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ABSTRACT

Vision-language models (VLMs) demonstrate impressive capabilities in visual
question answering and image captioning, acting as a crucial link between visual
and language modalities. However, existing open-source VLMs rely heavily on
pretrained vision encoders, such as CLIP. Despite CLIP’s robustness across diverse
domains, it still exhibits significant image understanding errors. These errors
propagate to the VLM responses, resulting in sub-optimal performance. In our
work, we propose an efficient and robust method for updating vision encoders
within VLMs. Our approach selectively and locally updates the model parameters,
leading to substantial performance improvements on data where previous mistakes
occurred, while maintaining overall robustness. We demonstrate the effectiveness
of our method during offline and continual few-shot updates, simulating a model
editing regime for VLMs. While our method also scales efficiently and effectively
to adapting the language model (LLM) component of the VLM, we show that sepa-
rately updating the vision encoder can be a very efficient alternative. This approach
improves VLM performance with less than 10x the compute resources required for
updating the LLM. Our method is also supported by theoretical justifications on
the parameter selection strategy.

1 INTRODUCTION

Large Language Models (LLMs) have transformed the landscape of natural language understanding
and generation, revolutionizing a wide range of domains and applications. These advancements
bring us one step closer to creating useful and reliable automated assistants. Given that vision and
visual understanding play a crucial role in intelligent agents expected to operate in the real world,
Vision Language Models (VLMs) have emerged. These models either incorporate embeddings from
vision-only models or are trained end-to-end with both vision and language input. Remarkably,
VLMs consistently achieve impressive performance across question-answering and image-captioning
benchmarks. We refer to Ghosh et al. (2024) for a recent survey on VLMs. Approaches that rely
on pretrained vision encoders typically use variants of the CLIP model, which is kept frozen in the
vision-language binding process. CLIP (Radford et al., 2021), a widely deployed vision and text
transformer, stands out for its robustness to domain shifts and outstanding capabilities of recognizing
a large range of objects, scenes and actions. However, our evaluation reveals specific limitations in
CLIP’s performance. Specifically, when tested on an action recognition dataset featuring various
simple actions with moderate image quality, CLIP exhibits substandard performance and seems
easily confounded by the image content. Other works Liu et al. (2024b); Zhu et al. (2023); Chen
et al. (2023); Li et al. (2023a) reveal similar shortcomings of CLIP for particular use cases. These
findings underscore weaknesses in visual understanding of CLIP, specially on challenging and
previously unseen domains, and prompts the need for continuous model improvements to address
these imperfections.

In order to enable VLMs to adapt to new data or domains, we envision a realistic scenario where the
model can be updated efficiently with minimal computational resources while maintaining its strong
performance on other data and domains. In other words, we aim to correct mistakes effectively while
preserving existing knowledge.
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LLaVA: “The person is standing at a 
kitchen sink, washing dishes.”

LLaVA: “The person is cutting up a 
bell pepper on a cutting board.”

Q: What is the person doing?

Q: What is the person doing?

Figure 1: Samples from TSI dataset (bottom) compared to DALL-E generated images (top) with labels indicated
above. Right: LLaVA’s correct response to a DALL-E image versus a wrong response to a TSI image of the
same label (cutting food).

Given the composite nature of VLMs, which combine vision encoders and language models, the
crucial question arises: Which components are better suited for targeted updates? To address this, we
conducted separate fine-tuning experiments on the vision encoder and the Language Model (LLM)
using a dataset where the VLM exhibited numerous mistakes. The results were intriguing: separately
updating the vision encoder significantly improved the performance on the specific data of interest
achieving even better accuracy than updating the LLM. Updating the vision encoder is more efficient
as it contains far fewer parameters than the language model and can improve the entire family of
VLMs that are build upon it. Our findings suggest that separately updating the vision encoder provides
a more robust alternative to LLM updates when visual shift is the primary source of errors.

Despite the effectiveness and efficiency of vision encoder adaptation, continuous and frequent updates
can lead to performance deterioration. Therefore, we recognize the need for not only efficient updates,
but also the localization of parameter updates to the data at hand, in order to limit degradation
in unrelated areas of knowledge. This means that adapting the model should not change all the
parameters uniformly but rather localize and limit the update to a small subset of parameters. This
approach helps preserve as much of the previously embedded knowledge as possible. Parameter-
efficient fine-tuning methods often degrade unrelated knowledge similarly to full fine-tuning, as
shown by Zhang et al. (2024) and demonstrated in our experiments. For instance, LoRA’s (Hu et al.,
2021) low-rank updates still alter all model parameters, which can result in performance decline upon
multiple updates.

To achieve localized updates, we propose modifying only task-relevant parameters while keeping the
rest intact. This approach aligns with Language Model Editing Meng et al. (2022), though existing
methods are typically specific to factual updates and not easily applicable to vision-related updates.
We identify which parameters to update by masking those that preserve the gradient norm of the
model’s estimated update, selecting parameters with the greatest gradient norm. For MLP layers,
we follow SPU (Zhang et al., 2024) by selecting the top k parameters based on gradient norm. Our
method generalizes to attention heads, selecting specific heads by the same rule. We combine these
masks with low-rank updates (Hu et al., 2021), achieving both locality and efficiency.

We validate our method across various benchmarks, both by updating CLIP and by enhancing
VLM models based on CLIP. Our approach demonstrates superior performance and preserves the
model’s generic knowledge. While our focus lies on updating the vision encoder, our method is
generic and applicable to any transformer model whether for vision, language, or any other modality.
Our contribution are as follows: 1) We evaluated CLIP on out-of-distribution benchmarks and
observed shortcomings in certain scenarios. These limitations are then propagated to the VLMs that
leverage CLIP’s embeddings. 2) Our work demonstrates that updating the vision encoder separately,
specifically on data where CLIP fails, can significantly correct VLM mistakes on previously unseen
images from this data. 3) We propose a novel parameter-efficient tuning method LoRSU that not only
targets efficiency but also ensures the preservation of the model’s generic knowledge. We evaluate
our approach on offline adaptation as well as the challenging continual few-shot adaptation. We
compare adapting the vision encoder separately to adapting the LLM with our method compare to
LoRA (Hu et al., 2021) on the LLM. 4) We show state of the art results and robustness both when
adapting the vision encoder separately and when adapting the LLM. Adapting the vision encoder can
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be more than 10x faster than adapting the large language model. To the best of our knowledge, we
are the first to show that adapting the vision encoder separately can be a very efficient and effective
approach for improving the VQA performance on downstream tasks.

We validate our method across various benchmarks by updating CLIP and enhancing VLM models
based on CLIP. Our approach demonstrates superior performance while preserving the model’s
generic knowledge. Although our focus is on updating the vision encoder, our method is generic
and applicable to any transformer model, whether for vision, language, or other modalities. Our
contributions are as follows: 1) We evaluated CLIP on out-of-distribution benchmarks and identified
shortcomings in certain scenarios. These limitations are then propagated to the VLMs that lever-
age CLIP’s embeddings. 2) Our work demonstrates that updating the vision encoder separately,
specifically on data where CLIP fails, can significantly correct VLM mistakes on previously unseen
images from this data. This approach proves to be more robust against catastrophic forgetting of
the model’s generic knowledge compared to updating the language model. 3) We propose a novel
parameter-efficient tuning method, LoRSU, that not only targets efficiency but also ensures the
preservation of the model’s generic knowledge. We evaluate our approach on offline adaptation as
well as the challenging continual few-shot adaptation. We compare adapting the vision encoder
separately to adapting the LLM with our method and to LoRA (Hu et al., 2021) on the LLM. 4) We
show state-of-the-art results and robustness both when adapting the vision encoder separately and
when adapting the LLM. Adapting the vision encoder can be more than 10x faster than adapting the
large language model. To the best of our knowledge, we are the first to show that adapting the vision
encoder separately can be a very efficient and effective approach for improving VQA performance on
downstream tasks.

In the following we discuss closely related work in Section 2 and then showcase how CLIP weaknesses
are manifested in the VLM VQA responses in Section 3. We present our approach in Section 4 and
validate empirically our claims in Section 5. We conclude in Section 6.

2 RELATED WORK

Large language model and vision language models are strong foundation models but are still prone
to mistakes and their knowledge can get outdated, consequently it is important to develop efficient
updates that preserve unrelated knowledge. The main line of work in this area focuses on LLM
editing, where previous factual knowledge has changed and the model must be updated effectively on
those changes. Most notably Meng et al. (2022) and Ilharco et al. (2022) first analyze the models
to identify specific layers for editing, i.e., where factual knowledge are "stored" in the model, and
then apply algebra-based or meta-learning methods to adjust the weights of these localized layers.
To insure the locality of the updates these methods usually leverage additional sets of parameters
representing unrelated factual knowledge.

