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ABSTRACT

Radiance fields have been successful in reconstructing 3D assets for scenes pre-
sented in Virtual Reality and Augmented Reality (VR/AR). The general workflow
of scanning objects with radiance field representation involves a heavy workload
of capturing images depicting the object empirically by the user, and lacks feed-
back for the image collection stage. This would lead to potential repeated or
deficient gathering of information, affecting the efficiency of the reconstruction
workflow. In this paper, we therefore present an active learning algorithm for 3D
Gaussian Splatting that guides the image capturing by estimating the pose of the
most informative image. Specifically, our method first partitions the consistent
regions in the model by analyzing the Gaussian attributes and visibility features.
Then, we determine the informative region to explore by estimating the semantic
feature variance of each Gaussian, which evaluates the quality of the Gaussian
cloud from the semantic level features. Furthermore, we tackle the practical prob-
lem of noise in the pose of the collected image via a robust pose optimization
method. Extensive experimental results on both synthetic and real-world scenes
demonstrate the remarkable performance of our algorithm in active learning of the
radiance field under both accurate and noisy pose conditions.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) has become popular in novel view synthesis of
objects and scenes by learning a radiance field represented based on Gaussian ellipsoids. However, a
major problem of 3DGS is that it requires a large number of images for training, which are desired to
be placed densely to cover the scene. Capturing such images would require extensive and potentially
repeated human labor. More importantly, timely feedback on the quality of the captured images is
missing, leading to a potential oversampling of images in some object parts and undersampling in
some others at the same time. This incurs the misalignment of the captured images and the required
images for reconstructing the radiance field.

A practical solution to the above problem is the active learning of radiance field reconstruction,
where image capturing and 3DGS model training are performed simultaneously in an online man-
ner and provide mutual guidance for each other. Such an active reconstruction algorithm delivers
the user with the next best poses for capturing images, where they can provide the model with the
most information that is missing in the current model. Existing research on the active reconstruction
mostly focused on evaluating the quality of rendered images to choose the next pose, and developed
heuristic metrics such as predictive uncertainty or ray entropy Lee et al. (2022); Ran et al. (2023).
However, these methods cannot directly generate new poses, and require randomly sampling some
candidate poses first. Then, they evaluate the informativeness of the rendered images, which would
ignore the occluded regions. Also, these metrics overlook the semantic features quality of object
parts in the radiance field, which reflects the recognizability of object semantics and is an impor-
tant indicator of the perceptual quality of the geometry and appearance of the reconstructed object.
Moreover, previous works Jiang et al. (2023); Pan et al. (2022b) select the next views from a pre-
collected dataset, assuming that the perfect camera pose is provided. However, from a practical
perspective, the actual captured image might deviate from the desired best pose, leading to noise in
the camera pose and poor reconstruction results.
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Figure 1: An application scenario of our active reconstruction algorithm. Our algorithm can be
deployed on the server end, providing the next best pose in a front-end smartphone showing as
virtual cameras to guide the image capturing.

In this paper, we develop a practical active reconstruction algorithm that solves the above challenges.
Our method can directly analyze the noisy distribution of an incomplete 3DGS model under training,
providing guidance for a progressive scanning of each object part, and finally composing a complete,
semantically recognizable object with distinct appearance features. Furthermore, to handle the noisy
pose raised by the image capturing with, e.g., a camera on a handheld device, we design a pose
optimization algorithm that can move the camera from the given next pose to the actual pose of
collected image. Our algorithm runs in an online manner, providing the user with feedback on the
noisy region of the current model and guidance to the next pose.

Conceptually, we apply a bottom-up strategy to capture the under-reconstructed object parts in se-
quence. Specifically, we propose an active reconstruction algorithm that can firstly divide the con-
sistent part of the 3DGS models. These consistent parts share similar geometry, texture and visibility
features. The divided consistent regions are captured by a set of adjacent cameras, where they can
provide the best coverage for that region. We use the variance of the semantic feature of each Gaus-
sian in the model to evaluate the quality of each Gaussian and determine the noise and uncertain
region. Also, our method can adaptively decide the number of new poses in each image capturing
step according to the size of the consistent region. Additionally, we employ a pose optimization with
reprojection loss to optimize the actual pose of newly captured images, showing robustness under
inaccurate poses.

Experiment results have demonstrated that the informativeness of the next best poses generated by
our method outperforms those from the existing state-of-the-art method, evaluated quantitatively by
the quality of synthesized novel views on benchmarks of the radiance field active reconstruction with
perfect pose using a limited number of images. We also validated that our robust pose estimation
can improve 3DGS model quality by reconstructing real-world objects under large pose noise. The
contributions of our work are summarized as follows:

• We propose a bottom-up strategy for dividing and conquering the noisy consistent regions
in reconstructing the radiance field of objects in an active manner.

• We propose to evaluate the noisy level of Gaussians with semantic feature variance to
choose the next pose.

• We develop a pose fine-tuning method based on reprojection of visible Gaussian to provide
depth supervision for optimizing the pose.

