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Abstract—Corrosion is a prevalent issue in numerous industrial
fields, causing expenses nearing $3 trillion or 4% of the GDP
annually with safety threats and environmental pollution. To
timely qualify and validate new corrosion-inhibiting materials
on a large scale, accurate and efficient corrosion assessment is
crucial. Yet it is hindered by a lack of automatic tools for expert-
level corrosion segmentation of material science experimental im-
ages. Developing such tools is challenging due to limited domain-
valid data, image artifacts visually similar to corrosion, various
corrosion morphology, strong class imbalance, and millimeter-
precision corrosion boundaries. To help the community address
these challenges, we curate the first expert-level segmentation
annotations for a real-world image dataset [1] for scientific
corrosion segmentation. In addition, we design a deep learning
based model, called DeepSC-Edge that achieves guidance of
ground-truth edge learning by adopting a novel loss that avoids
over-fitting to edges. It also is enriched by integrating a class-
balanced loss that improves segmentation with small area but
crucial edges of interest for scientific corrosion assessment. Our
dataset and methods pave the way to advanced deep-learning
models for corrosion assessment and generation – promoting
new research to connect computer vision and material science
discovery. Once the appropriate approvals have been cleared, we
expect to release the code and data at: https://arl.wpi.edu/

I. INTRODUCTION

Background. Corrosion is defined as the gradual degradation

of a metal over time due to chemical interactions with its

environment. It results in major safety risks worldwide and

negatively impacts nature environment, societal health, na-

tional infrastructure, manufacturing, and transportation. The

associated economic burden is substantial, with global losses

estimated to be around 4% of the gross domestic product

(GDP), equivalent to approximately $2.5 trillion [2], [3].

Consequently, the study of corrosion is an active research

field in material science that aims to innovate environmen-

tally friendly materials capable of corrosion resistance. This

involves conducting scientific corrosion assessment by various

industries, government agencies, and countries [4]–[9].

Motivation. Traditional methods for assessing corrosion often

involve manual segmentation, which is both labor-intensive

and subject to human error. This lack of precise, quick, and

safe assessment methods impedes not only the understanding

of corrosion as well as material discovery in general. While

Figure 1: Sample corrosion images with the segmentation

ground truth we provide with corrosion experts.

the need for efficient and accurate corrosion assessment has

been acknowledged [10], the transition to automated methods

using Machine Learning (ML) has been slow. One of the

significant roadblocks is the absence of high-quality scientific

data for corrosion segmentation. This type of data is costly and

complex to acquire, often requiring the expertise of seasoned

professionals to identify subtle and varied corrosion patterns,

especially those with artifacts like water stains with similar

colors or textures to corrosion.

Shown in Figure 1, some corrosion forms, such as corrosion

underneath, i.e. under the coatings, necessitate invasive and

potentially hazardous methods for accurate assessment where

the expert needs to scrape the corresponding coating out.

There is also the challenge of millimeter-level observations,

particularly crucial when defining the boundaries of corroded

areas. Given these complexities, there is an urgent need for an

automated corrosion assessment tool that can accurately deal

with the nuances of various types of corrosion, thereby aiding

both academic research and industrial applications.

Data and Ground Truth. Our original 600 corrosion panel

images are fully taken from an open domain dataset [1] derived

from standard corrosion science experiments according to

ASTM standards [7]. Ground truth, expertly curated, binary

segmentation is produced for each of the 600 images in this
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work. In consultation with domain experts, we develop criteria

to segment corrosion of interest while excluding superfluous

background pixels.

Challenges. From examples shown in Figure 1, challenges that

are both domain-specific and which extend to the general com-

puter vision community [11], include: i) a variety of textures

and shapes in limited images, ii) tiny-scale and detailed areas

to segment, iii) similarities in color with coating or image arti-

facts such as water staining, iv) areas of corrosion not visibly

apparent on the images but identifiable to domain experts, and

v) class imbalance between corrosion and background pixels

which arises naturally due to the relatively small size and

irregular distribution of interest, such as any item above. These

challenges lead us to the research questions below:

• To what extent can a deep learning architecture be trained

to learn the expert-curated segmentation including the chal-

lenging corrosion field of interest?