Another line of work focus on updating the model for a new task or dataset with parameter efficient
finetuning. Low Rank Updates (LoRA) (Hu et al., 2021) approximates the parameter updates by
a low rank matrix, achieving similar performance on the target task by optimizing only 1% of the
parameters compared to the full model. The original version of LoRA updated only attention layers.
Subsequently, several extensions have been proposed to enhance LoRA which modify all layers.
Various options are available including adapting the learning rate (Hayou et al., 2024) of the low
rank matrix, using an adaptive rank (Zhang et al., 2023) or decomposing the update matrix into
magnitude and direction Liu et al. (2024c). These approaches focus solely on efficiently updating the
network without considering the impact on model performance for other unrelated tasks or enforcing
any locality to specific layers or parameters. It is worth noting that LoRA drop (Zhou et al., 2024)
attempts to localize the updates to specific layers. It initially allows a few iterations of LoRA updates
and then assesses the impact of each low-rank update on individual layers and selectively updates
only those layers where the change exceeds a specified threshold. However, this selectivity remains
at the layer level and depends on the change introduced by a few full updates. In contrast, we treat
each layer differently based on its structure and assess the relevance of individual parameters to the
task at hand. We then holistically combine the importance and relevance of these parameters with
low-rank updates.

In the context of updating vision models for specific tasks, SPT (He et al., 2023) estimates a
mask of updates based on parameter sensitivity to the task. Depending on the number of relevant
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Clip-L-14

ImageNet TSI DALLE

76.6 13.2 90.9

Table 1: Clip-L-14 zero-shot Accuracy (%)
on ImageNet, TSI and DALLE datasets. TSI
accuracy is much lower than DALLE.

LLaVA 1.5
Method DALLE TSI
Zr-Shot 91.1 53.1

Adaptation of LLama-2+Pj 88.5 73.3
Adaptation of CLIP-L-14 91.1 75.5

Table 2: VQA Accuracy (%) comparing Zeroshot to
fine-tuning the LLM (with LoRA r = 8 ) and the MLP
projector as well as to fine-tuning CLIP-L-14 separately.

parameters, either low-rank or sparse updates are performed (using a threshold). With regards to
continual updating CLIP while maintaining its generalization performance and reducing forgetting,
SPU (Zhang et al., 2024) treats layers of the transformers differently, and inspired by knowledge
neuron theory, SPU localizes the updates to the first feedforward layer of each transformer block and
then only relevant parameters to the task at hand are updated. We further refer to De Lange et al.
(2021) for a survey on continual learning. In our approach, we select and identify relevant parameters
to the current data. However, we generalize the updates to all layers while preserving the specificity
of each layer. We choose masks that maintain the gradient norm of parameter updates and combine
them with LoRA on selected attention heads, striking a balance between adaptivity and stability.

3 DO WEAKNESSES IN CLIP PROPAGATE TO THE VLM?

VLMs are either trained end-to-end or as composites of separate vision and language models. In the
latter, the vision encoder typically remains frozen during VLM training. CLIP (Radford et al., 2021),
a vision transformer model trained by contrasting vision and language, is the primary vision encoder
used in this line of VLMs. It is employed in MiniGPT Zhu et al. (2023), MiniGPTv2 Chen et al. (2023),
BLIP2 (Li et al., 2023a), CogVLM (Wang et al., 2023), Kosmos-2 (Peng et al., 2023), LLaVA (Liu
et al., 2024b), and LLavaNext (Liu et al., 2024a). CLIP, trained on vast vision and language pairs,
shows unprecedented robustness to domain shifts, including adversarial scenarios (Mayilvahanan
et al., 2023). However, Mayilvahanan et al. (2023) noted that CLIP’s large pretraining dataset might
include examples from out-of-distribution benchmarks. Our objective is to examine how CLIP’s
possible failure modes affect VLM behavior, which we leverage to design an efficient method for
adapting VLMs with pretrained vision encoders.

For that purpose, we opt for a simple yet realistic evaluation. We considered the Toyota Smart Home
(TSI) dataset (Das et al., 2019), a dataset of daily living activities staged in a home-like environment.
This dataset cannot be publicly crawled from the web, it is only accessible upon request. This makes
it unlikely to have been used to train CLIP. Further, the data depict elderly people activities (age bias),
blurred faces (blurring effect) and is captured from a mounted camera with somewhat low resolution,
yet the actions are easily recognizable to the human eye. For more details, refer to the Appendix
and Experiments Section 5. Interestingly, when evaluating CLIP on images from the TSI dataset,
we observed only moderate performance and encountered numerous mistakes. Table 1 reports CLIP
accuracy on TSI dataset compared to ImageNet accuracy. Now, we examine the responses of a VLM
using CLIP’s vision encoder, namely LLaVA 1.5 (Liu et al., 2024b). Our test revealed similarly poor
performance as shown in Table 2. We refer to Figure 1 for an example response and to the Appendix
for more examples on TSI images. The main failure modes of LLaVA 1.5 on TSI are hallucination of
wrong activities or describing the background rather than the action.

Further to isolate whether this suboptimal performance is a result of CLIP’s limited knowledge of
the performed activities or its lack of robustness to the distribution shift present in the images, we
leveraged diffusion models, specifically DALL·E 2, to generate images of people performing the same
actions. After verifying the quality of these generated images, we tested CLIP’s predictions on them.
Remarkably, CLIP accurately recognized the actions on the synthetic images. Similarly, LLaVA also
provided very accurate descriptions of the generated images. Figure 1 show some generated images
compared to images from TSI (Das et al., 2019) of similar activities.

This case study shows how CLIP weaknesses on new domain propagate to the full VLM and are
manifested in the visual question answering performance. Next, we address the question of how to
efficiently update both the vision encoder and the corresponding VLM while maintaining the overall
robustness and generalization of both components.
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4 LOW-RANK ADAPTATION WITH STRUCTURED UPDATES

To address the challenge of efficiently fine-tuning large-scale visual encoders and transformer-based
models, including LLMs, without causing catastrophic forgetting (i.e., degradation in performance on
previously learned tasks), we propose a novel parameter-efficient fine-tuning method called Low-Rank
Adaptation with Structured Updates (LoRSU).

LoRSU updates specific parameters within each transformer block in a resource-efficient manner,
mitigating the risk of generic knowledge loss when fine-tuning for new tasks. Specifically, we
selectively update a subset of parameters from the first linear layer in the MLP block of each
transformer layer, as proposed in Zhang et al. (2024). While this approach reduces the fine-tuning
burden, it may limit model flexibility as the remaining parameters in the transformer block remain
fixed. To enhance flexibility, we further update the most informative attention heads based on the
gradient of the task-specific loss.

More specifically, let a dataset Dt = {xn,yn}Nt
n=1 for the current task t where xn is an image with text

description yn and L(θ;Dt) := Lt(θ) is the loss used for pretraining the transformer model and θ ∈
Rd is the full set of model’s parameters. The standard Multi-head Self-Attention Mechanism (Vaswani
et al., 2017), comprised of H Dh-dimensional heads, is defined as the concatenation of multiple
self-attention (SA) blocks:

q(i) = W (i)
q Z⊤,k(i) = W

(i)
k Z⊤,v(i) = W (i)

v Z⊤ ∈ RDh×N , (1)

A(i) = softmax(q(i)⊤k(i)/
√
Dh) ∈ RN×N , (2)

SAi(Z) = A(i)v(i)⊤ ∈ RN×Dh , i = 1, . . . ,H. (3)

where Z ∈ RN×D is the input matrix of N tokens of dimension D and W
(i)
q ,W

(i)
k , and W

(i)
k are

the query, key, and value matrices of learnable parameters for head i, respectively. The final MSA
function is defined as

MSA(Z) = Concat [SA1(Z), . . . , SAH(Z)]Wo ∈ RN×D, Wo ∈ RHDh×D, (4)

Since we care to update the parameters of the heads that cause the largest changes in Lt(θ), we
compute the gradient of the loss with respect to the parameters of each head and then we update
only those heads with the largest cumulative contribution to the loss change. Since the matrices
W

(i)
q ,W

(i)
k ,W

(i)
v are all the parameters of head i, we can define an importance score for each head

by adding the squared values of their corresponding gradients G
(i)
q = ∇

W
(i)
q

L, G(i)
k = ∇

W
(i)
q

L,

G
(i)
v = ∇

W
(i)
v

L, and G
(i)
o = ∇

W̃
(i)
o

L, i.e.

si =
∑
m,l

(
(G(i)

q [m, l])2 + (G
(i)
k [m, l])2 + (G(i)

v [m, l])2 + (G(i)
o [m, l])2

)
. (5)

We provide a theoretical justification of equation 5 in the next section. We update only the top-k
heads, based on their importance scores {s1, . . . , sH}, I ⊂ {1, . . . ,H}, to be updated on the current
task. Nevertheless, the number of parameters remain high due to the large weight matrices. Therefore,
we parametrize the original weights using LoRA Hu et al. (2021) to further reduce the computational
burden. The matrices W (i)

q ,W
(i)
k ,W

(i)
v , i ∈ I are now defined as

W (i)′

q = W (i)
q +A(i)

q B(i)
q (6)

W
(i)′

k = W
(i)
k +A

(i)
k B

(i)
k (7)

W (i)′

v = W (i)
v +A(i)

v B(i)
v . (8)

Finally, to ensure that we only update W (i)
q ,W

(i)
k ,W

(i)
v ,∀i ∈ I we use a binary mask on the gradient

vector with respect to all parameters of all attention heads. We keep the projection matrix Wo frozen
throughout optimization.

