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Prompt: Show your understanding on Bubble Sort.

(Text Element) Bubble Sort is a 

straightforward sorting algorithm that works 
on the principle of repeatedly comparing 
and swapping adjacent elements until the 

list is sorted. The process involves iterating 
through the list multiple times …

(Multimodal Elements) Bubble Sort is … Explainability
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Compare 4th and 5th

Repeat until sorted

Interpretability

Harder to Grasp at a Glance More Intuitive (Clearer with Visuals)

Figure 1: We do not have knowledge of a thing until we have grasped its cause (Aristotle, 1901). A strong reasoning
model should not only generate correct conclusions but also communicate them effectively. Visualization enhances
human intuition by making abstract concepts more concrete and revealing hidden relationships. Moreover, visual
explanations expose reasoning errors more clearly than text, making it easier to diagnose model mistakes.

Abstract001

Understanding domain-specific theorems often002
requires more than just text-based reasoning;003
effective communication through structured vi-004
sual explanations is crucial for deeper compre-005
hension. While large language models (LLMs)006
demonstrate strong performance in text-based007
theorem reasoning, their ability to generate co-008
herent and pedagogically meaningful visual009
explanations remains an open challenge. In010
this work, we introduce TheoremExplainAgent,011
an agentic approach for generating long-form012
theorem explanation videos (over 5 minutes)013
using Manim animations. To systematically014
evaluate multimodal theorem explanations, we015
propose TheoremExplainBench, a benchmark016
covering 240 theorems across multiple STEM017
disciplines, along with 5 automated evaluation018
metrics. Our results reveal that agentic plan-019
ning is essential for generating detailed long-020
form videos, and the o3-mini agent achieves a021
success rate of 93.8% and an overall score of022
0.77. However, our quantitative and qualitative023
studies show that most of the videos produced024
exhibit minor issues with visual element layout.025
Furthermore, multimodal explanations expose026
deeper reasoning flaws that text-based explana-027
tions fail to reveal, highlighting the importance028
of multimodal explanations.029

1 Introduction 030

A key objective of AI systems is to assist hu- 031

mans in solving complex problems, particularly 032

in domain-specific challenges. To achieve this, AI 033

must go beyond surface-level pattern matching to 034

achieve deeper conceptual understanding to effec- 035

tively address these problems. Recent research has 036

proposed evaluating AI performance on theorem- 037

driven datasets through multiple-choice question 038

answering (Zhang et al., 2024) and open-ended 039

short question answering (Chen et al., 2023b). 040

However, these approaches primarily assess tex- 041

tual reasoning and may not fully capture an AI 042

system’s ability to grasp theorem concepts at a 043

deeper level. Studies have shown that AI models 044

can be sensitive to superficial cues, such as the 045

order of answer choices in multiple-choice ques- 046

tions (Pezeshkpour and Hruschka, 2023; Keluskar 047

et al., 2024). This raises concerns about the robust- 048

ness of such evaluations in truly measuring com- 049

prehension. Moreover, current theorem-focused 050

datasets are predominantly text-based, overlooking 051

how complex concepts are often best understood 052

through structured visualizations. 053

Theorem reasoning is inherently multimodal, 054

particularly in areas such as geometry, topology, 055

1



Theorems

Thevenin's theorem

Octet Rule

Run Length Encoding

Linear Search

…

I understand this theorem! 
I will explain it with visuals.

Prompting

Model

Output

Multimodal Elements

Context
Evaluation

(Automatic/Human Expert)

Accuracy and Depth = 1.0

= 1.8

Visual Relevance

Logical Flow

Element Layout

Visual Consistency

= 0.8

= 1.0

= 1.0

Metrics

Figure 2: An overview of the multimodal theorem explanation framework.