• On limited data, how to better guide the model by exploiting

strategies tied to the above observations, such as edge

detection or class imbalance methods?

Our Proposed Methodology. We first train and compare

two popular widely-used deep learning architectures, UNet

[12] and MedTransformer [11], that had been shown to be

successful for tasks to segment tiny but important pixels.

Although UNet outperforms MedTransformer on our small

domain-representative dataset, we found that UNet cannot

fully learn edge information of the small-scaled corrosion cru-

cial for corrosion assessment. This then motivates us to guide

UNet with ground-truth edge maps generated by deterministic

computer vision techniques such as the Canny edge operator
1. We thus develop an edge-guided baseline model, ET-UNet.

This model adopts the backbone from UNet [12], while now

augmented with edge-guidance capabilities [13].

While ET-UNet is designed to guide segmentation bound-

aries, it lacks the ability to guide the boundary via edge map

features in decoder layers. Typically, this Decoder edge guid-

ance can cause overfitting to edges but not the segmentation

within.

To address the issues, we propose three alternate strategies

on ET-UNet: 1) constructing targeted edge guidance on De-

coder, 2) innovating losses to regularize the caused overfitting

issue, 3) employing a class-balanced method, Focal Tversky

Loss (FTL) to further distinguish challenging corrosion of

interest in the proposed edge guidance model. Our proposed

models are listed in Table I.

Findings. We demonstrate that our proposed strategies ef-

fectively recover critical edge details while learning the seg-

mentation – providing a 1% dice and 1.43% IOU increase

over 86.72% dice or 77.27% IOU score from the UNet

baseline on our image data set. After sorting and weighting

the test set by its prediction rank performance using baseline

UNet (weighting baseline poorer performing images higher),

our proposed methods outperform UNet by 1.66% dice and

1https://kornia-tutorials.readthedocs.io/en/latest/ nbs/filtering edges.html#
canny-edges

2.41% IOU. This demonstrates our ability to handle more

challenging, difficult-to-segment images. The predictions on

certain difficult test images are improved by about 8% dice or

IOU increase.

Contributions. In summary, our key contributions in this work

are as follows:

• We design a loss method enabling ground-truth edge guid-

ance via decoder output to enhance segmentation perfor-

mance while preventing the guidance overfits to edges

(Equation 6.), compared to traditional encoder guidance

• We employ a class-imbalanced method to our novel edge

guidance loss – effectively learning segmentation with the

challenging edges of corrosion

• DeepSC-Edge over traditional methods is affirmed by a

Rank metric measuring their performance on corrosion

images with challenging edges.

• We provide the first expert-curated segmentation image

dataset, opening rich research opportunities for scientific

material discovery, deep learning, and computer vision.

II. RELATED WORK

Deep learning & data sets in material science.. For corrosion

science, machine learning solutions have been applied to

automate engineering tasks such as defect detection [14]–[17]

and corroded pipe detection [18]. However, there is no well-

performing ML work for scientific corrosion segmentation

[19]. Due to the difficulty and expertise required to annotate

corrosion, to the best of our knowledge, our work provides the

first expert-level segmentation dataset for scientific corrosion

assessment and corresponding high-performing deep learning

methods for standardized corrosion segmentation.

In the broader sense, deep learning has been widely used

for image segmentation tasks. UNet is a popular deep learning

model for various image segmentation tasks [12], [20]–[22] -

first introduced for biomedical image segmentation. It primar-

ily introduced the utilization of a skip-connection structure

to propagate information from the encoder to the decoder.

Further, there exist works that aim to refine predicted segmen-

tation by integrating additional boundary and edge information

[23]–[26]. Losses to address class imbalance during training

in tasks like object detection by applying a modulating term to

the cross entropy loss to focus learning on hard misclassified

examples has been shown to be effective. [27]. In this work,

we also incorporate edge information into UNet. However,

we demonstrate methods involving ground-truth edges and a

class-balanced loss to benefit scientific corrosion segmenta-

tion, especially on difficult-to-segment images that pose both

domain-related and general-purpose segmentation challenges.

