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ABSTRACT

Ordinal regression is an important area in machine learning, and many algorithms
were proposed to approach it. In this work, we propose an ordinal regression
prediction algorithm, based on deep learning machinery and inspired by the well-
known Proportional Odds model. Our proposed approach has three key components:
first, it is designed to guarantee unimodal output probabilities, which is a desired
element in many real world applications. Second, we argue that the standard
maximum likelihood is sub-optimal for ordinal regression problems and train
our model using optimal transport loss, as it naturally captures the order of the
classes. Third, we design a novel regularizer aiming to make the model uncertainty-
aware, in the sense of making the model more confident about correct predictions,
comparing to wrong predictions. In addition, we propose a novel uncertainty-
awareness evaluation measure. Experimental results on eight real-world datasets
demonstrate that our proposed approach consistently performs on par with and
often better than several recently proposed deep learning approaches for ordinal
regression, in terms of both accuracy and uncertainty-awareness, while having a
guarantee on the output unimodality.

1 INTRODUCTION

Ordinal regression is an area of supervised machine learning, where the goal is to predict the value
of a discrete dependent variable, whose set of (symbolic) possible values is ordered. Despite often
overshadowed by more common applications like classification and regression, ordinal regression
covers a wide range of important applications, such as prediction of failure times, ranking, age
estimation and many more.

Many practitioners often treat ordinal regression problems as classification or regression problems
(for example, this was indeed the case with many submissions to Kaggle’s Diabetic Retinopathy
competition1 in 2015). While having common characteristics with both classification and regression,
ordinal regression can arguably be viewed a mid-point between the two. An ordinal model is of course
similar to a classification model, as both predict a discrete value (“label”) out of a finite set of possible
ones. However, the existence of an order on set of labels, when available, can potentially lead to an
improved performance, comparing to a standard classifier, which does not assume such order. This
typically occurs via distinguishing between the severity of prediction mistakes: while in classification
typically ”all mistakes are created equal", in ordinal regression different mistakes may be associated
with different severity (for example, in the context of tumor grade prediction, predicting "3" when
the ground truth value is "4" may be less severe than a "1" prediction). In regression problems, the
dependent variable naturally does take values from an ordered set. However, this set is typically a
continuum. Moreover, regression performance may be sensitive to monotonic transformations of the
dependent variable, while such sensitivity does not take place in ordinal regression problems, as the
order is invariant to monotonic transformations. Hence one may expect that typical ordinal regression
algorithms have potential to outperform classification or regression approaches, when the range of
the dependent variable is finite and ordered.

The arguably most fundamental ordinal regression model is the Proportional Odds Model (POM), a
generalized linear model, similar in spirit to logistic regression, however where the logits are defined

1https://www.kaggle.com/c/diabetic-retinopathy-detection/
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for cumulative probabilities. POM is typically trained via maximum likelihood (as is also the case for
several recently proposed deep ordinal regression approaches, which will be reviewed in section 2).
We argue that likelihood is a sub-optimal measure of quality for ordinal regression setup, as it only
considers the probability mass the model assigns to the true class, ignoring the remaining mass. This
implicitly assumes that “all mistakes are equal”, which, as discussed above, is not the case for ordinal
regression. Hence we seek for an alternative measure of quality which may be more appropriate for
ordinal regression. We argue that the optimal transport divergence might be a better fit. In addition,
this divergence turns out to be particularly appealing, as it obtains a simple, differentiable form in the
case that one of the distributions is Dirac, which is indeed the case in ordinal regression; this will be
explained in Section 3.

Another potential source of sub-optimality of POM (and of several recently-proposed approaches for
deep ordinal regression) is the often-reasonable requirement that a probabilistic model for ordinal
regression will output unimodal probabilities. A k-level multinomial distribution is called unimodal
if there exists j ∈ {1, . . . , k} such that Pr(Y = 1) ≤ . . . ≤ Pr(Y = j) ≥ . . . ≥ Pr(Y = k).
Although there are domains in which unimodality is not necessarily a desirable property, such as
in movie rankings (where people may have either positive or negative definitive opinions about
a particular movie), in many other real world domains it is a natural requirement, for example
when predicting age of a person or a grade of a tumor, as it may be counter-intuitive to trust a
model prediction which says that a predicted tumor grade is either "1" or "4", but not "2" or "3".
However, despite often being a desired characteristic, unimodality is unfortunately not always fulfilled.
While this was identified by several recent works for deep ordinal regression, unimodality is often
encouraged (but not enforced) via soft targets. In Section 2, we will argue that this is a sub-optimal
means to achieve unimodality.

