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Abstract

Adapting foundation models on downstream tasks should ensure robustness against
distribution shifts without the need to retrain the whole model. Although existing
weight interpolation methods are simple yet effective, we argue their static nature
limits downstream performance while achieving efficiency. In this work, we
propose DaWin, a training-free dynamic weight interpolation method that leverages
the prediction entropy of each unlabeled test sample to dynamically assess model
expertise for per-sample interpolation coefficients. Unlike previous works that
typically rely on additional training to learn such coefficients, our approach requires
no training. Then, we propose a mixture modeling approach that greatly reduces
inference overhead raised by dynamic interpolation. We validate DaWin on the
large-scale visual recognition benchmarks, spanning 14 tasks across robust fine-
tuning – ImageNet and its 5 distribution shift benchmarks – and multi-task learning
with eight classification tasks. Results demonstrate that DaWin achieves significant
performance gain in considered settings, with minimal computational overhead.
We further discuss DaWin’s analytic behavior to explain its empirical success.

1 Introduction

Recent studies have shown that while fine-tuning improves a foundation model’s performance on
specific downstream tasks, it may damage the model’s generalizability and robustness [70]. To
address this issue, robust fine-tuning methods [70] have been developed to adapt models to in-
distribution (ID) while maintaining out-of-distribution (OOD) generalization. Some approaches
integrate regularization into the learning objective [64, 51], while others focus on preserving the
knowledge of the pre-trained model by modifying tuning procedure [35, 38, 17]. Notably, weight
interpolation approaches allow for the integration of knowledge from multiple models via simple
interpolation or averaging and have proven effective on various settings [70, 69, 26, 72, 76, 29]

Weight interpolation approaches are appealing because they are easily applied to any fine-tuned model
as a post-hoc plug-in method, delivering competitive performance. Most existing works [70, 69]
focus on creating a single merged model using a static global interpolation coefficient λ for all test
samples: (1− λ)θ0 + λθ1, where θ0 and θ1 are the weights of two individual models. While these
methods efficiently achieve strong performance, we argue that the optimal coefficients vary across
input data samples, leaving notable potential for improving the performance of the interpolation-based
approaches. Recent studies on dynamic merging [7, 44, 63] explore sample-wise interpolation with
(1−λ(x))θ0+λ(x)θ1, which introduce extra learnable modules to replace the global coefficient with
sample-wise coefficient λ(x) from a given sample x. Yet, these methods require additional training
and careful design of the router modules to determine λ(x), which brings non-trivial complexity.

In this work, we propose a dynamic weight interpolation framework, DaWin, that performs sample-
wise interpolation without requiring any additional training. To begin with, we conduct a pilot
study to investigate the upper-bound performance of dynamic interpolation methods. Specifically,
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we simulate an oracle sample-wise weight interpolation by leveraging ground truth test labels for
sample-wise model expertise estimation via the cross-entropy (X-entropy) loss. Given a test sample,
a model yielding a smaller X-entropy is of larger importance during model merging, reflecting the
expertise of the corresponding selected model. We observe that fine-grained dynamic interpolation
with suitable expertise measures significantly outperforms static interpolation. Motivated by this,
we design an entropy ratio-based score function that can act as a reliable alternative to the X-
entropy ratio to robustly determine the sample-wise interpolation coefficients across different samples
from diverse domains. Furthermore, to resolve the computation overhead induced by sample-wise
interpolation operation during inference time, we further devise a mixture modeling-based [45]
coefficient clustering method that dramatically reduces the computation.

Contribution: (1) We present an intuitive upper bound performance analysis of oracle dynamic
interpolation methods and reveal that a variant of X-entropy ratio is a reliable metric to serve as
per-sample interpolation coefficients. (2) We devise a practical method, DaWin, that approximates
oracle dynamic interpolations by leveraging prediction entropy over unlabeled test samples. (3)
Extensive validation shows that DaWin consistently improves classification accuracy on distribution
shift and multi-task learning setups while not remarkably increasing the inference time, and we
provide theoretical analyses to explain the empirical success of DaWin.

2 Preliminary: background and pilot study

Background. Given domain X of input x and a label space Y = {1, ..., C}, let f(·; θ0) and
f(·; θ1) denote parametric models map input x to C − 1 dimensional simplex. They are individually
trained on the same or different datasets but have identical architecture. For example, f(·; θ0) could
represent a pre-trained model such as CLIP [55], while f(·; θ1) is the fine-tuned counterpart on a
particular downstream task. Model merging approach [70, 69] constructs a merged model f(·; θλ),
which achieves a better trade-off between ID and OOD performance than the individual models
by interpolating in the weight space θλ = (1 − λ)θ0 + λθ1. We will use the terms interpolation
and merging interchangeably. Throughout the paper, we use the term static interpolation to denote
methods that induce a single merged model corresponding to a single interpolation coefficient used
for all test samples. In contrast, dynamic interpolation refers to methods that generate multiple
merged models, with the interpolation coefficients varying depending on the sample x or domain X .

Goal and hypothesis. We begin by conducting a pilot study to understand the benefits of dynamic
interpolation, which adapts interpolation coefficients at a finer granularity (such as sample level,
λ(x)), as opposed to using global coefficient λ for all samples [70, 69]. To explore the upper limits
of these methods, we experiment with ground truth labels as an oracle to estimate upper-bound
performance and understand the maximum potential of model interpolation methods. We hypothesize
that (1) Fine-grain interpolation, which adapts coefficients at a finer level (such as the sample level),
can lead to substantial improvements compared to static interpolation. (2) Per-sample interpolation
coefficients can effectively estimated with X-entropy-based model expertise measurement.

Table 1: Pilot experiments for upper-bound analysis.
We evaluate zero-shot (ZS), fine-tuned (FT), and several
interpolation methods with CLIP ViT-B/32 on ImageNet
(ID) and its five distribution shifts (OOD). The domain-
wise coefficients are found by grid search over each test
set, and sample-wise coefficients are determined by the
X-entropy ratio of individual models. † denotes oracles
that use ground truth labels.