Regarding the first linear layer in the MLP module, Wfc1 ∈ Rd×D, we mask the gradients of Wfc1
so only the most important parameters for the current task to be updated, i.e. we use the following
biased gradient update.

∇̂Wfc1Lt = Mfc1 ⊙∇Wfc1Lt, (9)
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where Mfc1 ∈ {0, 1}d×D is a zero-one mask that is built by choosing a proportion of the largest
squared values of ∇Wfc1Lt in a similar manner as in Zhang et al. (2024) and ⊙ is the Hadamard
product.

4.1 THEORETICAL JUSTIFICATION

The importance scores in in equation 5 can be derived from the following constrained (binary)
optimization problem

p∗ = argmax
p∈{0,1}d

∥p⊙∇WL(θ0)∥2

∥∇WL(θ0)∥2
, s.t.

G⋃
ℓ=1

Iℓ ⊂ {1, 2, . . . , d}, where Ii ∩ Ij = ∅, ∀i ̸= j,

S =

G∑
ℓ=1

sℓ, sℓ ≤ |Iℓ| ∀ℓ, ∥p∥0 ≤ S, (10)

Here θ0 is the pretrained vector of parameters before we use the Dt for fine-tuning. The mask p∗ is
chosen so that the gradient norm of the masked gradients is as large as possible under the sparsity
constraints.
Definition 4.1. The operator TOP-S : Rd → Rd, for 1 ≤ S ≤ d is defined as

(TOP-S(x))π(i) :=
{

xπ(i), i ≤ S
0, otherwise,

where π is a permutation of {1, 2, . . . , d} such that |xπ(i)| ≥ |xπ(i+1)|, for i = 1, . . . , d− 1, i.e. the
TOP-S operator keeps only the S largest elements of x in magnitude and truncates the rest to zero.
Lemma 4.2. For any x ∈ Rd − {0}, 1 ≤ S ≤ d, the optimal mask

p∗ = argmax
p∈{0,1}d

∥p⊙ x∥2

∥x∥2
, s.t. ∥p∥0 ≤ S,

has zeros everywhere except the S largest elements of x in magnitude.

Proof. Rewriting the optimization problem as

max
p∈{0,1}d

d∑
i=1

pix
2
i , s.t.

d∑
i=1

pi ≤ S,

we notice that this a trivial binary knapsack problem with maximum weight capacity S and weights
equal to one. Hence, the maximum is attained when we pick the top S maximal x2

i elements.

Remark 4.3.

It holds that TOP-S(x) = p∗ ⊙ x.
Corollary 4.4. The optimal mask p∗ in equation 10 has zeros everywhere except for the indices
i ∈ {j : ∃ℓ ∈ {1, . . . , G}, such that j ∈ {πℓ(1), . . . , πℓ(sℓ)}}, where πℓ is the same permutation as
in Definition 4.1 for the set of indices Iℓ.

Proof. The result follows from the mutual exclusiveness of Iℓ in the constraints of equation 10 and
Lemma 4.2.

5 EXPERIMENTS

This section addresses the following questions: 1) How can we efficiently update the vision encoder
while preserving its generic knowledge? 2) Does updating the vision encoder separately and then
reintegrating it into the corresponding VLM enhance downstream VQA performance? 3) How does
updating the vision encoder separately compare to adapting the large language model in terms of
VQA performance? 4) How does our method, LoRSU, compare to other parameter update methods
in image classification and VQA tasks under different continual, few-shot, and offline settings?
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5.1 SETTING

Classification datasets. TSI: We process the TSI Das et al. (2019) dataset as an image classification
dataset where the target is to recognize the activity depicted in each image. We extract frames
from videos and create a train set of approximately 10K images and a test set of approximately
5k images. We consider 22 represented classes of activities. DALLE: We consider the same 22
classes of activities represented in TSI and query DALL·E 2 to generate representative images of
these activities. We extract 30 images per action totaling 660, all of them are designated for testing.
ImgNet: We consider ImageNet (Deng et al., 2009) as a control set to measure how much CLIP
models’ performance deteriorates after being tuned on other datasets. GTS (Stallkamp et al., 2012)
the German Traffic Sign dataset. Zhang et al. (2024) considered GTS as out of distribution for CLIP
pretraining. AIR (Maji et al., 2013), a fine-grained aircraft classification dataset. For both GTS and
AIR, CLIP zero shot performance is significantly lower than the performance of a linear classifier
trained on ResNet50 features Radford et al. (2021). (CAn) (Wang et al., 2024) a recent dataset
to examine the robustness of pretrained image encoders, it contains animal images with realistic
spurious features such as unexpected backgrounds.
Visual Question Answering datasets. To evaluate how the examined VLM performs before and
after the vision encoder update, we consider six visual question answering datasets: HM Kiela
et al. (2020) hateful memes dataset designed to detect multimodal hateful memes. The rest of the
datasets were created by converting multi-class classification datasets into VQA datasets with multiple
choice responses and measuring the probability of the correct response; a common practice in VQA
evaluation. The converted VQA datasets are based on images of DALLE, TSI, GTS, AIR, and CAn.
The last four datasets (and their corresponding VQA versions) are used for fine-tuning either the
visual encoder or the LLM.
Training protocols. Offline: We first consider an offline fine-tuning setting as a sanity check where
the vision encoder is updated offline on the full training set of each of the six datasets. The goal is
to asses the performance of CLIP before and after the update by different methods and the VLM
responses when the updated vision backbone is plugged in. Continual & few-shot: We design this
setting to imitate a realistic scenario where the model is updated on images where it makes mistakes
with few-shot examples, and the process is to be repeated as long mistakes are shown. We follow
the common practice in continual few-shot learning Panos et al. (2023) to construct the sequences.
We divide the dataset into 5 sets of disjoint classes and consider 5 shot setting where only 5 training
examples of each action is provided. Accuracy is measured on the full test set. In the Appendix
we consider 50 shots and 20 shots settings. Metrics: We consider the zero shot accuracy of image
classification and VQA as the benchmark baseline and we report the change in that accuracy on the
test/control sets of the target dataset where adaptation is performed at the end of a training sequence;
in that way, we measure the ability of the model to accumulate knowledge. We name this metric as
Target Improvement accuracy. We also calculate the average change on all other test/control sets
when updating on a specific dataset to estimate average forgetting of generic knowledge or possible
positive backward transfer (De Lange et al., 2021); we call this metric as Average Control Change
accuracy where ‘control’ refers to the control datasets we use to calculate the average accuracy
change. Note that we do not consider any replay buffer (Chaudhry et al., 2019) of samples from
classes of previous sessions as is common in previous works.

Implementation details. We refer to the Appendix B for implementation details.

Models. For our experiments, we consider the popular Vision Language Model LLaVA (1.5) (Liu
et al., 2024b) that leverages a frozen CLIP image encoder. Specifically, LLaVA utilizes a frozen
OpenAI-CLIP-L-14 Radford et al. (2021) with a LLM (Vicuna-7b (Chiang et al., 2023)). The two
modules are connected through a two-layer MLP projector that aligns vision and text features. The
LLM and the MLP projector are optimized during the visual instruction tuning process while CLIP
remains frozen. LLaVA concatenates adjacent tokens from CLIP-L-14 and processes it with an MLP
projector as input to LLama-2 (7B-chat) (Touvron et al., 2023); the MLP projector and the language
model are optimized while the vision encoder remains frozen.

Methods. When fine-tuning CLIP, we fine-tune both visual and text encoders following (Goyal et al.,
2023) with the same contrastive image language loss used in the pretraining of CLIP. We consider
the following methods for fine-tuning. F-FT: Full fine-tuning of all model parameters. This can
provide the best accuracy, but is prone to forgetting and overfitting. F-EWC: This is a variant of F-FT
which is based on the popular Continual Learning method EWC (Kirkpatrick et al., 2017) where an
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Table 3: Target Improvement (↑) and Average Control Change (↑) (in parentheses) based on classification
accuracy for all baselines that fine-tune the CLIP-L-14. Target-D denotes the dataset that we fine-tune the
visual encoder on.

