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Abstract. Contextualized embeddings use unsupervised language model pretrain-
ing to compute word representations depending on their context. This is intuitively
useful for generalization, especially in Named-Entity Recognition where it is
crucial to detect mentions never seen during training. However, standard English
benchmarks overestimate the importance of lexical over contextual features be-
cause of an unrealistic lexical overlap between train and test mentions. In this
paper, we perform an empirical analysis of the generalization capabilities of state-
of-the-art contextualized embeddings by separating mentions by novelty and with
out-of-domain evaluation. We show that they are particularly beneficial for unseen
mentions detection, especially out-of-domain. For models trained on CoNLLO03,
language model contextualization leads to a +1.2% maximal relative micro-F1
score increase in-domain against +13% out-of-domain on the WNUT dataset'.
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1 Introduction

Named-Entity Recognition (NER) consists in detecting textual mentions of entities and
classifying them into predefined types. It is modeled as sequence labeling, the standard
neural architecture of which is BILSTM-CREF [§]]. Recent improvements mainly stem
from using new types of representations: learned character-level word embeddings [9]]
and contextualized embeddings derived from a language model (LM) [[1,/6,/14]].

LM pretraining enables to obtain contextual word representations and reduce the
dependency of neural networks on hand-labeled data specific to tasks or domains [[7,/16].
This contextualization ability can particularly benefit to NER domain adaptation which
is often limited to training a network on source data and either feeding its predictions to
a new classifier or finetuning it on target data [[10},/17]]. All the more as classical NER
models have been shown to poorly generalize to unseen mentions or domains [2].

In this paper, we quantify the impact of ELMo [[14]], Flair [ 1] and BERT /6] repre-
sentations on generalization to unseen mentions and new domains in NER. To better
understand their effectiveness, we propose a set of experiments to distinguish the effect
of unsupervised LM contextualization (C',5s) from task supervised contextualization
(CnER)- We show that the former mainly benefits unseen mentions detection, all the
more out-of-domain where it is even more beneficial than the latter.

! The code is available at https://github.com/btaille/contener
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2 Lexical Overlap

Neural NER models mainly rely on lexical features in the form of word embeddings,
either learned at the character-level or not. Yet, standard NER benchmarks present a
large lexical overlap between mentions in the train set and dev / test sets which leads
to a poor evaluation of generalization to unseen mentions as shown by Augenstein et
al. [2]]. They separate seen from unseen mentions and evaluate out-of-domain to focus
on generalization but only study models designed before 2011 and no longer in use.

We propose to use a similar setting to analyze the impact of state-of-the-art LM
pretraining methods on generalization in NER. We introduce a slightly more fine-grained
novelty partition by separating unseen mentions in partial match and new categories. A
mention is an exact match (EM) if it appears in the exact same case-sensitive form in the
train set, tagged with the same type. It is a partial match (PM) if at least one of its non
stop words appears in a mention of same type. Every other mentions are new.

We study lexical overlap in CoNLLO3 [[18]] and OntoNotes [20]], the two main English
NER datasets, as well as WNUT17 [5]] which is smaller, specific to user generated
content (tweets, comments) and was designed without exact overlap. For out-of-domain
evaluation, we train on CoNLLO3 (news articles) and test on the larger and more diverse
OntoNotes (see Table[d] for genres) and the very specific WNUT. We remap OntoNotes
and WNUT entity types to match CONLLO03’s ! and denote the obtained dataset with *.

Table 1. Per type lexical overlap of test mention occurrences with respective train set in-domain
and with CoNLLO3 train set in the out-of-domain scenario. (EM / PM = exact / partial match)

CoNLLO3 ON OntoNotes™ WNUT WNUT*

LOC MISC ORG PER ALL ALL LOC MISC ORG PER ALL ALL LOC ORG PER ALL

EM 82% 67% 54% 14% 52% 67% 87% 93% 54% 49% 69% - - -
PM 4% 11% 17% 43% 20% 24% 6% 2% 32% 36% 20% 12% 11% 5% 13% 12%
New 14% 22% 29% 43% 28% 9% 7% 5% 14% 15% 11% 88% 89% 95% 87% 88%

Self

- EM - - - - - - 0% 78% 18% 16% 42% - 26% 8% 1% 1%
% PM - - - - - - 7% 10% 45% 46% 28% - 9% 15% 16% 14%
O New - - - - - - 23% 12% 38% 38% 30% - 65% T1% 83% 78%

As reported in Table[T] the two main benchmarks for English NER mainly evaluate
performance on occurrences of mentions already seen during training, although they
appear in different sentences. Such lexical overlap proportions are unrealistic in real-life
where the model must process orders of magnitude more documents in the inference
phase than it has been trained on, to amortize the annotation cost. On the contrary,
WNUT proposes a particularly challenging low-resource setting with no exact overlap.

