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Abstract

We introduce neural stochastic flows, a novel framework for learning solutions of
stochastic differential equations (SDEs). It addresses the challenge of simulating
neural SDEs by directly learning the weak solution of the underlying SDE gov-
erning the data generation process. Key to our approach is the introduction of a
flow-based, time-dependent neural network to directly compute the conditional
probability densities of its associated SDE at any time interval. Unlike neural
SDEs, neural stochastic flows avoid time-consuming simulations of SDE solvers
and enable single-step sampling from the learnt stochastic process. Our work
contributes to stochastic process modelling, offering a flexible method that has the
potential to improve computational efficiency in various applications.

1 Introduction

Neural stochastic differential equations (SDEs) [5–7, 9–11, 19] provide a flexible and principled
approach for modelling complex systems with inherent randomness [12], but their application is often
hindered by computational challenges, particularly fine discretisation [6, 7, 10, 11]. Not surprisingly,
the challenge of time-consuming simulations using solvers also applies to neural ordinary differential
equations (ODEs) [3]. In this regard, neural flows [2] are presented as a solution to this challenge by
directly learning the solutions of the underlying ODE governing the data generation process. The
key idea is to use a flow-based neural network to compute the solution of the initial value problem
directly.

Inspired by recent advances in neural flows [2], we present neural stochastic flows, extending the
idea of direct modelling of the solution space to neural SDEs. However, unlike the ODE case, SDEs
have both strong and weak solutions. A strong solution for an SDE provides direct computation
of the sample path given a specific realisation of the noise process, while a weak solution models
the probability distribution of the stochastic process rather than individual trajectories. Since many
applications require only weak solutions, we focus on modelling the weak solutions of Itô SDEs and
propose a flow-based neural network architecture to satisfy key properties from stochastic flows of
diffeomorphisms whilst providing access to conditional probability densities.

This paper provides the theoretical foundations for neural stochastic flows, reformulating stochastic
flow conditions in terms of probability distributions. Our empirical results with known stochastic
processes demonstrate strong temporal generalisation capabilities. Our work contributes to neural
SDEs, offering a flexible and efficient method for modelling stochastic processes. Neural stochastic
flows bridge stochastic calculus and neural networks, offering a potential for faster SDE inference.

2 Background

Neural ODEs / Neural Flows. ODEs and their integral solutions, known as flows, have been
a significant focus in machine learning research. Neural ODEs [3] define the vector field using
neural networks, offering high interpretability but requiring discretisation for both training and
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inference. This approach has been extended to latent ODEs [15], which model the dynamics of latent
representations. In contrast, neural flows [2] directly learn the flow, representing the ODE’s solution
space by designing the architecture and/or loss function to fulfil the flow properties. This approach
allows for solutions in a single step, avoiding iterative simulation.

Probability Flow ODEs. Recent research has explored the relationship between diffusion models
and SDEs, proposing methods to transform the SDE of a diffusion model into a probability flow ODE
[18]. This approach enables single-step image generation by training a neural network to predict the
ODE’s endpoint [17]. While this shares similarities with our work in terms of single-step sampling
from SDEs, our approach aims to generalise this concept to arbitrary SDEs and any time point.

Stochastic Flows of Diffeomorphisms. An appealing prospect is to apply neural flows to Itô SDEs
for direct learning of the solution space. Consider an Itô SDE:

dxt = µ(xt, t)dt+ σ(xt, t)dW t (1)

where xt ∈ Rn is the state vector, µ : Rn × R+ → Rn is the drift term, σ : Rn × R+ → Rn×m is
the diffusion term, and W t is an m-dimensional Wiener process. For an Itô SDE with smooth drift
and diffusion terms, the solution space forms a stochastic flow of diffeomorphisms [8]. This is defined
by a measurable map φs,t : Rn × Ω→ Rn where 0 < s < t < +∞ and Ω is the sample space in
terms of probability measure, satisfying:

1. Diffeomorphism: For any s < t and ω ∈ Ω, the map x 7→ φs,t(x,ω) is almost surely a
diffeomorphism.

2. Independence: Maps φt1,t2 , . . . ,φtn−1,tn for any sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn are
independent.

3. Flow property: For any 0 ≤ t1 ≤ t2 ≤ t3, any point x ∈ Rn, and any ω ∈ Ω:

φt1,t3(x,ω) = φt2,t3

(
φt1,t2(x,ω),ω

)
.