In the current manuscript we therefore propose a novel approach for ordinal regression, based on
deep learning machinery, which tackles the three issues pointed above: (i) it contains a mechanism
to enforce unimodality of the output distribution, implemented via architectural design, (ii) it is
trained via optimal transport loss (iii) it utilizes a novel regularization term, whose goal is to make
the predictions uncertainty-aware, in the sense of making the model more confident in cases of
correct predictions, comparing to cases of incorrect predictions. As a by product, we also propose a
corresponding uncertainty-awareness evaluation term, which we call Entropy Ratio.

Experimentally, we provide results on eight real world image benchmark datasets which demonstrate
that our proposed approach consistently performs on par with and often better than several recently
proposed approaches for deep ordinal regression, in terms of both prediction accuracy and uncertainty-
awareness, while having a unimodality guarantee.

2 RELATED WORK

Being a traditional area of machine learning and statistics, there exists a large corpus of literature on
ordinal regression. In this section we focus on approaches based on deep architectures. Several such
approaches were proposed in the recent years. A common approach seems to be to turn the ordinal
regression problem into a multi-label classification problem, for example Fu et al. (2018); Liu et al.
(2017; 2018b); TV et al. (2019); Berg et al. (2020); Cheng et al. (2008); Li et al. (2021). We argue
that the multi-label approach has two major problematic aspects: first, the output probabilities are not
always guaranteed to be consistent, in the sense of increasing cumulative distribution (i.e., we would
like to predict Pr(y ≤ 1) ≤ Pr(y ≤ 2) ≤ . . . ≤ Pr(y ≤ k). Second, even if the output probabilities
are consistent, as is the case in Liu et al. (2018a); Cao et al. (2020) for example, the predicted class
probabilities are not necessarily unimodal. This is the case in several recent works, e.g., Liu et al.
(2019b); Vargas et al. (2020); Pan et al. (2018); Kook et al. (2020).

Beckham & Pal (2017) proposed an elegant mechanism to obtain unimodal output probabilities, based
on either the Poisson or the Binomial distributions, which are both unimodal. In both cases their
model outputs a scalar (λ in case of the Poisson, p in the case of the binomial), which is then mapped
to a probability mass function that uses (after normalization) as the model output probabilities. While
being a convenient, architectural-based solution for the unimodality issue, their approach is inherently
limited in its ability to express the level of uncertainty of the model’s prediction. To see why, note that
since a single parameter determines both the location of the mode, and the decay of the probabilities,
the model cannot output a highly flat or highly peaked probability vector, for example. In addition,
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instances of the same predicted class ought to have similar output probabilities, hence the predictions
cannot reflect any level of uncertainty.

A different approach to unimodality has been to train the model with soft targets, for example Gao
et al. (2017); Diaz & Marathe (2019); Liu et al. (2019a; 2020). However, we argue that utilization of
soft targets suffers from two important disadvantages. First, unimodality is only encouraged, but not
enforced. In section 5 we will see cases where such models trained with soft targets actually yield
large amounts of non-unimodal predictions. Second, soft targets have a a pre-defined decay pattern,
which is determined a-priori and hence does not reflect any level of uncertainty with respect to the
prediction. Therefore, they are equivalent (in the sense of 1:1 map) to Dirac predictions (i.e., “one-
hot”), and are devoid of any probabilistic insight whatsoever. As will be explained in the sequel, our
approach attends both issues: we guarantee unimodal outputs, by design, and yield uncertainty-aware
predictions. Other approaches we choose to mention in this context are Belharbi et al. (2019), where
a constrained optimization is used to achieve unimodality on the train data. However, this does not
provide any guarantee regarding the predictions on test data. Uncertainty-awareness considerations
appear also in Li et al. (2021) (by mapping each input instance to a distribution in the code space)
and Liu et al. (2019b) (via a Gaussian process machinery). Apart from not being unimodal, both
approaches suffer from another issue, current in several works, which we explain next.

Several works use cross entropy as a training objective, while using one-hot (or binary) targets, see,
for example Belharbi et al. (2019); Vargas et al. (2020); Fu et al. (2018); Beckham & Pal (2017);
Berg et al. (2020); TV et al. (2019); Cao et al. (2020). As pointed out in several papers, and will also
be demonstrated in section 3, in the case of one-hot targets, the cross entropy term equals the negative
log of the probability assigned by the model to the true class, making it invariant to the distribution
of the remaining probability mass. While a reasonable thing in a standard classification setting, this
ignores the order of the classes, making it a sub-optimal choice for ordinal regression setting. To
overcome this limitation of cross entropy Hou et al. (2016), followed by Beckham & Pal (2017); Liu
et al. (2019a) use optimal transport loss, which is a natural way to incorporate the order of the classes
into the loss term. In this sense, it is similar to the approach we take in this manuscript.