and certain aspects of algebra, where visual rep-056

resentations and spatial reasoning play a crucial057

role in understanding structures and proving proper-058

ties. Cognitive science research suggests that multi-059

modal elements improve conceptual understanding,060

aiding in the comprehension of abstract ideas. Al-061

though some studies leverage multimodal input to062

improve AI reasoning (Zhang et al., 2023b), cur-063

rently there is no standardized evaluation frame-064

work to evaluate AI’s ability to generate multi-065

modal explanations for complex concepts, which066

would require models to express knowledge in an067

interpretable manner. This raises the question: Can068

AI systems effectively generate multimodal the-069

orem explanations?070

As video is a classic example of multimodal data,071

we explore the question by introducing TheoremEx-072

plainAgent, an agentic AI system designed to gen-073

erate theorem explanations in the form of explana-074

tory videos. TheoremExplainAgent demonstrates075

the capability to plan and generate long, coherent076

videos by mimicking human video production pro-077

cesses. In this system, a planner agent generates078

story plans and narrations, and a coding agent gen-079

erates Python animation scripts using Manim (The080

Manim Community Developers, 2024) to create081

long and meaningful videos. Additionally, to sys-082

tematically evaluate AI-generated explanations, we083

develop TheoremExplainBench, a benchmark suite084

comprising 240 theorems spanning four STEM085

disciplines. We assess AI-generated explanations086

based on 5 dimensions related to factual correctness087

and perceptual quality, using automatic or human-088

evaluation metrics. An overview of the framework089

is illustrated in Figure 2.090

Our experiments with TheoremExplainAgent091

yielded both promising results and clear areas for092

improvement in AI-generated multimodal theorem093

explanations. On the positive side, a key achieve-094

ment was the system’s ability to generate extended095

video explanations, reaching durations of up to096

10 minutes. This represents a significant advance- 097

ment over agentless approaches, which we found 098

to be limited to approximately 20-second videos. 099

Furthermore, TheoremExplainAgent demonstrated 100

versatility across different STEM disciplines, suc- 101

cessfully creating videos for Mathematics, Physics, 102

Chemistry, and Computer Science. Importantly, we 103

observed that video-based theorem explanations 104

inherently expose deeper reasoning flaws in AI sys- 105

tems that text-based evaluations often miss. Unlike 106

text-based multiple-choice questions, where mod- 107

els can exploit superficial cues, generating visual- 108

theorem explanations necessitates that the AI ex- 109

plicitly encodes structural and procedural knowl- 110

edge, thus making underlying errors more apparent. 111

In particular, the o3-mini model exhibited robust 112

performance at varying levels of theorem difficulty, 113

indicating a capacity to handle both fundamental 114

and complex concepts. However, despite these suc- 115

cesses, limitations persist. While the system could 116

generate textually accurate explanations, the visual 117

quality and pedagogical structure of the videos re- 118

quire further refinement. Generated animations 119

frequently exhibited minor visual layout inaccu- 120

racies, such as misaligned text elements, overlap- 121

ping shapes, and inconsistent object sizes. These 122

visual errors, though often subtle, became more 123

pronounced and potentially distracting, particularly 124

in the medium and hard difficulty levels of our 125

TheoremExplainBench. 126

Therefore, the major contributions of this work: 127

(1) Task Definition. We introduce the novel prob- 128

lem of AI-generated multimodal theorem explana- 129

tions and identify the key challenges associated. 130

(2) TheoremExplainAgent. We develop an agen- 131

tic approach to generating explanatory videos, as a 132

baseline to assess current AI capabilities. 133

(3) TheoremExplainBench. We curate a diverse 134

benchmark dataset spanning 4 STEM disciplines 135

and propose 5 automatic evaluation metrics, mea- 136

suring progress toward solving this problem. 137
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from manim import *

class IEEEOverview(Scene):
   def construct(self):
       # Create arrow pointing to the implicit 1
       arrow = Arrow(start=mantissa[0][0].get_edge(UP) + UP * 0.1, 
end=mantissa[0][0].get_edge(DOWN), color=YELLOW, buff=0.1)

TypeError: Mobject.__getattr__.<locals>.getter() takes 1 positional argument but 2 were given

<THINKING>
Error Type: TypeError. Root Cause: `get_edge()` requires only one argument which is the 
direction (LEFT, RIGHT, UP, DOWN etc.). Solution: Modify the arrow's start point to reference the 
entire MathTex object instead of trying to access individual characters by indexing. Use 
`get_left()` and `get_right()` to get the left and right edges of the "1." MathTex object correctly.
<THINKING>
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end=mantissa[0][0].get_edge(DOWN), color=YELLOW, buff=0.1)
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end=mantissa[0][0].get_edge(DOWN), color=YELLOW, buff=0.1)
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Error Type: TypeError. Root Cause: `get_edge()` requires only one argument which is 
the direction (LEFT, RIGHT, UP, DOWN etc.). Solution: Modify the arrow's start point to 
reference the entire MathTex object instead of trying to access individual characters 
by indexing. Use `get_left()` and `get_right()` to get the left and right edges of the "1." 
MathTex object correctly.
<THINKING>

Version 0

Version 1

from manim import *

class IEEEOverview(Scene):
   def construct(self):
       # Create arrow pointing to the implicit 1
       arrow = Arrow(start=mantissa[0][0].get_left() + UP * 0.1, 
end=mantissa[0][0].get_right(), color=YELLOW, buff=0.1)

Code Fix

Figure 3: TheoremExplainAgent consists of two LLM agents. Taking a theorem as input, the planner agent create
plans for execution. The coding agent then generates Python scripts to produce visuals and audio.