Method Model Weight ID OOD

ZS [55] θ0 63.4 48.5
FT [70] θ1 78.4 47.9

WiSE-FT [70] (1 − λ)θ0 + λθ1 79.1 51.0
Dynamic Interp.d† (1 − λ∗(X ))θ0 + λ∗(X )θ1 79.1 55.0
Dynamic Interp.s† (1 − λ∗(x))θ0 + λ∗(x)θ1 83.4 60.6

Setup. We assess the top-1 accuracy of sev-
eral approaches on ImageNet-1K (ID) [58] and
distribution-shifted (OOD) benchmarks [57, 23,
24, 67, 2] by fine-tuning the CLIP ViT-B/32 [55]
on ID. Besides individual models (zero-shot; ZS
and fine-tuned; FT), we include a representa-
tive static interpolation method, WiSE-FT [70],
which determines the interpolation coefficient
λ grid search on the ID validation set. Then,
we implement two oracle interpolation methods:
Dynamic Interp† per domain (d) and per sam-
ple (s). For the domain-wise interpolation, or-
acle coefficients λ∗(X ) are determined by grid
search over all test samples within each domain
X , such as art or sketch. In contrast, for sample-
wise interpolation coefficients λ∗(x), we use
negative X-entropy to measure models’ expertise on a specific input x, which is computed as
λ∗(x) = exp(−l(f(x; θ1), y))/(exp(−l(f(x; θ0), y)) + exp(−l(f(x; θ1), y))).
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Figure 1: Framework overview. DaWin first estimates per sample model expertise and then produces coefficients
based on the relative expertise of models to conduct dynamic interpolation.

Results and interpretations. We verify our hypothesis in Table 1. Here, the domain-wise and sample-
wise dynamic interpolation methods perform far better than individual models or static interpolation.
Moreover, compared with the domain-wise interpolation method, sample-wise interpolations show
much higher performance in all cases. This supports our hypotheses that fine-grain interpolation
leads to better downstream accuracy, and the negative X-entropy can be used as a reliable estimator of
model expertise. We conclude that determining proper interpolation coefficients on a sample-wise
basis dramatically elevates the achievable performance of model merging-based approaches.

3 Method

Revisiting Entropy as a Measure of Model Expertise. While the pilot study in the previous
section provides encouraging results, those oracle methods cannot work in practice. This is be-
cause we do not have access to the ground truth labels for incoming test samples. This leads
us to the question: how can we reliably estimate the interpolation coefficient solely based on
the test input x? There is extensive literature which adopts entropy as a proxy of X-entropy
[18, 5, 60, 66, 54]. The rationale behind this is grounded in the observation that the entropy
strongly correlates with X-entropy, even under distribution shifts [66] those models have not ex-
plicitly trained on. This work presents the first attempt to leverage the sample-wise entropy to
measure each model’s expertise to determine the interpolation coefficients given test samples.

Figure 2: Correlation between entropy ratio
and X-entropy ratio. Results imply that the
entropy ratio strongly correlates with the X-
entropy ratio both on ID and OOD datasets.

We claim that entropy is well-correlated with X-entropy
and can thus be used to estimate model expertise. Fig-
ure 2 shows scatter plots with fitted regression lines of
the entropy and X-entropy ratios with Pearson correla-
tion coefficients on two datasets. Specifically, we plot

H(f(x;θ0))
H(f(x;θ0))+H(f(x;θ1))

and l(f(x;θ0),y)
l(f(x;θ0),y)+l(f(x;θ1),y)

for en-
tire test samples and compute Pearson correlation coeffi-
cient between them, where H denotes the entropy. Here,
we observe strong correlations [59] in both datasets. This
implies that entropy is a reasonable proxy for the X-
entropy for computing model expertise and, ultimately,
sample-wise interpolation coefficients.

Dynamic Interpolation via Entropy Ratio. After confirming a strong correlation between the
entropy and X-entropy, we propose a new dynamic weight interpolation, DaWin, by defining sample-
wise interpolation coefficients λ(x) as below:

λ(x) =
exp(−H(f(x; θ1)))

exp(−H(f(x; θ0))) + exp(−H(f(x; θ1)))
. (1)

where H represents the entropy over the output probability distribution of f(·; θ) given input x. The
value of λ(x) approaches 1 when model f(·; θ1) exhibits lower entropy (greater expertise), whereas
it approaches 0 if the entropy of model f(·; θ1) becomes higher. Figure 1 illustrates the overall
framework. Intuitively, this approach is analogous to classifier selection methods [14, 33], which
aims to dynamically select suitable classifier(s) given a test sample. However, DaWin differs in
terms of its motivation, expertise metric, and goal as we pursue finding the interpolation coefficients
rather than selecting the best model (See Table 6). We discuss the connection between DaWin
and the selection-based method in App. A.5. Note that our sample-wise expertise estimations
do not require any hyperparameters in contrast to prior works [70, 27]. However, performing
interpolation on every sample can substantially increase the inference-time computation, with the
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Figure 3: ID and OOD trade-off analysis. Trade-offs in terms of ID and OOD classification accuracy on
ImageNet distribution shift benchmarks with CLIP ViT-{B/32, B/16, L/14} from left to right. The blue curve
is the hyperparameter sweep {0.1, 0.2, ..., 0.9} of WiSE-FT. DaWin achieves performance beyond the Pareto-
optimal points given two models, ZS and FT. (See Figure 7 for more).

cost scaling linearly with the number of model parameters [44]. To ensure practicality while pursuing
outstanding downstream performance, we devise an efficient dynamic interpolation by mixture
modeling and conduct mixture component-wise interpolation. Meanwhile, if we assume we can
access all test samples simultaneously, we can refine the coefficient computation by introducing
per-domain expertise offset terms and use this technique by default (see App. A.1) for omitted details.

4 Experiments

Setup. We validate DaWin on robust fine-tuning [70] and multi-task learning [26] setups with
focusing on the top-1 classification accuracy (Acc). For robust fine-tuning, we use ImageNet-1K and
its five OOD variants, ImageNet-V2, ImageNet-R, ImageNet-A, ImageNet-Sketch, and ObjectNet, to
evaluate robustness under distribution shifts and adopt CLIP ViT-{B/32, B/16, L/14} [55] as zero-shot
(ZS) models to ensure a fair comparison with [70, 69], and fine-tuned (FT) checkpoints for each
backbone from Jang et al. [29]. For multi-task learning, we follow the conventional protocol [26]
using CLIP ViT-B/32 on 8 datasets: SUN397, Cars, RESISC45, EuroSAT, SVHN, GTSRB, MNIST,
and DTD. See App. A.2 for omitted details on implementation and baseline methods.