III. DATA SET DESCRIPTION

Experimental Workflows for Coating and Rating Panels
for Corrosion Levels. Corrosion panel testing is used globally

in industrial and government labs to conduct standardized

corrosion tests on surfaces with protective coatings [1]. In

corrosion science, experimentalists develop and validate new
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Model Description (Equation) Method
UNet UNet baseline for image segmentation (1) Baseline 1
ET-UNet Edge guidance architecture based on UNet (2) Baseline 2
Guided ET-UNet ET-UNet (2) + additional edge guidance (5) Proposed Strategy 1
S-Guided ET-UNet ET-UNet (2) + additional edge guidance in a soft manner (6) Proposed Strategy 1, 2

UNet + FTL UNet (1) + class balanced loss (7) Baseline 1 + Proposed Strategy 3
ET-UNet + FTL ET-UNet (2) + class balanced loss (7) Baseline 2 + Proposed Strategy 3
Guided ET-UNet + FTL ET-UNet (2) + additional edge guidance (5) + class balanced loss (7) Proposed Strategy 1, 3
S-Guided ET-UNet + FTL ET-UNet (2) + additional edge guidance in a soft manner (6) + class balanced loss (7) Proposed Strategy 1, 2, 3

Table I: Model descriptions: UNet-based models that reflect our methods combining baselines and proposed strategies. Strategy

1 or 2 is proposed upon ET-UNet. DeepSC-Edge A is Guided ET-UNet. DeepSC-Edge B is S-Guided ET-UNet.

anti-corrosive materials following standard material science

procedures [28]. Based on the corrosion area of interest, they

rate the panels from 0 (heavy corrosion) to 10 (no corrosion)

according to the defined ASTM standards. As the rating scale

is at a millimeter level, it is necessary to segment corrosion

out from the background in a detailed tiny scale where the

experts exploit magnifiers to verify it point by point. These

tests are widely conducted to evaluate the performance of the

newly-invented coatings in preventing corrosion.

Experimental Data Collection. Our dataset is derived from

a related, open dataset [1] includes 600 images of corroded

panels that have been expertly rated but not yet segmented.

This data set represents diverse material types in coating

stack layers (5 substrates, 2 profiles, 21 pre-treatments, 4

primers, and 5 topcoats) and interaction of distinctive features

(water spots, under-coating rust, tiny shapes, and edges largely

of interest, etc.) not found in popular image datasets like

ImageNet. Their images are evenly balanced across 5 critically

defined rating categories of 5 to 9, and are resampled and

rating-stratified to 10-fold cross-validation sets with a held-

out test set containing 60 images. An example image of each

rating class can be seen in Figure 1. In this work, we provide

expertly curated, binary segmentations for each of these 600

images – representing the ground truth for scientific corrosion

segmentation. They were obtained using the OpenCV GrabCut

algorithm [29] to separate areas of scribe corrosion from the

surrounding background.

Scientific Corrosion Segmentation Image Preparation. To

ensure accuracy and completeness, we consulted with corro-

sion domain experts to develop criteria for segmenting scribe

corrosion areas. This allowed us to include all necessary areas

of corrosion in the segmentation while excluding irrelevant

background pixels, such as dark water stains. Using GrabCut,

we define a bounding box including all scribe corrosion and

allow the algorithm to determine preliminarily the location

of the foreground (corrosion) and background. Then, we

manually refine the areas of corrosion and background using

GrabCut until we achieve an accurate segmentation for the

given panel [29]. The segmentation output from GrabCut is

then transformed into a grayscale image and binarized such

that all scribe corrosion areas are set to 255 and all background

pixels are set to zero. We then apply a median filter [30]

and morphological operators to the binary images to remove

any remaining salt and pepper noise that wasn’t removed

initially by GrabCut. The binary segmentations were reviewed

by corrosion domain experts and further refined collaboratively

thereafter. Examples can be seen in Figure 1.