2 RELATED WORK

2.1 ACTIVE RECONSTRUCTION OF RADIANCE FIELD

Previous works investigated the active view selection problem of radiance fields with known actual
poses of new images. Generally, they select the next view from a candidate set of images already

2
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collected with poses estimated. Among them, FisherRF Jiang et al. (2023) investigated the criterion
for the next view, where they select the next image from a pre-collected set of images by maximiz-
ing the expected information gain. Earlier view selection methods build upon Neural Radiance Field
(NeRF). NeurAR Ran et al. (2023) and ActiveNeRF Pan et al. (2022b) add uncertainty output into
the neural network and optimize with Negative Log Likelihood (NLL) loss, which is then used to
choose the next view. Lee et al. Lee et al. (2022) proposed to leverage the entropy of density distri-
bution along the ray as the uncertainty metric for that pixel. Xue et al. Xue et al. (2024) proposed
an uncertainty estimation method for NeRF based on a Bayesian neural network, and takes visibility
into account in learning the uncertainty of rendered image. NeRF Director Xiao et al. (2024) pro-
posed an evaluation framework for view selection. Other works Jin et al. (2023); Pan et al. (2023);
Yan et al. (2023); Lee et al. (2023); Zhan et al. (2022) proposed different uncertainty or information
gain estimation methods for rendered images of NeRF, while they cannot be directly used for 3DGS.
Some previous works provided practical image capturing systems using cameras held by robot arms
for the radiance field. ScanNeRF De Luigi et al. (2022) collects densely posed images from a pre-
defined trajectory. Lee et al. Lee et al. (2022) used a wheeled robot and a five degrees of freedom
manipulator to capture the estimated next best pose. However, they only consider the case when per-
fect actual poses are provided. Nevertheless, our work considers a more practical scenario, where
the actual pose of the newly captured image deviates from the desired best pose, raised by error
from the inaccurate pose of a camera held by a robot arm or a mobile device. Moreover, we utilize
the explicit property of 3DGS, where we can generate directly informative poses without rendering
and evaluating images. Thus, our method can run in an online manner and guide the users to image
capturing.

Apart from object-level view selection, some other methods are proposed for the active reconstruc-
tion of large-scale scenes with neural implicit fields. These methods often take into account the path
length when exploring the scene. Zeng et al. Zeng et al. (2022) proposed to reconstruct an implicit
Truncated Signed Distance Function (TSDF) field, and leverage the neural network to approximate
the information gain field in an implicit manner. Additionally, they deploy their method on a real
drone. Active neural mapping and follow-up work Yan et al. (2023); Kuang et al. (2024) introduce
an active exploration and mapping of indoor scenes with implicit representation. NARUTO Feng
et al. (2024) defined an uncertainty metric used for the exploration of indoor scenes with the TSDF
field. Additionally, some previous research Kwon et al. (2023); Chen et al. (2023); Adamkiewicz
et al. (2022); Marza et al. (2023); Jiang et al. (2024); Chaplot et al. (2020); Jin et al. (2024); Li et al.
(2024) leveraged the radiance field or implicit field and designed algorithms for tasks such as active
object finding, navigation, and embodied agents, where they consider not only the maximization
of the reconstruction quality but also navigation to the target and path efficiency. Our work can be
extended to such a scene-level scenario by estimating the semantic feature variance metric for each
object in the scene.

2.2 NEXT BEST VIEW PLANNING

Apart from the radiance field, some algorithms were proposed to solve the view planning or sen-
sor planning problem in object-level scanning for data structures such as voxels, point clouds or
building maps of the scene. The majority of these algorithms leverage robots equipped with depth
sensors or use multi-view stereo methods to acquire accurate depth. Tarabanis et al. Tarabanis et al.
(1995) designed a sensor planning algorithm for a robot vision system considering the detectability
of feature points. GenNBV Chen et al. (2024) formulated the NBV problem as a Markov Decision
Process (MDP), and learned a generalizable reinforcement learning model for next best view pre-
diction using a simulator with hundreds of models. Yan et al. Yan et al. (2023) trained a sequential
prediction model that can predict the best pose considering the previous input image and the model
under reconstruction. They use reward functions such as the intersection of the reconstructed model
with the ground truth to lead the training of best pose prediction.

Another line of works designed geometry-based methods Zeng et al. (2020); Scott et al. (2003); Lee
et al. (2020); Scott et al. (2003); Mendoza et al. (2020); Daudelin & Campbell (2017); Kriegel et al.
(2012; 2011) for view planning in object scanning with depth sensors, where accurate depth infor-
mation is available. For example, Chen et al. Chen & Li (2005) established a uniform surface model
by analyzing the surface curvatures of objects, which helps determine the pose that captures noisy
parts. Mendoza et al. Mendoza et al. (2020) modeled the best pose prediction as a classification
problem and built a 3D CNN that learns to predict the next best pose from a volume input. They
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Figure 2: The above figure shows the pipeline of our active reconstruction algorithm. The next
best pose estimation contains consistent region partitioning, noisy region determination and view
sampling stages. The 3DGS model training, next pose estimation and guided image acquisition are
performed iteratively.

trained on a dataset containing trajectories generated from 14 objects. SCVP Pan et al. (2022a) mod-
eled the view planning as a set covering optimization problem. Different from the above works, our
method is built upon the radiance field, which can generate dense reconstruction with photorealistic
novel view renders with image input only.

Some other works Song et al. (2022); Bircher et al. (2016); Caccamo et al. (2016); Naazare et al.
(2022); Sun et al. (2020); Wang et al. (2019) designed algorithms for drones and field robots to
actively explore scenes. Yamauchi Yamauchi (1997) proposed the concept of frontiers for active
exploration, which are locations lies on the intersection of explored and unknown areas in the scene.
SCONE Guédon et al. (2022) defined the surface coverage metric and proposed a Monte Carlo in-
tegration over the volumetric representation to estimate the best pose. MACRONS Guédon et al.
(2023) learned to predict a volume occupancy field and estimate the best view from previous ob-
servations in a self-supervised learning manner. Zhou et al. Zhou et al. (2020) built an exploration
algorithm for drones that applies a hierarchical planning strategy.