2 Related Works138

2.1 LLM and Agents139

The rapid advancements in large language models140

(LLMs) and large vision-language models (VLMs)141

have unlocked unprecedented capabilities in un-142

derstanding multimodal content. Models such as143

GPT-4 (OpenAI, 2023), Gemini (Gemini-Team144

et al., 2024), Claude-3.5 Sonnet v1 (Anthropic,145

2024), and DeepSeek (DeepSeek-AI et al., 2024)146

have demonstrated strong abilities in processing147

complex textual information and analyzing visual148

inputs within a unified framework (Zhang et al.,149

2023b). These breakthroughs have enabled trans-150

formative applications across various domains, in-151

cluding visual content understanding (Hu et al.,152

2023; Ku et al., 2023), code generation (Nijkamp153

et al., 2023; Jimenez et al., 2024; Yang et al.,154

2024a), and reasoning over structured data. To155

tackle complex tasks, researchers have explored156

LLM agents: AI systems that leverage LLMs to157

autonomously reason, plan, and execute tasks by in-158

teracting with structured environments or external159

tools. These agents have been deployed in various160

goal-oriented applications, such as scientific dis-161

covery (Lu et al., 2024; Si et al., 2024; Schmidgall162

et al., 2025), coding solutions (Abramovich et al.,163

2024), multimodal visual generation (He et al.,164

2024), and computer environment interaction (Xie165

et al., 2024). In this work, we extend the use of166

LLM agents into the domain of theorem explana-167

tion and visualization.168

2.2 LLM in Theorems Understanding 169

LLMs have demonstrated remarkable capabilities 170

in solving complex mathematical problems, includ- 171

ing formal theorem proving and symbolic reason- 172

ing. To evaluate these abilities, researchers have 173

introduced multiple benchmark datasets, primar- 174

ily consisting of multiple-choice and short-answer 175

question answering (QA) tasks (Zhang et al., 2024; 176

Amini et al., 2019; Hendrycks et al., 2021). Early 177

studies centered on elementary to high school- 178

level mathematics, leading to datasets such as 179

Math23K(Zhou et al., 2023), GSM8K(Cobbe et al., 180

2021), and GeoQA(Chen et al., 2022a). As LLM 181

capabilities advanced, more domain-specific bench- 182

marks emerged, extending evaluation to fields like 183

science reasoning (ScienceQA) (Lu et al., 2022), 184

financial reasoning (FinQA) (Chen et al., 2022b), 185

and theorem comprehension (TheoremQA) (Chen 186

et al., 2023b). These datasets collectively assess 187

LLMs’ ability to solve mathematical and scientific 188

problems up to the university level. However, exist- 189

ing benchmarks remain predominantly text-based, 190

overlooking the role of visual intuition in mathe- 191

matical reasoning. Many mathematical concepts 192

are best understood through structured diagrams 193

and dynamic representations, which current LLM 194

evaluations fail to capture. To address this gap, we 195

introduce an AI framework to generate theorem 196

explanations in long-form videos, integrating sym- 197

bolic derivations with structured visualizations to 198

enhance comprehension. 199
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Math

Geometry 
Complex Analysis 
Algebra 
Functions 
Sequences and Series 
Combinatorics 
Conic Sections 
Trigonometry 
Calculus 
Numerical Analysis 
Vector Calculus 
Multivariable Calculus 
Group Theory

Physics

Electricity and Circuits 
Classical Mechanics 
Electromagnetism 
Optics 
Fluid Mechanics 
Waves and Sound 
Gravitation 
Wave Physics 
Astrophysics 
Statistical Physics 
Plasma Physics 
Quantum Mechanics

Chemistry


Thermodynamics 
Atomic Structure 
Chemical Reactions and Stoichiometry 
Chemical Bonding 
Periodic Table and Elements 
Separation Techniques 
Solid State Chemistry 
Analytical Chemistry 
Redox Chemistry 
Gas Laws


Acid-Base Chemistry

Chemical Kinetics 
Chemical Equilibrium 
Quantum Chemistry 
Physical Chemistry 
Laboratory Techniques 
Crystallography 
Organic Chemistry 
Inorganic Chemistry 
Electrochemistry 
Spectroscopy

Computer Science 

Discrete Mathematics 
Boolean Algebra 
Algorithm Analysis 
Data Structures 
Computational Geometry 
Information Theory 
Operating Systems 
Algorithms 
Digital Logic Design 
Image Processing

Signal Processing

Data Compression 
Machine Learning 
Computer Networks 
Computer Architecture 
Theory of Computation 
Programming Fundamentals 
Graph Theory 
Digital Signal Processing 
Digital Logic 
Dynamic Programming 
Computational Complexity

Figure 4: Subfields of TheoremExplainBench under Computer Science, Chemistry, Mathematics, and Physics.

2.3 LLM in Visualizations200

Recent advancements in AI-driven visualization201

have enabled AI systems to generate structured vi-202

sual content from textual descriptions (Li et al.,203

2024). These models typically process text-204

based inputs and produce programmatic represen-205

tations, which are then converted into visual out-206

puts (Ritchie et al., 2023; Goswami et al., 2025).207

This approach has been applied across various208

domains, including scientific visualization (Yang209

et al., 2024b), data representation (Galimzyanov210

et al., 2024), and motion graphics (Zhang et al.,211

2023a). Efforts such as Drawing-Pandas (Gal-212

imzyanov et al., 2024) have introduced benchmarks213

for evaluating code-based plotting in Matplotlib214

and Seaborn. Follow-up works like MatPlotA-215

gent(Yang et al., 2024b) demonstrated that agentic216

approaches outperform agentless methods in vi-217

sualization generation, while PlotGen (Goswami218

et al., 2025) incorporated multimodal feedback for219

iterative refinement, further improving visualiza-220

tion quality. Our work is the first to explore AI-221

driven visualization for generating animated theo-222

rem explanations, seamlessly integrating step-by-223

step symbolic derivations with structured motion224

graphics, bridging the gap between mathematical225

reasoning and visual comprehension.226

3 Method 227

3.1 Task Definition 228

Model Input. The model receives a theorem 229

along with a short description that provides context, 230

which helps the model identify the theorem. 231

Model Output. The model is to output a video that 232

combines animations, structured derivations, and 233

voiceover narration to provide a multimodal and 234

comprehensive explanation of the theorem. The 235

video is expected to be longer than a minute, featur- 236

ing long animations across different scenes, with 237

narration guiding the viewer through step-by-step 238

proofs and real-world applications. 239

3.2 TheoremExplainAgent (TEA) 240

We develop TheoremExplainAgent (TEA), an agen- 241

tic pipeline designed to automate the generation of 242

videos using multiple specialized agents as shown 243

in Figure 3. The process begins with the planner 244

agent, which creates a high-level video plan accord- 245

ing to the specified theorem. This plan consists of 246

multiple scenes, each corresponding to a key seg- 247

ment of the resulting video. Once the initial plan 248

is created, the planner agent refines the details of 249

each scene, breaking them down into smaller com- 250

ponents that define the specific visual elements, 251

animations, and transitions needed. These detailed 252
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Agent Easy Medium Hard Math Phys CS Chem Overall