FT Method

Target-D Setting LN F-FT F-EWC LoRA SPU LoRSU

TSI CL-5 17.7(−0.1) 27.4(−1.8) 18.6(−3.5) 20.2(−4.8) 19.6(−0.2) 28.7(0.6)
Offline 61.2(−9.7) 67.7(−2.6) − 65.3(−5.4) 62.1(−2.0) 66.7(−0.9)

GTS CL-5 12.2(−0.2) 11.1(−3.1) 14.0(−2.8) 8.7(−6.1) 17.1(−0.4) 21.7(0.1)
Offline 45.9(−49.9) 46.4(−4.6) − 47.1(−15.9) 46.5(−0.1) 46.8(−0.2)

AIR CL-5 4.9(−0.5) 0.6(−0.4) 3.8(−1.7) 1.7(−0.4) 6.6(0.1) 7.7(0.2)
Offline 24.5(−4.4) 41.7(−1.5) − 42.0(−2.0) 32.2(−0.2) 32.9(−0.1)

CAn CL-5 −1.3(−0.4) −19.4(−5.2) −14.6(−4.2) −19.6(−11.2) −3.3(−0.1) −4.7(−0.6)
Offline 21.3(−2.4) 27.2(−1.9) − 29.8(−4.4) 21.8(0.1) 29.3(−0.5)

Average CL-5 8.4(−0.3) 4.9(−2.6) 5.5(−3.0) 2.8(−5.6) 10.0(−0.2) 13.3(0.1)
Offline 38.2(−16.6) 45.8(−2.7) − 46.1(−6.9) 40.6(−0.5) 43.9(−0.5)

L2 regularization is added to penalize changes on parameters deemed important for previous tasks.
LN: Optimization of the layer norm parameters of the transformer, an adaptation of Shysheya et al.
(2022). This approach modifies a very small fraction of parameters and has been shown to be a robust
approach for few-shot updates (Panos et al., 2023). LoRA: we consider Low rank updates (Hu et al.,
2021) applied to all transformer layers. SPU: Selective Parameters Updates Zhang et al. (2024) is a
recent method proposed to continually update CLIP with minimal forgetting and generic knowledge
loss. LoRSU: This is our method described in section 4. We always report the zero-shot performance
of the model (without training), we refer to this as Zr-shot. Finally, we add the suffixes -V or -L to a
method’s name for denoting the fine-tuning of the vision encoder or the LLM, respectively.

5.2 RESULTS

Image Classification Results. First we evaluate the image classification accuracy based on CLIP
adapted backbones with the different methods, results reported in Table 3 in form of Target Improve-
ment on the target dataset and Average Control Change on Imagenet and DALLE datasets. When
offline updates are performed, full fine-tunning and LoRA succeeds in improving the performance
on the target data set, however both F-Ft and LoRA incur considerable forgetting and deterioration
on other datasets accuracy even when one session of offline updates is conducted. SPU and LoRSU
succeed in improving the performance on the target dataset while having minimal forgetting on
generic model knowledge. LoRSU on overage achieves best target dataset performance with min-
imal forgetting compared to all other method. For example on GTS, LoRSU improves the target
accuracy by 46.8 compared to 47.1 by LoRA, however the performance on generic knowledge by
LoRA dropped by 15.9 compared to a negligible forgetting of 0.2 by LoRSU. Layer norm updates
(LN) achieves he least improvement on the target dataset compared to other methods except EWC.
With EWC, the performance on both current and previous datasets, indicating difficulties on the
optimization of a large model with such strong regularization penalties. Regarding the continual
few-shot updates, we see that LoRSU achieves the best results on the target dataset by a margin of at
least 3% to the second best method while not only having no forgetting at all but improves accuracy
on the control datasets on average. Our method LoRSU improves the classification accuracy on the
target dataset with a minimal deterioration on other datasets performances (< 1%) on both offline
and continual few shot updates, with no replay of any samples from previous or other tasks. This is a
results of localizing the updates to only a small set of parameters that are relevant to the data at hand,
while keeping the rest of the parameters intact.

VQA performance after offline and continual few-shot updates of CLIP. After updating CLIP
model on image classification tasks, we take the updated vision encoder and plug it back in LLaVA
model, i.e. simply replace the frozen vision encoder of LLaVA with the one the we have separately
updated. We evaluate the VQA performance on the target dataset as well as other datasets and report
the Average Improvement (on the target dataset) and Average Control Change on other datasets
in Table 3 for both continual few-shot and offline settings. The first observation is that successful
improvements on the classification performance and reflected in VQA performance of LLaVA in spite
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Table 4: Target Improvement (↑) and Average Control Change (↑) (in parentheses) based on VQA accuracy
for all baselines that fine-tune the CLIP-L-14. Target-D denotes the dataset used for fine-tuning, F-EWC only
applied to continual setting.

FT Method

Target-D Setting LN F-FT F-EWC LoRA SPU LoRSU

TSI CL-5 0.4(−0.6) 7.8(−3.0) 1.5(−4.6) 2.3(−4.9) −0.6(−0.3) 5.1(0.2)
Offline 18.0(−4.0) 25.7(−2.7) − 23.6(−3.6) 17.9(−0.5) 22.4(−0.8)

GTS CL-5 2.8(−0.1) 1.7(−1.9) −0.2(−3.7) 1.4(−3.3) 4.7(0.2) 5.9(0.1)
Offline 11.4(−9.3) 14.9(−3.8) − 15.1(−3.5) 14.9(−0.4) 15.5(−0.4)

AIR CL-5 0.1(−0.7) 0.6(−2.1) −0.1(−2.6) 2.4(−2.0) 3.6(0.1) 4.4(−0.0)
Offline 0.0(−1.7) 3.4(−0.8) − 7.4(−1.7) 9.4(−0.3) 10.0(−0.1)

CAn CL-5 −1.3(−0.8) −7.0(−2.9) −8.1(−5.8) −10.2(−4.3) −2.4(−0.2) −1.7(−0.3)
Offline −0.2(−2.6) 4.0(−1.8) − 1.4(−2.9) 1.5(−0.2) 2.3(−0.3)

Average CL-5 0.5(−0.6) 0.8(−2.5) −1.7(−4.2) −1.0(−3.6) 1.3(−0.1) 3.4(0.0)
Offline 7.3(−4.4) 12.0(−2.3) − 11.9(−2.9) 10.9(−0.4) 12.6(−0.4)

Table 5: LLM vs. V. Encoder FT: We compare performance between the fine-tuned vision encoder and the
LLM. We report the Target Improvement (↑) and Average Control Change (↑) (in parentheses) based on VQA
accuracy. ‘V’ and ‘L’ indicates whether a parameter-efficient fine-tuning method adapts the vision encoder or
the LLM, respectively.‘+’ denotes the fine tuning of the MLP projector along with the fine-tuning of LLM.

FT Method

Target-D Setting LoRA-L LoRSU-L LoRA-L+ LoRSU-L+ LoRSU-V

TSI CL-5 5.3(0.5) 1.2(0.5) 15.4(−0.9) 8.8(0.1) 5.1(0.2)
Offline 14.4(0.1) 8.5(0.5) 20.2(−2.6) 25.2(−4.4) 22.4(−0.8)

GTS CL-5 −4.5(−0.5) −0.3(0.1) −2.6(−2.2) 2.7(−0.3) 5.9(0.1)
Offline −5.0(−0.8) −1.3(−0.2) −10.6(−4.8) 0.0(−4.8) 15.5(−0.4)

AIR CL-5 −1.1(−0.0) −0.3(0.7) 9.3(−0.5) 13.7(−0.1) 4.4(−0.0)
Offline 4.6(−0.5) −0.5(0.0) 11.6(−2.6) 15.2(−0.3) 10.0(−0.1)

CAn CL-5 −2.2(−0.6) −0.4(−0.2) 0.5(−1.1) 0.9(−1.2) −1.7(−0.3)
Offline −3.6(−0.6) −1.2(0.2) 1.9(−1.6) 0.6(−1.0) 2.3(−0.3)

Average CL-5 −0.6(−0.2) 0.0(0.3) 5.7(−1.2) 6.5(−0.3) 3.4(0.0)
Offline 12.3(−0.4) 12.3(−0.4) 12.3(−0.4) 12.3(−0.4) 12.6(−0.4)

of the separate update of the vision encoder with CLIP contrastive loss. Similar trend of conclusions
can be made on the relevant performance of different methods. F-FT, LoRA, SPU and LoRSU.
In spite of being low rank update, LoRA incurs higher forgetting and deterioration on other tasks
performance than full fine-tuning (F-FT). LoRSU and SPU achieve stable and local updates with
minimal deterioration on other tasks ( < 1%), notably LoRSU achieves higher improvements than
SPU on the target dataset an evidence of the flexibility brought by allowing structural updates on
different layers. With regard to few shot updates, the improvements on the target dataset is less with
all methods deteriorating the performance on the target datasets for the CAn dataset, due to the very
challenging nature of updates with only 5 examples. However, LoRSU is the least affected and the
method with the largest magnitude of improvements on all target datasets. We can conclude that
LoRSU applied to the vision encoder separately improves the VQA performance of LLaVA the most
with a minimal deterioration on other tasks.