Theoretically, the active mesh reconstruction problem is related to the art gallery problem O’Rourke
(1987); Marzal, which investigates the minimum number of views to cover the surface of a known
model. Some computational geometry algorithms Bonnet & Miltzow (2016) can solve the best
view placement with known model geometry, whereas our algorithm reconstructs unknown models
actively.

3 METHOD

3.1 ACTIVE LEARNING PIPELINE

In the original pipeline of 3DGS, a batch of K images is first captured. Then, the Structure from
Motion (SfM) algorithm is performed to estimate the camera pose of each image. After that, a 3DGS
model G is trained by projecting the Gaussians into the image plane and performing rasterization to
get the rendered image:

c =
∑
i

ciαiGi(x)

i−1∏
j=1

(1− αjGj(x)) , (1)

where i, j are the indices for Gaussians, c is the view-dependent color, determined by spherical
harmonics, α is the density, and G is a Gaussian function centered at the position x: G(x) =
exp

(
−1/2 · x⊤Σ−1x

)
, where the covariance matrix Σ determines the rotation and scaling of Gaus-

sian. During training, we minimize the difference between the image and the ground truth with a
combination of L1 loss and structural similarity loss.

However, in our active reconstruction algorithm, the 3DGS model is learned in an online manner,
where the image capturing and optimization take place in alternation. At the kth image capturing
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step, one or more images are captured from given poses:

{P1
k,P

2
k, ...,P

l
k} = A(Gk), (2)

where poses are chosen from the camera extrinsic space P ∈ SE(3). The acquisition function
A will analyze the model at the k image capturing step Gk and estimate the next poses P while
determining the number of poses needed to be captured l adaptively.

The objective of the acquisition function A is to provide the model with the most amount of infor-
mation from images obtained at these poses, in order to minimize the effort of capturing images. In
our work, we first build an algorithm that can find under-reconstructed parts of the 3DGS model.
Specifically, our method first divides consistent regions of the current 3DGS model Gk and evaluates
which regions are the most noisy and uncertain parts, thus requiring more images to cover. Then, our
method can provide the informative camera pose in, for example, an Augmented Reality application
to guide the user to collect images, as shown in Figure 1. These processes are repeated until the
required number of images are collected.

In practice, the actual pose of the images collected by the above guided operation performed by
human users may deviate from the best poses. To solve this problem, we regard the estimated best
poses as the initialization for actual pose, then, we optimize the pose of these new images together
with the 3DGS model parameters.

3.2 INFORMATIVE VIEW ACQUISITION

In this section, we introduce our algorithm to determine the next poses for guiding the acquisition of
new images. Generally, our method follows a bottom-up strategy, where the objects are scanned by
parts individually. First, we will introduce the concept of local consistent regions and the algorithm
to partition them. Then, we generate new view samples on local consistent regions that are not
covered well by the data already collected. We determine these regions by estimating the variance
of the per-Gaussian semantic feature, which is extracted by a self-supervised model trained on the
large-scale dataset.

3.2.1 LOCAL CONSISTENT REGION DETERMINATION

Consistent Regions
of Drums

Different
Visibility

Figure 3: Our regions partitioning algorithm can
divide Gaussians based on their visibility feature,
which helps to find occluded surfaces and gener-
ates consistent next poses.

The consistent regions are connected areas
where the surface has smooth geometry, shares
similar texture, and, most importantly, the com-
plete region is often visible as a whole from
a camera pose. We referred to the last prop-
erty as the visibility feature, and will introduce
an algorithm to determine it for 3DGS mod-
els. Once we determine the local consistent
parts of the object, we employ a divide-and-
conquer scheme to infer possible new observa-
tions added to improve the reconstruction per-
formance of the most uncertain part. Figure 3
shows an example of the consistent region of a
complex object composed of many parts.

We first estimate the visibility feature of the
Gaussians. We refer to a region where the
points share similar visibility features as a
visibility-consistent region. An illustrative ex-
ample is that a thin plate has two sides; any
camera that sees one side can see most of the
surface on that side, and cannot see the other side. A visibility consistent region is mostly captured
together. To determine the visibility feature, we first sampled a subset of M 3D Gaussians, then
reconstructed the surface of the model with Alpha Shape. After that, a set of N camera positions are
sampled uniformly on the surface of a hemisphere around the object. We estimate a visibility matrix
Γ, where the (m,n) entry of the matrix Γmn is a binary indicator for the visibility of the mth point
from the nth camera. A point is visible to the camera if it is not occluded by any mesh triangle,
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and we use the fragment buffer in mesh rasterization to determine visibility in the implementation.
The m row of the visibility matrix is the visibility feature for mth Gaussian. The visibility feature,
concatenated with color and position constitutes the feature for each Gaussian:

γ = [x/r, c/
√
3, R,Γm/

√
N ], (3)

where r is a predefined radius of the model, R is the rotation of Gaussian, represented by quaternion.
Each of the four components in feature vectors is normalized by its maximum value. Finally, we
determine local consistent region by clustering the Gaussians with the above feature vector γ. We use
the K-Means Burkardt (2009) algorithm to form clusters of Gaussians that form consistent regions.

Compared to previous work using image-based metrics for determining the next best poses, which
is easily affected by image occlusion, our method determines the consistent region by visibility and
is able to perform reconstruction without missing any informative region. Figure 3 shows that our
method succeeds in distinguishing the two sides of the thin cymbal with different visibility.

3.2.2 SEMANTIC FEATURE VARIANCE SCORE

After partitioning the consistent regions, we have to determine which region is mostly noisy and
under-reconstructed, and more images should be captured around it. Using deep features learned
from large-scale datasets to evaluate the quality of data is a common practice in computer vision
Zhang et al. (2018). Therefore, we leverage the per-point semantic feature extracted from a point
cloud analysis model to directly determine the noisy level of each Gaussian.

