00 1.56 2-10

This variability constraint represents a systematic failure across all tested models—even
those with accurate mean predictions miss the natural human response patterns essential for
valid social science applications. Models appear to be overly confident, clustering ratings in
narrow ranges rather than reflecting authentic human disagreement about complex social
judgments.

Table 2: RFI Component Analysis Reveals Model-Specific Strengths and Vulnerabilities
Model A B C D RFI

(Magnitude) (Direction) (Pattern) (Scale) Score
USA Results
DeepSeek CN 0.167 0.143 0.044 0.172 0.869
DeepSeek EN 0.135 0.143 0.071 0.174 0.869
GPT-4 0.121 0.000 0.131 0.318 0.858
Claude 3.5 0.135 0.143 0.111 0.239 0.843
China Results
DeepSeek CN 0.147 0.214 0.132 0.062 0.861
Claude 3.5 0.158 0.143 0.226 0.106 0.842
DeepSeek EN 0.135 0.286 0.224 0.043 0.828
GPT-4.1 0.131 0.143 0.213 0.240 0.818

Note: Component A measures magnitude accuracy (weighted RMSE), B measures directional accuracy (proportion
of sign errors), C measures pattern accuracy (1-—correlation—), D measures systematic scale bias. Lower

component scores indicate better performance; higher RFI scores indicate superior replication fidelity.

RFI Reveals Component-Specific Model Limitations. Table 2 shows comprehensive model
performance across our four-component framework, revealing systematic patterns invisible
to aggregate metrics. DeepSeek models achieve highest overall RFI scores (0.869 USA, 0.861
China) through superior pattern preservation and scale calibration, despite their constrained
variability. This apparent paradox—high RFI with low variability—demonstrates that
RFI rewards replication fidelity of preference structures rather than variability matching.
DeepSeek correctly identifies directional relationships and preserves relative factor
importance even within constrained ranges, while models with higher variability may miss
systematic preference patterns. Notably, models excel in different components—GPT-4
achieves perfect directional accuracy in the USA (B=0.000) but suffers from severe scale
bias (D=0.318), while DeepSeek models demonstrate superior pattern preservation. This
component-wise analysis reveals that model selection should depend on research pri-
orities: directional accuracy may matter more than magnitude precision for some applications.

Systematic Demographic Biases Across All Models. Our rigorous bias detection framework
revealed 9 statistically significant demographic biases after Bonferroni correction across 567
comprehensive statistical tests (Table 3). Union status emerges as the dominant source of
systematic bias (7 of 9 findings), with married individuals consistently under-predicted across
all models in the USA, while single individuals suffer under-prediction by DeepSeek models
in China. Additionally, Claude 3.5 exhibits pronounced gender-specific biases in the USA,
systematically under-predicting both male and female ratings through different mechanisms.
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Table 3: Systematic Demographic Biases Detected Across All Models
Country Model Demographics Bias Direction P-value
China DeepSeek CN Union: single Under-predicted 0.005
China DeepSeek EN Union: single Under-predicted 0.032
USA Claude 3.5 Gender: female/male Under-predicted 0.002
USA Claude 3.5 Union: married Under-predicted <0.001
USA DeepSeek CN Union: married Under-predicted <0.001
USA DeepSeek EN Union: married Under-predicted <0.001
USA GPT-4.1 Union: married Under-predicted <0.001
USA GPT-4 Union: married Under-predicted <0.001

Critically, all identified biases involve under-prediction rather than over-prediction, sug-
gesting systematic underestimation patterns that would compromise research conclusions.
These biases demonstrate that models have consistent ”blind spots” for specific population
groups—patterns that would be completely invisible to standard accuracy-based evaluation
approaches yet fundamentally undermine research validity when LLMs serve as synthetic
participants.

4 Discussion and Implications

The counter-intuitive insight that successful replication requires capturing human disagree-
ment fundamentally challenges standard evaluation approaches focused on central tendencies.
This variability gap represents a systematic failure across all tested models—even those
with accurate mean predictions miss the natural human response patterns essential for valid
social science applications.

The systematic demographic biases demonstrate that all models have consistent
blind spots for specific population groups. The pervasive under-prediction of married
individuals across all models suggests either training data artifacts or systematic processing
limitations that compromise research validity. Importantly, these biases would be completely
missed by standard accuracy metrics that focus on aggregate performance rather than
demographic fairness, highlighting the urgent need for bias-aware evaluation frameworks in
AI-assisted social research.
Our RFI framework provides actionable methodology for detecting these hidden systematic
limitations. The component-wise analysis reveals that models fail in fundamentally different
ways: GPT-4 achieves perfect directional understanding but suffers from scale bias, while
DeepSeek models preserve relative importance patterns despite constrained variability. This
suggests that model selection should depend on specific research contexts and priorities
rather than aggregate performance scores.