GPT-4o 61.3% 57.5% 46.2% 61.7% 55.0% 58.3% 45.0% 55.0%
GPT-4o + RAG 42.5% 57.5% 37.5% 70.0% 40.0% 41.7% 31.7% 45.8%
Claude 3.5-Sonnet v1 2.5% 1.2% 2.5% 1.7% 1.7% 1.7% 3.3% 2.1%
Claude 3.5-Sonnet v1 + RAG 18.8% 13.8% 11.2% 23.3% 10.0% 20.0% 5.0% 14.6%
Gemini 2.0-Flash 20.0% 11.2% 12.5% 16.7% 8.3% 21.7% 11.7% 14.6%
Gemini 2.0-Flash + RAG 23.8% 21.2% 16.2% 26.7% 15.0% 20.0% 20.0% 20.4%
o3-mini (medium) 93.8% 91.2% 96.2% 95.0% 93.3% 93.3% 93.3% 93.8%
o3-mini (medium) + RAG 83.8% 82.5% 80.0% 81.7% 90.0% 88.3% 68.3% 82.1%

Table 1: Agent success rate in generating complete videos across different difficulty levels and subjects.

Agent Accuracy Visual Logical Element Visual Overall
and Depth Relevance Flow Layout Consistency Score

GPT-4o 0.79 0.79 0.89 0.59 0.87 0.78
GPT-4o + RAG 0.75 0.77 0.88 0.57 0.86 0.76
Claude 3.5-Sonnet v1 0.75 0.87 0.88 0.57 0.92 0.79
Claude 3.5-Sonnet v1 + RAG 0.67 0.79 0.69 0.65 0.87 0.71
Gemini 2.0 Flash 0.82 0.77 0.80 0.57 0.88 0.76
Gemini 2.0 Flash + RAG 0.79 0.75 0.84 0.58 0.87 0.76
o3-mini (medium) 0.76 0.76 0.89 0.61 0.88 0.77
o3-mini (medium) + RAG 0.75 0.75 0.88 0.61 0.88 0.76

Human-made Manim Videos 0.80 0.81 0.70 0.73 0.87 0.77

Table 2: Performance of our proposed metrics on successfully generated long-form videos by the agents.

scene descriptions are then passed to the coding253

agent, which generates the corresponding Python254

code. The voiceover is also generated through a255

text-to-speech service. Finally, the Python scripts256

are executed to produce the final video, which re-257

flects the narrative or instructional goals outlined258

in the video plan. If the generated Python code259

encounters an error, the coding agent will review260

the error and generate a revised version of the code.261

We set a maximum of N attempts where N = 5. If262

this limit is exceeded, we mark the generation as263

unsuccessful.264

Coding Toolkit. We choose Manim (The265

Manim Community Developers, 2024) as the cod-266

ing toolkit because it is a popular open-source267

Python library designed for creating mathemat-268

ical animations and educational videos through269

code-driven visualizations. YouTube channels270

such as 3Blue1Brown (Sanderson, 2020) have271

demonstrated how Manim-made videos can con-272

vey complex mathematical concepts in an intuitive273

way. In our context, the coding agent translates274

each scene’s specifications into executable Manim275

scripts, which define objects such as text, shapes,276

graphs, or equations, along with their correspond-277

ing animations, timings, and transitions.278

Agentic Retrieval-Augmented Generation. To279

enhance code generation ability, we implemented 280

a multifaceted retrieval-augmented generation 281

(RAG) approach, leveraging the Manim documen- 282

tation as the primary knowledge base. Unlike a sin- 283

gle monolithic retrieval step, our agentic approach 284

first classifies whether the theorems are suitable for 285

using specific Manim plugins. Then it generates 286

relevant queries at different stages of the video cre- 287

ation process: (1) during storyboard generation, to 288

retrieve visual examples and related concepts; (2) 289

during technical implementation, to fetch specific 290

code snippets and usage patterns; and (3) during 291

error correction, to diagnose issues and suggest 292

solutions. These queries are cached to prevent re- 293

dundant computations, and the agent dynamically 294

selects the most relevant documents based on a 295

relevance scoring threshold, ensuring efficient and 296

precise retrieval. 297

3.3 TheoremExplainBench (TEB) 298

We curate an evaluation dataset comprising 240 299

theorems from various disciplines, including Com- 300

puter Science, Chemistry, Mathematics, and 301

Physics. Each entry includes the theorem name 302

and a contextual description, sourced from Open- 303

Stax (Baraniuk, 2025) and LibreTexts (Larsen, 304

2025). To facilitate structured assessment, the the- 305
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orems are categorized into three difficulty levels:306