Table 2: Accuracy on ImageNet (ID) and its OOD for
CLIP ViT-B/32. Cost (T, I) denote the number of training
required to build the final model and the number of
inference evaluations, respectively. Given M models, N
denotes the number of test samples, and H and K denote
the size of the hyperparameter grid and the number of
mixture components, respectively.

Method Cost (T) Cost (I) ID OOD

ZS - O(1) 63.3 48.4
FT 1 O(1) 78.3 47.0

Output ensemble 1 O(M) 78.9 51.7
WiSE-FT [70] 1 O(H) 79.1 51.0
Uniform Soup [69] 48 O(1) 79.7 52.0
Greedy Soup [69] 48 O(1) 80.4 50.8
Model Stock [29] 2+α O(1) 79.8 50.9

DaWin (sample-wise) 1 O(N + M) 78.7 54.4
DaWin 1 O(K + M) 78.7 54.3

Better performance trade-off between ID and
OOD. In Figure 3, we present the accuracy for
ID (x-axis) and OOD average (y-axis) across
three backbone models, along with baseline per-
formance. Achieving superior ID/OOD trade-
offs beyond or even comparable to the blue
curve from the WiSE-FT hyperparameter sweep
is challenging. However, DaWin provides a
remarkably better performance trade-off com-
pared to baselines. It is worth noting that DaWin
does not require any hyperparameter tuning. In-
stead, it dynamically generates interpolation co-
efficients solely based on the trained models’
output. This distinguishes DaWin from other
hyperparameter-intensive fine-tuning such as
CaRot [51] or existing interpolation methods
[70]. Tab. 2 provides detailed accuracies and
costs. Compared with Uniform and Greedy Soups and Model Stock, which require more than two
models to ensure diversity among fine-tuned models [69] or periodic interpolations during training
[29], DaWin operates with only a single fine-tuned model while achieving significantly better accuracy
trade-off with slightly increased inference cost. These trends hold across other backbones (see Tab. 4
and 5), verifying DaWin’s generality in terms of modeling scale. Although DaWin compromises the
inference-time efficiency for accuracy, given that existing works typically require hyperparameter
tuning in practice [26], relative computation overhead is minor (See Tab. 5).

Multi-task adaptation capability. We now evaluate existing merging approaches and our DaWin on
multi-task learning benchmarks with CLIP ViT-B/32. Following the standard evaluation protocol [74],
we have M tasks and models individually fine-tuned on each task (where M = 8). We do not know
where each test sample arises from during evaluation and cannot choose true experts per domain.
While both AdaMerging and DaWin use unlabeled testset, DaWin produces dynamic merged models
given tasks or samples, whereas AdaMerging induces a single merged model for all tasks by default.
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Table 3: Multi-task learning performance. We use CLIP ViT-B/32 for evaluation across eight benchmark tasks.
† denotes optimal-like performance using the ground truth domain indicator to select models for each domain.
We report the layer-wise method for AdaMerging [74] here, which surpasses those of the task-wise approach.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.

Pre-trained 63.2 59.6 60.2 45.2 31.6 32.6 48.3 44.4 48.1
Individuals† 75.3 77.7 96.1 99.8 97.5 98.7 99.7 79.4 90.5

Fisher Merging [48] 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean [31] 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8

Task Arithmetic [27] 55.3 54.9 66.7 75.9 80.2 69.7 97.3 50.1 68.8
Ties-Merging [72] 65.0 64.3 74.7 75.7 81.3 69.4 96.5 54.3 72.6
AdaMerging [74] 64.2 68.0 79.2 93.0 87.0 92.0 97.5 58.8 80.0
AdaMerging++ [74] 65.8 68.4 82.0 93.6 89.6 89.0 98.3 60.2 80.9
Pareto Merging [6] 71.4 74.9 87.0 97.1 92.0 96.8 98.2 61.1 84.8

DaWin 66.2 66.7 91.3 99.2 94.7 98.1 99.5 74.6 86.3

Figure 4: Merging coefficient visualiza-
tion. We visualize DaWin’s coefficients
across 8 datasets (columns) with 8 fine-
tuned models (rows).

Here, we modify the interpolation formula in Sec. 3 into
task arithmetic formulation, i.e., given weights of pre-trained
model θ0 and fine-tuned models {θj}Mj=1, a dynamic inter-
polation is defined as θλ(x) = θ0 +λ0

∑M
j=1 λj(x)τj where

τj = θj − θ0, λj(x), and λ0 denote the task vector [27],
weight for j-th task vector, and scaling term (set to 0.3 as
Ilharco et al. [27]), respectively. In Table 3, DaWin greatly
outperforms advanced averaging [31] and adaptive merging
[6] methods that require tough training, and approaching
a ground truth expert selection method, e.g., Individuals†.
This verifies the versatility of DaWin, which is beneficial for
adapting the model on multiple tasks as well as a single-task
setup. Figure 4 shows the average of estimated sample-wise
coefficients (y-axis) per dataset (x-axis). DaWin assigns
the highest weights to true experts (diagonal) per task and
leverages relevant experts by reflecting task-wise similarity.
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Figure 5: Accuracy and wall-clock inference
time with CLIP ViT-B/32. We compared search-
based, optimization-based, and our merging meth-
ods regarding accuracy and wall-clock inference
time on robust fine-tuning (left) and multi-task
learning evaluation on SVHN dataset (right).

Accuracy and runtime trade-off. While we fo-
cus on improving accuracy through model merging
approaches, it is crucial to ensure the extra computa-
tion demands of DaWin during inference are manage-
able. Fig. 5 presents trade-offs between the accuracy
and wall-clock time for various merging methods.
For methods requiring hyperparameter tuning, e.g.,
WiSE-FT and Task Arithmetic, the wall-block time
(logarithm of sec.) reflects a cumulative time for eval-
uations across all hyperparameters. For methods like
DaWin or AdaMerging, we include the time required
for additional workloads. In both settings, DaWin
shows favorable trade-offs that outperform the most
efficient one in terms of Acc. while its runtime is far less than computation-heavier methods such as
AdaMerging or per sample interpolation without mixture model (Sample-wise Interp). Thus, DaWin
provides a high-performing solution that can be flexibly adapted considering a given cost budget.

