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Abstract

This paper explores higher-resolution video outpainting with
extensive content generation. We point out common issues
faced by existing methods when attempting to largely out-
paint videos: the generation of low-quality content and limita-
tions imposed by GPU memory. To address these challenges,
we propose a diffusion-based method called Infinite-Canvas.
It builds upon two core designs. First, instead of employing
the common practice of “single-shot” outpainting, we dis-
tribute the task across spatial windows and seamlessly merge
them. It allows us to outpaint videos of any size and reso-
lution without being constrained by GPU memory. Second,
the source video and its relative positional relation are in-
jected into the generation process of each window. It makes
the generated spatial layout within each window harmonize
with the source video. Coupling with these two designs en-
ables us to generate higher-resolution outpainting videos with
rich content while keeping spatial and temporal consistency.
Infinite-Canvas excels in large-scale video outpainting, e.g.,
from 512× 512 to 1152× 2048 (9×), while producing high-
quality and aesthetically pleasing results. It achieves the best
quantitative results across various resolution and scale setups.

Code — https://github.com/mayuelala/FollowYourCanvas

1 Introduction
Video outpainting aims to expand spatial contents of a video
beyond its original boundaries to fill a designated canvas re-
gion. This task has numerous applications, such as enhanc-
ing viewing experience by adjusting aspect ratio of videos
to match different users’ smartphones (Wang et al. 2024a).

Recently, diffusion models (Ho, Jain, and Abbeel 2020)
have emerged as the dominant approach for visual genera-
tion, demonstrating exceptional visual synthesis ability by
producing appealing results (Rombach et al. 2022). Mean-
while, several diffusion-based video outpainting methods,
such as M3DDM (Fan et al. 2023) and MOTIA (Wang
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et al. 2024a), have been proposed. They utilize the source
video as a condition and generate the canvas region through
step-by-step denoising, showing great performance. How-
ever, their results are limited in terms of resolution, such
as 256 × 256 (Fan et al. 2023) and 512 × 1024 (Wang
et al. 2024a), or content expansion ratio, for example, from
256 × 85 to 256 × 256 (3×) (Fan et al. 2023) and from
512 × 512 to 512 × 1024 (2×) (Wang et al. 2024a). This
raises an intriguing question: “Is it possible to outpaint a
video to higher resolution with a higher content expansion
ratio?”

This question drives us to evaluate the capability of ex-
isting methods in tackling this difficult task. However, we
find that they fall short due to limitations in GPU mem-
ory. To further explore their potential, we reduce the resolu-
tion of the source video through resizing and then resizing it
back after outpainting (see details in Section 4). The results
are depicted in Fig 1. We observe that both M3DDM (Fan
et al. 2023) and MOTIA (Wang et al. 2024a) produce low-
quality results, e.g., blurry content and temporal inconsis-
tencies. This motivates us to delve deeper into understand-
ing the reasons behind this. We speculate that there are two
possible factors contributing to this: (i) the reduced resolu-
tion after resizing negatively affects the performance, and
(ii) the content expansion ratio is too high to achieve satis-
factory results. We conduct experiments with respect to the
variations of these factors, see Fig 3. The results demon-
strate that both low resolution and a high content expansion
ratio significantly reduce generation quality. In other words,
achieving high-quality results requires performing outpaint-
ing in the original/high resolution with a low content ex-
pansion ratio. Based on the analysis above, we propose a
diffusion-based method called Infinite-Canvas for higher-
resolution video outpainting with extensive content gener-
ation. We identify that the GPU memory limitations arises
from the “single-shot” outpainting practice (Fan et al. 2023;
Wang et al. 2024a): directly taking the entire video as the in-
put. In contrast, our Infinite-Canvas is designed to distribute
the task across spatial windows. It kills two birds with one
stone. First, it enables us to outpaint any videos to higher
resolution with a high content expansion ratio, without be-
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Figure 1: Results of higher-resolution outpainting with a high content expansion ratio. The source video (the red box) is out-
painted from 512× 512 to 1152× 2048 (9×). Existing methods often suffer from blurry content and temporal inconsistencies
(yellow boxes). In comparison, our Infinite-Canvas method generates well-structured scenes with aesthetically pleasing results.