Easy (high school level), Medium (undergraduate307

level), and Hard (graduate level), with 80 entries308

in each category. TheoremExplainBench (TEB)309

features 68 sub-fields that cover a wide range of310

domains as shown in Figure 4.311

To fully define this novel problem, we propose312

a comprehensive evaluation metric applicable to313

both human-created and AI-generated explanatory314

videos, ensuring a standardized assessment across315

different content sources. Our metric evaluates316

videos across five key dimensions. The first three317

dimensions assess the factual correctness of expla-318

nations, while the last two dimensions evaluate the319

perceptual quality of the videos.320

Accuracy and Depth. Evaluates whether the321

narration provides a precise and well-structured322

explanation of the theorem, offering both intuitive323

insights and rigorous justifications for why it holds.324

Visual Relevance. Assesses whether the video325

frames effectively align with the theorem’s con-326

cepts and derivations, reinforcing the explanation327

through appropriate visual representations.328

Logical Flow. Examines whether the video fol-329

lows a clear and coherent structure, ensuring a log-330

ical progression that builds upon ideas effectively.331

Element Layout. Evaluates whether visual ele-332

ments are well-positioned and appropriately sized333

within the frame, avoiding unintended overlap and334

ensuring clarity in presentation.335

Visual Consistency. Assesses whether the mo-336

tions are smooth, and whether the visual style re-337

mains uniform across frames.338

In our metric implementation, Accuracy &339

Depth and Logical Flow are assessed using text-340

based evaluation with GPT-4o (OpenAI, 2023).341

The text elements are extracted from video tran-342

scripts in SubRip (SRT) format. For Visual Rele-343

vance and Element Layout, we apply image pro-344

cessing techniques to identify key frames and use345

GPT-4o to assign scores for each dimension. To346

evaluate motions in Visual Consistency, we utilize347

Gemini 2.0-Flash (DeepMind, 2025) to analyze348

chunked video segments. The overall score (rang-349

ing from 0 to 1) is then computed as the geometric350

mean of all dimensions. To ensure output stability,351

we employ greedy decoding (i.e., temperature = 0)352

in the LLM evaluations.353

To validate the effectiveness of our evaluation354

metrics, we conducted a small-scale human study.355

We sampled 40 videos from our results, selecting356

10 from each discipline in TheoremExplainBench.357

We then recruited 12 experienced STEM student 358

annotators to participate in the study. The rating 359

process followed the same five evaluation dimen- 360

sions as our proposed metrics, with human raters 361

selecting scores from [0, 0.5, 1]. To assess align- 362

ment between our metrics and human evaluations, 363

we computed the Spearman correlation on the sam- 364

pled subset. To ensure result reliability, we mea- 365

sured inter-rater agreement using Krippendorff’s 366

alpha(Krippendorff, 2011), which is more suitable 367

than Fleiss’ Kappa(Fleiss and Cohen, 1973) due 368

to the ordinal nature of the ratings. Additionally, 369

to contextualize human performance, we sourced 370

10 human-made theorem explanation videos from 371

YouTube for comparison. 372

4 Experimental Results 373

For the agent candidates in TheoremExplainAgent, 374

we experimented with GPT-4o(OpenAI, 2023), 375

Gemini 2.0 Flash(DeepMind, 2025), Claude 3.5 376

v1(Anthropic, 2024), and o3-mini(OpenAI, 2025). 377

Each candidate was used for both the planner agent 378

and coding agent, ensuring consistency across con- 379

figurations. We evaluated all agents across 240 380

theorems from TheoremExplainBench, comparing 381

their performance under different setups. Our find- 382

ings indicate that an agentless approach fails to gen- 383

erate videos longer than 20 seconds, whereas Theo- 384

remExplainAgent successfully produces videos of 385

up to 10 minutes. Consequently, all experimental 386

results presented below are based on the agentic 387

approach. 388

Table 1 reveals that the success rate in generat- 389

ing long-form theorem explanation videos varies 390

significantly across difficulty levels and subjects. 391

Overall, o3-mini consistently outperforms other 392

models, maintaining high success rates across both 393

easy and hard tasks, as well as across different 394

STEM domains. In contrast, GPT-4o performs 395

moderately well but show a declining success rate 396

as complexity increases, suggesting difficulties in 397

handling longer and more structured explanations. 398

Gemini 2.0-Flash struggles the most, with notably 399

lower success rates across all conditions. Across 400

subjects, Mathematics tends to have the highest 401

success rates, whereas Chemistry appear to be the 402

most challenging domain. This observation may be 403

attributed to the fact that complex objects in Chem- 404

istry, such as flask shapes and atoms, are more 405

challenging to illustrate than simpler primitives in 406

Mathematics, like triangles. 407
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Spearman Krippendorff’s α

Accuracy and Depth 0.14 0.45
Visual Relevance 0.72 0.36
Logical Flow 0.16 0.56
Element Layout 0.42 0.31
Visual Consistency 0.17 0.36

Table 3: Correlation on Metric-Human correlation
(Spearman) and Inter-rate Agreement (Krippendorff’s
alpha) for the five evaluation dimensions.