How does updating the vision encoder separately compares to update the LLM on VQA tasks
Here we fine-tune the LLM model of LLaVA using the standard perplexity loss on the VQA datasets
and consider updating both the LLM (-L) and the non-linear projection (-L+) on both offline and
continual few-shot updates (with no replay). We compare LoRSU with LoRA which is the standard
method for updating the LLM and it requires reasonable compute resources. Updating the LLM
alone without updating the projection layer leads to different results on different datasets, for some
datasets it results in performance improvements while on other results on significant performance
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deterioration. Updating the LLM and the projection layer (denoted by L+), results on significant
improvements on TSI and AIR datasets for both LoRA-L and LoRSU-L. LoRSU-L+ achieves the
best performance on the target dataset with comparable slight deterioration on the other datasets.
This indicates that LoRSU is not specific to the vision encoder and can be applied to any transformer
model, either LLM or VIT. Now, to answer the main question, LoRSU applied to the vision encoder
a steady and significant improvements on all datasets for both offline and continual few-shot updates.
On CAn few-shot updates, we do not see any improvement or deterioration on the VQA performance;
we assume this might be due to the in-distribution nature of the CAn animal images and their textual
information. Notably, updating the vision encoder separately incurs the least deterioration on VQA
performance of other tasks on both offline and continual few-shot updates. We can state that LoRSU
is an effective parameter efficient tuning method for both the LLM and the vision encoder, and that
stable updates with minimal performance deterioration on generic knowledge can be achieved when
LoRSU is applied to the vision encoder separately.

What is the computation advantage of updating the vision encoder separately with LoRSU? Fig-
ure 2 reports the compute cost in terms of TFlops (teraflops per second) incurred by updating the LLM
and LLM with the MLP projector compared to updating the vision encoder separately with LoRSU.

LoRA-L+ LoRSU-L+ LoRSU-V
0

20

40

60

80

76.4 78.6

5.5
9.0 9.1

0.36

Min/Epoch

TFlops

0

20

40

60

80

28.4

21.6
16.5

65.0

75.6

91.1

Params (M)

GTS Acc (%)

Figure 2: TFlops, training time (average minutes per epoch ) and
performance comparison between the fine-tuned LLM and the fine-
tuned visual encoder using our method LoRSU (LoRSU-V) for the
offline setting on GTS dataset. We report results based on a single
NVidia A100 GPU.

The figure also reports the average
time needed for one epoch of train-
ing in minutes, the percentage of up-
dated parameters, and the VQA ac-
curacy on GTS dataset. LoRSU and
LoRA on the LLM and projector re-
quire comparable computation cost.
LoRSU-v needs 0.36 TFlops com-
pared to 9.0 TFlops by LoRA-L+ and
9.1 TFlops by LoRSU-L+. LoRSU-v
takes only 5.5 minutes per epoch com-
pared to 76.4 and 78.6 by LoRA-L+
and LoRSU-L+ respectively. LoRSU
is an efficient and effective method,
and when applied to the vision en-
coder separately it achieves a signifi-
cant and stable performance improve-
ment on VQA tasks with less than 10x
compute and training time! compared
to updating the LLM for VQA tasks.

6 CONCLUSION

In this work, we investigated the limitations of CLIP on out-of-distribution and fine-grained bench-
marks and noted how these weaknesses are inherited by the VLMs that utilize CLIP’s embeddings.
To address this, we propose a novel approach: updating the vision encoder separately, specifically on
data where CLIP fails. Remarkably, this strategy significantly corrects VLM mistakes on previously
unseen images from the same data. We further introduce a parameter-efficient tuning method, LoRSU,
that not only targets efficiency but also ensures the preservation of the model’s generic knowledge
through localized and structured updates. Our method, LoRSU, can be successfully applied to both
the LLM and the vision encoder. In our experiments, LoRSU is the only method to systematically
improve the classification performance of CLIP as well as the VLM performance on VQA tasks, with
the least deterioration in performance on other tasks, even in the challenging but realistic continual
few-shot setting with no replay of previous tasks’ data. Our approach hence strikes a strong balance
between efficiency, effectiveness, and robustness, achieving new state-of-the-art results. Due to
limitations in compute, we focus on CLIP and LLaVA. We plan to scale our work to other VLMs
and vision encoders, as we believe our conclusion scales well since our method is generic to any
transformer model.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Deatailed accuracues we report here the detailed results of other experimental setting such as
classification and VQA accuracies for 5/20/50 shots and offline settings. Classification accuracies for
each of the four datasets used for fine-tuning can be found in Tables 6, 7, 8, and 9. The corresponding
VQA accuracies can be found in Tables 10, 11, 12, and 13. VQA accuracies for the comparison
between fine-tuned LLM and fine-tuned visual encoder are in Tables 14, 15, 16, and 17. These
accuracies are used to build Tables 3, 4, and 5 in the main paper.

Rank ablation We investigate how the choice of rank affects the classification accuracy in Tables 21
and 22.

A.2 PROMPTS USED TO GENERATE IMAGES FROM DALL·E 2

We generated images from DALL·E 2 using OpenAI python package and we used the prompt “A
person {a}” where a ∈ { using a white coffee machine, eating, cutting bread, stirring the pot, holding
a glass, watching TV, holding a bottle, walking, making tea, cutting food, holding a cup, using a
laptop, lying down, holding a can, person holding a black kettle, reading a book, cleaning up, sitting
down, using a tablet, boiling water in a black kettle, using a cordless phone, washing dishes}.
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Table 6: Classification accuracy for CLIP-L-14 model for various fine-tuning methods. The model is
fine-tuned on each session (5 in total) of TSI dataset using 5/10/50 shots per session. Finally, we
consider the offline setting too.

FT Method
Setting Dataset Zr-Shot LN F-FT F-EWC LoRA SPU LoRSU

CL-5 shots
ImgNet 76.6 76.3 73.9 72.1 69.7 76.7 76.7
DALLE 90.9 90.9 90.0 88.5 88.3 90.3 92.1

TSI 13.2 30.9 40.6 31.8 33.4 32.8 41.9

CL-20 shots
ImgNet 76.6 75.0 74.2 75.8 72.1 76.5 76.5
DALLE 90.9 92.1 89.1 89.4 88.2 91.1 92.3

TSI 13.2 42.8 56.3 49.1 52.6 47.6 49.7

CL-50 shots
ImgNet 76.6 72.2 73.0 74.3 69.3 76.4 76.4
DALLE 90.9 87.3 88.5 89.4 77.3 91.7 92.3

TSI 13.2 43.2 31.2 54.0 54.5 52.8 58.0

Offline
ImgNet 76.6 65.8 73.9 − 72.2 76.3 74.6
DALLE 90.9 82.3 88.3 − 84.4 87.3 91.1

TSI 13.2 74.4 80.9 − 78.5 75.3 79.9

Test Dataset (Top-1 Acc %)
Pretraining Dataset Blur_bg Blur_obj Color Rand_bg Seg_img
ViT-B-16 ( ImageNet) 88.4 90.8 66.5 17.2 49.0
ViT-B-16 (XImageNet-12) 71.51 70.21 74.14 38.01 78.7

CLIP-ViT-B-16 (DATACOMP) 98.9 97.5 98.6 42.4 95.4

CLIP-ViT-L-14 (OpenAI) 98.9 98.2 98.3 52.5 95.7

Table 18: Performance on XImageNet-12 benchmark with ViT-B and ViT-L considering
different pretraining settings. CLIP pretraining with DATACOMP is quite robust to various
shifts.

B IMPLEMENTATION DETAILS

• We use a single A100 GPU for the experiments.

• We use Adam Kingma (2014) as an optimizer for the fine tuning of CLIP-L-14 and
AdamW Loshchilov (2017) for the fine-tuning of LLaVA’s LLM. We also use a learn-
ing rate scheduler of Cosine Annealing with Warmup for all methods.

• We use batch size 8 for the few shot experiments and batch size 64 for the offline ones.

• We run all experiments using 10 epochs.

• For Lora, we use rank r = 64 for all experiments.

• For SPU, we use sparsity=15% for all experiments.

• For LoRSU we use sparsity=10%, rank=64, and we pick the top-2 attention heads for all
experiments.

• For LoRSU and SPU, the binary mask for the first MLP layer is constructed by using either
800 data points to compute gradients in the offline setting, or all available data points from
the current task’s dataset in the CL-few shot setting.

• For all VQA datasets, we measure performance based on accuracy of the predicted answers
of LLaVA.