5 Conclusion

This work has presented the first training-free dynamic weight interpolation method, DaWin, by
estimating the sample-wise model expertise with entropy to produce reliable interpolation coefficients.
We further proposed mixture modeling approaches to enhance computational efficiency. We then
extensively evaluated DaWin on 14 benchmark classification tasks with three different backbone
models in terms of ID/OOD performance trade-off in the robust fine-tuning scenario and the overall
accuracy in the multi-task learning scenario. The consistent performance gains compared with
state-of-the-art baselines empirically validated DaWin’s effectiveness, and this empirical success was
further explained by discussing an analytic behavior of DaWin (Please refer to App. A.5).
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A Appendix

We provide the following items in this Appendix:

• (A.1) Algorithm and additional details on DaWin

• (A.2) Additional details on the experiment setup

• (A.3) Additional empirical results

• (A.4) Related works

• (A.5) Theoretical analysis

• (A.6) Limitation and future work

A.1 Algorithm and additional details on DaWin

Algorithm 1: Procedure for training-free dynamic weight interpolation (DaWin)

Input: Test samples X = {xi}Ni=1 ∈ RN×D, models f(·; θ0) and f(·; θ1) of the same
architecture, entropy function H(·), and the number of mixture component K

for i = 1, . . . , N do
(Hi,0, Hi,1)← (H(f(xi; θ0)), H(f(xi; θ1))) // Per-sample model expertise
if offset adjustment then

λ(xi)← exp(−Hi,1)+O(X)/T (X)
exp(−Hi,0)+exp(−Hi,1)+O(X)

else
λ(xi)← exp(−Hi,1)

exp(−Hi,0)+exp(−Hi,1)
// Per-sample interp. coefficient

end
end
bmm← BetaMixture({λ(xi)}Ni=1;K).fit()
{mi}Ni=1 ← bmm.predict(X) // Membership inference on test samples
for k = 0, . . . ,K − 1 do

Xk ← X[I(mi == k), :]
λ(Xk)← bmm[k].mean()
θλ(Xk) ← (1− λ(Xk))θ0 + λ(Xk)θ1 // Cluster-wise dynamic interp.

end

X-entropy ratio and likelihood ratio. Let f(x; θ) = pθ(y|x) be a classifier parameterized with
θ that models the ground truth conditional probability distribution p(y|x). Given that we observe
one-hot encoded target labels so that l(f(x; θ), y) = − log(pθ(y|x)), then we can rewrite the oracle
sample-wise coefficient in Sec 2 as follows, λ∗(x) = pθ1(y|x)/(pθ0(y|x) + pθ1(y|x)), which can
be interpreted as a posterior of Bernoulli distribution in the noise-contrastive estimation [21], i.e.,
λ∗(x) = pθ1(y|x)/(pθ0(y|x) + pθ1(y|x)), which models the probability whether a data (x, y) comes
from the distribution pθ1(y|x).
Sample-wise entropy valley hypothesis. One of the most popular hypotheses that explain the
success of weight interpolations is linear mode connectivity (LMC; Frankle et al. [13]), which ensures
that interpolated models are also laid on good solution space as well as low-loss converged individual
models. Although entropy is a concave function that denies the LMC in nature, we believe that a
similar statement can be claimed, which we refer to sample-wise entropy valley as follows:

i) There exists λ such that H(f(x;λθ0 + (1− λ)θ1) ≤ min{H(f(x; θ0)), H(f(x; θ1))}.

ii) By observing the existence of sample-wise linear feature connectivity [78] conditioned on LMC,
the λ obeyed to (i) is varying depending on the input data sample x.

As empirical evidence, Figure 12 shows that the interpolated model actually induces smaller entropy
than individuals (i) on average, and DaWin achieves lower entropy than static interpolation (ii). Given
the strong correlation between entropy and X-entropy, this hypothesis advocates the benefit of DaWin
than static interpolation methods.
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Incorporating domain-wise expertise. While the eq equation 1 yields sample-wise interpolation
coefficients solely based on the per-sample expertise estimation, if we can access the whole test
samples simultaneously, we can refine the coefficient computation by introducing domain-wise offset
terms. These terms are automatically estimated by the per-domain entropy of each model. Given the
significant performance improvements with domain-wise dynamic interpolation (c.f. Table 1), we
expect domain-wise expertise per model can be a complimentary benefit to compute the interpolation
coefficient. Therefore, we modify the sample-wise coefficient term in Eq. 1 as below:

λ(x) =
exp(−H(f(x; θ1))) +O(X)/T (X)

exp(−H(f(x; θ0))) + exp(−H(f(x; θ1))) +O(X)
, (2)

O(X) =
1

2
(

std(H(f(X; θ0)))

mean(H(f(X; θ0)))
+

std(H(f(X; θ1)))

mean(H(f(X; θ1)))
) T (X) =

H(f(X; θ0)) +H(f(X; θ1))

H(f(X; θ0))
,

where O(X) and T (X) denote the per-domain offset (formulated as an average coefficient of
variation) and relative domain expertise terms, respectively. By incorporating domain-wise expertise,
DaWIN offers more stable dynamic interpolation coefficients, correcting some of the inaccuracies in
sample-wise estimation (see Table 7). It is worth noting that these sample-wise and domain-wise
expertise estimations do not require any hyperparameters for computing interpolation coefficients.
This eliminates the need for intensive hyperparameter tuning that is often required in prior works [70,
27] to achieve the best performance.

Efficient Dynamic Interpolation by Mixture Modeling Although our primary objective is to
achieve better downstream task performance by way of dynamic interpolation, performing inter-
polation on every sample can substantially increase the inference-time computation, with the cost
scaling linearly with the number of model parameters [44]. To ensure practicality while pursuing
state-of-the-art downstream performance, we devise an efficient dynamic interpolation by mixture
modeling. Let {xi}Ni=1 denote the N test samples and {λ(xi)}Ni=1 the corresponding interpolation
coefficient computed by DaWin framework. Note that λi ∈ [0, 1] for all i = 1, . . . , N , and they can
be regarded as observed random variables from some Beta distributions. Then, we accurately model
the probability density function of interpolation coefficients via Beta mixture model2 as follows:

Λ1, ...,ΛN ∼ ΣK
k=1πkBeta(xi; ak, bk),

where Λi indicates random variables of λ(xi) and {πk}Kk=1 are the prior probabilities for each Beta
distribution Beta(·; a1, b1), ...,Beta(·; aK , bK). We initialize the parameters (ak, bk)Kk=1 randomly
for each Beta distribution and estimate the initial membership of each sample via K-means clustering.
Then, the expectation-maximization (EM) algorithm is adopted to iteratively refine the parameters of
the Beta mixture and the membership inference quality. This process only takes around 30 seconds for
50K samples. Finally, given a test sample xi, we infer the membership of that sample via maximum
likelihood k∗ = argmaxk Beta(xi; ak, bk), and use the mean of the corresponding Beta distribution

ak∗
ak∗+bk∗ . This approach significantly reduces the computational burden of sample-wise dynamic
interpolation from N (number of test samples) to K (number of pre-defined clusters), where K ≪ N .
We outline the detailed procedures of DaWin in Algorithm.