Given the successfully generated videos, we408

compiled Table 2 to present the metric results.409

Among the evaluated models, GPT-4o and o3-mini410

performed the best overall, both achieving strong411

scores across multiple dimensions. GPT-4o ex-412

celled in accuracy and depth, as well as logical413

flow, while o3-mini demonstrated the strongest per-414

formance in logical flow and a solid element lay-415

out. On the other hand, Gemini 2.0 Flash with416

RAG performed the weakest overall, struggling417

particularly with element layout and logical flow,418

indicating challenges in maintaining structured and419

visually coherent outputs. Human-made Manim420

videos, while scoring the similar overall among421

AI-generated results, achieved the highest visual422

relevance and element layout. This may be be-423

cause AI-generated videos tend to exhibit minor424

issues like overlapping elements and misalignment,425

which can affect clarity and structure. Interestingly,426

human-made videos scored lower in logical flow.427

This may be due to the more natural and less struc-428

tured narration in human explanations, which often429

prioritize engagement over strict logical progres-430

sion. In contrast, AI-generated videos tend to main-431

tain a consistent logical structure, adhering closely432

to predefined formats. However, this rigidity may433

sometimes come at the cost of expressiveness and434

contextual adaptability, making human explana-435

tions feel more fluid and accessible despite their436

lower scores in formal evaluation metrics.437

Our experiments with the RAG setup yielded438

mixed results, as shown in Table 1 and Table 2.439

While RAG was expected to enhance function un-440

derstanding and streamline object construction, its441

effectiveness proved inconsistent. Although retriev-442

ing documentation and code examples provided443

additional context, the results often misaligned444

with specific use cases. Many retrieved references445

were too generic or lacked relevance, leading to446

incorrect function calls and suboptimal parameter447

choices. These findings align with previous re-448

search emphasizing that retrieval quality is crucial. 449

Poorly structured documentation and imprecise re- 450

trieval can significantly reduce the effectiveness 451

of RAG-based approaches (Soman and Roychowd- 452

hury, 2024). 453

4.1 Correlation Study 454

From Table 3, we observe that our proposed met- 455

rics show strong alignment with human ratings 456

in Visual Relevance and Element Layout, while 457

demonstrating weaker correlations in Accuracy & 458

Depth, Logical Flow, and Visual Consistency. This 459

suggests that humans are particularly sensitive to vi- 460

sual aspects, such as spatial layouts, but may strug- 461

gle with evaluating long-form text or audio-based 462

content in detail. Visual Consistency appears to be 463

more subjective, which may explain its relatively 464

lower correlation with human ratings. Additionally, 465

Accuracy & Depth and Logical Flow exhibits the 466

weakest correlation with human judgments, likely 467

due to differences in how LLM and humans as- 468

sess coherence. Humans can tolerate informal flow, 469

while LLMs may penalize it. On the other hand, 470

human ratings across all dimensions show moder- 471

ate inter-rater agreement, as indicated by Krippen- 472

dorff’s alpha values. Notably, text-based dimen- 473

sions achieve slightly higher agreement than visual- 474

based ones, suggesting that textual evaluations are 475

more consistently interpreted among raters. 476

4.2 Error Analysis 477

We analyzed the error logs from unsuccessful runs 478

in the TheoremExplainAgent video generation pro- 479

cess and identified three primary failure categories. 480

The most common issue was Manim code halluci- 481

nations, which accounted for the majority of fail- 482

ures. These errors involved nonexistent functions, 483

modules, object properties, or image assets, as well 484

as incorrect function signatures with invalid pa- 485

rameter types and numbers, reflecting a misunder- 486

standing of the Manim API. The second major is- 487

sue stemmed from LaTeX rendering errors, primar- 488

ily due to syntax mistakes and improper handling 489

of special characters in mathematical expressions. 490

Lastly, general coding errors were observed, includ- 491

ing missing imports, undefined variables, and com- 492

putational mistakes in NumPy-based operations. 493

These findings reveal key challenges across LLMs, 494

underscoring the need for better code reliability 495

and API understanding in AI-generated videos. 496
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Incorrect, but we don’t know why Model misunderstood the direction encodes

Theorem: 8-Connectivity Chain Code

Example: Star shape

(Text Explanation) A chain code is a 

method used in image processing to 
represent the boundary of a  shape in a 
compact and lossless manner. It works 

by tracing the contour of the shape and 
encoding the direction of movement 

between consecutive boundary pixels. 
The directions are typically represented 
using numbers…

…
Chain Code of a star shape would

be [0, 1, 2, 3, 4, 5, 6, 7, 0, 1].

Human Expert Solution:

Assume each edge with only

one code, starting from top and
go anti-clockwise edge by edge.

0

1
2

3

4

5
6

7

(Video Explanation) A chain code is a method ...

5

4

7

5
1 7

4

3

3

1

Ans: [5,4,7,5,1,7,3,1,4,3]

Figure 5: Visualizations expose reasoning errors more clearly than text, making it easier to diagnose model mistakes.