• We converted DALLE, TSI, GTS, AIR, and CAn as a multiple choice VQA problem where
each question has five choices and the VLM is asked to choose the right one.
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Table 7: Classification accuracy for CLIP-L-14 model for various fine-tuning methods. The model is
fine-tuned on each session (5 in total) of GTS dataset using 5/10/50 shots per session. Finally, we
consider the offline setting too.

FT Method
Setting Dataset Zr-Shot LN F-FT F-EWC LoRA SPU LoRSU

CL-5 shots
ImgNet 76.6 76.2 71.6 73.1 68.3 76.6 76.7
DALLE 90.9 90.9 89.8 88.9 87.1 90.2 91.1

GTS 52.4 64.6 63.5 66.4 61.1 69.5 74.1

CL-20 shots
ImgNet 76.6 74.6 64.8 68.5 60.1 76.6 76.6
DALLE 90.9 92.1 87.7 88.1 83.8 91.2 91.5

GTS 52.4 71.5 59.9 68.8 67.3 80.4 74.7

CL-50 shots
ImgNet 76.6 69.1 71.1 62.6 58.7 76.5 76.5
DALLE 90.9 88.5 89.4 87.9 82.6 91.2 91.4

GTS 52.4 74.7 66.4 68.9 66.2 81.6 83.2

Offline
ImgNet 76.6 23.9 70.0 − 54.8 75.9 75.6
DALLE 90.9 43.9 88.2 − 80.9 91.4 91.5

GTS 52.4 98.3 98.8 − 99.5 98.9 99.2

Table 8: Classofication accuracy for CLIP-L-14 model for various fine-tuning methods. The model is
fine-tuned on each session (5 in total) of AIR dataset using 5/10/50 shots per session. Finally, we
consider the offline setting too.

FT Method
Setting Dataset Zr-Shot LN F-FT F-EWC LoRA SPU LoRSU

CL-5 shots
ImgNet 76.6 76.0 75.5 74.8 74.9 76.8 76.8
DALLE 90.9 90.5 91.2 89.3 91.7 90.9 91.1

AIR 33.4 38.3 34.0 37.2 35.1 40.0 41.1

CL-20 shots
ImgNet 76.6 73.9 75.8 72.7 70.8 76.9 76.6
DALLE 90.9 90.2 90.8 89.0 88.3 90.6 92.0

AIR 33.4 38.5 36.5 38.5 35.6 41.8 43.0

CL-50 shots
ImgNet 76.6 70.3 74.9 74.2 65.6 76.4 76.3
DALLE 90.9 88.9 89.7 89.1 88.3 89.5 90.6

AIR 33.4 40.4 39.2 40.6 36.5 43.3 44.2

Offline
ImgNet 76.6 70.2 75.5 − 74.5 76.2 76.0
DALLE 90.9 88.5 88.9 − 88.9 90.8 91.2

AIR 33.4 57.9 75.1 − 75.4 65.6 66.3
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Table 9: Classification accuracy for CLIP-L-14 model for various fine-tuning methods. The model is
fine-tuned on each session (5 in total) of CAn dataset using extbf5/10/50 shots per session. Finally,
we consider the offline setting too.

FT Method
Setting Dataset Zr-Shot LN F-FT F-EWC LoRA SPU LoRSU

CL-5 shots
ImgNet 76.6 75.8 67.3 69.7 60.1 76.3 75.9
DALLE 90.9 90.9 89.8 89.4 85.0 90.9 90.3

CAn 64.1 62.8 44.7 49.5 44.5 60.8 59.4

CL-20 shots
ImgNet 76.6 73.0 62.8 67.2 58.6 75.7 73.8
DALLE 90.9 90.5 86.8 85.8 81.7 90.8 89.2

CAn 64.1 59.6 54.6 56.7 46.3 60.2 59.7

CL-50 shots
ImgNet 76.6 69.1 57.8 59.6 57.2 74.6 70.2
DALLE 90.9 88.5 83.5 69.1 86.1 90.5 88.8

CAn 64.1 62.1 55.1 58.0 53.8 65.4 58.9

Offline
ImgNet 76.6 71.5 73.2 − 68.7 76.0 75.5
DALLE 90.9 91.2 90.6 − 90.0 91.8 90.9

CAn 64.1 85.4 91.3 − 93.9 85.9 93.4

Table 10: VQA accuracy scores (%) for LLaVA with the pretrained or fine-tuned CLIP CLIP-L-14.
All baselines use TSI dataset for fine-tuning (the LLM remains frozen).

VQA Datasets (Acc %)
Setting FT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LN 61.9 90.3 53.5 74.6 59.5 81.8
F-FT 60.4 89.4 60.9 71.5 55.1 79.5

F-EWC 59.9 87.3 54.6 69.0 56.2 75.6
LoRA 61.1 88.0 55.4 70.8 53.3 73.3
SPU 61.0 90.9 52.5 75.1 60.3 82.2

LoRSU 61.5 91.4 58.2 76.1 60.5 82.5

CL-20 shots

LN 61.7 90.8 58.8 73.7 57.7 79.6
F-FT 61.3 89.7 68.6 73.1 57.1 79.7

F-EWC 59.3 79.1 58.7 63.1 39.1 70.5
LoRA 60.6 89.1 66.7 69.4 53.1 76.1
SPU 62.1 90.5 62.0 75.4 59.7 82.2

LoRSU 61.5 90.9 65.7 75.3 60.3 82.3

CL-50 shots

LN 61.1 87.4 58.3 71.5 53.8 78.5
F-FT 61.6 89.2 70.0 40.5 33.4 45.7

F-EWC 58.5 66.1 70.9 41.5 35.4 47.7
LoRA 60.8 89.5 71.5 66.4 52.7 76.4
SPU 61.8 90.5 65.6 75.1 59.0 82.3

LoRSU 61.9 90.6 70.8 75.5 59.3 82.2

Offline

LN 61.2 87.4 71.1 70.6 53.1 78.6
F-FT 61.5 89.1 78.8 71.9 55.4 79.6
LoRA 60.6 87.9 76.7 69.6 57.6 77.2
SPU 62.2 91.5 71.0 75.2 57.9 81.5

LoRSU 62.1 91.1 75.5 74.7 58.0 81.2
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Table 11: VQA accuracy scores (%) for LLaVA with the pretrained or fine-tuned CLIP CLIP-L-14.
All baselines use GTS dataset for fine-tuning (the LLM remains frozen).

VQA Datasets (Acc %)
Setting FT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LN 62.0 91.5 53.1 78.4 60.1 81.1
F-FT 61.6 88.2 54.5 77.3 57.9 76.8

F-EWC 61.1 88.8 55.5 75.4 55.8 68.9
LoRA 62.0 86.8 54.7 77.0 55.8 72.7
SPU 61.8 91.8 53.3 80.3 60.3 82.2

LoRSU 61.9 91.5 52.9 81.5 60.5 82.1

CL-20 shots

LN 62.2 89.2 51.2 79.7 60.5 78.8
F-FT 61.6 87.0 50.4 77.5 55.8 72.7

F-EWC 60.5 81.4 49.2 78.0 54.8 40.0
LoRA 61.7 83.0 55.4 81.7 50.0 68.2
SPU 61.1 91.1 53.1 81.1 60.2 81.5

LoRSU 61.2 91.8 52.9 83.9 60.2 81.7

CL-50 shots

LN 62.2 86.4 51.8 79.7 58.7 73.8
F-FT 61.5 88.0 45.6 81.3 48.8 61.6

F-EWC 53.4 39.1 18.1 61.5 21.8 22.6
LoRA 61.8 87.6 47.6 75.2 48.8 61.6
SPU 61.7 90.9 45.6 82.4 57.8 79.6

LoRSU 61.2 90.6 52.9 84.2 60.4 81.4

Offline

LN 61.8 80.2 48.6 87.0 52.9 58.4
F-FT 60.6 87.4 51.3 90.5 56.3 73.8
LoRA 61.8 88.5 53.2 90.7 54.3 73.3
SPU 61.4 90.9 53.7 90.5 59.8 80.8

LoRSU 62.0 91.1 53.3 91.1 59.5 80.7
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Table 12: VQA accuracy scores (%) for LLaVA with the pretrained or fine-tuned CLIP CLIP-L-14.
All baselines use AIR dataset for fine-tuning (the LLM remains frozen).