ing constrained by GPU memory. Second, it simplifies the
challenging task by breaking it down into smaller and eas-
ier sub-tasks: outpainting each window in the original/high
resolution with a low content expansion ratio. Specifically,
during the training phase, we randomly sample an anchor
window and a target window from the source video, mim-
icking the “source video” and “outpainting region” for infer-
ence respectively. It helps model learn how to flexibly out-
paint with different relative positions and overlaps between
the source video and outpainting region. During the infer-
ence phase, we outpaint a video by denoising windows that
covering the entire video. To accelerate the generation pro-
cess, we perform window outpainting in parallel on multiple
GPUs. After each step of denoising, we seamlessly merge
the windows using Gaussian weights (Bar-Tal et al. 2023) to
ensure a smooth transition between them. Due to the fact that
videos of any resolution can be covered by a certain number
of fixed size windows, while each window is limited within
the GPU memory range, our method could be applied to sit-
uations where the canvas size is very large (“infinite”).

Despite the advantages offered by the spatial window
strategy, we observe conflicts between the layout generated
within each window and the overall layout of the source
video (see Fig 4). This issue arises due to the fact that the
model input for each window is only a portion of the source
video. Consequently, while the outpainting results within
each window are reasonable, they fail to align with the over-
all layout, particularly when the overlap is low. To address
this challenge, our Infinite-Canvas method incorporates the
source video and its relative positional relation into the gen-
eration process of each window. This ensures that the gener-
ated layout harmonizes with the source video. Specifically,
we introduce a Layout Encoder (LE) module, which takes
the source video as input and provides overall layout infor-
mation to the model through cross-attention. Meanwhile, we
incorporate a Relative Region Embedding (RRE) into the

output of the LE module, which offers information about
the relative positional relation. The RRE is calculated based
on the offset of the source video to the target window (out-
painting region), as well as the size of them. The LE and
RRE guide each window to generate outpainting results that
conform to the global layout based on its relative position,
effectively improving the spatial-temporal consistency.

Coupling with the strategies of spatial window and layout
alignment, our Infinite-Canvas excels in large-scale video
outpainting. For example, it outpaints videos from 512×512
to 1152× 2048 (9×), while delivering high-quality and aes-
thetically pleasing results (Fig 2). When compared to ex-
isting methods, Infinite-Canvas produces better results by
maintaining spatial-temporal consistency (Fig 1). Infinite-
Canvas also achieves the best quantitative results across var-
ious resolution and scale setups. For example, it improves
FVD from 928.6 to 735.3 (+193.3) when outpainting from
512× 512 to 2048× 1152 (9×) on the DAVIS 2017 dataset.

Our main contributions are summarized as follow:

• We emphasize the importance of high resolution and a
low content expansion ratio for video outpainting.

• Based on the observation, we distribute the task across
spatial windows, which not only overcomes GPU mem-
ory limitations but also enhances outpainting quality.

• To ensure alignment between the generated layout and
the source video, we incorporate the source video and its
relative positional relation into the generation process.

• Our Infinite-Canvas demonstrates great outpainting capa-
bilities through both qualitative and quantitative results.

2 Related Work
Diffusion models (Ho, Jain, and Abbeel 2020; Song,
Meng, and Ermon 2020) are a class of generative models
that progressively convert noise into structured data through
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1152×2048 (9×)

1920×960 (4×)
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Figure 2: Results of Infinite-Canvas. The videos (from OpenAI’s Sora demo cases) within the red dotted boxes are largely
outpainted from 4× to 9×. Given a video of any size and resolution, Infinite-Canvas can generate outpainting results in higher
resolution with extensive content, while maintaining consistency of spatial layout, temporal changes, and overall aesthetics.

a learned denoising process. It has garnered significant atten-
tion in visual generation (Ramesh et al. 2022; Zhang, Rao,
and Agrawala 2023; Podell et al. 2023; Feng et al. 2024;
Li et al. 2024; Kong et al. 2024; Wang et al. 2024c; Sun
et al. 2022, 2024). By applying diffusion models in the la-
tent space, LDM (Rombach et al. 2022) has demonstrated
the ability to generate high-quality images by utilizing lim-
ited computational resources. Meanwhile, many works (Guo
et al. 2024; Ma et al. 2023a; Zhu et al. 2024b; Blattmann
et al. 2023; Ma et al. 2022; Ho et al. 2022) generate im-
pressive videos by inserting temporal layers into the model
structure. This has promoted the rapid development of video
generation in editing (Ceylan, Huang, and Mitra 2023; Liu
et al. 2024; Qi et al. 2023), controllable generation (Ma et al.
2024a; Xue et al. 2024; Ma et al. 2023b, 2024b), outpaint-
ing (Fan et al. 2023; Wang et al. 2024a), etc.