Details on Beta Mixture Model (BMM) with Expectation Maximization algorithm. To enhance
the inference-time efficiency of dynamic interpolation, we propose a mixture modeling approach over
the estimated per-sample interpolation coefficients to reduce the number of interpolation operations
from N (entire test sample) to K (pre-defined number of mixture components). Here, we elaborate
on the detailed procedure of Beta Mixture Modeling3.

We have coefficient estimates over N test samples via Eq. 1 or Eq. 2 as {λ(xi)}Ni=1. Our goal is to
model those coefficients with a mixture of K Beta distributions as below:

Beta(λ(xi); ak, bk) =
Γ(ak + bk)

Γ(ak)Γ(bk)
λ(xi)

ak−1(1− λ(xi))
bk−1 (3)

p(λ(xi)) =

K∑
k=1

πkBeta(λ(xi); ak, bk) (4)

2For cases of interpolating more than two models, this can be easily extended to Dirichlet mixture model
3The same procedure is adopted for the Dirichlet Mixture Model in multi-task learning scenario by modifying

the probability density function from Beta distribution to Dirichlet distribution.
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where ak > 0 and bk > 0 are the shape parameters of component k, Γ(·) and πk denote the Gamma
function and mixing prior probabilities for each Beta component satisfying

∑K
k=1 πk = 1 and πk ≥ 0.

We first initialize the responsibilities {γik} by applying K-Means clustering to {λ(xi)} to assign the
initial membership per each observation to one of K components. We also initialize the parameter
estimates of BMM as below:

Mixing Priors(πk) : π
(0)
k =

N
(0)
k

N
, where N

(0)
k =

N∑
i=1

γ
(0)
ik . (5)

Shape Parameters(ak, bk) : a
(0)
k = C

(0)
k × λ̄0

k + ϵ, (6)

b
(0)
k = C

(0)
k × (1− λ̄

(0)
k ) + ϵ (7)

where λ̄
(0)
k =

1

N0
k

N∑
i=1

γ
(0)
ik λ(xi), (8)

s
2,(0)
k =

1

N0
k

N∑
i=1

γ
(0)
ik (λ(xi)− λ̄

(0)
k )2, (9)

C
(0)
k =

λ̄0
k(1− λ̄0

k)

s
2,(0)
k

− 1, (10)

where ϵ is a small positive constant to ensure numerical stability. Here, the initial shape parameters
are estimated by method-of-moments [53]. Then, we conduct the expectation step (E-step) and
the maximization step (M-step) alternatively until convergence to refine the parameter estimate as
follows:

• E-step:

– Compute log responsibilities lnγ(t)
ik .

– Update responsibilities γ(t)
ik = exp(lnγ(t)

ik ).
• M-step:

– Update mixing priors π(t+1)
k .

– Update shape parameters a(t+1)
k , b

(t+1)
k using method-of-moments estimation.

• Convergence Check:

– Compute log-likelihood L(t+1), where L(t) =
∑N

i=1 lnp(λ(xi))

– If |L(t+1) − L(t)| < tolerence, stop the iterations.

Then, we get the estimated parameter Θ = {πk, ak, bk}Kk=1 of BMM to infer per-sample weight
interpolation coefficients.

A.2 Additional details on the experiment setup

In this section, we provide extended details for task definition, baseline methods, and implementation
details. Some contents might be duplicated from the main paper.

A.2.1 Tasks and Datasets

We validate DaWin on two scenarios: (1) robust fine-tuning [70] and (2) multi-task learning [26]
with focusing on the top-1 classification accuracy (Acc). Following robust fine-tuning literature
[70, 35], we use ImageNet-1K [58] and its five variants, ImageNet-V2 [57], a post-decade reproduced
version of the original ImageNet test set by following the dataset generating process of ImageNet,
ImageNet-R [23], a rendition-specific collection of 200 ImageNet classes, ImageNet-A [24], an actual
examples from ImageNet test set misclassified by a ResNet-50 model over 200 ImageNet classes,
ImageNet-Sketch [67], a sketch-specific collection of 1000 ImageNet classes, and ObjectNet [2]
for evaluating robustness under distribution shifts. For multi-task learning, we follow the standard
evaluation protocol [26, 74] using eight benchmark datasets from the optical character images, traffic
signs, scenery or satellite imagery, and fine-grain categorization over cars and texture: SUN397 [71],
Cars [34], RESISC45 [8], EuroSAT [22], SVHN [77], GTSRB [61], MNIST [36], and DTD [11].

13



A.2.2 Models and Baselines

For robust fine-tuning, we adopt CLIP ViT-{B/32, B/16, L/14} [55] as zero-shot (ZS) models to
ensure a fair comparison with [70, 69, 26, 74], and fine-tuned (FT) checkpoints for each CLIP ViT
backbone from Jang et al. [29]. For the weight interpolation baseline methods, we include WiSE-FT
[70], which conducts a weight interpolation between a pre-trained model and a fine-tuned model
given a single pre-defined interpolation coefficient, Model Soup [69], which conducts averaging of
all models’ weights (Uniform Soup) or greedily selected models’ weights (Greedy Soup) trained
with different training hyperparameter configurations, and Model Stock [29], iteratively interpolate
a pre-trained model with few fine-tuning model based on the cosine distance between pre-trained
model weight and the fine-tuning model weights, along with the traditional output ensemble method.
In addition, we consider several state-of-the-art robust fine-tuning methods such as LP-FT [35], a
two-stage method to avoid pre-trained feature distortion, CAR-FT [46], a regularized fine-tuning
method leveraging context-aware prompt, FLYP [17], a contrastive learning based fine-tuning method,
Lipsum-FT [50], a regularized fine-tuning method motivated by energy score gap between zero-shot
and fine-tuned models, and CaRot [51], a theory-inspired singular value regularization method.