4. Identity Property: For any t ≥ 0, any point x ∈ Rn, and any ω ∈ Ω: φt,t(x,ω) = x.

Furthermore, when the SDE is autonomous, where the drift and diffusion terms are independent of
time, an additional property holds:

5. Stationarity: For any s ≤ t, r ≥ 0, and ω ∈ Ω, the maps φs,t(x,ω) and φs+r,t+r(x,ω)
have the same probability distribution.

By constructing neural networks that inherently satisfy these properties, we develop efficient models
for stochastic systems that overcome discretisation limitations. Additionally, these models provide
direct access to probability distribution functions of SDE-governed processes.

3 Methods

In this section, we develop an architecture that fulfils the criteria for stochastic flow of diffeomor-
phisms. We focus on modelling the probability distribution of the stochastic process evolving from a
deterministic initial condition over time according to the SDE.

For a given stochastic flow φ, the conditional probability distribution representing a weak solution of
an SDE is defined as:

p
(
xtj

∣∣xti ; ti, tj − ti
)
:=

∫
Ω

δ
(
xtj −φti,tj (xti ,ω)

)
p(ω)dω (2)

where δ(·) denotes the Dirac delta function. To approximate this distribution, we employ a neural
stochastic flow—a parametric model fθ that transforms Gaussian samples into the desired distribution
via diffeomorphic mappings, akin to normalising flows [14]. Our model is defined as:

pθ
(
xtj

∣∣xti ; ti, tj − ti
)
=

∫
δ(xtj − fθ (xti , ti, tj − ti, ε))N (ε|0, I) dε (3)

where ε, of the same dimension as xt, is sampled from a standard Gaussian distribution. The function
fθ serves as our parametric model to approximate the SDE’s weak solution.

Conditions. Given this framework, we reformulate the conditions as follows:
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1. Diffeomorphism: When the probability distribution is a delta function limit, i.e., when fθ
is independent of ε, the function fθ must be diffeomorphic with respect to xti .

3

2. Independence: For any sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the conditional probabilities
pθ (xt2 |xt1 ; t1, t2 − t1) , . . . , pθ

(
xtn

∣∣xtn−1
; tn−1, tn − tn−1

)
must be independent.

3. Flow property: For any 0 ≤ ti ≤ tj ≤ tk, the joint distribution must satisfy the Chapman-
Kolmogorov equation:

pθ (xtk |xti ; ti, tk − ti) =

∫
pθ

(
xtk

∣∣xtj ; tj , tk − tj
)
pθ

(
xtj

∣∣xti ; ti, tj − ti
)
dxtj . (4)

4. Identity property: At the same time t, the distribution must reduce to a delta function,
indicating no change: pθ (x|xti ; ti, 0) = δ (x− xti) .

For autonomous SDEs, we restate the stationarity condition in terms of our parametric model:

5. Stationarity: The conditional distributions must exhibit stationarity such that for any
ti, tj , r ≥ 0, pθ (· | x; ti, tj − ti) = pθ (· | x; ti + r, tj − ti).

Architecture. To satisfy these conditions (except for the flow property, which is addressed separately)
and to ensure computational tractability of the probability density function, similar to normalising
flows, we propose the following model architecture (see Appendix A.1 for detailed architecture):

fθ (xti , ti, tj − ti, ε) = Gθ (F θ (xti , tj − ti; ti) + sθ(xti , ti, tj − ti)⊙ ε, tj − ti; ti) . (5)

Here, F θ and Gθ are “conditional” coupling flows, extending coupling flows—a type of neural flow
using affine coupling [4] for analytical invertibility—to model time-dependent drift and diffusion
terms by incorporating ti. These flows satisfy F θ(x, 0; ·) = x and Gθ(x, 0; ·) = x. Additionally,
sθ(xti , ti, tj − ti) is any smooth trainable function that meets the condition sθ(xti , ti, 0) = 0 for
any xti and ti > 0. This architecture satisfies conditions 1, 2, and 4 by construction (see Appendix B
for details). It allows for complex state-dependent noise structures, which are effective for capturing
intricate stochastic dynamics.

For autonomous SDEs, we can simplify this architecture by removing the ti condition from F θ , Gθ ,
and sθ, which then also satisfies condition 5.

To satisfy the flow property, we introduce a soft constraint approach. We add a discrepancy term
Lflow to the loss function, which measures the difference between the distributions in Equation (4).
This term is designed to bound the bidirectional KL divergence. We use an auxiliary variational
distribution qϕ

(
xtj

∣∣xti ,xtk

)
to estimate this discrepancy (see Appendix C for details).