To summarize this section, we identify the following key requirements for an appropriate ordinal
regression model: (i) unimodality of the model’s output distribution, preferably guaranteed via
architectural design (ii) the training objective function should correspond to the order induced on the
label space (iii) the decay of the output probabilities should reflect the uncertainty of the model in its
predictions.

These requirements naturally lead us to our proposed approach in section 4. However, before we
specify it, we begin with a brief review of of the proportional odds model and optimal transport
divergence.

3 PRELIMINARIES

We begin this section with a description of the proportional odds model from a latent variable
perspective. We then briefly review optimal transport as a divergence between two probability
distributions.

3.1 THE PROPORTIONAL ODDS MODEL

Let (X,Y ) ∈ X × Y be random variables, having joint probability PXY , where X = Rd, Y =
{1, . . . , k}, and 1, . . . , k are considered as symbols. Let � be an order relation defined on Y such
that 1 � . . . � k. The proportional odds model is parametrized by α ∈ Rk−1, β ∈ Rd and applies to
data {(xi, yi)}ni=1, sampled i.i.d from PXY .

Let ε be a logistic random variable (thus having a sigmoid cumulative distribution function F (x) =
1

1+exp(−x) ), and let Z be a random variable defined as Z = βTX + ε. The entries of α use to define
the cumulative conditional probabilities via

Pr(Y � j|X = x) = Pr(Z ≤ αj) = F (αj − βTx). (1)
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Figure 1: The proportional odds model. xi is a
realization of X . The standard logistic density
is shifted by βTxi. The thresholds αj define the
bins which determine the probability predicted
by the model to each class. For example, the
green area defines the probability Pr(Y = 3).

Figure 2: POM deficiencies: (a) POM does not
always output unimodal probabilities: the above
plot shows an example where the output prob-
abilities are such that Pr(Y = 1) > Pr(Y =
2) < Pr(Y = 3) > Pr(Y = 4). (b) The like-
lihood function of POM is invariant to the way
the predicted probability mass of the incorrect
classes is assigned: if the correct class is 3, the
two instances have the same likelihood, despite
the fact that in the bottom case, the probability
mass assigns to neighboring class 2 is larger.

Similarly to logistic regression, this yields linear log-odds (logits), however, defined with respect to
cumulative terms

γj ≡ log
Pr(Y � j|X = x)

Pr(Y � j|X = x)
= αj − βTx.

It is convenient to interpret equation (1) by viewing βTx as a factor that shifts the standard logistic
density function, while the αj terms are thresholds, with respect to which the cumulative probabilities
are defined. This is depicted in Figure 1. Let (x, y) be a realization of (X,Y ). The likelihood
assigned by the model to (x, y) is

L(α, β; (x, y)) = Pr(Y = y|X = x;α, β)

=F(αy − βTx)− F(αy−1 − βTx), (2)

considering α0 = −∞ and αk = ∞. The model is typically trained in a standard fashion by
maximizing the log-likelihood function on the training data.

Despite its popularity, the POM suffers from two main issues: First, the model’s output probabilities
are not necessarily unimodal. This is depicted in Figure 2. Second, the likelihood function in
equation (2) depends only on the probability the model assigns to the correct class y, and is invariant
to the way the remaining probability mass is assigned by the model. This ignores the order on the
label set, and hence does not use important information that might be used to improve prediction
quality, as depicted in Figure 2. The same issue occurs in the ordinal likelihood, proposed in Chu et al.
(2005). In addition, it is important to mention that as the cross entropy term is essentially equivalent
to model’s negative log-likelihood function, this invariance to the partition of the remaining mass
over the incorrect classes is common to all models trained via cross entropy minimization, as long
as the target labels are one-hot. In section 4 we will show how our method overcomes these two
limitations of the POM.

3.2 OPTIMAL TRANSPORT

Let (M,d) be a finite metric space, and let p, q be probability mass functions defined on M . Optimal
transport, also denoted as the 1-Wasserstein distance and the Earth Mover Distance, between p and q
is

OT (p, q) = inf
γ∈Γ

∫
M×M

c(x, y)dγ(x, y), (3)

where Γ is the set of all joint probabilities on M ×M , having marginals p and q, and the metric c
specifies the costs of moving probability mass between every two elements ofM . This amounts to the
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Figure 3: Optimal transport between model out-
put probability mass function and a Dirac (one-
hot) probability mass, using c(i, j) = |i − j|m
cost.