Furthermore, the overlap depends on the entity types: Location and Miscellaneous
are the most overlapping types, even out-of-domain, whereas Person and Organization
present a more varied vocabulary, also more subject to evolve with time and domain.

' We map LOC + GPE in OntoNotes to LOC in CoNLL03 and NORP + LANGUAGE to MISC.
Other mappings are self-explanatory. We drop types that have no correspondence.
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3 Word Representations

Word embeddings map each word to a single vector which results in a lexical rep-
resentation. We take GloVe 840B embeddings [ 13| trained on Common Crawl as the
pretrained word embeddings baseline and fine-tune them as done in related work.

Character-level word embeddings are learned by a word-level neural network from
character embeddings to incorporate orthographic and morphological features. We
reproduce the Char-BiLSTM from [9]]. It is trained jointly with the NER model and its
outputs are concatenated to GloVe embeddings. We also experiment with the Char-CNN
layer from ELMo to isolate the effect of LM contextualization and denote it ELMol[0].

Contextualized word embeddings take into account the context of a word in its
representation, contrary to previous representations. A LM is pretrained and used to
predict the representation of a word given its context. ELMo [14] uses a Char-CNN to
obtain a context-independent word embedding and the concatenation of a forward and
backward two-layer LSTM LM for contextualization. These representations are summed
with weights learned for each task as the LM is frozen after pretraining. BERT [0]
uses WordPiece subword embeddings [21] and learns a representation modeling both
left and right contexts by training a Transformer encoder [19] for Masked LM and
next sentence prediction. For a fairer comparison, we use the BERT srgg feature-based
approach where the LM is not fine-tuned and its last four hidden layers are concatenated.
Flair [1] uses a character-level LM for contextualization. As in ELMo, they train two
opposite LSTM LMs, freeze them and concatenate the predicted states of the first and
last characters of each word. Flair and ELMo are pretrained on the 1 Billion Word
Benchmark [3|] while BERT uses Book Corpus [22]] and English Wikipedia.

4 Experiments

In order to compare the different embeddings, we feed them as input to a classifier. We
first use the state-of-the-art BILSTM-CRF [8]] with hidden size 100 in each direction and
present in-domain results on all datasets in Table 2]

We then report out-of-domain performance in Table [3] To better capture the intrinsic
effect of LM contextualization, we introduce the Map-CRF baseline from [[1] where the
BiLSTM is replaced by a simple linear projection of each word embedding. We only
consider domain adaptation from CoNLLO03 to OntoNotes* and WNUT* assuming that
labeled data is scarcer, less varied and more generic than target data in real use cases.

We use the IOBES tagging scheme for NER and no preprocessing. We fix a batch
size of 64, a learning rate of 0.001 and a 0.5 dropout rate at the embedding layer and after
the BiLSTM or linear projection. The maximum number of epochs is set to 100 and we
use early stopping with patience 5 on validation global micro-F1. For each configuration,
we use the best performing optimization method between SGD and Adam with 8; = 0.9
and B2 = 0.999. We report the mean and standard deviation of five runs.
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Table 2. In-domain micro-F1 scores of the BILSTM-CRF. We split mentions by novelty: exact
match (EM), partial match (PM) and new. Average of 5 runs, subscript denotes standard deviation.

Embedding Dim

CoNLLO03

OntoNotes™

WNUT*

EM PM New All

EM PM New All

PM New All

BERT 4096 95.7, 88.8, 82.2; 90.5, 969, 88.65 81.15 93.5,  77.04553.9, 57.0.
ELMo 1024 95.9, 89.25 85.8, 91.8;  97.1, 88.0, 79.9, 934,  67.7:,49.5, 5211,
Flair 4096 95.4, 88.1, 83.55 90.6, 967, 85.85 75.05 92.1, 649 48.2,050.4,
ELMo[0] 1024 95.8, 87.2, 83.5, 90.7, 96.9, 859, 75.5, 924, 72.8,,45.4,,49.1,,