Video outpainting seeks to extend the spatial contents of
a video beyond its initial boundaries, allowing it to fill a
specific canvas region. Although image outpainting (Zhang
et al. 2024; Yu et al. 2024; Cheng et al. 2022; Wang
et al. 2024b; Zhu et al. 2024a) has been extensively stud-
ied, video outpainting (Dehan et al. 2022) still needs to be
fully researched. Recently, some diffusion-based approaches

have been introduced. M3DDM (Fan et al. 2023) presents
global frame-guided training with a coarse-to-fine inference
pipeline to tackle the artifact accumulation issue. Mean-
while, MOTIA (Wang et al. 2024a) proposes a test sample-
specific fine-tuning strategy to learn the patterns of each
sample. Despite their great results, they are limited in terms
of resolution such as 256× 256 and 512× 1024, or content
expansion ratio such as 2× and 3×. We makes the first at-
tempt to study video outpainting with high resolution, e.g.,
1152× 2048, and a high content expansion ratio, e.g., 9×.

3 Method
We present Infinite-Canvas, a diffusion-based method,
which enables higher-resolution video outpainting with ex-
tensive content generation. Our approach is built upon two
key designs. First, we employ spatial windows to divide the
outpainting task into smaller and easier sub-tasks. Second,
we introduce a layout encoder module as well as a relative
region embedding to align the generated spatial layout.

3.1 Outpainting by Spatial Windows
To address the GPU memory limitations, we distribute the
outpainting task across spatial windows. It allows us to out-
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(c) 256×256 → 576×1024 (~9×)

(b) 128×128 → 288×512 (~9×)

(a) 64× 64 → 144×256 (~9×) (d) 256×256 → 320×448 (~2×)

(e) 256×256 → 448×768 (~5×)

(f) 256×256 → 576×1024 (~9×)

Figure 3: Results of MOTIA with different resolution (a-c) and content expansion ratio (d-f) setups. Increasing source video
resolution improves the generation quality, while reducing content expansion ratio improves spatial-temporal consistency.
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Figure 4: Ablation of layout encoder (LE) & relative region embedding (RRE). Under different overlap (a), results within target
windows (b) and the final results (c) are presented. The orange dashed line represents the model input for target windows. While
the results appear reasonable within windows, they fail to align with the overall layout (see yellow boxes). By incorporating
RRE and LE, the model unifies window layout with that of the anchor window, improving spatial-temporal consistency.

paint any videos to higher resolution with a high content ex-
pansion ratio without being constrained by GPU memory.
Moreover, it simplifies the task by breaking it down into
smaller and easier sub-tasks: outpainting each window in its
original/high resolution with a low content expansion ratio.

Training phase. Fig 5 illustrates the training phase of
Infinite-Canvas. Given each training video sample, we ran-
domly crop an anchor window and a target window. They
serve as the “source video” and the “region to perform
outpainting” respectively, mimicking the source video and
the outpainting windows during inference, respectively. The
conventional training practice of the latent diffusion model
adds noise to the latent representation of the data (the tar-
get window) to build the model input and makes the model
predict the noise. Here, we concatenate it with conditions:
the latent representation of a masked target window and the
binary mask. They offer information of the original video
and its position. Since the channel of the mask and the latent
representations output by the VAE encoder are 1 and 4 re-
spectively, the final model input has 9 channels. We modify
the first convolution layer of the denoising UNet to adjust
to the channel changes, similar to previous work (Fan et al.
2023). However, instead of employing a fixed region for out-
painting (Fan et al. 2023; Wang et al. 2024a), we use a ran-

dom sample of the anchor window and the target window. It
helps the model learn to flexibly outpaint with different rel-
ative positions and overlaps between the source video and
the outpainting region, enabling the sliding window-based
inference phase described next. Note that the size of the an-
chor window, the target window, and their overlap are all
variables. See details in experiments.