VQA Datasets (Acc %)
Setting FT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LN 61.5 92.4 51.8 73.1 60.5 81.2
F-FT 60.9 89.8 49.7 73.1 61.0 79.9

F-EWC 62.4 89.4 49.1 74.0 60.3 75.8
LoRA 62.0 91.2 52.2 70.8 62.8 77.6
SPU 61.3 92.0 52.9 75.4 64.0 82.6

LoRSU 61.2 91.2 53.1 75.4 64.8 82.6

CL-20 shots

LN 61.9 89.7 50.4 70.1 60.3 77.0
F-FT 61.0 90.9 52.3 70.5 68.5 79.0

F-EWC 58.6 82.1 48.9 69.7 59.9 76.9
LoRA 62.0 90.3 52.4 67.1 57.6 74.5
SPU 61.9 91.4 52.2 75.0 64.8 82.1

LoRSU 61.6 91.4 53.4 75.0 69.8 82.3

CL-50 shots

LN 61.6 88.5 54.8 67.3 62.4 74.8
F-FT 60.8 91.2 51.5 71.8 68.6 71.6

F-EWC 56.9 74.2 48.5 69.8 42.9 51.6
LoRA 62.1 87.9 50.6 64.4 61.6 74.4
SPU 62.0 91.1 52.0 75.2 68.1 81.6

LoRSU 61.4 90.8 52.5 74.5 69.5 81.5

Offline

LN 62.8 90.5 54.9 70.2 60.4 76.6
F-FT 62.0 90.9 53.7 73.3 63.8 80.0
LoRA 61.5 90.2 54.0 71.0 67.8 78.3
SPU 61.9 91.5 52.5 75.1 69.8 81.3

LoRSU 62.4 91.4 52.6 75.0 70.4 81.6
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Table 13: VQA accuracy scores (%) for LLaVA with the pretrained or fine-tuned CLIP CLIP-L-14.
All baselines use CAn dataset for fine-tuning (the LLM remains frozen).

VQA Datasets (Acc %)
Setting FT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LN 61.5 90.5 52.1 74.7 58.7 81.4
F-FT 61.2 89.7 50.5 71.1 54.6 75.7

F-EWC 60.6 86.2 49.3 69.4 46.7 74.6
LoRA 61.0 91.1 47.6 67.4 52.6 72.5
SPU 61.6 90.9 53.1 74.4 60.2 80.3

LoRSU 61.7 91.2 52.5 74.7 59.6 81.0

CL-20 shots

LN 60.8 90.0 53.7 73.4 58.9 80.3
F-FT 61.2 90.6 46.0 70.3 55.3 74.9

F-EWC 59.6 89.2 48.6 71.3 55.7 76.1
LoRA 61.5 89.5 47.8 70.0 52.8 79.7
SPU 61.6 91.2 52.9 75.2 58.4 81.6

LoRSU 62.1 91.7 52.2 75.1 58.0 82.0

CL-50 shots

LN 61.9 88.3 50.0 71.3 57.4 80.2
F-FT 60.5 90.0 48.0 71.3 55.5 79.3

F-EWC 60.0 45.9 49.9 73.5 51.2 75.2
LoRA 60.8 90.5 48.3 65.8 54.8 82.3
SPU 61.6 90.9 51.8 73.3 58.8 83.8

LoRSU 61.8 91.7 51.9 74.5 57.1 82.7

Offline

LN 60.9 89.2 50.6 71.8 55.9 82.5
F-FT 62.1 91.5 49.9 71.5 57.6 86.7
LoRA 62.0 90.3 48.6 69.8 56.1 84.1
SPU 61.8 91.2 52.7 75.0 59.5 84.2

LoRSU 61.8 91.1 52.6 75.1 59.4 85.0
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Table 14: Accuracy scores (%) for LLaVA. We fine-tune the LLM using LoRSU, and LoRA on
the TSI dataset under different settings (the visual encoder remains frozen) and we compare its
performance to our method LoRSU that fine-tunes the visual encoder (LoRSU-V). The suffix ‘L’
indicates that the method fine-tunes the LLM and ‘L+’ that the method fine tunes both the MLP
projector and LLM.

VQA Datasets (Acc %)
Setting PEFT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LoRA-L 63.3 91.2 58.4 75.7 60.7 82.7
LoRSU-L 63.5 91.1 54.3 75.7 60.2 83.0
LoRA-L+ 59.9 90.9 68.5 75.9 58.3 81.6

LoRSU-L+ 63.0 89.7 61.9 76.0 59.8 83.2
LoRSU-V 61.4 91.2 57.7 75.6 60.1 82.2

CL-20 shots

LoRA-L 64.2 91.4 60.5 75.9 60.0 82.2
LoRSU-L 65.0 91.7 56.3 75.2 60.2 83.0
LoRA-L+ 63.2 86.4 65.3 75.9 59.8 81.2

LoRSU-L+ 63.7 86.2 69.8 76.5 51.4 78.1
LoRSU-V 61.6 90.5 63.7 75.3 59.6 82.3

CL-50 shots

LoRA-L 63.0 90.8 64.5 75.9 59.8 82.2
LoRSU-L 64.0 91.7 58.6 75.7 60.5 83.3
LoRA-L+ 60.0 80.0 63.8 74.7 58.0 78.0

LoRSU-L+ 64.8 83.3 63.8 76.4 58.4 82.6
LoRSU-V 61.9 90.6 69.3 75.5 59.0 81.7

Offline

LoRA-L 62.9 91.5 67.5 76.1 58.8 82.0
LoRSU-L 63.2 91.8 61.6 75.4 60.4 82.7
LoRA-L+ 60.5 88.5 73.3 75.8 53.4 79.6

LoRSU-L+ 52.6 90.2 78.3 76.3 51.0 78.7
LoRSU-V 62.1 91.1 75.5 74.7 58.0 81.2
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Table 15: Accuracy scores (%) for LLaVA. We fine-tune the LLM using LoRSU, and LoRA on
the GTS dataset under different settings (the visual encoder remains frozen) and we compare its
performance to our method LoRSU that fine-tunes the visual encoder (LoRSU-V). The suffix ‘L’
indicates that the method fine-tunes the LLM and ‘L+’ that the method fine tunes both the MLP
projector and LLM.

VQA Datasets (Acc %)
Setting PEFT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LoRA-L 61.2 91.4 52.0 71.1 59.7 81.5
LoRSU-L 61.8 91.1 53.6 75.3 60.2 82.3
LoRA-L+ 56.0 90.6 50.2 73.0 60.1 80.8

LoRSU-L+ 62.5 90.9 52.4 78.3 60.1 81.1
LoRSU-V 61.8 91.5 53.2 80.0 60.5 82.2

CL-20 shots

LoRA-L 62.1 92.0 52.2 70.9 59.5 82.3
LoRSU-L 61.1 91.1 53.3 75.1 60.2 82.6
LoRA-L+ 55.4 91.4 50.0 69.1 58.9 77.2

LoRSU-L+ 61.8 91.1 52.2 76.7 59.2 79.6
LoRSU-V 61.7 90.9 52.8 83.7 60.3 81.7

CL-50 shots

LoRA-L 64.2 91.4 52.7 67.3 59.6 80.8
LoRSU-L 60.5 91.2 52.6 74.8 60.2 82.1
LoRA-L+ 54.0 91.4 47.1 63.2 58.5 72.2

LoRSU-L+ 52.1 90.0 51.8 73.5 58.3 80.7
LoRSU-V 61.5 90.5 53.0 85.3 60.7 81.8

Offline

LoRA-L 59.2 91.5 54.8 70.6 58.3 80.5
LoRSU-L 62.0 90.9 52.5 74.3 60.2 82.1
LoRA-L+ 58.0 92.1 45.5 75.0 58.3 70.7

LoRSU-L+ 44.6 89.2 53.4 75.6 58.2 78.9
LoRSU-V 62.0 91.1 53.3 91.1 59.5 80.7
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Table 16: Accuracy scores (%) for LLaVA. We fine-tune the LLM using LoRSU, and LoRA on
the AIR dataset under different settings (the visual encoder remains frozen) and we compare its
performance to our method LoRSU that fine-tunes the visual encoder (LoRSU-V). The suffix ‘L’
indicates that the method fine-tunes the LLM and ‘L+’ that the method fine tunes both the MLP
projector and LLM.