Figure 4: Generation of unimodal output proba-
bilities for k = 3 classes. An input x is mapped
to a (µ, σ) pair, which define a normal distri-
bution N (µ(x), σ(x)2) over the real line. The
output probabilities are proportional to the mass
in the bins, which are of equal length. The
green area equals to the un-normalized probabil-
ity p̃2(x), corresponding to Pr(Y = 2|X = x).

optimal transportation of probability mass that transforms p into q and vice versa. In the general case,
the distance can be found by solving a linear program, and several relaxations have been proposed to
accelerate its computations while preserving its geometrical properties, see, for example, Peyré et al.
(2019); Feydy et al. (2019); Cuturi (2013). However, in the case where p is a Dirac point mass (i.e.,
having a a one-hot probability mass function), solving equation (3) becomes trivial and becomes

OT (p, q) =

k∑
i=1

qic(i, j), (4)

where j is the correct class, and k is the total number of classes, as is also depicted in Figure 3.

Letting q denote a model’s output probabilities and p denote a one-hot target, equation (4) is of
course differential with respect to the model outputs q and therefore can be used as a loss term for
gradient-based optimization.

The cost metric c can incorporate domain knowledge in order to quantify the semantic distance
between every two elements of M . Since in our case M = {1, . . . , k} is an ordered space, a
natural possibility is to define c(i, j) = |i− j|m, for some m ≥ 1, i.e., ,mapping the symbolic class
labels to consecutive integers, and computing powers of absolute differences. When m = 1, the
optimal transport can also be computed as the `1 distance between the cumulative mass functions2,
‖CMF(p) − CMF(q)‖1, (see Levina & Bickel (2001), for example). This is equivalent to the
computation in equation (4), and also generalizes to arbitrary targets (i.e., not necessarily Dirac).

4 THE PROPOSED APPROACH

In this section we describe our proposed mechanism for architectural-based generation of unimodal
output probability distributions.

4.1 RATIONAL

Achieving unimodality directly via architectural design has a major advantage, since the output
probabilities are guaranteed to be unimodal for every input instance, as is also the case for the
mechanism proposed by Beckham & Pal (2017). However, unlike Beckham & Pal (2017), our
proposed approach employs the normal distribution, depending separately on a location parameter
and a scale parameter, so that the location of the mode is detached from the decay of the probability
mass. This adds flexibility to the shape if the output probability vector, comparing to Beckham &

2This holds when the classes are ordered.
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Pal (2017) where single parameter determines both the mode and the decay. We will demonstrate in
section 5 that this greater flexibility is helpful in expressing prediction uncertainty.

4.2 UNIMODAL OUTPUT PROBABILITIES GENERATION

Inspired by the POM, we utilize thresholds to define bins, so that the total mass inside each bin is the
output probability of the corresponding class. However, observe that the lack of unimodality of POM
can be fixed by letting the bins be of equal length and remain fixed during training.

Therefore, instead of learning the thresholds, during training a map x 7→ (µ, σ) is learned, where µ is
a location parameter, and σ is a scale parameter, which define a N (µ, σ2) distribution, using which
the output probabilities are computed.

Formally, we divide the range [−1, 1] to k equal bins similarly to da Costa et al. (2008), where k is the
number of classes, defined by −1 = α0, α1, ..., αk = 1, so that αi−αi−1 = 2

k . The (un-normalized)
probabilities are given by

p̃i(x) = Φµ(x),σ(x)(αi)− Φµ(x),σ(x)(αi−1), (5)

where Φµ,σ(·) is the N (µ, σ2) cumulative distribution function, and we have emphasized that µ, σ
are in fact functions of the input instance x. Since the bins cover [-1,1] and not the entire real line,
we normalize the probabilities to obtain proper model predictions via

Pr (Y = j|x) = pi(x) ≡ p̃i(x)∑k
j=1 p̃j(x)

. (6)

To compensate for the fact that the probability generating mechanism depends on less parameters
than POM (2 for the former, d+ k − 1 for the latter), the map x 7→ (µ, σ) is expressed via a deep
network, which is therefore able to represent a complex nonlinear relation. Our proposed mechanism
for generation of unimodal output probabilities is depicted in Figure 4.

The following lemma, proved in Appendix A, establishes that the model output probabilities are
indeed unimodal.
Lemma 4.1. Let x ∈ Rd be an input to the model, which is mapped to µ = µ(x), σ = σ(x), and
let p1, . . . pk be the model output probabilities, generated via equation (6). Then p1, . . . pk define a
unimodal multinomial random variable.

We remark that all arguments made here with regard to the normal distribution also hold for other
unimodal distributions, which are symmetric around µ, such as Logistic(µ, σ) and Cauchy(µ, σ),
which both have slower decay patterns.

4.3 UNCERTAINTY-AWARENESS REGULARIZER

The separation of the location and scale allows for flexibility in the representation of prediction
uncertainty. Specifically, this uncertainty can be affected in two ways: (i) the standard deviation
parameter (ii) the proximity of the mean parameter to the bin threshold.