GloVe + char 350

95.35 85.5; 83.1; 89.9;

96.3, 83.3, 69.95 91.0,

63.2,633.4,538.0,1

GloVe 300 95.1, 8535 81.15 89.3, 96.2, 82.9, 63.85 90.4, 59.1,,28.1,532.9,,

4.1 General Observations

ELMo, BERT and Flair Drawing conclusions from the comparison of ELMo, BERT
and Flair is difficult because there is no clear hierarchy accross datasets and they differ
in dimensions, tokenization, contextualization levels and pretraining corpora. However,
although BERT is particularly effective on the WNUT dataset in-domain, probably due
to its subword tokenization, ELMo yields the most stable results in and out-of-domain.

Furthermore, Flair globally underperforms ELMo and BERT, particularly for unseen
mentions and out-of-domain. This suggests that LM pretraining at a lexical level (word
or subword) is more robust for generalization than at a character level. In fact, Flair
only beats the non contextual ELMo[0] baseline with Map-CRF which indicates that
character-level contextualization is less beneficial than word-level contextualization with
character-level representations.

ELMo[0] vs GloVe+char Overall, ELMo[0] outperforms the GloVe+char baseline,
particularly on unseen mentions, out-of-domain and on WNUT*. The main difference
is the incorporation of morphological features: in ELMo[0] they are learned jointly
with the LM on a huge dataset whereas the char-BiLSTM is only trained on the source
NER training set. Yet, morphology is crucial to represent words never encountered
during pretraining and in WNUT"* around 20% of words in test mentions are out of
GloVe vocabulary against 5% in CoNLLO03 and 3% in OntoNotes*. This explains the
poor performance of GloVe baselines on WNUT?, all the more out-of-domain, and why
a model trained on CoNLLO03 with ELMo outperforms one trained on WNUT* with
GloVe+char. Thus, ELMo’s improvement over previous state-of-the-art does not only
stem from contextualization but also an effective non-contextual word representation.

Seen Mentions Bias In every configuration, F'lezqct > F'lpartial > F'lpew With more
than 10 points difference. This gap is wider out-of-domain where the context differs
more from training data than in-domain. NER models thus poorly generalize to unseen
mentions, and datasets with high lexical overlap only encourage this behavior. However,
this generalization gap is reduced by two types of contextualization described hereafter.



Contextualized Embeddings in Named-Entity Recognition 5

Table 3. Micro-F1 scores of models trained on CoNLLO03 and tested in-domain and out-of-domain
on OntoNotes™ and WNUT™. Average of 5 runs, subscript denotes standard deviation.

CoNLLO03 OntoNotes™ WNUT*

Emb EM PM New All EM PM New All EM PM New All

BERT  95.7, 88.8; 82.2; 90.5, 95.1, 82.95 73.5, 85.0; 57.4,,56.3,,32.45 37.65
% ELMo 959, 89.2; 85.8; 91.8: 943, 79.2, 72.4, 834, 55.8,252.7,,36.5,541.0,
; Flair 954, 88.1 83.55 906,  94.0; 76.1,1 62.15 79.05  56.2:,49.4:429.15334.9,,
& ELMo[0] 95.8, 87.2, 83.5, 90.7, 93.6, 76.8, 66.1, 80.5, 52.3,,50.8,532.6,237.6:5
.E G +char 95.3; 85.5, 83.1, 89.95 93.9, 73.9,, 60.4, 77.95 5595 46.8,5 19.6,427.2,,

GloVe  95.1, 85.3;5 81.15 893, 93.7, 73.0,,57.4,576.9, 53.9,,46.3,513.3,527.1,

BERT  93.2; 85.8, 73.7; 862, 93.5, 77.85 67.8, 80.9, 57.4; 53.5,533.9, 38.4,
o ELMo 937, 87.2, 80.1, 88.7, 93.6, 79.15 69.5, 82.2, 61.1, 53.0, 37.5, 42.4
& Flair 94.3, 85.1; 78.6; 88.14, 93.2, 74.05 59.6, 77.5, 52.5,,50.6, 28.85 33.75
& ELMo[0] 92.2, 80.5,, 68.6 834, 91.6, 69.6,056.81575.010 51.91, 42.6, 32.4, 358,
= G+char 93.1, 80.7, 69.8, 84.4, 91.8: 69.3; 55.6,, 74.85 50.6, 42.5,,20.6,5 287,