Specifically, we perform surface reconstruction with the current Gaussian model using Alpha Shape
Edelsbrunner et al. (1983). We extract the vertices of the surface mesh as a point cloud. Then, we
extract the per-point deep feature of the point cloud using a Point-MAE model Pang et al. (2022).
This feature extraction model leverages an autoencoder with Transformer architecture, which is
pretrained in a self-supervised manner by mask modeling and finetuning on the per-point segmenta-
tion task. We perform T forward passes with different randomly sampled input points and dropout
masks to get multiple instances of features. Then, we compute the norm of the average variance of
the feature instances for each point to get the semantic variance score Ssem:

Ssem = ||var{ 1
T
Σft(x)}|| (4)

where ft is a feature extractor used in tth forward pass with random dropout mask, x is one point.
A larger variance score of the semantic feature instances implies that the semantic property of the
point is unstable. Since the Transformer model captures sequential features, the region around that
point has a higher noise level and poor quality Gal & Ghahramani (2016); Lakshminarayanan et al.
(2017). Additionally, we use the following metric Stotal to choose the consistent region needed to
be covered in the next image capturing step:

Stotal = λ1 ·
1

J
Ssem(xj) + λ2 ·mink||x̂− x̃k|| (5)

where x̂ = xj/J is the center of points in the region, x̃k is the center for chosen consistent region
at kth image capturing step. The latter term implies that a larger distance with historical covered
regions is encouraged in choosing the next region.

3.2.3 ADAPTIVE COVERAGE VIEW SAMPLE GENERATION

To generate the next best poses from a determined consistent region, we use the following sampling
method. We choose the centering point in the consistent region and cast a line starting from that
point along the normal direction. Then, we calculate the intersection point p of that point and a
bounding sphere with a given radius.

We sample camera position from a von Mises-Fisher distribution v(µ, κ), where the µ is the mean
direction and κ is the concentration parameter. We choose that intersection point on the bounding
sphere as the mean direction µ = p, and use κ = η1 · Nr/Nall as the concentration parameter,
where Nr is the number of points in the consistent region, Nall is the number of total points. The
number of poses sampled is also determined by this proportion of point number is η2 · Nr/Nall,
where η1 and η2 are preset coefficients. After that, camera poses are built using the lookat method

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Co
ns

is
te

nt
Re

gi
on

Re
nd

er
ed

Vi
ew

Ga
us

si
an

El
lip

so
id

s

Step 1 Step 2 Step 3 Step 4 Final Model

Ground Truth

Figure 4: We visualize the process of the active reconstruction across multiple image capturing
steps. The upper row shows the partitioned consistent region at each step, where the purple cluster
is the noisy region chosen to be covered by the informative poses generated. The middle and lower
rows show the under-reconstructed part in the 3DGS model. The model quality improves gradually
by adding new views to cover the noisy regions.

where the targeting point is the center consistent region. Since the von Mises-Fisher distribution
is also known as the Gaussian distribution in the 3D direction, this design choice is to ensure that
the sampled cameras are looking at the consistent region to cover. Our method can determine the
number of views to capture and adaptively, according to the view needed for that consistent area,
which further improves the efficiency of capturing the number of images needed.

As shown in Figure 4, our algorithm successfully divides the local consistent region of the cymbals
in the drums, which is noisy in the current model. After we identify the most under-reconstructed
consistent region using our method, we generate camera pose samples to cover that part. At the next
image acquisition step, that part is well-reconstructed.

3.3 ACCURATE ACTIVE RECONSTRUCTION WITH ROBUST POSE ESTIMATION

After estimating the poses for covering the next consistent region, we use the desired pose to guide
the user to capture the next poses, as shown in Figure 1. Once the image is collected, we optimize
the 3DGS model using the new image. In practice, the actual poses of the captured image might
differ from the given best view poses, considering that error is caused by the position of the handheld
device and the actual desired pose. Thus, we further optimize the actual pose of the captured images.

Specifically, we first freeze the 3DGS attributes and optimize only the relative pose between the
actual pose of the new image and the desired best pose:

T ∗ = argmin
T
Lpose (TP,P) . (6)

We would like to optimize the relative rigid transformation T ∈ SE(3) between the estimated best
pose P and the actual new pose TP. Numerically, we optimize the Lie algebra τ = Log T to avoid
an ill transformation matrix. We optimize the relative pose with the following objective function:

Lpose = Lrgb (c(TP), ĉ(P)) . (7)

We use the photometric loss here to minimize the distance between the image rendered by the model
c(TP) and the acquired new ground truth image ĉ(P). During pose optimization, we freeze the
learning of Gaussian attributes, which can avoid the infection of deviated pose to the Gaussian
model. After the relative pose optimization, we continue the learning of the 3DGS model parame-
ters. An overview of our pipeline is shown in Figure 2.
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Table 1: The quality of rendered images using active reconstruction under perfect pose.
10 Views 20 Views

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeurAR Ran et al. (2023) 18.94 0.774 0.241 23.71 0.819 0.172
NeRF + Random 16.430 0.809 0.254 22.614 0.890 0.111
NeRF + Furthest 19.24 0.735 0.227 26.00 0.812 0.144
NeRF + ActiveNeRF Pan et al. (2022b) 20.010 0.832 0.204 26.240 0.856 0.124
NeRF + BayesRays Goli et al. (2024) 14.950 0.798 0.282 22.504 0.887 0.115
NVF Xue et al. (2024) 18.691 0.821 0.228 21.736 0.925 0.162
Plenoxel + FisherRF Fridovich-Keil et al. (2022); Jiang et al. (2023) 20.670 0.824 0.205 24.513 0.876 0.157
3DGS + Random 22.493 0.873 0.112 28.732 0.939 0.053
3DGS + Furthest 18.782 0.764 0.200 22.346 0.814 0.143
3DGS + ActiveNeRF Pan et al. (2022b) 22.979 0.876 0.111 26.610 0.905 0.081
3DGS + FisherRF Jiang et al. (2023) 23.681 0.883 0.102 29.525 0.944 0.043