To encourage uncertainty awareness, we argue that it is natural to require that the confidence in the
prediction will be greater in cases of correct predictions, comparing to incorrect ones. In order to
achieve this, we introduce a novel regularization term, defined for a minibatch X = {x1, . . . xm}
such that for instance x, whose label is y, the model, parametrized by θ outputs probability vector
pθ(x). We define the regulazier as

RH(X; θ) := max

{
0, mean
x∈X:mode(pθ(x)) 6=y

H(pθ(x))−
(

mean
x∈X:mode(pθ(x))=y

H(pθ(x)) + εR

)}
(7)

where we write pθ(x) to emphasize the fact that output probabilities depend on the model parameters,
collectively denoted as θ, and H(·) denotes entropy. This hinge-like term penalizes the model if the
average entropy over instances with incorrect predictions is not higher than the average entropy of
instances with correct predictions by at least εR. In our experiments we used εR = 0.5
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Figure 5: Top left: Examples from the Adience dataset. Age category is indicated above each
image. Top right: Examples from the HCI dataset. Decades categories are indicated above. Bottom:
Examples from the Retina mnist dataset. Diabetic Retinopathy classes are indicated above.

.

4.4 TRAINING PROCEDURE

To summarize this section, given an instance x, our model outputs parameters µθ(xi), σθ(x) of
a normal distribution. µθ(x), σθ(x) determine the un-normalized categorical probabilities p̃(x) =
(p, i = 1, . . . , k via equation(5), which are then normalized to pi(x), i = 1, . . . , k using equation (6).
Then given a minibatch X of instances, the objective equation used to train the model is

l(θ;X) =
1

m

∑
x∈X
‖CMF(pθ(x))− CMF(q(x))‖1 + γ ·RH(X; θ), (8)

where q(x) is the k-length one hot vector corresponding to the true label y of x and γ is a penalty
parameter.

5 EXPERIMENTAL RESULTS

We report experimental results on eight real world benchmark image datasets.

5.1 DATASETS

We evaluate our method on eight real world benchmark image datasets, involving various ordinal
regression tasks: age-detection (Adience Eidinger et al. (2014), FG-Net Fu et al. (2014), AAF Cheng
et al. (2019), AFAD-LITE Niu et al. (2016), WIKI Rothe et al. (2018)), bio-medical image classifi-
cation (Retina-MNIST Yang et al. (2021)), historical image dating (HCI Palermo et al. (2012)) and
image aesthetics estimation (EVA Kang et al. (2020)). A more detailed description of the datasets
appears in Appendix B. Some examples from the Adience, HCI and Retina-MNIST datasets are
shown in Figure 5.

5.2 METHODS COMPARED

We compare our proposed approach to four recently proposed approaches for deep ordinal regression,
with unimodal output probabilities:

• DLDL Gao et al. (2017), an approach utilizing soft labels, generated using squared expo-
nentially decaying distributions, trained using Kullback-Leibler divergence minimization
(equivalent to cross entropy minimization).
• SORD Diaz & Marathe (2019), an approach utilizing soft labels, generated using linear ex-

ponentially decaying distributions, trained using Kullback-Leibler divergence minimization.
• Beckham & Pal (2017), where architectural-based unimodal output probabilities are gener-

ated using binomial distribution (single-learned parameter), trained using optimal transport
loss.
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• Liu et al. (2019a), an approach utilizing soft labels, created as a mixture of Dirac, uniform
and linear exponentially decaying distributions, trained using optimal transport loss.

In order to perform a fair comparison, we implemented all methods, using the same image transfor-
mations, backbone CNN and training procedures, so that the methods differ only in their output layer
architectures and loss functions. We performed 5 independent trials, using the same train-validation-
test splits for all methods. Additional technical details can be found in Section C. For reproducibility,
the supplementary material contains code reproducing the results reported in this section.

5.3 EVALUATION METRICS

We report several commonly-used evaluation metrics for ordinal regression tasks: Mean Absolute
Error (MAE), One-Off Accuracy (OOA), Spearman correlation, Quadratic Weighted Kappa (QWK),
as well as the percentage of test examples with unimodal predicted output probabilities.

In addition, following the discussion in section 4.3, we evaluate the level of overconfidence by
comparing the ratio of the average entropy in incorrect predictions, to the average entropy in correct
predictions, that is

Entropy ratio =
meanx∈X:mode(pθ(x)) 6=yH(pθ(x))

meanx∈X:mode(pθ(x))=yH(pθ(x))
, (9)

where pθ is the model output probabilities for test instance x. A higher ratio is therefore desirable
and indicates a lower level of overconfidence, and correspondingly better uncertainty awareness.

