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Abstract

Infrared imagery enables temperature-based scene understanding using passive sen-
sors, particularly under conditions of low visibility where traditional RGB imaging
fails. Yet, developing downstream vision models for infrared applications is hin-
dered by the scarcity of high-quality annotated data, due to the specialized expertise
required for infrared annotation. While synthetic infrared image generation has the
potential to accelerate model development by providing large-scale, diverse training
data, training foundation-level generative diffusion models in the infrared domain
has remained elusive due to limited datasets. In light of such data constraints, we
explore an inference-time scaling approach using a domain-adapted CLIP-based
verifier for enhanced infrared image generation quality. We adapt FLUX.1-dev, a
state-of-the-art text-to-image diffusion model, to the infrared domain by finetuning
it on a small sample of infrared images using parameter-efficient techniques. The
trained verifier is then employed during inference to guide the diffusion sampling
process toward higher quality infrared generations that better align with input text
prompts. Empirically, we find that our approach leads to consistent improvements
in generation quality, reducing FID scores on the KAIST Multispectral Pedestrian
Detection Benchmark dataset by 10% compared to unguided baseline samples.
Our results suggest that inference-time guidance offers a promising direction for
bridging the domain gap in low-data infrared settings.

1 Introduction

Infrared sensors capture thermal information unavailable through conventional RGB cameras, making
them essential for applications ranging from autonomous driving to medical imaging. The growing
deployment of computer vision systems in such domains has created demand for large-scale synthetic
infrared datasets to train robust downstream models such as object detectors and scene classifiers.
Diffusion models [1, 2] have emerged as a promising approach for generating such synthetic data,
offering the potential to create diverse, high-quality images that can augment limited real-world
datasets.

While the ubiquity of color images allows large-scale diffusion models to be pretrained on billions
of RGB images sourced from the web, infrared images remain far less accessible and are typically
confined to a limited number of curated public datasets. This scarcity poses significant challenges
for training foundation-level infrared diffusion models. Instead, finetuning pretrained RGB mod-
els leverages the rich world knowledge encoded from billions of natural images while adapting
representations to the infrared modality. To this end, prior works [3, 4] have explored techniques
to finetune pretrained RGB diffusion models on available public infrared image datasets, albeit
with limited physical realism. Such approaches suffer from a lack of contextual grounding; while
generated outputs may appear thermodynamically plausible, they often fail to remain consistent with
the semantic or contextual cues provided by the conditioning input, whether a textual prompt or RGB
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IRSCORE (×10) (ours): 0.5062
IR Similarity: 0.4879
Grayscale Similarity: 0.3866

IRSCORE (×10) (pretrained): 0.1016

(a) Ground Truth IR

IRSCORE (×10) (ours): 0.5135
IR Similarity: 0.4213
Grayscale Similarity: 0.3186

IRSCORE (×10) (pretrained): -0.0414

(b) High-Scoring Synthetic IR

IRSCORE (×10) (ours): -0.3212
IR Similarity: 0.3189
Grayscale Similarity: 0.3831

IRSCORE (×10) (pretrained): -0.0125

(c) Low-Scoring Synthetic IR

Figure 1: Example verifier scores for a ground truth infrared image and two synthetic im-
ages (generated from different random seeds) corresponding to the caption, “A city street
at dusk features tall buildings with illuminated signs, a marked road with
directional arrows, and vehicles including a white SUV driving away from
the camera.” IRSCORE (ours), IR Similarity, and Grayscale Similarity are computed using our
finetuned CLIP model, while IRSCORE (pretrained) relies on a pretrained CLIP model. IRSCORE,
IR Similarity, and Grayscale Similarity correspond to Equation 1, and its unscaled first and second
terms, respectively.

image. Other approaches such as PID [5] train diffusion models directly on limited infrared data
with physics-informed constraints, but exhibit inconsistent generation quality and mode collapse,
highlighting the pitfalls of direct training in the absence of large-scale pretraining.

To address such challenges, we turn to inference-time scaling, an extension of training-time neural
scaling laws [6] commonly observed during the training of deep learning models. Inference-time
scaling methods aim to improve the performance of models post hoc by expending additional
compute during inference, and have shown promise in their recent application to large language
models [7, 8, 9] and diffusion models [10, 11, 12]. Motivated by these advances, we investigate the
efficacy of inference-time scaling in improving the quality of synthetic infrared images generated
by diffusion models, a direction which, to the best of our knowledge, has not previously been
explored. Whereas large-scale pretraining is constrained by infrared data scarcity, we now shift the
computational burden from training to generation, thereby improving the visual quality of infrared
images produced by diffusion models finetuned on limited data. Building on the inference-time
scaling framework of Ma et al. [10] which combines sampling algorithms with verifiers, we extend
this approach to the infrared domain and introduce a novel self-supervised verifier designed to
evaluate the consistency and realism of synthetic infrared images. In particular, we finetune CLIP
[13] to distinguish true infrared images from their grayscale counterparts, and leverage this model as
an inference-time verifier to guide iterative search through the noise space, selecting noise latents
that yield the highest-quality generations. Our experiments demonstrate measurable improvements in
FID scores, and we further assess how different noise search strategies and verifier training protocols
influence inference-time scaling performance.