The total loss function combines the negative log-likelihood of the data with the flow property
constraint:

L(θ,ϕ) = − E
(xti

,xtj
,ti,tj)∼D

[
log pθ

(
xtj

∣∣xti ; ti, tj − ti
)]

+ Lflow(θ,ϕ) (6)

where D represents the dataset. The model parameters θ and auxiliary model parameters ϕ are
optimised using gradient-based methods to minimise this loss function (see Appendix D for details).

4 Experiments

We evaluate our neural stochastic flows approach on two well-known Itô SDEs—the Ornstein-
Uhlenbeck (OU) process and Geometric Brownian Motion (GBM)—in both 2D and 4D settings. Each
dimension is treated independently to assess the model’s performance across varying complexities.
The OU process is given by dxt = θ(µ − xt)dt + σdWt, and GBM by dxt = µxtdt + σxtdWt,
where Wt is a Wiener process. We randomly sample parameters and initial values (see Appendix E
for specifics) to ensure robustness across various configurations.

Our training dataset consists of triplets (x0,xt, t), with t specifically set to 0.2, 0.4, and 0.8. However,
due to the incorporation of the flow loss in our training procedure, our model demonstrates the ability
to predict probability distributions at arbitrary time points, not just those seen during training.

3When φti,tj
depends on ω, transitioning to transformed probability densities as in Equation (2), the

diffeomorphism condition is relaxed.

3



0.0 0.2 0.4 0.6 0.8 1.0
Time

0.00

0.02

0.04

0.06

0.08

0.10

K
L 

D
iv

er
ge

nc
e 2D OU Process

4D OU Process

(a) OU Process

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

K
L 

D
iv

er
ge

nc
e 2D GBM

4D GBM

(b) GBM

Figure 1: KL divergence between true and predicted distributions over time for randomised conditions.
Solid lines show means; shaded areas indicate ±1 standard deviation (See Appendix E.5 for details).

Figure 1 illustrates model performance across stochastic processes. For OU processes, low KL
divergence (< 0.01) is achieved except at small t, demonstrating robust interpolation and extrapo-
lation. GBM exhibits higher divergence, indicating lower accuracy for non-Gaussian distributions
and complex evolutions. Increasing KL divergence with system dimensionality suggests reduced
accuracy for higher-dimensional distributions. While the model matches ground truth at t = 0, higher
KL divergence for small t likely results from slower entropy decrease (see Appendix F.1).
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Figure 2: Evolution of probability densities for 2D system. The upper panels show contour plots of
probability densities for ground truth at t = 0.125, 0.25, 0.5, 1. Lower panels display the correspond-
ing model-predicted probability densities at the same time points.

Figure 2 showcases the model’s proficiency in capturing the evolving probability distributions for both
the OU process and GBM in 2D. The contours accurately reflect the changing means and variances
over time, including at untrained time points. However, for the GBM at t = 1, which represents
extrapolation (t > 0.8), the distribution’s centre and shape exhibit slight deviations, likely due to
propagated errors from interpolated regions.

Our results demonstrate the model’s efficacy in capturing a range of stochastic processes across
varying dimensions and time scales. The approach models both OU and GBM processes, providing
accurate probability density estimates at arbitrary time points, including those unseen during training.
This capability stems from the flow loss, which ensures the learnt stochastic flow adheres to the
Chapman-Kolmogorov equation. Moreover, the model’s discretisation-free nature has the potential to
enable rapid predictions, offering a computationally efficient method for SDE distribution forecasting.

5 Conclusion and Future Work

In this paper, we have presented a method that enables one-step sampling from learnable SDEs,
providing a potential approach to streamline certain SDE-based models. This technique may open
new possibilities for applications requiring efficient SDE processing. Future work will explore the
potential of this technique across different domains, conducting comprehensive comparisons with
other neural SDE approaches, and investigating its implications for the broader field of stochastic
processes and machine learning.
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A Detailed Model Architecture and Sampling Procedure

In this appendix, we provide a comprehensive description of our model’s architecture, focusing on
the conditional coupling flows utilised, and we detail the procedure for sampling from the model
during inference.

A.1 Model Architecture

Our model aims to approximate the conditional probability distribution p
(
xtj

∣∣xti ; ti, tj − ti
)

of the
solution of an SDE at time tj , given the state at time ti. To achieve this, as given in Equation (5), we
employ a neural stochastic flow defined as follows:

fθ (xti , ti, tj − ti, ε) = Gθ (F θ (xti , tj − ti; ti) + sθ (xti , ti, tj − ti)⊙ ε, tj − ti; ti) ,

where ε ∼ N (0, I), ⊙ denotes element-wise multiplication, and θ represents the model parameters.