5.4 RESULTS ON REAL WORLD DATASETS

Table 6 shows the test results of each method on the eight benchmark datasets. As can be seen, the
proposed approach performs at least on-par and often better than the compared baselines, in a fairly
consistent manner, across the various datasets and evaluation metrics. In addition, observe that only
the proposed approach and the method of Beckham & Pal (2017) output unimodal probabilities,
both via architectural design, while the other baselines, trained using soft targets, do not always
output unimodal probabilities. Moreover, in all eight datasets, the proposed approach outperforms all
baselines also in terms of overconfidence.

6 CONCLUSION

In this manuscript we presented an approach for deep ordinal regression, inspired by the proportional
odds model, utilizing an architectural mechanism for generation of unimodal output probabilities,
trained using optimal transport objective, augmented with a novel regularizer which encourages
uncertainty awareness. We demonstrated that while performing on-par with or better than other
recently proposed approaches for ordinal regression, our proposed method enjoys the benefits of
guaranteed unimodal output probabilities, and of less overconfidence about its incorrect predictions.

In terms of limitations of the proposed approach, perhaps the most obvious one is that the cost
matrix of the OT loss needs to be specified beforehand, and is sensitive to transformations. While
in all our experiments we have used m = 1 in equation (4), other options are acceptable as well.
Another limitation is that the shape of our output probability vector, as determined by the truncated
Gaussian distribution, naturally has limited expressiveness. Yet, changing the Gaussian link to other
distributions, we haven’t noticed major differences (see appendix D).

In terms of societal impact, in this research several age estimation datasets were used as benchmarks
for the proposed method. All data we used is based on the public research papers without any private
information of the subjects. We do not expect any privacy violations while using these datasets. In
addition, models trained for age estimation task could include biases based on ethnicity or gender,
but to the best of our knowledge the datasets we used were built with fair representation of different
groups of people.
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Table 1: Performance of various methods on real world datasets, in a mean ± std format.
Dataset Method MAE ↓ OOA ↑ Spearman ↑ QWK ↑ % Unimodal ↑ Entropy ratio ↑

HCI

Beckham & Pal (2017) .62 ± .04 .85 ± .02 .71 ± .03 .75 ± .02 1 ± 0 .82 ± .1
Liu et al. (2019a) .57 ± .05 .86 ± .02 .68 ± .04 .74 ± .03 .4 ± .04 .81 ± .1
Gao et al. (2017) .71 ± .04 .87 ± .02 .67 ± .03 .7 ± .03 .99 ± .02 1.28 ± .13
Diaz & Marathe (2019) .57 ± .04 .86 ± .02 .69 ± .03 .75 ± .02 .96 ± .01 .71 ± .06
Proposed .55 ± .03 .88 ± .01 .72 ± .03 .77 ± .02 1 ± 0 1.42 ± 0.13

Adience

Beckham & Pal (2017) .53 ± .08 .94 ± .02 .9 ± .02 .91 ± .03 1 ± 0 1 ± .01
Liu et al. (2019a) .48 ± .06 .94 ± .02 .88 ± .03 .9 ± .03 .53 ± .05 1.08 ± .01
Gao et al. (2017) .5 ± .08 .94 ± .02 .88 ± .02 .9 ± .03 .6 ± .05 1. ± .01
Diaz & Marathe (2019) .47 ± .07 .94 ± .02 .89 ± .01 .91 ± .03 .99 ± .01 1.06 ± .03
Proposed .45 ± .05 .95 ± .01 .9 ± .02 .92 ± .02 1 ± 0 1.19 ± .16

Retina MNIST

Beckham & Pal (2017) .78 ± .02 .8 ± .01 .6 ± .01 .55 ± .02 1 ± 0 1.02 ± 0.011
Liu et al. (2019a) .69 ± .02 .82 ± .01 .6 ± .02 .58 ± .02 .69 ± .04 1.05 ± .02
Gao et al. (2017) .76 ± .09 .8 ± .04 .59 ± .06 .54 ± .09 .94 ± .07 1. ± .01
Diaz & Marathe (2019) .77 ± .06 .79 ± .3 .57 ± .05 .56 ± .05 .88 ± .03 1.13 ± .01
Proposed .68 ± .01 .83 ± .01 .62 ± .01 .6 ± .01 1 ± 0 2.08 ± .08

FG-NET

Beckham & Pal (2017) .46 ± .01 .94 ± .03 .75 ± .04 .8 ± .03 1 ± 0 1.01 ± .01
Liu et al. (2019a) .36 ± .05 .96 ± .01 .82 ± .06 .83 ± .05 .2 ± .04 1.27 ± .1
Gao et al. (2017) .46 ± .05 .94 ± .02 .75 ± .05 .77 ± .04 .09 ± .03 1. ± .1
Diaz & Marathe (2019) .38 ± .05 .95 ± .02 .8 ± .04 .83 ± .04 .98 ± .01 1.13 ± .04
Proposed .35 ± .03 .98 ± .01 .84 ± .02 .87 ± .03 1 ± 0 1.58 ± 0.16