For multi-task learning, we use CLIP ViT-B/32 as our backbone and consider the model merging
baselines as follows: a simple weight averaging [26], Fisher Merging [48], a Fisher information
metric-based weighted averaging method, RegMean [31], an averaging method that minimizes
L2 distance between the averaged weight and individual weights, Task Arithmetic [27], a method
perform arithmetic across task vectors rather the original weight vector itself which are produced
by the subtractions between a pre-trained model weight and individual fine-tuned model weights,
Ties-Merging [72], a post-hoc weight refinement method mitigating conflicts between task vectors,
AdaMerging [74] and Pareto Merging [6] methods those driving additional optimization procedure to
a global interpolation coefficient and the conditional coefficient generation models that trained to
minimize entropy over entire test sample.

A.2.3 Implementation Details

For fine-tuning CLIPs on ImageNet, Wortsman et al. [69] and its successor [29] conducted multiple
training with different training configurations such as data augmentation, learning rate, weight decay,
and random initialization seeds given fixed epochs (16) and batch size (512). Here, we adopted the
best model weight provided by the authors of Jang et al. [29] per each backbone. For fine-tuning
weights of CLIP on multi-task learning setup, we adopt the official checkpoints from Ilharco et al.
[27] on the eight datasets.

On DaWin’s evaluation, we first get the entropy of batch test samples from the interpolation candidate
models4 (wherein temperature scaling [20] is applied in the robust fine-tuning setup with ID validation
set), then we compute interpolation coefficients by building a softmax-like model expertise ratio term
with exponentiated negative entropy of each model. We further perform the mixture modeling over
the batch test samples and finally conduct dynamic model merging with interpolation coefficients
corresponding to estimated membership from the fitted mixture model to obtain the prediction per
sample. About the Beta (on robust fine-tuning setup) and Dirichlet (on multi-tasks learning setup)
mixture modeling on interpolation coefficients for DaWin, we set K to 3, 5, 2 for ViT-{B/32, B/16,
L/14} in the robust fine-tuning and K = 1 in the multi-task setups. Unless otherwise mentioned, we
adopt the offset adjustment term (Eq. equation 2) by default, assuming that the entire test samples per
task are available and fit the Beta (and Dirichlet) mixture model on the entire coefficients per task,
likewise assumption of Yang et al. [74, 73], Chen and Kwok [6]. Our code will be publicized upon
paper acceptance.
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Table 4: Accuracy on ImageNet (ID) and distribution shifts
(OOD) for CLIP ViT-B/16.

Method ID OOD Avg.

ZS 68.3 57.7
FT 82.8 56.3
LP-FT [35] 82.5 61.3
CAR-FT [46] 83.2 59.4
FLYP [17] 82.7 60.6
Lipsum-FT [50] 83.3 62.7
CaRot [51] 83.1 64.0

Output ensemble 83.4 63.6
WiSE-FT [70] 83.5 64.2
Model Stock [29] 84.1 62.4

DaWin 83.4 66.9

Table 5: Accuracy on ImageNet (ID) and distri-
bution shifts (OOD) for CLIP ViT-L/14.

Method ID OOD Avg.

ZS 75.5 70.9
FT 87.0 70.6
FLYP 86.2 71.4
CaRot 87.0 74.1

Output ensemble 87.3 73.3
WiSE-FT 87.3 73.2
Model Stock 87.7 73.5

DaWin 86.9 76.0

A.3 Additional empirical results

Ablation study. We explore alternative metrics be-
yond entropy for estimating sample-wise model ex-
pertise, as shown in Figure 6. Specifically, we con-
sider four different pseudo label (PL) approaches
[37] to replace the entropy, {ŷ, ỹ} × {soft, hard},
where ŷ = 1

2f(x; θ0) + 1
2f(x; θ1) and ỹ =

f(x; 1
2θ0 + 1

2θ1). The settings {soft, hard} indi-
cate whether the argmax operation is applied to
PL or not. We observe that some PLs slightly out-
perform entropy in terms of ID accuracy but bring
no gains in OOD accuracy. To maintain simplicity
in line with Occam’s razor [16], we adopt entropy
as the expertise metric on unlabeled test samples.

Figure 6: Effectiveness of our expertise metric.
We evaluate five different expertise metrics on ID
(left) and OOD (right). H behaves like L, with
performance nearly matching or even surpassing
the best-performing L.

Applications: dynamic selection and dynamic output ensemble. Given that DaWin is motivated
by the concept of “entropy as a measure of model expertise," we can extend this beyond weight
interpolation to two other approaches, dynamic classifier selection (DCS; Giacinto and Roli [14],
Britto et al. [4]) and dynamic output ensemble (DOE; Alam et al. [1], Li et al. [40]).

Table 6: Results of per-sample dynamic clas-
sifier selection (DCS), dynamic output ensem-
ble (DOE), and dynamic weight interpolation
(DaWin) on ImageNet (ID) and under distribu-
tion shifts (OOD) for different CLIP ViT back-
bone models.

Model Method

FT DCS DOE DaWin

ID

B/32 78.35 78.59 78.71 78.71
B/16 82.80 82.15 83.24 83.38
L/14 87.07 86.53 87.07 86.88

O
O

D B/32 47.08 52.87 52.71 54.41
B/16 56.25 64.90 64.85 66.85
L/14 70.59 74.71 75.14 76.01

To be specific, DCS aims to select the most suitable
classifier for each test sample based on the competence
(referred to as expertise in our terminology) among
multiple classifiers. We provide the results of DCS
by adopting entropy as a competence measurement for
classifier selection, i.e., selecting a lower entropy model
per sample. Besides, we also present a dynamic output
ensemble (DOE) by applying Eq. 2 directly on the
output probability space rather than weight space. In
Table 6, we see that entropy-based DCS and DOE bring
large performance gains compared with a single fine-
tuned model (FT), while the DaWin achieves the largest
gain. This implies that users can flexibly build their
dynamic system using test sample entropy according to
their budget and performance criteria.

We ablate the offset adjustment and expertise metric to
investigate the effectiveness of the design choices of each component. Firstly, as we can see in Table
7, offset adjustment consistently boosts the ID and OOD accuracy across all cases, which supports the
use of domain-wise relative expertise (average entropy over all test samples) to enhance sample-wise
expertise estimation. To secure inference time efficiency, we adopt the Beta mixture modeling

4Candidate models are constituted with the pre-trained and fine-tuned models for robust fine-tuning setting,
the task-specific eight fine-tuned models for multi-task learning setting.
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Table 7: Ablation study on offset adjustment. We validate the effect of using the offset adjustment term on
ImageNet ID and OOD accuracy.