Actionable Recommendations. (1) Use multi-component frameworks like RFI to as-
sess replication beyond aggregate accuracy; (2) Test systematically for demographic bias
with proper statistical corrections before deployment; (3) Prioritize experimental fidelity over
prompt tuning to evaluate genuine model capability; (4) Match model choice to research
priorities—e.g., directional accuracy for exploration, pattern preservation for policy.

5 Limitations

Our study has several constraints. First, we analyze only two national contexts (China
and the US). While culturally distinct, broader cross-national testing is needed to assess
generalizability. Second, we restrict analysis to family ideals; other domains (e.g., political
attitudes, health behaviors) may present different replication challenges. Third, we test a
subset of current LLMs; results may shift with new releases, though the systematic patterns
observed suggest deeper structural issues. Finally, our vignette-based design cannot capture
all aspects of real survey interaction, such as interviewer effects or open-ended responses.
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A Data Quality Checks (Grouped persona data - 6 vignettes / persona)

Table 4: Distributional Validation Summary for Persona-Level Ratings
China (n=866) USA (n=986)

Rating Source Range D’Agostino p Outliers Range D’Agostino p Outliers
Ground Truth [0.83, 9.83] 0.231 4 [0.83, 9.83] 0.398 7
Claude 3.5 [3.67, 5.50] 0.986 22 [3.83, 5.83] <0.001 15
DeepSeek CN [5.00, 6.20] 0.003 3 [5.00, 6.40] 0.471 1
DeepSeek EN [4.75, 5.83] 0.158 37 [4.80, 5.83] 0.035 71
GPT-4.1 [4.00, 5.83] <0.001 11 [4.17, 6.20] <0.001 20
GPT-4 [4.25, 6.33] <0.001 12 [4.50, 6.33] <0.001 17

Notes: D’Agostino test assesses normality (p > 0.05 supports normality). Outliers detected using
IQR method (beyond 1.5×IQR from Q1/Q3). Ground truth shows appropriate spread and minimal

outliers. DeepSeek models exhibit constrained ranges, consistent with distributional analysis in
Section 2.

B Mathematical Framework

Table 5: RFI Component Framework
Component Mathematical Definition

Magnitude (A)

√∑K

k=1
wk(b̃LLM

k
−b̃GT

k
)2

4
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k ) ̸= sign(tGT
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Scale Bias (D) |R−1|
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B.1 Formal RFI Component Definitions

Let bGT = (bGT
1 , bGT

2 , . . . , bGT
K ) be our ground truth coefficient vector from human survey

data with standard errors σGT = (σGT
1 , σGT

2 , . . . , σGT
K ) and bLLM = (bLLM

1 , bLLM
2 , . . . , bLLM

K )

be the corresponding LLM-generated coefficients with standard errors σLLM.

T-Statistic Calculation. Statistical significance weighting ensures that factors with
strong, reliable human effects receive appropriate emphasis in evaluation:

tGT
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bGT
k

σGT
k

, tLLM
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bLLM
k

σLLM
k

Joint Coefficient Normalization. To enable meaningful comparisons across different effect
scales:

b̃GT
k =

bGT
k

S
, b̃LLM

k =
bLLM

k

S

where S = max{maxi |bGT
i |, maxi |bLLM

i |} ensures all normalized coefficients lie in [−1, 1].

Importance Weights. T-statistic based weighting prioritizes factors where humans
show clear, consistent patterns:
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|tGT

k |∑K
i=1 |tGT

i |



B.2 RFI Framework Design and Boundedness

The RFI is designed to provide interpretable evaluation scores between 0 (complete failure)
and 1 (perfect replication). Each component is carefully bounded:

Magnitude Component (A): Measures how wrong effect sizes are using weighted
RMSE of normalized coefficients. Since coefficients are normalized to [−1, 1], maximum
possible difference is 2, and we divide by 4 to ensure A ∈ [0, 1].

Direction Component (B): Counts proportion of factors where LLM gets basic posi-
tive/negative relationship wrong. As a proportion, B is naturally bounded in [0, 1].

Pattern Component (C): Uses correlation transformation C = 1 − |ρ| to measure
whether LLM preserves relative factor importance. Since correlation coefficients satisfy
|ρ| ≤ 1, we have C ∈ [0, 1].

Scale Bias Component (D): Detects systematic inflation/deflation using D = |R−1|
R+1

where R is ratio of total effect sizes. This function maps all positive values to [0, 1).