Inference phase. Fig 6 illustrates the inference phase of
Infinite-Canvas. Given a source video to be outpainted, our
Infinite-Canvas first determines the number (denoted as N )
of spatial windows and their positions, which should cover
the source video and fill the target region to be outpainted
(find more details in experiments). During each denois-
ing step t, Infinite-Canvas performs outpainting within each
window k on noisy data xk

t , where k ∈ {1, ..., N}. Here,
the source video and the window correspond to the anchor
window and the target window of the training phase re-
spectively. The denoised outputs in the N windows, i.e.,
{xk

t−1}Nk=1, are then merged via Gaussion weights (Bar-Tal
et al. 2023) to get a smooth outcome xt−1. The process is
repeated until the final outpainting result x0 is obtained. Im-
portantly, the inference process of each window is indepen-
dent of the others, allowing us to perform outpainting within
each window in parallel on separate GPUs, thereby acceler-
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Figure 5: The training phase of Infinite-Canvas. An anchor window and a target window are randomly sampled, mimicking
the “source video” and “region to perform outpaint” for inference respectively. The anchor window is injected into the model
through a layout encoder, as well as a relative region embedding calculated by the positional relation between the anchor
window and the target window, helping the model align the generated layout of the target window with the anchor window.

Source video
Denoise in parallel

Merge

... ...

Beside a serene lake, a panda 
strums a guitar with skill and grace.

Layout
encoder

Text
encoder

GPU N-1

...

GPU 0
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Figure 6: The inference phase of Infinite-Canvas. The given source video is covered by N spatial windows. During each
denoising step t, outpainting is performed within each window in parallel on separate GPUs to accelerate inference. The
windows are then merged through Gaussian weights to get the outcome at step t− 1. Note that these windows may cover layer
upon layer, allowing Infinite-Canvas to outpaint any videos to a higher resolution without being limited by the GPU memory.

ating the inference. We analyze its efficiency in experiments.

3.2 Layout Alignment
Despite the advantages offered by the spatial window strat-
egy, we observe conflicts between the layout generated
within each window and the overall layout of the source
video, as shown in Fig 4. The outpainting results within each
window of the “baseline”, which only applies the spatial
window strategy, are reasonable. However, they do not align
with the global layout because each window is provided with
a view of only a part of the source video. To enable spa-
tial and temporal consistency, we introduce a layout encoder
and relative region embedding. They deliver the layout infor-
mation of the source video and its relative position relation
to each window respectively, effectively helping the model
generate more stable and consistent outpainting videos (see
the results of “+LE & RRE” method in Fig 4).

Layout Encoder (LE). Similar to the text encoder that in-
jects the text prompts into the model, we introduce LE to

incorporate layout information from the source video, see
Fig 5. Specifically, LE consists of a SAM encoder (Kir-
illov et al. 2023), a layout extraction module, and a Q-
former (Li et al. 2023). Instead of employing the CLIP visual
encoder (Radford et al. 2021) like many previous works (Ye
et al. 2023; Xue et al. 2024), we find SAM encoder (ViT-
B/16 structure) is more effective to extract visual features
by providing finer visual details (see comparisons in experi-
ments). Then, the layout features are extracted by the layout
extraction module, including a pseudo-3D convolution layer,
two temporal attention layers, and a temporal pooling layer.
Inspired by Li et al. 2023, we employ a Q-former (Querying
Transformer) to extract and refine visual representations of
the layout information by learnable query tokens. We train
the layout extraction module and the Q-former while fixing
the SAM encoder. The relative region embedding is added to
the output of the LE to provide a positional relation between
the anchor window and the target window, introduced next.
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Resolution Method FVD↓ LPIPS↓ AQ↑ IQ↑ PSNR↑ SSIM↑

1280× 720 (720P, ∼ 3.5×)

MOTIA (Wang et al. 2024a) 473.7 0.418 0.494 0.634 15.38 0.582
Dehan (Dehan et al. 2022) 736.0 0.604 0.435 0.542 13.95 0.605
M3DDM (Fan et al. 2023) 631.3 0.524 0.446 0.556 15.28 0.605
Infinite-Canvas (Ours) 440.0 0.390 0.509 0.658 15.38 0.606