Model Offset Adjustment ID Avg. Acc on OOD

ViT-B/32 - 78.3 54.1
✓ 78.7 54.4

ViT-B/16 - 83.1 66.6
✓ 83.4 66.9

ViT-L/14 - 86.7 75.9
✓ 86.9 76.0

Table 8: Sensitivity analysis on sample size. We report DaWin’s ImageNet and its OOD variants’ accuracy of
CLIP ViT-B/32 under varying sample wise for fitting Beta Mixture Model. DaWin shows robustness against
varying sample size.

Sample size ImageNet Accuracy Avg. Acc on OOD

32 78.55 54.30
64 78.69 54.27
128 78.71 54.27
256 78.70 54.28
512 78.70 54.25
1024 78.71 54.24
2048 78.67 54.26

N 78.70 54.36

approach on the batch-wise DaWin’s coefficients. The fitness of Beta mixture model may be improved
as batchsize is increased, whereas smaller batchsize enables applying finer-granular interpolations.
Therefore, we evaluate the performance of DaWin under varying batchsize. Table 8 presents the ID
and OOD performance of DaWin on the ImageNet distribution shift benchmark for CLIP ViT-B/32
backbone model. DaWin shows strong robustness against varying batchsize.
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Figure 7: ID and OOD trade-off analysis. We visualize performance trade-offs regarding ID and OOD
classification accuracy on the ImageNet distribution shift benchmarks with CLIP ViT-{B/32, B/16, L/14} from
left to right. Interpolation coefficients are swept over {0.1, 0.2, ..., 0.9}.

In Figure 7, we present the results of DaWin with WiSE-FT as a plug-in augmentation on the robust
fine-tuning setup. We multiply our estimated coefficients from Beta mixture by a scalar coefficient
α, e.g., λwise(x) = λ(x)× α. Although it brings slight benefits in the case of CLIP ViT-B/32, the
WiSE-FT interpolation trace becomes almost a line on the ViT-B/16 and ViT-L/14 cases. This implies
that DaWin already achieves performance beyond the Pareto-optimal trade-offs and cannot be further
improved by WiSE-FT, given models f(·; θ0) and f(·; θ1). Meanwhile, Figure 8 reveals that DaWin
produces larger λ(x) for samples that are hard to recognize the target object due to overwhelming
background semantics, which the pre-trained model may wrongly pay attention to.

Figure 8: DaWIN’s bottom-5 and top-5 estimated coefficient analysis. We visualize the images with labels
corresponding to bottom-5 and top-5 sample-wise interpolation coefficients estimated by DaWIN of pre-trained
and ImageNet fine-tuned CLIP ViT-B/32. Each row denotes the actual test samples from ImageNet, ImageNet-
V2, ImageNet-R, ImageNet-A, ImageNet-Sketch, and ObjectNet. We see that the images corresponding to
coefficients lean towards the fine-tuned model, which typically contains multiple semantics, and the object
corresponding to the ground truth label is overwhelmed by other semantics.
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Figure 9: Correlation between entropy and X-entropy. We split each testset into four subsets (TrueTrue,
TrueFalse, FalseTrue, FalseFalse) based on the correctness of the two models’ predictions. On each data
split and the entire dataset, we visualize scatter plots of entropy (x-axis) and cross-entropy (y-axis) computed by
two models (zero-shot and fine-tuned) with corresponding Pearson correlation coefficients per model. Each row
from top to bottom shows results from ImageNet, ImageNetV2, ImageNetR, ImageNetA, ImageNetSketch, and
ObjectNet.

DaWin adopts entropy as a proxy of X-entropy to estimate the model expertise without access to the
true target label. Figure 9 presents the correlation between entropy and X-entropy of the pre-trained
CLIP ViT-B/32 f(·; θ0) and ImageNet fine-tuned counterpart f(·; θ1). Results indicate that the model
producing correct predictions holds a strong correlation between entropy and X-entropy while the
model failing to correctly predict test samples shows bad or no correlation. However, if at least one
model success in making a correct prediction in a given sample x, and the entropy of the correct
predictor may be smaller than that of another model, thereby DaWin would be likely to produce λ(x)
biased towards the correct predictor’s weight (See Lemma A.5).
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Figure 10: Correlation between entropy ratio and X-Entropy ratio. We split each testset into four subsets
(TrueTrue, TrueFalse, FalseTrue, FalseFalse) based on the correctness of the two models’ predictions.
On each split and the entire dataset, we visualize scatter plots of entropy ratio (x-axis) and cross-entropy
ratio (y-axis) computed by two models (zero-shot and fine-tuned) with corresponding Pearson correlation
coefficients. Each row from top to bottom shows results from ImageNet, ImageNetV2, ImageNetR, ImageNetA,
ImageNetSketch, and ObjectNet.

In Figure 10, we provide the extended results of Figure 2, showing the correlations between entropy
ratio and X-entropy ratio, on the whole evaluation datasets of robust fine-tuning setup. The entropy
ratio approximates the X-entropy ratio overall across datasets and sub-populations of each dataset,
even though for the most challenging OOD, i.e., ImageNet-A, which is constructed with natural
adversarial examples, there is a weak-yet-non-trivial correlation [59] between entropy and X-entropy.
Moreover, we note that weight interpolation (or output ensemble) has an advantage that elicits the
correct prediction by modifying the relative feature importance [75] even though two individual
models fail to produce correct predictions (i.e., in the FalseFalse case), thereby expected to
outperform the model selection method (See Table 6).
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Figure 11: Estimated coefficient density analysis on ImageNet distribution shift benchmarks with CLIP
ViT-B/32. We visualize histograms of estimated sample-wise interpolation coefficients by the expertise ratio,
which is computed using X-entropy (Oracle; we can not access it in reality) and entropy as expertise metrics.
Each column denotes the splits {Entire, TrueTrue, TrueFalse, FalseTrue, FalseFlase} of the test set,
those are categorized by the correctness of zero-shot CLIP, and ImageNet fine-tuned CLIP’s predictions. Each
low denotes the result of the test set: from ImageNet, ImageNet-V2, ImageNet-R, ImageNet-A, ImageNet-
Sketch, and ObjectNet. Entropy-based coefficient estimation shows remarkably good fitness in the TrueTrue,
FalseTrue splits, and produces left-skewed distribution in the case of TrueFalse, which is desired to construct
the interpolated model biased towards zero-shot model weight. Overall, except the FalseFalse case, the
entropy-based coefficient estimation provides reasonable alternatives to X-entropy-based oracle coefficients.