4.3 Case Study497

We included representative video outputs in Fig-498

ure 6. This figure demonstrates that TheoremEx-499

plainAgent is capable of generating high-quality500

exploratory videos. For example, in Mathematics,501

the model effectively visualizes concepts such as502

Riemann sums, using animated grids and function503

plots to illustrate integral approximations. In Chem-504

istry, the system successfully explains the Octet505

Rule, leveraging atomic models to depict electron506

sharing and bonding interactions. In Physics, it507

generates electromagnetic wave simulations, show-508

casing wave propagation and spectral analysis. In509

Computer Science, it produces a clear demonstra-510

tion of Run-Length Encoding, using side-by-side511

comparisons of raw and compressed data repre-512

sentations. We examined more generated videos513

carefully and observed that videos in Mathemat-514

ics, Physics, and Computer Science generally ex-515

hibit higher visual quality and coherence compared516

to those in Chemistry. One notable observation517

is that Chemistry-related visualizations often rely518

on simple geometric primitives to depict complex519

lab apparatus and molecular structures, which can520

limit their clarity and effectiveness. Additionally,521

most of the generated videos exhibit minor element522

layout issues, such as overlapping texts, inconsis-523

tent sizes, or suboptimal object positioning, which524

slightly affects the overall presentation quality, as525

illustrated in Figure 7.526

We also found that visual explanations more ef-527

fectively reveal reasoning errors than text, facilitat-528

ing error diagnosis. From Figure 5, we observe529

that while the text-based explanation allows us530

to detect that the model’s answer is incorrect, it531

does not provide insight into why the mistake oc-532

curred. It seems the model understand the chain533

code theorem, but it applies it incorrectly. Such ex-534

planation is making it difficult to pinpoint the exact 535

reasoning flaw. In contrast, the video-based expla- 536

nation clearly exposes the model’s misunderstand- 537

ing, as incorrect movement direction encodes and 538

misplaced arrows reveal how the model misinter- 539

preted the chain coding process. This demonstrates 540

that visual explanations not only confirm incorrect 541

reasoning but also uncover the underlying cause 542

of errors, making them a more effective diagnostic 543

tool for analyzing AI-generated outputs. 544

5 Conclusion 545

This paper introduces TheoremExplainAgent, a 546

novel agentic approach for generating multimodal 547

theorem explanations through structured video con- 548

tent. Our study demonstrates that integrating vi- 549

sual explanations significantly enhances the clarity 550

and interpretability of theorem reasoning, surpass- 551

ing text-based methods alone. To systematically 552

evaluate AI-generated explanations, we present a 553

benchmark spanning multiple disciplines with five 554

automated evaluation metrics. Our experiments 555

reveal that agentic planning is crucial for produc- 556

ing long-form, coherent explanations, with o3-mini 557

achieving the highest success rate and overall per- 558

formance. However, challenges remain in visual 559

element layout, emphasizing the need for improved 560

spatial reasoning and refinement in AI-generated 561

animations. Additionally, our findings underscore 562

the importance of multimodal explanations in iden- 563

tifying reasoning flaws that text-based assessments 564

often miss, reinforcing the role of structured visual 565

communication in AI-driven theorem understand- 566

ing. Looking ahead, future work should focus on 567

enhancing visual structuring techniques, improving 568

agent coordination, and advancing video under- 569

standing to further refine multimodal explanations 570

for LLM-driven theorem comprehension. 571
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6 Limitations572

While our approach demonstrates the potential of573

AI-generated multimodal theorem explanations,574

several limitations remain. AI models still strug-575

gle with complex visual structuring, particularly in576

consistent elements layout in long-form explana-577

tions. Retrieval-augmented generation (RAG) also578

requires more tokens, increasing computational579

costs and inference time, which may impact scala-580

bility.581

7 Potential Risks582

AI-generated explanations have the potential to mis-583

lead users if errors go undetected, leading to false584

confidence in incorrect reasoning. This poses a risk585

where unverified AI-generated content could prop-586

agate misconceptions or misinformation if widely587

disseminated without proper validation. Ensuring588

the accuracy and reliability of AI-generated expla-589

nations remains a critical challenge.590

8 Artifacts591

We experimented TheoremExplainAgent with GPT-592

4o (OpenAI, 2023), Gemini 2.0 Flash (DeepMind,593

2025), Claude 3.5 v1 (Anthropic, 2024), and o3-594

mini (OpenAI, 2025). We are releasing the Theore-595

mExplainBench on Huggingface dataset with MIT596

licence. It features 240 theorems across Computer597

Science, Physics, Chemistry and Math subjects.598

9 Computational Experiments599

All the experiments were conducted on a NVIDIA600

A100-SXM4-80GB GPU. Approximately 1500 US601

dollars were spent on API call for closed-source602

model experiments.603
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A Gallery1068