AAF

Beckham & Pal (2017) .44 ± .01 .97 ± .01 .83 ± .01 .85 ± .05 1 ± 0 1. ± .01
Liu et al. (2019a) .39 ± .01 .98 ± .01 .82 ± .01 .85 ± .01 .7 ± .03 1.08 ± .01
Gao et al. (2017) .4 ± .01 .98 ± .01 .82 ± .01 .85 ± .01 .9 ± .03 1. ± .01
Diaz & Marathe (2019) .39 ± .01 .98 ± .01 .82 ± .02 .85 ± .01 1 ± .01 1.05 ± .01
Proposed .38 ± .01 .98 ± .01 .83 ± .01 .86 ± .01 1 ± .0 1.2 ± 0.01

AFAD-LITE

Beckham & Pal (2017) .51 ± .01 .91 ± .01 .67 ± .01 .69 ± .01 1 ± 0 2.18 ± .05
Liu et al. (2019a) .5 ± .01 .92 ± .01 .67 ± .01 .69 ± .01 .96 ± .01 1.11 ± .01
Gao et al. (2017) .5 ± .01 .93 ± .01 .67 ± .01 .69 ± .01 1 ± .01 1 ± .01
Diaz & Marathe (2019) .5 ± .01 .92 ± .01 .67 ± .01 .69 ± .01 1 ± .01 1.1 ± .01
Proposed .49 ± .01 .93 ± .01 .68 ± .01 .7 ± .01 1 ± 0 2.26 ± .23

EVA

Beckham & Pal (2017) .63 ± .02 .92 ± .01 .6 ± .03 .6 ± .02 1 ± 0 1. ± .01
Liu et al. (2019a) .61 ± .02 .92 ± .01 .56 ± .03 .56 ± .03 .68 ± .02 1.04 ± .01
Gao et al. (2017) .62 ± .03 .92 ± .01 .55 ± .03 .54 ± .03 .91 ± .02 1. ± .01
Diaz & Marathe (2019) .59 ± .03 .93 ± .01 .57 ± .03 .55 ± .03 .99 ± .01 1.01 ± .01
Proposed .59 ± .02 .94 ± .01 .54 ± .03 .56 ± .03 1 ± 0 1.1 ± .05

WIKI

Beckham & Pal (2017) .68 ± .01 .92 ± .01 .68 ± .01 .68 ± .01 1 ± 0 1. ± .01
Liu et al. (2019a) .42 ± .01 95. ± .01 .69 ± .01 .7 ± .01 .95 ± .01 1.05 ± .01
Gao et al. (2017) .44 ± .01 .94 ± .01 .68 ± .01 .7 ± .01 .97 ± .01 1. ± .01
Diaz & Marathe (2019) .44 ± .01 .94 ± .01 .69 ± .01 .7 ± .01 .99 ± .01 1.03 ± .01
Proposed .43 ± .0 .95 ± .00 .72 ± .01 .7 ± .00 1 ± 0 1.27 ± .01
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A PROOF OF LEMMA 4.1

Proof. Let pi, pi+1 be the output probabilities of two adjacent classes, and let −1 = α0, . . . , αk = 1
be the thresholds. We will show that (i) if µ ≤ αi−1 then pi ≥ pi+1. Symmetrical argument will
then imply that if µ ≥ αi+1 then pi+1 ≥ pi (ii) if µ ∈ (αi−1, αi) then pi > pi+1, whenever the latter
exists. Similarly, this would imply that pi > pi−1. Together, (i) and (ii) will imply the statement of
the lemma.

Denote by f the density of the N (µ, σ2) distribution. To prove (i) observe that p̃i >
2f(αi)
k > p̃i+1,

which implies pi > pi+1.

To prove (ii), divide the i’th bin to two sub-bins Bi,1, Bi,2, of lengths a = µ− αi−1 and b = αi − µ,
respectively. Similarly, divide the i+ 1’th bin to two bins Bi+1,1, Bi+1,2 lengths b and a. Then from
(i) ∫

Bi,2

f(x)dx >

∫
Bi+1,1

f(x)dx. (10)

In addition, observe that ∫
Bi,1

f(x)dx =

∫ a

0

f(µ+ x)dx

>

∫ a

0

f(µ+ 2b+ x)dx

=

∫
Bi+1,2

f(x)dx. (11)

Adding up equations (10) and (11), we obtain p̃i > p̃i+1, which gives pi > pi+1.

B DATASETS

Tabel 2 contains information on the benchmark datasets used for our experiments.