We visualize the histogram of interpolation coefficients computed by entropy and X-entropy ratio
in Figure 11. While the entropy-based coefficients quite diverge from the oracle X-entropy-based
coefficients in some cases (e.g., TrueFalse and FalseFalse of ImageNet-Sketch and ObjectNet),
the overall distributions of entropy-based coefficients show good fitness to X-entropy-based coeffi-
cients across datasets. This result supports using entropy as a proxy of X-entropy to estimate model
expertise given unlabeled test-time input to determine the per-sample interpolation coefficient.
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Figure 12: Entropy comparison on ImageNet distribution shift with CLIP ViT-B/32. Across IN, IN-V2,
IN-R, IN-A, IN-S, and ObjNet from top to bottom, we visualize the final output entropy from each model
on the entire dataset and four different splits based on the correctness of zero-shot (ZS) and fine-tuned (FT)
models. Compared with individual models, weight averaging (WA) induces lower entropy overall, and our
DaWin achieves the lowest entropy across all splits.

Our DaWin method is built on the correlation between entropy and X-entropy. While the analyses
from Section 2 support using entropy as a proxy of X-entropy, it does not address how the entropies
of interpolated final models behave. To explore this, we analyze the average entropy of interpolated
models generated by DaWin in Figure 12. In almost all cases, we see that the simple weight averaging
produces lower entropy compared to individual models, and our DaWin achieves the lower entropy in
all cases. This indicates that DaWin’s expertise-based interpolation successfully weighs individual
experts for accurate prediction and decreases per-sample entropy accordingly and supports our
sample-wise entropy valley hypothesis to understand DaWin’s great performance gains.
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A.4 Related Work

Robust fine-tuning aims to adapt a model on a target task while preserving the generalization
capability learned during pre-training. A straightforward approach injects regularization into the
learning objective. For example, Ju et al. [32] proposed a regularization motivated by Hessian analysis,
Tian et al. [64, 65] devised a trainable projection method to constrain the parameter space, CAR-FT
[46] devised the context-awareness regularization, and CaRot [51] introduced a regularization based
on singular values. Another line of works modifies the training procedure to keep the pre-trained
knowledge by decoupling the tuning of a linear head from the entire model [35], employing a data-
dependent tunable module [38], utilizing bi-level optimization [9], or mimicking the pre-training
procedure [17]. In contrast, weight interpolation approaches emerged as an effective yet efficient
solution that conducts simple interpolation of individual model weights [28, 69, 70, 29]. Unlike
existing works inducing a single interpolated model, we propose a dynamic interpolation method that
produces per-sample models for better adaptation.

Model merging studies mainly focus on integrating multiple models trained on different tasks into a
single model to create a versatile, general-purpose multi-task model. After some seminal works in
the era of foundation models [26, 27, 31], numerous advances have been made those aim at reducing
conflict between merged parameters [72, 76, 47], merging with weight disentanglement [68, 52, 30],
optimizing interpolation coefficients on unlabeled test samples [74, 6] or learning additional modules
generating per-sample/domain coefficients dynamically [7, 44, 63, 73]. While those methods provide
huge performance gains compared with static methods such as [69], they all bring extra learnable
modules and training. We focus on methods that do not induce extra complex training and devise a
training-free dynamic merging method, DaWin, which seeks a good trade-off between efficiency and
downstream performance.

A.5 Theoretical analysis

To understand the empirical success of DaWin, we present an analytic behavior of entropy-based
dynamic weight interpolation in contrast to input-independent uniform weight interpolation, which
yields a uniform interpolation coefficient [69].
Lemma A.1 (Expert-biased weighting behavior of DaWin). Suppose we have M different models
{f(·; θj)}Mj=1 parameterized by {θj}Mj=1 with a homogeneous architecture defined by f(·). Let
λ(x) = (λ1(x), . . . , λM (x)) be the sample-wise interpolation coefficient vector given x. If the
models that render a correct prediction for x always have smaller output entropy H(·) compared
with the models rendering an incorrect prediction, DaWin’s interpolation coefficient of true experts
for the sample x has always greater than 1

M . That is

λj∈J (x) ≥ 1

M
where J = {i| argmax

c
[f(x; θi)]c = y}

if H(f(x; θj∈J )) ≤ H(f(x; θk/∈J )) for all j and k.

where [f(x; θ)]c indicates the probability mass for class c. Lemma A.5 implies that, under the
entropy-dominancy assumption, DaWin always produces per-sample expert-biased coefficient vectors,
which result in the interpolated models being biased towards true experts, i.e., models that produce
correct prediction given x. This desirable behavior is aligned with the motivation of dynamic classifier
selection discussed in Sec. 4, whereas DaWin conducts interpolation rather than selection. Meanwhile,
as the number of models participating in interpolation increased, samples that at least one model
correctly classifies also increased. Therefore, the coverage of DaWin for weighting the correct experts
expands accordingly. This analysis endows a potential clue for remarkable gains observed in the
multi-task setting, which conducts merging beyond two models (See Tab. 3).

Proof. The proof is very straightforward, given the assumption and definitions of problem setup.

H(f(x; θj∈J )) ≤ H(f(x; θk/∈J )) (By assumption)
exp(−H(f(x; θj∈J ))) ≥ exp(−H(f(x; θk/∈J )))

λj∈J (x) ≥ λk/∈J (x) (By definition of λ(x))

λj∈J (x) ≥ 1

M
(Given that

∑M
j=1 λj(x) = 1)
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A.6 Limitation and future work

By following previous works [70, 27, 74], we limited our validation scope to an image classification of
fully fine-tuned visual foundation models with restricted scale and architecture, e.g., CLIP ViT-{B/32,
B/16, L/14}. Exploring DaWin on diverse model architecture [42, 19, 43], large-scale modeling
setup [12], large language models [76, 15, 56], multimodal generative models [41, 3, 49], continual
adaptation scenario [47], and parameter-efficient tuning regime [39, 25, 10] can be exciting future
work directions.
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