The final RFI combines these bounded components with weights summing to 1,
ensuring RFI ∈ [0, 1] with intuitive interpretation: higher scores indicate better replication.

B.3 Statistical Methodology

Bootstrap Validation. We conducted parametric bootstrap analysis (2,000 iterations)
sampling coefficients from normal distributions using original standard errors, then
recalculating complete RFI pipelines. Results show that while apparent ranking differences
exist, only subset are statistically significant: DeepSeek models significantly outperform
GPT-4.1 in USA (p=0.035-0.038) and GPT-4 models in China (p¡0.027), with performance
gaps of 0.057-0.090 RFI points.

Weight Sensitivity Analysis. Model rankings depend on theoretical priorities, but
core conclusions remain robust. DeepSeek models demonstrate consistent performance
across different weighting schemes, while GPT-4 exhibits extreme sensitivity (best to worst
performer depending on priorities). This validates that conclusions aren’t artifacts of
arbitrary weight choices while highlighting the importance of component-specific evaluation
for practical model selection.

Figure 1: Weight sensitivity



C Experimental Details

Model Specifications. We evaluated five state-of-the-art models: GPT-4 (March 2023,
8K-32K context), GPT-4.1 (April 2025, 1M context), DeepSeek V3 EN/CN (December 2024,
128K context), and Claude 3.5 Sonnet (June 2024, 200K context). Models were selected to
cover capability spectrum, cultural alignment, and cost considerations.

Persona Construction. Demographic personas were derived directly from authentic
participant profiles in the original PNAS dataset, maintaining realistic combinations of
demographic characteristics. Each persona includes age, education level, income, family
structure, employment status, and cultural context drawn from actual survey respondents.

Statistical Testing Framework. Demographic bias detection employed Fisher’s ex-
act tests across 567 comparisons with Bonferroni correction (p-values multiplied by number
of tests). We used 2×2 contingency tables (Agresti, 2018) comparing each demographic
group’s representation in bias categories versus background population, with odds ratios
calculated as OR = ad/bc.

Sample prompt

Listing 1: User Prompt Configuration
1 user_prompt = (
2 "** Task **: You will be presented with six descriptions of different

families . "
3 " Please answer the questions following the description of each family .

"
4 " Please take your time picturing each family while reading the

description .\n"
5 f"{ vignette }\n"
6 "** Question **: Based on this description , on a scale of 0 (0 =

Strongly Disagree ) to 10 (10 = Strongly Agree) "
7 "to what extent do you agree or disagree with the following statement ?

"
8 '"This describes a successful family ." '
9 " Combining the description and your own characteristics , please

respond with a single number between 0-10, no explanation just
number .\n** Answer **: "

10 )

Examples of Persona and Vignette

Persona:
“You are a respondent in the LifePoints platform who answers surveys for money. You
are currently answering a comparative survey about family ideals that is conducted in 8
countries including the USA, Italy, Spain, Norway, urban China, Singapore, Japan, and
Korea. You are a participant located in China. You have the following characteristics..
You are a 41.0 year-old male. currently living in big city and its suburbs. Your race is
999. and your ethnicity is 999. You do not belong to any religious denomination. You are
currently married. You have been in a consensual union before. and have been married
for 2003 years. You cohabited with your spouse before marriage. Your highest level
of education is ISCED level 6. Your current work situation is: Employed. working as
Professional and technical. with a Fixed-term contract. You have never left your parents’
home. Your household consists of 3 people. You have 1 brother. and are the firstborn. You
have 2.0 children. and definitely no plan to have children in the next 3 years. You have
no gender preference if you could have only one child. Your monthly household income
after taxes is equivalent to 2,800.00 euros. You spent 48.30 seconds in reading, judging
and rating this description.. On a scale from 0 to 10, you rated satisfaction with your life a 8.”

Vignette:
“This is the first family description. In the following you will find a description of Lisa and
Robert. Lisa and Robert are both around 45 years old. Lisa and Robert are married. Lisa



and Robert have three children. Lisa and Robert’s combined income is higher than the
country average. The family is not well respected in their community. Lisa, Robert, and
their children discuss their daily life frequently and feel comfortable expressing their feelings
and raising disagreements with each other. Lisa, Robert, and their children talk with both
Lisa’s and Robert’s parents infrequently. Both Lisa and Robert work full-time. Lisa takes
care of most of the family and household responsibilities. Robert feels conflicted between
his career and the possibility to help out with family responsibilities, and Lisa also feels
conflicted between her family responsibilities and her career.”
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