IV. METHODOLOGY

Our proposed solution, DeepSC-Edge, consists of two sub-

models, DeepSC-Edge A (Guided ET-UNet in Table I) and B

(S-Guided ET-UNet in Table I).

Inspired by the expert annotation process, it is noticeable

that corrosion boundary plays a vital role in learning detailed

expert-level knowledge about corrosion on a panel. In UNet

baseline, early encoder layers are designed to learn low-

level features [12] such as textures and colors of corrosion

pixels. To guide these layers in learning the edges of expert

ground truth segmentation, we built an UNet edge guidance

baseline, ET-UNet, according to a widely used edge guidance

network ET-Net [13]. However, corrosion boundaries may

not always be visually apparent and low-level features might

not represent the complete segmentation easily. Even worse,

parts of boundaries might be similar to certain background

pixels or to corrosion not of interest. Additionally, the expert

rules to determine these boundaries are sample-dependent and

varied considering complex factors from actual environments,

raw materials, or even errors during the manufacturing and

experimental process.

In order to ensure that ET-UNet is learning low-level

features within the edge boundaries, we propose a strategy that

considers additional edge guidance (Strategy 1 in Table I) on

ET-UNet as Guided ET-UNet. Further, to avoid overfitting to

the boundary rather than the segmentation, we propose to soft-

guide by gradually injecting it as segmentation loss decreases

during training (Strategy 2 in Table I) on Guided ET-UNet as

S-Guided ET-UNet.

For edges or areas of corrosion that are the minority

compared to other areas, we propose to involve the class-

balanced loss, FTL, to exploit models for better recognition.

We describe all of the models with methods in Table I.

Baselines. UNet is a convolutional neural network architecture

that uses an encoder-decoder structure to perform segmenta-

tion by predicting pixel-wise labels. The encoder extracts low-

level features from the input image, which are then used by

the decoder to predict the segmentation shape.

We aim to investigate how edge guidance could be involved

in this classic deep learning architecture – approaching a better

automation of scientific corrosion segmentation. Thus, as an

alternative baseline, we also develop an edge-guided UNet
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model inspired by the edge guidance modules in ET-Net [13],

called ET-UNet. Figure 2 illustrates how ET-UNet involves

ground-truth edge guidance to the encoder-decoder architec-

ture in UNet. In the model, the Edge Guidance Module (EGM)

is designed to learn low-level features related to segmentation

edges, and Weighted Aggregation Module (WAM) to capture

multi-scale features to form the segmentation. Strategies. We

propose the following strategies to improve baselines inspired

by our observations and understanding of scientific corrosion

segmentation: i) We involve additional guidance – by verifying

edges of the segmentation prediction in ET-UNet with edges

of ground truth. ii) In order to avoid the issue of over-fitting to

the edges, we propose to add this guidance in a soft manner –

increasing it as the segmentation loss decreases gradually. iii)

Further, we utilize Focal Tversky Loss (FTL) [31] instead of

Dice loss as a regularization to overcome the class imbalance

challenge in the domain.

Strategy 1 is going to enhance ET-UNet by ensuring its

prediction edge to approach that of the ground truth edge.

Strategy 2 is proposed to avoid over-fitting to the edges while

not the segmentation itself when applying Strategy 1. Strategy

3 aims at emphasizing learning the challenging corrosion of

interest with minority but critical edges.