Ours 25.542 0.896 0.063 30.186 0.943 0.033

4 EXPERIMENTS

4.1 BACKGROUND

Implementation Details. We use 3D Gaussian Splatting as the reconstruction algorithm. Our active
reconstruction algorithm follows the same optimizer and learning rate for each attribute of the 3DGS
model. The image acquisition is performed every 300 steps, after which the model is reinitialized
as random points. To cluster Gaussians and perform consistent region partition, we sample a subset
of 10K Gaussians from the model, and use the K-Means algorithm and a relative tolerance of 1e−4.
After all images are collected, the model is further trained for 10, 000 steps.

Baselines. We chose the following active reconstruction methods as a comparison with our method:
1. NeurAR chooses the most uncertain next view evaluated by the additional variance output. 2.
ActiveNeRF, which acquires the image with the most posterior uncertainty. 3. FisherRF, which
uses Laplace’s approximation to estimate the expected information gain. 4. BayesRay quantifies
the uncertainty of radiance field with Laplacian approximation, and the most uncertain image is
chosen. 5. Random denotes randomly selecting views, and Furthest denotes selecting the most
distant view from existing ones. We choose NeRF, Plenoxels Fridovich-Keil et al. (2022) and 3DGS
as reconstruction backbones.

4.2 ACTIVE LEARNING WITH PERFECT POSE

We compare the reconstruction performance using 10 or 20 total views for all eight objects in the
NeRF-Synthetic dataset Mildenhall et al. (2020), and report the averaged image quality. For our
method, we first capture three initial images uniformly as initialization. Then, the best poses are
estimated and corresponding images are rendered in Blender and used for training. From the results
shown in Table 1, our method surpassed largely the performance of previous methods, such as
ActiveNeRF and FisehrRF, in all quantitative metrics. In terms of the PSNR metric, our method
outperforms FisherRF by 1.9.

The results of using 20 total view settings are shown in Table 1. Our method is superior to the
previous state-of-the-art method, FisherRF, in both PSNR and LPIPS and shows comparable results
in SSIM. We outperform FisherRF by 0.6 in terms of the PSNR metric. However, the performance
increase is not as significant as the 10 views. A plausible reason is that as the total number of images
increases, the redundancy of information in the given views also increases. We visualize the process
of next view generation and consistent region partition of the drums scene in Figure 4.

4.3 ACTIVE RECONSTRUCTION WITH NOISY POSE

We reconstruct four new real-world objects using our active reconstruction system, and compare the
visual quality of the reconstructions with and without pose optimization. We collect the next image
by manually matching the next best pose with the pose of the smartphone camera using the view
synthesis results from the current 3DGS model. Therefore, the pose of the collected image roughly

8
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Figure 5: The qualitative results of our active reconstruction with a handheld device. We compare
the visual results of rendered novel views.

aligns with the desired pose, with some noise on the camera pose raised by manually capturing left
for our algorithm to deal with. The qualitative results of active reconstruction with noisy pose are
shown in Figure 5. Without fine-tuning the actual pose of new captures, the noise in pose lowers
the visual quality of the model. For example, the wings of the phoenix toy fail to reconstruct and
become a white background. As a comparison, our robust pose optimization technique significantly
improves the quality of the overall reconstruction.

4.4 ABLATION STUDY

Table 2: Ablation study results of our method.
PSNR SSIM LPIPS

w/o Γ 21.271 0.863 0.137
w/o Distance 22.438 0.866 0.090
w/o Point-MAE 24.584 0.877 0.074
Full 25.542 0.896 0.063

We compare the following variants of our
method and baseline on 8 scenes from Blender
dataset using 10 total images: 1. Remove the
visibility feature Γ in Equation 3 when cluster-
ing local region; 2. Remove the larger distance
term in Equation 5 when choosing the most un-
certain region; 3. Replace Point-MAE feature
with Fisher Information implemented in Fish-
erRF to validate the effectiveness of semantic
feature variance in estimating uncertainty. The
results of view synthesis are shown in Table 2, and removing any component would lead to a perfor-
mance decrease, which validates the effectiveness of each individual component.

5 CONCLUSION

In this paper, we have proposed a practical system for online image acquisition and 3DGS recon-
struction. Our method applies a divide-and-conquer strategy, which captures the local consistent
regions adaptively to ensure complete coverage of the object. Experiment results have demonstrated
the superior performance of our method. Future work can be made to improve the efficiency of our
method or adapt it to large-scale environments.

9
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A APPENDIX

A.1 CODE FOR REPRODUCING RESULTS

A sample code is provided in the supplementary files for reproducing our results. This code demo
contains the Next-Best-View images and poses data selected by our active reconstruction algorithm,
and the 3D Gaussian Splatting training script to reproduce results on the Blender dataset shown
in Table 1 of the main paper, using the provided data selected by our algorithm. The active 3D
Gaussian Splatting training and next view pose estimation code will be released after publication.

A.2 IMPLEMENTATION DETAILS

A.2.1 VISIBILITY FEATURE EXTRACTION

Firstly, we perform Alpha Shape Edelsbrunner et al. (1983) with alpha value equals 0.05 to recon-
struct the triangle surface of the object from points in the exported Gaussians. The attributes of the
original Gaussian are assigned to each vertex in the reconstructed mesh by mapping each vertex with
the attributes of the closest Gaussian.