In Figure 6 we present the high-quality videos gen-1069

erated by TheoremExplainAgent across four STEM1070

domains. The images are extracted from different1071

scenes in the videos, showing the consistency of the1072

topic. In Figure 7 we present the poorly generated1073

videos from TheoremExplainAgent and examine1074

their artifacts. In Figure 8 we compare a high qual-1075

ity animation and a low quality animation, and how1076

they were rated with our proposed metric.1077

B Prompt Templates1078

We adapt Chain-of-Thoughts (CoT) (Wei et al.,1079

2023) and Program-of-Thoughts (PoT) (Chen et al.,1080

2023a) when we design the prompt for Theorem-1081

ExplainAgent. We present our prompts templates1082

in the end of the Appendix.1083

C Supplementary Information1084

C.1 Human Annotation Process1085

We recruited 12 student volunteers in our annota-1086

tion process. We explained to the annotators that1087

their annotations were to be used in our study only1088

and would not be released publicly.1089

We show the user interface of our annotation1090

website in Figure 9, including the instructions pre-1091

sented to our annotators. We supplement each of1092

the dimensions with guiding questions to clarify1093

what the annotators should score.1094

C.2 Runtime Statistics1095

We report the runtime and cost statistics in Table 4,1096

assuming 4 fixed codes and 7 scenes per video, we1097

evaluate the cost, inference time, and latency of1098

different language models, and find that the Claude1099

3.5-Sonnet v1 model has the longest inference time1100

(2240-2380s), while the Gemini 2.0-Flash and GPT-1101

4o are the fastest (around 1120s).The RAG integra-1102

tion increases the number of input tokens signifi-1103

cantly. RAG integration significantly increases the1104

number of input tokens, with Claude 3.5-Sonnet v11105

+ RAG being the most used (1,050,000). Output1106

tokens are less variable, with the o3-mini model1107

generating the most tokens (154,000). The Gemini1108

2.0-Flash model is the most cost-effective ($0.10-1109

$0.16), while the Claude 3.5-Sonnet v1 + RAG is1110

the most expensive ($4.67).1111

C.3 Potentials for Future Research1112

Recent community efforts (Shah et al., 2024; Gate-1113

keep, 2024; GenerativeManim, 2024) have ex-1114

plored AI-driven Manim-based video generation 1115

for educational purposes. However, no scientific 1116

studies have systematically evaluated the effective- 1117

ness and robustness of these approaches. Our work 1118

introduces a novel agentic framework for generat- 1119

ing multimodal theorem explanations and demon- 1120

strates that AI-generated videos can achieve per- 1121

formance comparable to human-made content, al- 1122

though the robustness is still limited. Nevertheless, 1123

further research is needed to assess their impact 1124

on AI’s reasoning capabilities, visualization qual- 1125

ity, and learning outcomes. Future directions in- 1126

clude establishing benchmarks for AI-generated 1127

educational videos (within EdTech), integrating in- 1128

teractive elements to enhance engagement (within 1129

HCI/Visualization), and refining evaluation metrics 1130

to assess LLMs’ multimodal explanation abilities 1131

(within NLP). 1132
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Math: Riemann Sums

Chemistry: Octet Rule

Physics: Electromagnetic Waves

Computer Science: Run-Length Encoding

Figure 6: We show the high-quality videos generated by TheoremExplainAgent,across the four STEM domains.

Math: Integration By Substitution

Computer Science: K Means Clustering

Figure 7: We show the poorly generated videos from TheoremExplainAgent, zooming in the artifacts.
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Figure 8: Comparison on a scene of a high quality animation and a low quality animation.

Scene Plan Generation Prompt Template

You are an expert in video production, instructional design, and {topic}. Please design a high-
quality video to provide in-depth explanation on {topic}.

Video Overview:
Topic: {topic}
Description: {description}

Scene Breakdown:
Plan individual scenes. For each scene please provide the following:

• Scene Title: Short, descriptive title (2-5 words).

• Scene Purpose: Objective of this scene. How does it connect to previous scenes?

• Scene Description: Detailed description of scene content.

• Scene Layout: Detailed description of the spatial layout concept. Consider safe area margins
and minimum spacing between objects.

Please generate the scene plan for the video in the following format: ...

Agent Input Tokens Output Tokens Cost(USD) Time(s)

GPT-4o 350000 84000 1.71 1120
GPT-4o + RAG 840000 84000 2.94 1260
Claude 3.5-Sonnet v1 350000 91000 2.42 2240
Claude 3.5-Sonnet v1 + RAG 1050000 101500 4.67 2380
Gemini 2.0-Flash 595000 119000 0.1 1120
Gemini 2.0-Flash + RAG 1120000 119000 0.16 1260
o3-mini (medium) 434000 154000 1.16 1680
o3-mini (medium) + RAG 945000 154000 1.72 1820

Table 4: Average output tokens, cost, and inference time for TheoremExplainAgent generating one full video.
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Code Generation Prompt Template

You are an expert Manim (Community Edition) developer. Generate executable Manim code
implementing animations as specified, strictly adhering to the provided Manim documentation
context, technical implementation plan, animation and narration plan, and all defined spatial
constraints.

Think of reusable animation components for a clean, modular, and maintainable library, prioritizing
code structure and best practices as demonstrated in the Manim documentation context. Throughout
code generation, rigorously validate all spatial positioning and animations against the defined safe
area margins and minimum spacing constraints. If any potential constraint violation is detected,
generate a comment in the code highlighting the issue for manual review and correction.

Input Context:
...

Code Generation Guidelines:
...

Code Fixing Prompt Template

You are an expert Manim developer specializing in debugging and error resolution. Based on
the provided implementation plan and Manim code, analyze the error message to provide a
comprehensive fix and explanation.

Implementation Plan: {implementation_plan}

Manim Code: {manim_code}

Error Message: {error_message}

Requirements:

1. Provide complete error analysis with specific line numbers where possible.

2. Include exact instructions for every code change.

3. Explain why the error occurred in plain language.

4. ...
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Evaluation Prompt Template

You are a specialist in evaluating theorem explanation videos, known for giving clear and objective
feedback. You will be given the transcript of a video. Your task is to evaluate and score the content
of the video in several dimensions.

Evaluation Criteria:

1. Accuracy and Depth

• Does the narration explain the theorem accurately?
• Does the video provide intuitive and/or rigorous explanations for why the theorem holds?

2. Logical Flow

• Does the video follow a clear and logical structure?
• Does the video present a coherent buildup of ideas?

Scoring Instructions:
Conduct a comprehensive evaluation and score each dimension from 0 to 1:
(Score Descriptions)

You are tasked with analyzing and scoring a frame taken from a theorem explanation video. Note
that you may not have the context of the video, so the captured frame may be a frame where
some motion of visual elements is taking place. Your job is to assign a score from 1 to 5 for each
criterion. Please provide a brief justification for your scores.

Evaluation Criteria:

1. Visual Relevance

• Does the video frame align with the theorem’s concepts and derivations?

2. Element Layout

• Are the visual elements well-placed and appropriately sized within the frame?
• Are the visual elements free of unintentional overlap?
• Is the visual information conveyed in the frame clear and easy to understand?

...

You are tasked with analyzing and scoring a chunk of a theorem explanation video. Note that
you may not have the full context of the video. Your job is to assign a score from 1 to 5 for each
criterion. Please provide a brief justification for your scores.

Evaluation Criteria:

1. Visual Consistency

• Does the visual style remain consistent across frames?
• Are the motions and transitions smooth?

...
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Figure 9: The user interface of our annoatation website.
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