Loss functions to exploit deep learning models. Our strate-

gies are added to our DeepSC-Edge models listed in Table

I. We define the loss functions of these deep learning models

below. Combining Binary Cross Entropy (BCE) and Dice loss

(Dice Loss) [12], UNet loss function is calculated by ground

truth segmentation Y and the segmentation prediction Ŷ :

LUNet = BCE(Y, Ŷ ) +Dice Loss(Y, Ŷ ) (1)

Other than UNet, ET-UNet also learns edges of ground truth

segmentation in early encoder layers so that its loss function

can be described as:

LET−UNet = LUNet + λ · Ledge (2)

where Ledge = BCE(Y edge, Ŷ edge)

+Dice Loss(Y edge, Ŷ edge), (3)

In Equation (3), Y edge is the edge map of ground truth

segmentation, Ŷ edge is the predicted edge map from its Edge

Guidance Module illustrated in Figure 2, and λ controls the

strength of this edge guidance. We then involve the additional

edge guidance shown in Table I:

Ledge∗ = BCE(Y edge, Ŷ edge∗)

+Dice Loss(Y edge, Ŷ edge∗). (4)

where Ŷ edge∗ denotes the edge map of segmentation predic-

tion output from Weighted Aggregation Module of ET-UNet

– instead of Ŷ edge that is output from the Edge Guidance

Module as shown in Figure 2. We control this additional

guidance using γ. So that:

LGuided ET−UNet = LET−UNet + γ · Ledge∗ (5)

LS−Guided ET−UNet = LET−UNet

+
1

max (Lseg − θ, 0) + 1
· Ledge∗ (6)

By assigning θ appropriately, we involve the additional guid-

ance, Ledge∗ , in the following soft (S) manner: the prediction

edge, Ŷ edge∗, will provide its guidance in inverse proportion

to Lseg , and the full guidance to the prediction segmentation

only if Lseg is smaller than or equal to θ. For Strategy 3,

class balanced loss FTL [31] combines Tversky Index [31]

and Focal loss [27]:

FTL = (1− TI)1/β (7)

where TI =
TP + ε

TP + αFN + (1− α)FP + ε
(8)

We embed FTL loss into our models (+FTL) shown in Table I

instead of their Dice Loss. In Equation (8), we calculate True

Positive (TP), False Negative (FN) and False Positive (FP)

pixels according to ground truth and prediction in Dice Loss
used in the model. If α is larger than 0.5, the loss penalizes

FN so the model will emphasize learning these challenging

corrosion areas more. β further down-weights the contribution

of corrosion that is easy to be predicted and focuses more on

challenging corrosion during training. In this way, the model

would learn to preserve sharp, minority, or challenging edges

rather than avoid them, and as result, this would make the

prediction of edges smooth.

V. EXPERIMENTAL STUDY AND ANALYSIS

Experimental Setup. Each model for a particular set of hyper-

parameters was trained in a range 1 to 2 hours using an A100

GPU. Thereafter, each image is inferred in less than a second.

This efficiency was critical for our targeted applications to

integrate the AI models in a corrosion data collection and

assessment tool as an iOS APP for our domain collaborators

to collect and work with their data.

We trained and evaluated all models using our dataset

consisting of 600 corrosion image pairs: the original images

and their corresponding segmentation we provide in this work.

To grid-search hyperparameters, we select learning rates

from a set {1e-1, 1e-2, 1e-3, 1e-4, 1e-5} and batch size from

a set {8, 16}. We found that all models work the best with

learning rate 1e-3 and batch size 8. The best λ in ET-UNet

(2) is 0.5 tuned from a set {0.001, 0.1, 0.5, 1.0, 1.5}. The best

γ in Guided ET-UNet (5) based on the best ET-UNet is 1.0

tuned from a set {0.001, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The

best θ in S-Guided ET-UNet (6) based on the best ET-UNet

is 3.0 tuned from a set {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}.

For Proposed Strategy 3 on all the above best models, we

found the best penalization weight α in FTL is 0.88 for ET-

UNet + FTL and S-Guided ET-UNet + FTL models, and 0.90

for other models related – both showing a high false negative

rate penalization is beneficial in the dataset.