We sample N = 100 cameras randomly located on the surface of a sphere enclosing the object and
looking at the object center to determine the visibility matrix Γ. To perform visibility checking for
each vertex in the mesh, we leverage the output of the Pytorch3d rasterizer Ravi et al. (2020). We
first identify which faces are rendered at each pixel. Then, we use the depth information stored in
the depth buffer to find the closest face to the viewer. Specifically, for the nth camera, we map each
pixel to the vertex that appears in the pixel. We iterate through the rendered pixel, marking the faces
projected to each pixel with the minimum depth. Then, we find the vertex that belongs to the faces,
which are regarded as the visible vertex for the nth camera. We assign binary values indicating
visible or not for each vertex mask in the nth column of the visibility matrix Γ. Finally, each mth

row of Γ forms the visibility feature for that Gaussian point.

We compare quantitatively the image quality by the following three metrics: Peak Signal to Noise
Ratio (PSNR), Structural Similarity (SSIM) and Learned Perceptual image Patch Similarity (LPIPS)
with alexnet.

A.2.2 DEEP SEMANTIC FEATURE

We extract deep semantic features used in clustering the consistent regions for each Gaussian point.
We use a Point-MAE model Pang et al. (2022), where the encoder has 12 Transformer blocks.
The model is pre-trained in a masked auto-encoding manner on the ShapeNet dataset Chang et al.
(2015), and then finetuned on the ShapeNetPart dataset for the segmentation task. We use the feature
extracted by the transformer encoder, which has 512 dimensions for each point.

To obtain the per-point semantic feature, we perform a total of T = 8 times forward pass. In each
inference, we randomly sample 90 percent of the points as input, and dropout is performed for the
model parameters with a probability of 0.8 with different draws. Finally, we compute the norm of
the variance of features to get the semantic variance score.

Finally, we use K-Means clustering Burkardt (2009) with the combined and normalized features to
find the clusters of points within the same consistent region. We use K-Means with a number of
clusters equals 10, the maximum number of iterations equals 300, and the relative tolerance of the
difference in the cluster centers equals 1−4.

A.2.3 VIEW SAMPLING

In our active reconstruction with perfect poses on the Blender dataset experiments, we use a con-
centration parameter η1 = 0.1, and the coefficient for determining the number of generated cameras
η2 = 1. In real-world scenarios in AR-based active reconstruction, users can adjust these parameters
to fit the size and geometry complexity of the object.
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A.2.4 3DGS TRAINING

For selecting the best poses during active reconstruction, we train the 3DGS using the images already
collected from a random initialization every 500 steps. Finally, the model is trained for 10K steps.
For blender scenes, we use a densification interval of 100 steps. We reset the opacity every 3000
steps. The densification operation is always performed during active view selection, but is stopped
after the 7000th step of the final model training.

A.3 ALGORITHM PSEUDOCODE

Algorithm 1 Active Next Best View Selection
1: Input: Current 3DGS model Gk, acquisition history {P 1, ..., P k−1}
2: Output: Next view poses {P 1

k , ..., P
l
k}

3: Sample M Gaussians {gi}Mi=1 from Gk

4: Sample N camera views {vj}Nj=1 uniformly around object
5: Initialize visibility matrix Γ ∈ {0, 1}M×N

6: for each view vj do
7: Render alpha shape mesh from Gk

8: for each Gaussian gi do
9: Project gi into view vj

10: if gi is visible in vj (not occluded via rasterization) then
11: Γ[i, j]← 1
12: else
13: Γ[i, j]← 0
14: end if
15: end for
16: end for
17: for each Gaussian gi do
18: Construct feature vector γi = [xi/r, ci/

√
3, Ri,Γi/

√
N ]

19: end for
20: Cluster {γi} into consistent regions {Rj}Cj=1
21: for each region Rj do
22: Extract surface mesh and sample points {xj}
23: for t = 1 to T do
24: Compute deep features ft(xj) using Point-MAE with dropout
25: end for
26: Compute semantic variance Ssem(xj) = ∥vartft(xj)∥
27: Compute region score:
28: Sj

total = λ1 · 1
|Rj |

∑
Ssem(xj) + λ2 · dist(Rj , history)

29: end for
30: Select region R∗ = argmaxj S

j
total

31: Determine center and surface normal of R∗

32: Sample view directions from von Mises-Fisher distribution centered at bounding sphere inter-
section

33: Generate view poses {P 1
k , ..., P

l
k} using look-at orientation toward R∗ center

34: return {P 1
k , ..., P

l
k}

To facilitate reproducibility and clarify the operational details of our active view selection strategy,
we provide a pseudocode description of our method in Algorithm 1. This algorithm outlines the full
pipeline for estimating the next best camera poses in our bottom-up active reconstruction framework.
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Table 3: Ablation study on the number of clusters in consistent region partition.
Number of Cluster PSNR ↑ SSIM ↑ LPIPS ↓

3 24.913 0.889 0.074
5 (Default) 25.542 0.896 0.063
7 24.992 0.873 0.079

Table 4: Ablation study on the number of semantic feature samples.
Number of Samples PSNR ↑ SSIM ↑ LPIPS ↓

5 25.178 0.884 0.077
10 (Default) 25.542 0.896 0.063
15 25.976 0.901 0.061

A.4 DETAILS AND RESULTS OF ABLATION STUDY

A.4.1 INVESTIGATING THE ROBUSTNESS OF CLUSTERING PARAMETERS

In separating local consistent regions, the clustering parameter is of great significance in the deter-
mination of parts of the object for generating the informative views. Intuitively, each cluster should
contain a part that is independent of other object parts. Specifically, we investigate the influence of
the number of clusters on the overall reconstruction performance. We test with a total of 10 views on
all 8 scenes from the Blender dataset, setting the number of clusters from {3, 5, 7}. In practice, the
number of clusters is given by the user based on their observations of the geometrical complexity of
the object to reconstruct. The results are shown in Table 3.