HCI (Historical Color Image) dataset contains 1326 images, partitioned to 5 classes, corresponding
to decades from 1930s to 1970s, and the task is to associate each images with the decade it was taken
at. Random affine, radom horizontal / vertical flips and random crops of 224 transformations are
applied during the training. The images are normalized in each color channel with mean and standard
deviation of 0.5. The dataset was randomly split to the train/test as described in the Table 3.

Adience: During the training the images are resized to (256,256) and random crop of size 224 and
random horizontal flip are applied as augmentations.

FG-Net: We partitioned the dataset to 8 classes, corresponding to decades. Augmentations were
same as in the Adience experiment.

RetinaMNIST dataset has 5 classes and we apply random affine, horizontal and vertical flips as
augmentations during the training. The size of the images is (28,28) as it provided by the dataset
contributors. The train/test splits are proved by the contributors and were used as-is.

AFAD-LITE is a subset of the full AFAD dataset, which contains images of 22 continuous ages (for
15 to 40), in the amount of 60K. We partitioned the dataset into 4 classes and augmentations were the
same as in the Adience experiment.

EVA (Explainable Visual Aesthetics) dataset containes 4070 images aesthetically ranked from 0
to 10 by multiple voters. We calculate the average score for each image and partition the data
into 5 classes in accordance with the average score. Augmentations were same as in the Adience
experiment.

AAF (All-Age-Faces) dataset is already pre-processed and contains 13,322 face images (mostly
Asian), distributed across all ages (from 2 to 80). We partitioned the dataset into 6 classes and
augmentations were the same as in the Adience experiment.

12



Under review as a conference paper at ICLR 2023

Figure 6: Examples from the AFAD-LITE dataset. Age classes are indicated above.

Figure 7: Examples from the FG-Net dataset. Age classes are indicated above.

WIKI dataset contains 62,328 images of celebrities from wikipedia with ages ranging form 1 to
100. Images with wrong timestamps are removed, and the dataset is partitioned into 6 classed.
Augmentations were same as in the Adience experiment.

Figures 6, 7, 8, 9, 10 show examples from the AFAD-LITE, FG-Net, EVA, AAF and WIKI datasets.

Table 2: Benchmark datasets characteristics
Dataset Task Train images Test Images Classes

Adience age estimation pre-defined splits 8
HCI image dating 1,276 50 5
FG-Net age estimation 902 100 8
RetinaMNIST DR classification 1200 400 5
AFAD-LITE age estimation 37980 11869 4
AAF age estimation 9058 2665 6
EVA aesthetics estimation 2940 611 5
WIKI age estimation 38660 12082 6

C TECHNICAL DETAILS

Table 3 shows the technical details for the experiments on the real world benchmark datasets reported
in this manuscript.

Table 3: Technical details of the experiments
Dataset Epochs Batch size initial LR Decay LR after (epochs) Weight Decay γ εR

Adience 100 64 10−4 40 10−5 0 .5
HCI 500 16 10−4 100, 300 10−3 .1 .5
FG-Net 100 64 10−4 40 10−4 0 .5
RetinaMNIST 100 16 10−4 80, 90 10−4 0 .5
AFAD-LITE 100 64 10−4 40 10−5 0 .5
AAF 100 64 10−4 40 10−5 0 .5
EVA 100 64 10−4 40 10−5 .1 .5
WIKI 100 64 10−4 40 10−5 .25 .5

The Adam optimizer was used in all experiments, with the default β = (0.9, 0.999). The means and
standard deviations reported in table 6 are based on 10 repetitions of each experiment, differing in
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Figure 8: Examples from the EVA dataset. Aesthetics classes are indicated above.

Figure 9: Examples from the AAF dataset. Age classes are indicated above.

weights initialization and random train-test splits, except for Adience, for which we repeated the
experiment five times, using the same train-test splits as the creators of the dataset3.

D EXTENDED EXPERIMENTS ON HCI DATASET WITH DIFFERENT
DISTRIBUTION FUNCTIONS

Table 4: Performance of the proposed method on HCI dataset with different distribution functions, in
a mean ± std format.

Distribution MAE OOA Spearman QWK % Unimodal Entropy ratio

Cauchy .58 ± .04 .87 ± .02 .70 ± .03 .76 ± .02 1 ± 0 .81 ± .2
Laplace .58 ± .03 .87 ± .01 .69 ± .02 .75 ± .02 1 ± 0 .83 ± .05
Logistic .63 ± .09 .85 ± .03 .72 ± .06 .75 ± .04 1 ± 0 .92 ± .2
Normal .54 ± .03 .89 ± .01 .70 ± .03 .77 ± .02 1 ± 0 .95 ± 0.13

Figure 10: Examples from the WIKI dataset. Age classes are indicated above.

3https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds/
train_val_txt_files_per_fold
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