We also present an ablation study – showing our results are

robust to hyperparameter choice in the proposed strategies. We
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Figure 2: Guided ET-UNet: UNet encoder layers are in green, while UNet decoder layers are highlighted in blue. Edge Guidance

Module [13] is in orange. Weighted Aggregation Module [13] is highlighted in purple. ‘Conv’, ‘U’, ‘C’, and ‘+’ signify the

convolutional layer, upsampling, concatenation, and addition layers, respectively. Red Arrow illustrates the deterministic canny

edge operator. Our Strategy 1 develops a loss (Equation 5) to train this new decoder edge guidance with traditional encoder edge

guidance loss (Equation 2) upon UNet loss (Equation 1) for segmentation. Our Strategy 2 proposes a novel loss (Equation

6) to regularize the proposed Guided ET-UNet loss so not to overfit to edges via weighting it with the segmentation loss

(Equation 1). The decoder edge guidance in Guided ET-UNet is expected to be gradually increased if it does encourage the

overall corrosion segmentation. However, this guidance will not be effective once the segmentation has been fully learned, as

the weight will be 0 if the segmentation loss is smaller than a hyperparameter theta. In our Strategy 3 (similar to Strategies

1 and 2), we integrate a class imbalanced method (Equation 7) into the segmentation and related edge guidance methods for

telling corrosion with challenging but critical boundaries.

evaluate the model performance using Dice and IOU scores

as broadly used in machine segmentation tasks [12].

In order to better observe the evaluation, we also defined

their variants other than scores – rank, increase, and weighted

increase (W-Inc as shown in Table II). The Dice or IOU rank

takes the average rank performance of a model after calculat-

ing its rank compared with other models on every test image.

The Dice or IOU weighted increase (W-Inc) takes the weighted

average score improvement of a model rather than the UNet

baseline after weighting each test image with its prediction

rank using the UNet baseline. In this way, we evaluate how

a model is or is not able to predict challenging corrosion of

interest better. If W-Inc is larger than 0, it indicates that the

model outperforms UNet in predicting corrosion segmentation,

especially on challenging corrosion.

Comparative Study of Corrosion Segmentation Perfor-
mance. Shown in Table II, our results indicate that all of

our strategies improve baseline models. S-Guided ET-UNet

(+FTL) model performs the best based on its Dice, IOU,

and corresponding ranks and increases, demonstrating its

superior performance in solving the corrosion segmentation

task compared to other strategies and baselines, especially

on challenging corrosion. Further, incorporating any of our

proposed strategies elevates ET-UNet performance over UNet

– showing its effectiveness in edge-guidance. This is a notable

Model Dice IOU
Score ↑ Rank ↓ Increase ↑ W-Inc ↑ Score ↑ Rank ↓ Increase ↑ W-Inc ↑

UNet 0.8672 ± 0.0179 5.5167 0.0000 0.0000 0.7727 ± 0.0263 5.5167 0.0000 0.0000
ET-UNet 0.8670 ± 0.0181 5.6667 -0.0002 0.0014 0.7721 ± 0.0268 5.7000 -0.0006 0.0014
Guided ET-UNet 0.8687 ± 0.0176 5.3167 0.0015 0.0028 0.7749 ± 0.0260 5.2500 0.0022 0.0040
S-Guided ET-UNet 0.8696 ± 0.0199 4.6333 0.0024 0.0045 0.7763 ± 0.0288 4.6167 0.0036 0.0062

UNet + FTL 0.8738 ± 0.0152 4.0167 0.0066 0.0149 0.7823 ± 0.0226 4.0500 0.0096 0.0133
ET-UNet + FTL 0.8763 ± 0.0151 3.6833 0.0091 0.0094 0.7855 ± 0.0227 3.6833 0.0128 0.0214
Guided ET-UNet + FTL 0.8768 ± 0.0168 3.8500 0.0096 0.0155 0.7864 ± 0.0254 3.8667 0.0137 0.0232
S-Guided ET-UNet + FTL 0.8772 ± 0.0140 3.3167 0.0100 0.0166 0.7870 ± 0.0212 3.3167 0.0143 0.0241

Table II: Test performance using 10-fold cross-validation: each cell shows the average test performance of a model under

a metric. The best-performing cell in each metric column is highlighted in BOLD. The MedTransformer performance (Dice