The results demonstrate that the performance of our method varies slightly when using different
numbers of clusters. This indicates that our method shows robustness to the setting of hyperparam-
eters, demonstrating little performance variance against the variations of parameters.

A.4.2 INVESTIGATING THE NUMBER OF SEMANTIC FEATURE VARIANCE SAMPLES

In this ablation study, we explore the effect of different sample sizes {5, 10, 15} on estimating Se-
mantic Feature Variance using the Point-MAE model. Our goal was to determine the optimal number
of samples needed for accurate variance estimation and informative view estimation without exces-
sive computational cost. We reconstruct all 8 objects from the Blender dataset with 10 total views.
The results showed that using only 10 samples led to a balance between variance estimation and
reconstruction performance.

As shown in Table 4, 5 samples are insufficient to capture the Semantic Feature Variance that exists
in the noisy 3DGS model. Conversely, increasing the sample size to 15 did not significantly improve
the accuracy of variance estimation compared to using 10 samples. The computational cost grows
linearly with the number of samples. Therefore, using 10 samples is both practical and efficient,
optimizing the active learning performance without unnecessary inference of the model.

A.4.3 INVESTIGATING THE SAMPLES IN ESTIMATING THE VISIBILITY MATRIX

In this ablation study, we investigate the sampled view in visibility matrix estimation. Specifically,
we test different numbers of sampled cameras N that are used to calculate the visibility feature. We
report the results from all objects in the Blender dataset, reconstructed with N ∈ 50, 100, 200. The
computational cost of visibility determination grows linearly with the number of sampled cameras
N . The quality of the visibility matrix would influence the determination of the local consistent
region, therefore further influencing the performance of reconstruction. Our results are shown in
Table 5.

The quantitative results show that our visibility feature estimation requires 100 sampled cameras
to evaluate the visibility of the objects from all possible viewing angles, conveying the features of
occlusion between different parts to the local consistent region partitioning algorithm. Using only
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Table 5: Ablation study on the number of samples in the visibility feature calculation in consistent
region partition.

Number of Sampled Camera N PSNR ↑ SSIM ↑ LPIPS ↓

50 24.072 0.851 0.080
100 (Default) 25.542 0.896 0.063
200 25.497 0.895 0.061

50 samples can lead to a performance degradation, and using 200 samples increases the cost with no
significant gain.

A.5 JUSTIFICATION FOR MAJOR DESIGN CHOICE

A.5.1 BOTTOM-UP STRATEGY VS RENDERED IMAGE BASED METHODS

Our method introduces a novel bottom-up strategy that directly generates informative camera poses,
making it the first approach capable of estimating the next view pose without requiring candidate
sampling. This design choice marks a significant departure from prior methods Jiang et al. (2023);
Pan et al. (2022b); Ran et al. (2023) that rely on rendering from a pre-defined set of sampled views
and then evaluating them using uncertainty or information gain metrics. Those approaches suffer
from inefficiencies and often miss occluded or structurally ambiguous regions. In contrast, our
method leverages the structure of the 3DGS model to identify under-reconstructed parts and generate
poses that target them precisely. This strategy not only streamlines the active view selection pipeline
but also enables real-time guidance during image acquisition, which is crucial in practical scenarios
involving handheld or mobile devices.

Additionally, traditional active view selection often relies on sampling a set of candidate views,
rendering images from these viewpoints, and scoring them using informativeness heuristics such
as entropy or uncertainty. However, this process is both computationally expensive and vulnerable
to occlusion artifacts, often overlooking poorly reconstructed or unseen regions. In contrast, our
bottom-up strategy directly analyzes the geometric and visibility characteristics of the model to
identify areas to capture. By estimating visibility-consistent regions and their semantic uncertainty,
we can generate next-best views without requiring rendering or post-hoc evaluation. This direct
approach not only accelerates the acquisition process but also increases coverage efficiency and
robustness in real-world scenarios where perfect pose alignment cannot be guaranteed.

A.5.2 SEMANTIC FEATURE VARIANCE

To identify noisy or incomplete regions in the 3DGS model, we propose a semantic feature variance
metric computed per Gaussian point. This metric, derived from multiple stochastic passes through a
pretrained Point-MAE encoder, quantifies the uncertainty of semantic representation and reflects the
overall distortion of each Gaussian. In spirit, this is analogous to using LPIPS Zhang et al. (2018) as
a perceptual metric to evaluate image quality, but applied at the semantic feature level in 3D space.
Unlike previous heuristics that operate on rendered images and are limited by occlusion and view
dependency, our metric allows us to directly assess the quality and informativeness of the radiance
field representation. It provides a principled and geometry-aware way to determine which parts of
the model require further refinement.

A.6 RUNNING TIME AND STANDARD DEVIATION OF RESULTS

The running time for local consistent region partition, calculating the variance of semantic feature
and view generation is respectively 0.13, 2.7 and 0.01 seconds. All the view synthesis results of our
method reported in the paper are based on 3 runs. In both tables, the Standard Deviation across runs
is less than 0.1 for PSNR and 0.01 for SSIM and LPIPS.
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Table 6: The per-scene quantitative results of rendered images using active reconstruction under
perfect pose with 10 total views.