1440× 810 (1.5K, ∼ 4.5×)

MOTIA (Wang et al. 2024a) 575.9 0.457 0.484 0.648 14.52 0.539
Dehan (Dehan et al. 2022) 857.2 0.650 0.415 0.543 13.38 0.553
M3DDM (Fan et al. 2023) 767.4 0.579 0.447 0.519 14.43 0.542
Infinite-Canvas (Ours) 486.1 0.440 0.505 0.650 14.90 0.559

2048× 1152 (2K, 9×)

MOTIA (Wang et al. 2024a) 928.6 0.587 0.419 0.629 12.45 0.524
Dehan (Dehan et al. 2022) 1302.1 0.707 0.394 0.607 11.40 0.501
M3DDM (Fan et al. 2023) 1181.4 0.691 0.411 0.473 12.43 0.530
Infinite-Canvas (Ours) 735.3 0.573 0.472 0.657 12.72 0.535

Table 1: Quantitative comparisons for higher resolution video outpainting with high content expansion ratios. The resolution of
the source video is 512× 512. MOTIA is noted by gray because it is based on test sample-specific fine-tuning.

method PSNR↑ SSIM↑ LPIPS↓ FVD↓
MOTIA (Wang et al. 2024a) 20.36 0.758 0.159 286.3
Dehan (He et al. 2022) 17.96 0.627 0.233 363.1
SDM (He et al. 2022) 20.02 0.708 0.216 334.6
M3DDM (Fan et al. 2023) 20.26 0.708 0.203 300.0
Infinite-Canvas (Ours) 20.80 0.726 0.160 242.8

Table 2: Quantitative comparisons for low resolution video
outpainting (to 256×256). MOTIA is noted by gray because
it is based on test sample-specific fine-tuning.

Relative Region Embedding (RRE). RRE provides the
positional relation between the anchor window and the target
window (see Fig 5). We denote the height, width, and center
point coordinates of the anchor window as Hanchor, Wanchor,
and (Xanchor, Yanchor) respectively. The target window is de-
fined in the same way. RRE employs sinusoidal position en-
coding (Zhang et al. 2024) to embed the size and relative
position relation between the anchor and target windows,
i.e., {Hanchor,Wanchor, Htarget,Wtarget, Hoffset,Woffset}, where
Hoffset = Ytarget−Yanchor,Woffset = Xtarget−Xanchor. The em-
beddings are then fed to a fully-connected (FC) layer. The
output of the FC layer is repeated to match the output of the
LE. We incorporate the LE and RRE using a cross-attention
layer inserted in each spatial-attention block of the model.

4 Experiments
4.1 Setup
Dataset. Fan et al. 2023 use a private dataset with ∼5M
video samples. Here, we employ a random subset (∼1M
video samples) of the public Panda-70M dataset (Chen et al.
2024) for training, improving reproducibility of our work.

Implementation details. Our implementation and model
initialization are based on the popular video generation
framework of AnimateDiff-V2 (Guo et al. 2024). Due to the
limitation of paper length, we leave more details about the
training recipe, the design of the anchor and target windows,

and the inference pipeline in the appendix and code.

Evaluation metrics. We first employ metrics of PSNR,
SSIM (Wang et al. 2004), LPIPS (Zhang et al. 2018), and
FVD (Unterthiner et al. 2018) by following Wang et al.
2024a. To evaluate high-resolution video generation, we
further utilize aesthetic quality (AQ) and imaging quality
(IQ) (Huang et al. 2024), assessing the layout/color harmony
and visual distortion (e.g., noise and blur) respectively.

Baselines. We compare our Infinite-Canvas with the fol-
lowing baseline methods. (1) Dehan et al. 2022 use the
approach of flow estimation and background prediction. (2)
M3DDM (Fan et al. 2023) employs global-frame features to
achieve global and long-range information transfer. 3) MO-
TIA (Wang et al. 2024a) trains a LoRA (Hu et al. 2021) to
learn patterns of test samples. We reproduce these baseline
methods using their official codes for high-resolution video
outpainting and directly cite their results in low-resolution.