Score: 0.85; IOU: 0.75) cannot beat UNet on our domain small dataset so it was not considered as a basic architecture to build

our proposed strategies for scientific corrosion segmentation.
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Model (+ FTL) β = 1.0 β = 1.5 β = 2.0
α = 0.1 α = 0.3 α = 0.7 α = 0.9 α = 0.1 α = 0.3 α = 0.7 α = 0.9 α = 0.1 α = 0.3 α = 0.7 α = 0.9

UNet 0.7346 0.8322 0.8737 0.8632 0.7434 0.8223 0.8741 0.8717 0.7547 0.8072 0.8614 0.8669

ET-UNet 0.7891 0.8377 0.8740 0.8672 0.7513 0.8479 0.8711 0.8741 0.7927 0.8493 0.8572 0.8646

Guided ET-UNet 0.7506 0.8359 0.8763 0.8679 0.7461 0.8336 0.8721 0.8768 0.7582 0.8109 0.8557 0.8687

S-Guided ET-UNet 0.7346 0.8276 0.8758 0.8654 0.7706 0.8227 0.8755 0.8766 0.7777 0.8173 0.8659 0.8711

Table III: Ablation Study of Proposed Models: Each cell shows the test performance using Dice Score metric.

Figure 4: Case study: Challenging corrosion panels segmented

by UNet and our proposed S-Guided ET-UNet + FTL model.

improvement considering that UNet is commonly used in the

field of image segmentation with relative small data sets.

Moreover, from Weighted Increase performance for han-

dling the difficult-to-segment corrosion, ET-UNet outperforms

UNet without our strategies, but they indeed make this im-

provement larger. In addition, from the loss plots in Figure 3,

the models with FTL tend to have smaller total loss values.

Also, our best-performing model shows smooth training and

validation losses – denoting its robustness.

Ablation Study. Since in Table II, we found the class-balanced

loss, (7), shows a significant improvement in each proposed

model for our edge-related task. This strategy forces the model

to learn minority pixels better by penalizing false negatives or

false positives while predicting segmentation or its edge. It

helps us to solve the prediction challenge on the small yet

crucial areas of corrosion using the limited image pairs – via

controlling α and β in the loss. In TableIII, we show that our

proposed segmentation models are able to be locally optimized

in terms of α and β.

Case study. Providing visual examples of the segmentation

predictions from the baseline models and proposed strategies

can be a useful way to explain why our strategies are necessary

for corrosion segmentation when leveraging the popular UNet

deep learning architecture. In Figure 4, we display test results

of the baseline UNet using its best validation fold model along

with the corresponding predictions from our best-performing

model. This comparison highlights the benefits of our proposed

strategies for challenging corrosion segmentation tasks. Over-

all, these visual examples highlight the potential impact of our

solution for improving scientific corrosion segmentation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose to integrate edge-map information

and class-balanced loss with UNet for scientific corrosion

segmentation. Our DeepSC-Edge models from the proposed

strategies exploit edge information to enhance the feature

representation via Decoder and improve the prediction of seg-

mentation to automate scientific corrosion assessment. Our ex-

perimental results demonstrate the effectiveness of our model

to segment the publicly available corrosion dataset [1] paired

with our expert-curated ground truth segmentation, especially

on challenging hard-to-segment samples. Our strategies may

inspire solutions for other image segmentation tasks that

require edge information in UNet.

Our long-term goal is to speed up material discovery-related

experimental workflows. The release of our expert-labeled

Figure 3: Loss plots on the best UNet validation fold: Top row, from left to right, shows UNet, ET-UNet, Guided ET-UNet,

and S-Guided ET-UNet. Bottom row shows the corresponding models with the consideration of class-balanced loss – FTL.
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segmentation corrosion data and our deep learning methods

applied to this unique application domain will drive innovation

of deep learning techniques such as UNet-based generative

models, like Stable Diffusion [32], for scientific corrosion

progression prediction and transfer learning from large models,

like SAM [33], to this important domain – bridging computer

vision and material science discovery.
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