Scene PSNR ↑ SSIM ↑ LPIPS ↓

chair 24.712 0.917 0.049
drums 21.840 0.895 0.059
ficus 27.934 0.946 0.028
hotdog 28.642 0.937 0.049
lego 23.230 0.859 0.079
materials 24.196 0.882 0.065
mic 29.304 0.965 0.023
ship 24.475 0.767 0.151
Average 25.542 0.896 0.063

Table 7: The per-scene quantitative results of rendered images using active reconstruction under
perfect pose with 10 total views.

Scene PSNR ↑ SSIM ↑ LPIPS ↓

chair 31.378 0.966 0.016
drums 24.155 0.931 0.040
ficus 33.642 0.980 0.010
hotdog 33.116 0.965 0.027
lego 29.028 0.933 0.033
materials 28.808 0.941 0.026
mic 33.292 0.982 0.012
ship 28.072 0.850 0.096
Average 30.186 0.943 0.033

A.7 PER-SCENE RESULTS ON BLENDER DATASET

We provide the per-scene quantitative results for the active reconstruction with perfect pose exper-
iments on 8 scenes from the Blender dataset. The results are shown in Figure 6 and Figure 7. The
chair scene gains the most significant performance improvements by increasing the view number
from 10 to 20, with the PSNR metric increasing by 6.67. We provide the visualization results of
rendered novel views in Figure 6 and Figure 7.

A.8 QUANTITATIVE RESULTS OF ACTIVE RECONSTRUCTION WITH NOISY POSE

In active reconstruction with 4 real-world scenes with noisy pose, we acquire a total of 30 ∼ 40 im-
ages for each scene, according to their reconstructed model quality. We chose every 8 images as the
test set, and provide the quantitative results in the four objects captured by our active reconstruction
application, in Table 8 and Table 9. From the average results, we can see that our pose optimization
increases the performance of rendered novel views largely. We provide the training video of the
active reconstruction of gundam scene in the supplementary files.

A.9 RESULTS ON THE OBJAVERSE DATASETS

Apart from the standard object-level radiance field reconstruction dataset, the Blender dataset, we
further validate the effectiveness and generalization ability of our method on more objects from a
high-quality dataset of 3D Models scanning from real-world objects, the Objaverse dataset Deitke
et al. (2023). Specifically, we select and reconstruct 12 objects from the Objaverse dataset, contain-
ing objects like statue, bucket, and so on, with variance in geometry and scale. Regardless of
different object classes, we perform active learning for the Objaverse dataset with the same hyper-
parameters as the Blender datasets for both methods. We compare the results of our method and
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Table 8: The per-scene quantitative results of AR-based active reconstruction with pose optimiza-
tion.

Scene PSNR ↑ SSIM ↑ LPIPS ↓

gundam 30.363 0.963 0.029
phoenix 19.206 0.873 0.152
hourse 26.959 0.903 0.077
teddy 28.438 0.898 0.073
Average 26.241 0.909 0.083

Table 9: The per-scene quantitative results of AR-based active reconstruction without pose opti-
mization.

Scene PSNR ↑ SSIM ↑ LPIPS ↓

gundam 24.962 0.878 0.080
phoenix 17.755 0.855 0.199
hourse 20.871 0.743 0.174
teddy 24.256 0.846 0.136
Average 21.961 0.831 0.147

Table 10: The per-scene quantitative results on the Objaverse dataset.

Method FisherRF Ours

Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

statue 38.365 0.985 0.008 42.929 0.993 0.004
warrior 33.851 0.962 0.021 28.046 0.912 0.056
bucket 23.372 0.856 0.085 39.639 0.983 0.012
rose 37.960 0.986 0.007 43.752 0.994 0.003
lion 25.472 0.860 0.081 31.303 0.923 0.054
bacanal 27.928 0.940 0.028 36.161 0.983 0.008
rhino 37.969 0.972 0.023 43.423 0.987 0.013
turtle 36.316 0.971 0.016 41.318 0.987 0.007
Average 32.654 0.942 0.034 38.321 0.970 0.020

the FisherRF Jiang et al. (2023) both quantitatively and qualitatively. In Table 10, we compare the
quality of novel views reconstructed by both methods. Our method outperforms FisherRF in image
quality metrics for most objects. For the averaged results, our method is superior to FisherRF, with
an increase in PSNR of 5.7. This indicates that the superior performance of our method is general-
izable to variant objects. We also visualize the reconstructed novel views of both methods, together
with the ground truth in Figure 8 and Figure 9.

A.10 ESTIMATED NEXT BEST VIEWS DISTRIBUTION VISUALIZATION

To understand the feature of the next views generated by our method, we visualize the distribution
of all views selected to reconstruct the object, in the 10 total views case, together with the object
to reconstruct. The distribution of views is shown in Figure 10 and Figure 11. For each object,
our estimated view is distributed evenly around the object, capturing the object from an informative
viewing pose. The quality of generated views is stable across different types of objects, showing
robustness against the shape appearance of different objects.
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Figure 6: The per-scene qualitative results of rendered images using active reconstruction under
perfect pose with 10 total views.
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Figure 7: The per-scene qualitative results of rendered images using active reconstruction under
perfect pose with 20 total views.
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Figure 8: The per-scene qualitative results of rendered images using active reconstruction using 20
total views on the scenes from the Objaverse dataset.
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Figure 9: The per-scene qualitative results of rendered images using active reconstruction using 20
total views on the scenes from the Objaverse dataset.
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Figure 10: The distribution of all estimated next best views for scenes from the Blender dataset. The
total number of views is 10.
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Figure 11: The distribution of all estimated next best views for scenes from the Blender dataset. The
total number of views is 10.
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