2 Background

A naive approach to scaling diffusion models at inference time is to increase the number of denoising
steps during image generation. Scaling up denoising steps can improve the visual quality of generated
images, albeit with diminishing returns [14]. Recent works [10, 11, 12] have investigated alternative
methods to scaling, motivated by the observation that different noise latents result in varied levels
of quality in generated images [15, 16]. Ma et al. [10] extends this finding by introducing a scaling
approach consisting of two components: verifiers and search algorithms.
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2.1 Verifiers

Concretely, a verifier is defined as a function V : Rh×w × Rd → R which takes in a sample image
and an optional condition (e.g., a prompt or image class) and produces a scalar value reflecting the
quality of the image, either unconditionally or relative to the provided condition. In the text-to-image
setting, Ma et al. [10] explores numerous pretrained models as verifiers, each designed to evaluate
different notions of image quality. CLIPScore [17] is chosen for measuring image-prompt alignment,
Aesthetic Score Predictor [18] for human aesthetic preferences, and ImageReward [19] for a more
comprehensive metric incorporating both aesthetic quality and prompt adherence. Additionally,
vision language models (VLMs) such as Gemini-1.5 Flash are employed for their sophisticated
text-image understanding and ability to assess generated images across diverse criteria.

2.2 Search Algorithms

Formally, a search algorithm is some function f : (V, Dθ, {z1, . . . , zN}) 7→ z∗ which takes as input
a verifier V , a generative diffusion model Dθ, and N candidate noise latents. It then outputs the “best”
noise latent z∗ corresponding to the highest scoring image among N images sampled from Dθ, as
determined by V . Invoking f requires numerous forward passes through Dθ which constitutes the
primary computational bottleneck; thus, this cost is quantified as the number of function evaluations
(NFEs). Following Ma et al. [10], we consider two primary search strategies below.

Random Search. In random search, N candidate noise latents are sampled from a Gaussian
distribution and progressively denoised over a fixed number of steps. A given verifier evaluates
the resulting images, and the highest-scoring image among the N initial latents is returned. The
scaling axis in random search is simply N ; that is, NFEs = N · (# of denoising steps). Notably,
random search can lead to verifier hacking, a failure mode in which the search overfits to biases of
the pretrained verifier rather than producing genuinely higher-quality generations [10].

Zero-Order Search. To mitigate verifier hacking, zero-order search traverses the noise space
incrementally in directions that are locally optimal with respect to the verifier’s score. Starting from
an initial noise latent as the pivot, the algorithm samples N − 1 additional latents in its neighborhood.
All N latents are denoised, and the latent yielding the highest-scoring image becomes the new pivot.
This process is repeated for k iterations, resulting in NFEs = kN · (# of denoising steps).

3 Method

In this work, we focus on the text-to-image generation task in the infrared domain, where, given text
prompts, we aim to generate physically plausible infrared images with a pretrained text-to-image
diffusion model. To that end, we apply inference-time scaling to guide the generation process toward
higher-quality outputs that better reflect infrared imaging characteristics.

Infrared Image Generation. We select FLUX.1-dev [20], a state-of-the-art text-to-image model, as
our diffusion model backbone. To endow the model with knowledge of the infrared domain, we first
apply Low-Rank Adaptation (LoRA) [21] finetuning on a limited set of 1,000 infrared image–caption
pairs. We observe that this lightweight adaptation is typically sufficient to equip the model with a
basic understanding of infrared image characteristics; however, we find that the resulting generations
exhibit high variability in quality, with many samples appearing physically implausible or resembling
simple grayscale versions of RGB images (Figure 1). This inconsistent nature, which we attribute to
inductive biases inherited from pretraining on large-scale RGB datasets, creates an opportunity to
apply verifier-based inference-time selection to identify and promote higher-quality outputs.

Verifier Training. To steer generations towards more physically accurate infrared images, we adapt
CLIP [13] as a zero-shot verifier. Since CLIP is pretrained on large-scale RGB image data, it is
not suitable for evaluating the quality of infrared images. Accordingly, we finetune CLIP on paired
infrared images and text captions, enabling the model to capture the unique characteristics of the
infrared domain.