4.2 Comparisons to Baseline Methods
Quantitative results. We compare methods in both high
and low-resolution settings. (1) High-resolution with large
content expansion ratios. Table 1 shows the results. Our
Infinite-Canvas consistently achieves the best performance
for all metrics and outpainting settings. Meanwhile, as the
resolution and content expansion ratio increase, the perfor-
mance improvement of many metrics becomes more sig-
nificant. For example, Infinite-Canvas improves FVD from
473.7 to 440.0 (+33.7) in 720P (∼3.5×), improves from
575.9 to 486.1 (+89.8) in 1.5K, and improves from 928.6
to 735.3 (+193.3) in 2K. Our Infinite-Canvas effectively
improves performance in the challenging task of high-
resolution outpainting with high content expansion ratios.
(2) Conventional settings in low-resolution. Following Fan
et al. 2023 and Wang et al. 2024a, we also compare results
in low-resolution, which outpaint videos to 256× 256 in the
horizontal direction using mask ratio of 0.25 (∼ 1.3×) and
0.66 (∼ 3×) and calculate the average performance. Table 2
shows the results. Our Infinite-Canvas still achieves excel-
lent performance under this conventional setting. Note that
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Figure 7: Qualitative results. The source video (the red dotted box) is outpainted from 512 × 512 to 2048 × 1152 (left) or
1440× 810 (right). Baseline methods suffer from blurry content, and spatial and temporal inconsistencies (yellow boxes).

w/o RRE & LE w/o RRE w/o LE Full model

Figure 8: Visual results of ablation study. Layout encoder (LE) and relative region embedding (RRE) effectively guide the
generation by providing information of the source video and its positional relation to the outpainting window respectively.

MOTIA (Wang et al. 2024a) fine-tunes the model for each
test sample which may not be efficient, while our Infinite-
Canvas method performs zero-shot inference after training.

Qualitative results. In Fig. 7, we showcase the qualitative
results. It is evident that M3DDM fails to generate mean-
ingful content in the majority of outpainting regions. On the
other hand, MOTIA faces difficulties in maintaining spatial
and temporal consistencies, which can be attributed to the
challenging task of handling high resolution and content ex-
pansion ratios. In contrast, our Infinite-Canvas successfully
generates well-structured visual content. It is because the de-
sign of spatial windows that outpaint within each window in
its original/high resolution with a low content expansion ra-
tio. Moreover, the layout alignment plays a crucial role in
guiding the overall layout of the outpainting results.

4.3 Ablation Study
We conduct the ablation study by outpainting the source
video from 512×512 to 1440×810, as shown in Table 3. We
find relative region embedding (RRE), layout encoder (LE),
and layout extraction module are all important to achieve
the best results. Compared to the popular CLIP encoder, we
observe that the SAM encoder helps the model to further im-
prove outpainting results. Visual results are shown in Fig 8.

5 Conclusion
Largely expanding an image/video is the core of the out-
painting task. In this study, we take the first step towards ex-

Method PSNR↑ SSIM↑ LPIPS↓ FVD ↓
w/o LE & RRE 13.44 0.527 0.464 774.1
w/o LE 14.02 0.542 0.450 512.2
w/o RRE 13.63 0.532 0.458 670.3
w/o layout extraction 13.77 0.535 0.456 550.2
w/ CLIP image encoder 14.56 0.553 0.441 506.8
Infinite-Canvas (ours) 14.90 0.559 0.440 486.1

Table 3: Ablation study.

Resolution 1 GPU 2 GPUs 4 GPUs 8 GPUs
1280× 720 25.2 14.8 7.8 4.3
1440× 810 58.3 33.5 18.2 11.5
2048× 1152 85.8 51.9 28.9 16.2

Table 4: Run time (minutes). Parallel inference for outpaint-
ing a video of 512× 512 resolution with 64 frames.

ploring higher-resolution video outpainting with high con-
tent expansion ratios. We achieve this by introducing the
spatial window strategy combined with the design of lay-
out alignment. Our method allows for large-scale video out-
painting, e.g., from 512× 512 to 1152× 2048 (9×).

Limitations. Infinite-Canvas may require long inference
time by performing the spatial window strategy. See Table2.
We recommend users to use multiple GPUs in parallel to
accelerate inference and reduce inference time consumption.
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