GloVe  92.2, 77.04 61.75 81.5,s 89.6; 62.8; 38.5, 68.1, 46.85 41.35 3.2, 18.9,

4.2 LM and NER Contextualizations

The ELMo[0] and Map-CRF baselines enable to strictly distinguish contextualization
due to LM pretraining (C'1, 5, : ELMo[0] to ELMo) from task supervised contextualization
induced by the BiLSTM network (C'y gr: Map to BILSTM). In both cases, a BILSTM
incorporates syntactic information which improves generalization to unseen mentions
for which context is decisive, as shown in Table[3]

Comparison However, because Cygp is specific to the source dataset, it is more
effective in-domain whereas C, ), is particularly helpful out-of-domain. In the latter
setting, the benefits from C s even surpass those from Cy g g, specifically on domains
further from source data such as web text in OntoNotes* (see Table ) or WNUT™. This
is again explained by the difference in quantity and quality of the corpora on which these
contextualizations are learned. The much larger and more generic unlabeled corpora
on which LM are pretrained lead to contextual representations more robust to domain
adaptation than C'y g learned on a small and specific NER corpus.

Similar behaviors can be observed when comparing BERT and Flair to the GloVe
baselines, although we cannot separate the effects of representation and contextualization.

Complementarity Both in-domain and out-of-domain on OntoNotes*, the two types of
contextualization transfer complementary syntactic features leading to the best configura-
tion. However, in the most difficult case of zero-shot domain adaptation from CoNLLO03
to WNUT*, Cygg is detrimental with ELMo and BERT. This is probably due to the
specificity of the target domain, excessively different from source data.
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Table 4. Per-genre micro-F1 scores of the BILSTM-CRF model trained on CoNLLO03 and tested on
OntoNotes™ (broadcast conversation, broadcast news, news wire, magazine, telephone conversation
and web text). C'r ps mostly benefits genres furthest from the news source domain.

bc bn nw mz tc wb All
BERT 8725 884, 847, 824, 8451 79519 85.03
ELMo 85.0¢ 88.63 8293 78.1; 84.0g 7995 834,
Flair 78.011 86.54 804¢ 7T1.14 73518 72.1g 79.05

ELMol[0] 82.65 88.03 79.65 7346 7921, 75.15 80.52
GloVe + char 80.43 86.3,4 77.01,0 70.7,4 79.71,3 69.2,3 77.9.5

5 Related Work

Augenstein et al. [2] perform a quantitative study of two CRF-based models and a CNN
with classical word embeddings [4] over seven NER datasets including CoNLL03 and
OntoNotes. They separate performance on seen (exact match) and unseen mentions and
show a drop in F1 on unseen mentions and out-of-domain. Although comprehensive
in experiments, this analysis is limited to models dating back from 2005 to 2011. We
use a similar experimental setting to draw new insights on state-of-the art architectures
and word representations. We limit to the two main English NER benchmarks as well
as WNUT which was specifically designed to tackle this generalization problem in the
Twitter domain. These three datasets cover all the domains studied in [2].

Moosavi and Strube raise a similar lexical overlap issue in Coreference Resolution
on the CoNLL2012 dataset. They first show that for out-of-domain evaluation the
performance gap between Deep Learning models and a rule-based system fades away
[L1]. They then add linguistic features (such as gender, NER, POS...) to improve out-of-
domain generalization [[12]. Nevertheless, such features are obtained using models in
turn based on lexical features and at least for NER the same lexical overlap issue arises.

Finally, Pires et al. [[15]] concurrently evaluate the cross-lingual generalization ca-
pability of Multilingual BERT for NER and POS tagging. Our work on monolingual
generalization to unseen mentions and domains naturally complements this study.

6 Conclusion

NER benchmarks are biased towards seen mentions, at the opposite of real-life appli-
cations. Hence the necessity to disentangle performance on seen and unseen mentions
and test out-of-domain. In such setting, we show that contextualization from LM pre-
training is particularly beneficial for generalization to unseen mentions, all the more
out-of-domain where it surpasses supervised contextualization.

Despite this improvement, unseen mentions detection remains challenging and further
work could explore attention or regularization mechanisms to better incorporate context
and improve generalization. Furthermore, we can investigate how to best incorporate
target data to improve this LM pretraining zero-shot domain adaptation baseline.
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