Motivated by our earlier observation that our diffusion model frequently generates grayscale-like
images, we augment each training mini-batch with grayscale versions of the corresponding RGB
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Table 1: Performance of two inference-time scaling methods on KAIST dataset.
Method NFEs α Split IRSCORE (×10) ↑ FID ↓
Naive Sampling 28 0.5 Test 0.1187 74.58

Random Search 336 0.5 Test 0.6010 66.74
Zero-Order Search 336 0.5 Test 0.4214 69.15

images. Further, we format the text captions as “An INFRARED photo of {caption}.” and “A
GRAYSCALE photo of {caption}.” as appropriate. In doing so, we encourage the model to learn
distinct representations for true infrared images and their grayscale counterparts.

Inference-Time Verification. Let ΦI : Rh×w → Rd and ΦT : V ≤n → Rd denote the finetuned
image and text encoders of the CLIP verifier, respectively. At inference time, given a candidate image
x ∈ Rh×w generated by our finetuned diffusion model, along with its corresponding infrared and
grayscale captions cIR and cgray, we compute an infrared quality score as

IRSCORE(x) = (1− α) cos(ΦT (cIR),ΦI(x))− α cos(ΦT (cgray),ΦI(x)), (1)

where α ∈ [0, 1] is a tunable hyperparameter that balances alignment with true infrared semantics
against undesired similarity to grayscale. This verifier-driven score serves as a selection criterion
during sampling; we evaluate multiple candidate generations and retain those that maximize the score
using either a random or zero-order search strategy, as described in Section 2.2.

4 Experiments

Setup. We conduct experiments on 49,561 images1 from the KAIST Multispectral Pedestrian
Detection Benchmark [22], a dataset of long-wave infrared and RGB pedestrian scenes captured from
a vehicle. The data is divided into an 80/20 train–test split. As our diffusion backbone, we adopt
FLUX.1-dev, a pretrained text-to-image model, augmented with a LoRA adapter of rank r = 16
finetuned on 1,000 infrared images from the KAIST training set along with corresponding captions.
For verification, we employ CLIP-B/32 [13], finetuned on the same KAIST training data following
the strategy outlined in Section 3.

Results. Our experiments suggest that inference-time scaling can result in meaningful gains in
infrared generative quality. In particular, we observe a reduction in the Fréchet Inception Distance
(FID) [23] score from 74.58 to 66.74 on the KAIST dataset (Table 1). The FID quantifies the
discrepancy between the distribution of generated images and that of real images, with lower values
indicating closer alignment; thus, this improvement provides promising evidence that inference-time
scaling can enhance generative performance. Between the two search algorithms explored, random
search achieves the largest improvement, reducing FID by over 10% relative to the naive baseline,
while zero-order search achieves a more modest ∼7% gain under the same NFE budget. This aligns
with the findings of Ma et al. [10] that the incremental update procedure of zero-order search results
in slower convergence, as opposed to random search, which enables a broader exploration of the
noise space. We also note that our NFE budget of 336 is relatively limited compared to other works
that have explored inference-time scaling [10, 11], and we anticipate that performance could improve
substantially by further scaling up the computational budget.

Further, we find qualitatively that our domain-adapted CLIP is effective in distinguishing between
high and low-quality synthetic infrared images. As illustrated in Figure 1, the verifier assigns
substantially higher scores to realistic infrared images that exhibit proper thermal characteristics,
whereas an unmodified CLIP model fails to properly distinguish between such quality differences,
instead assigning a higher score to the lower-quality image. We also report the mean of the IRSCORE
(Equation 1) across all generated samples in Table 1, and find that both random and zero-order search
effectively explore the noise space to identify latents with higher verifier scores, yielding consistent
improvements over naive sampling.

1https://huggingface.co/datasets/koifisharriet/KAIST-Multispectral-Pedestrian-
Benchmark
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5 Conclusion

In this work, we introduced an inference-time scaling approach using a domain-adapted CLIP
verifier for enhanced infrared image generation quality in text-to-image diffusion models. Our
key contribution is training CLIP to distinguish between realistic infrared images and grayscale-
like artifacts, enabling effective guidance of diffusion model sampling. Preliminary results on the
KAIST dataset demonstrate FID score improvements of over 10% compared to unguided baselines,
establishing inference-time guidance as a promising direction for infrared image generation in low-
data settings. Building on this foundation, promising avenues for future research include training
alternative verifiers such as physics-based or domain-specific models, as well as extending evaluation
to other datasets and sensing modalities to assess the generality of the approach.
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