VQA Datasets (Acc %)
Setting PEFT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LoRA-L 60.9 91.7 53.9 75.5 59.3 81.5
LoRSU-L 63.3 91.5 55.0 75.0 60.1 82.6
LoRA-L+ 60.5 90.9 54.3 75.0 69.7 80.6

LoRSU-L+ 62.6 90.9 54.8 74.4 74.1 80.7
LoRSU 61.6 91.8 52.8 75.8 64.1 82.9

CL-20 shots

LoRA-L 60.0 92.1 54.6 74.8 66.2 81.3
LoRSU-L 63.3 91.8 54.1 74.2 60.5 81.6
LoRA-L+ 59.0 92.1 52.8 72.6 73.2 78.1

LoRSU-L+ 63.1 90.9 53.6 74.3 76.7 83.0
LoRSU-V 62.0 91.1 52.3 75.1 67.4 82.0

CL-50 shots

LoRA-L 59.2 92.1 55.3 73.9 60.4 82.1
LoRSU-L 62.9 91.8 52.7 74.8 60.1 81.6
LoRA-L+ 56.6 89.5 47.3 67.9 69.0 70.5

LoRSU-L+ 63.0 91.2 54.2 74.7 76.7 82.1
LoRSU-V 61.8 91.2 52.6 75.4 68.0 82.2

Offline

LoRA-L 59.0 91.1 55.1 75.0 65.0 81.2
LoRSU-L 62.6 91.2 52.9 75.4 59.9 81.6
LoRA-L+ 59.5 91.1 51.7 72.7 72.0 75.7

LoRSU-L+ 62.0 90.8 54.2 74.6 75.6 80.7
LoRSU-V 62.4 91.4 52.6 75.0 69.4 81.6
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Table 17: Accuracy scores (%) for LLaVA. We fine-tune the LLM using LoRSU, and LoRA on
the CAn dataset under different settings (the visual encoder remains frozen) and we compare its
performance to our method LoRSU that fine-tunes the visual encoder (LoRSU-V). The suffix ‘L’
indicates that the method fine-tunes the LLM and ‘L+’ that the method fine tunes both the MLP
projector and LLM.

VQA Datasets (Acc %)
Setting PEFT Method HM DALLE TSI GTS AIR CAn

Zr-Shot 61.2 91.1 53.1 75.6 60.4 82.7

CL-5 shots

LoRA-L 60.0 90.9 53.0 75.2 59.3 80.5
LoRSU-L 59.9 91.1 53.8 75.4 60.3 82.3
LoRA-L+ 60.8 91.2 49.0 74.5 60.2 83.2

LoRSU-L+ 60.8 91.5 49.7 74.0 59.6 83.6
LoRSU-V 61.5 91.4 52.9 75.0 60.1 82.7

CL-20 shots

LoRA-L 60.0 91.7 51.5 73.8 55.2 71.5
LoRSU-L 61.4 91.4 54.2 75.5 60.2 82.3
LoRA-L+ 59.5 92.0 48.5 72.1 56.9 81.7

LoRSU-L+ 60.9 91.2 48.1 72.8 57.9 82.2
LoRSU 61.7 91.1 53.0 75.2 58.0 83.1

CL-50 shots

LoRA-L 59.8 91.7 53.0 73.7 55.4 69.5
LoRSU-L 63.6 91.7 52.9 75.7 60.0 81.8
LoRA-L+ 60.0 91.5 40.4 68.9 54.2 69.8

LoRSU-L+ 64.7 89.2 46.7 71.6 55.0 72.7
LoRSU-V 62.0 91.5 51.6 74.3 57.2 83.6

Offline

LoRA-L 61.2 90.9 53.1 74.3 58.9 79.1
LoRSU-L 62.9 91.4 52.3 75.5 60.2 81.5
LoRA-L+ 61.5 91.2 48.5 72.8 59.4 84.6

LoRSU-L+ 63.9 90.9 49.1 72.5 60.2 83.3
LoRSU-V 61.8 91.1 52.6 75.1 59.4 85.0
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Visual Encoder (Total #Params) Method Trainable #Params

CLIP-L-14 (304.3M)

LN 0.1M
F-FT 304.3M

F-EWC 304.3M
LoRA 25.6M
SPU 20.0M

LoRSU-Ours 16.5M

Table 19: Parameter efficiency for each method considered in our experiments.

Table 20: TFlops and time comparison between the fine-tuned LLM and the fine-tuned visual encoder
using our method LoRSU (LoRSU-V) for the offline setting on GTS dataset. We report results based
on a single NVidia A100 GPU. The table reports the same results as in Fig. 2.

Method Minutes/epoch TFlops (Forward) Trainable Params (M) GTS Acc
LoRA-L+ 76.4 9.0 28.4 65.0
LoRSU-L+ 78.6 9.1 21.6 75.6
LoRSU-V 5.5 0.36 16.5 91.1

C PARAMETERS EFFICIENCY

Table 19 reports the number of parameters updated by each method and the percentage with respect
to model size for both considered CLIP models. LN uses the least amount of parameters, however it
lacks behind in accuracy on all evaluated datasets. LoRSU operates on fewer parameters compared
to LoRa and SPU and yet strikes a strong balance between target datasets and the maintenance of
generic knowledge, achieving the best performance in both classification and VQA tasks.

D TSI DATASET CONSTRUCTION

To extract images from the videos of the Toyota Smart Home dataset (TSI), we discretized each video
clip into 2 frames per second and then selected the frame in the middle of the total time duration of
the video clip. In Table 23 we describe the actions that were selected and the corresponding prompt
used for CLIP classification. We also note dropping few actions to avoid ambiguous classes.

E EVALUATION OF CLIP ON XIMAGENET-12

In the Section 3 we evaluated CLIP robustness on XImageNet-12 benchmark Li et al. (2023b). Here
we describe this experiment in more detail. XImageNet-12 benchmark Li et al. (2023b) covers 12
common categories from ImageNet and simulating six diverse out of distribution effects, such as
overexposure, blurring, and color changing. Table 18 reports the results of CLIP ViT-B-16 with

Table 21: Ablation study on the influence of the rank for our LoRSU method with k = 2 top heads.
We report the last session accuracy of CLIP. The model is fine-tuned on each session (5 in total) of
TSI dataset using 50 shots per session.

Rank (r)
Datasets Zr-shot 8 16 32 64 128 256
ImgNet 76.6 76.5 76.4 76.5 76.4 76.4 76.4
DALLE 90.9 93.3 91.8 91.2 92.3 91.8 93.2
TSI 13.2 56.0 55.5 56.6 58.0 56.3 57.1
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Table 22: Ablation study on the influence of the rank for our LoRSU method. We report accuracy
(%) scores for LLaVA using LoRSU with top-2 attention heads. All fine-tuning methods use TSI
data to fine-tune the visual encoder for 50 shots in 5 sessions.

Rank (r)

Datasets Zr-shot 8 16 32 64 128 256

HM 61.2 62.1 61.9 61.4 61.9 61.6 61.6
DALLE 91.1 90.6 91.8 90.6 90.6 88.9 90.0
TSI 53.1 66.8 68.4 68.9 70.8 67.1 68.0
GTS 75.6 75.3 75.4 75.4 75.5 74.9 74.7
AIR 60.4 58.9 58.5 57.9 59.3 59.0 59.2
CAn 82.7 81.7 82.1 81.1 82.2 81.4 81.4

Original Class name/Action Generated Caption
Cook.Cleandishes washing dishes
Cook.Cleanup cleaning up
Cook.Cut cutting food
Cook.Stir stirring the pot
Cook.Usestove ✗
Cook.Cutbread cutting bread
Drink.Frombottle holding a bottle
Drink.Fromcan holding a can
Drink.Fromcup holding a cup
Drink.Fromglass holding a glass
Eat.Attable eating
Eat.Snack ✗
Enter walking
Getup ✗
Laydown lying down
Leave walking
Makecoffee.Pourgrains using a white coffee machine
Makecoffee.Pourwater using a white coffee machine
Maketea.Boilwater boiling water in a black kettle
Maketea.Boilwater making tea
Maketea.Insertteabag making tea
Pour.Frombottle holding a bottle
Pour.Fromcan holding a can
Pour.Fromkettle holding a black kettle
Readbook reading a book
Sitdown sitting down
Takepills ✗
Uselaptop using a laptop
Usetablet using a tablet
Usetelephone using a cordless phone
Walk walking
WatchTV watching TV

Table 23: The original action names of the Toyota Smarthome dataset and their corresponding
captions used to create the Toyota Smarthome Images (TSI) dataset. We use ✗ to denore the actions
that are ambiguous and were not used to build the TSI dataset. The final prompt is created as “The
person in this image is {caption}”.

different pretraining. Although only one domain with random backgrounds of other objects exhibits
weak performance, this could be attributed to model confusion between the two objects in the
foreground and background, rather than a weakness in understanding the image.
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(a) TSI (b) DALLE

Figure 3: Use Laptop Example

(a) TSI (b) DALLE

Figure 4: Watching TV Example

E.1 EXAMPLES OF TSI AND DALLE DATASETS

We show additional examples of TSI images and DALLE generated images for some actions in
Figures 3, 4, 5, 6, 7, 8, 9, 10, 11.
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(a) TSI (b) DALLE

Figure 5: Use Tablet Example

(a) TSI (b) DALLE

Figure 6: Use a telephone Example

(a) TSI (b) DALLE

Figure 7: Walking
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(a) TSI (b) DALLE

Figure 8: Clean Up Example

(a) TSI (b) DALLE

Figure 9: Boiling Water in a Kettle Example

(a) TSI (b) DALLE

Figure 10: Sit Down Example
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(a) TSI (b) DALLE

Figure 11: Stirring The Pot Examlpe
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