The architecture comprises three main components:

• Nonlinear Transformations F θ and Gθ: These are neural flows conditioned on the initial
time ti. Specifically, we choose to implement F θ and Gθ using conditional coupling flows
(see Section A.1.1 for details). The use of coupling flows allows for efficient maximum
likelihood estimation during training, as they possess analytical invertibility. A key property
of neural flows is that when tj − ti = 0, the output is identical to the input xti [2].
This conditioning enables the transformations to adapt based on the initial time and time
difference, effectively capturing the temporal dynamics of the stochastic process.
The function F θ serves as a nonlinear transformation from the input space xti to an
intermediate space where noise is added, while Gθ transforms this noisy intermediate
representation to the output space xtj . When there is no noise, i.e., when sθ is zero, the
composition Gθ ◦ F θ becomes a deterministic mapping, which is a diffeomorphism due to
the invertibility property of the chosen coupling flows.

• Noise Scaling Function sθ: This function scales the noise term ε based on the time
difference tj − ti and potentially the input state xti and the initial time ti. It is essential
that sθ(xti , ti, 0) = 0 for any xti and ti to ensure no noise is added when there is no time
evolution. While sθ does not necessarily have to depend on the input state or the initial
time—any function satisfying sθ(xti , ti, 0) = 0 suffices (e.g., sθ =

√
tj − ti)—we find

empirically that including dependencies on xti and ti often leads to improved performance.

A.1.1 Conditional Coupling Flows

Coupling flows, a type of neural flow, utilise affine coupling techniques known for their analytical
invertibility [2]. These flows operate by dividing input variables into two subsets and applying an
invertible transformation to one subset, conditioned on the other [4]. We extend this concept by
introducing additional conditioning to accommodate time-dependent drift and diffusion terms.

Consider an input vector x partitioned into two disjoint subsets, xA and xB . The coupling flow layer
transforms xA using scale and shift operations conditioned on both xB and temporal variables:

yA = xA ⊙ exp (u(xB ; ti)ϕu(tj − ti)) + v(xB ; ti)ϕv(tj − ti), (7)
yB = xB , (8)

where:

• u and v are arbitrary functions, typically implemented as neural networks, that output scale
and shift parameters, respectively.

• ϕu and ϕv are time embedding functions satisfying ϕu(0) = ϕv(0) = 0.
• ti represents the initial time, and tj represents a subsequent time point.

The use of the exponential function in the scaling operation ensures the invertibility of the transforma-
tion. Since xB remains unchanged, the Jacobian determinant of the transformation is straightforward
to compute.
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A key feature of this formulation is the behaviour of the time embedding functions ϕu and ϕv . Their
property of ϕu(0) = ϕv(0) = 0 ensures that when tj = ti, the transformation reduces to the identity
transformation:

yA = xA ⊙ exp (u(xB ; ti) · 0) + v(xB ; ti) · 0 = xA (9)

This characteristic guarantees that the flow preserves the original input without transformation when
there is no time difference.

To construct highly expressive invertible transformations, we stack multiple coupling flow layers,
alternating the subsets A and B between layers. The conditioning on ti allows the transformation to
adapt based on the initial time, capturing temporal dependencies in the data. The time embeddings
ϕu(tj − ti) and ϕv(tj − ti) enable the transformation to vary smoothly with the time difference
tj − ti, whilst ensuring no transformation occurs when the time difference is zero.

In our model, conditional coupling flows serve as one instance for the functions F θ and Gθ . However,
other invertible transformations satisfying the necessary properties can also be employed, depending
on the specific requirements and characteristics of the data at hand.

It is worth noting that while this formulation of conditional coupling flows allows for handling
general SDEs with time-dependent drift and diffusion terms (time-inhomogeneous SDEs), the
experiments presented in the main body of this paper focus on a simpler case. Specifically, we
consider autonomous SDEs, where the drift and diffusion terms do not explicitly depend on time.
As a result, the experiments do not utilise the ti conditioning described above. The more general
formulation presented here illustrates the full capabilities of our approach and its potential for future
extensions to time-inhomogeneous SDEs, while the main paper demonstrates its effectiveness on the
common and important class of time-homogeneous SDEs.

A.2 Sampling from the Model

To sample from the conditional distribution, we employ our model’s architecture in a straightforward
manner. The process involves applying the transformation F θ to the initial state xti , adding scaled
Gaussian noise, and then applying the transformation Gθ . The noise scaling factor is determined by
sθ, which depends on the initial state and time parameters. This procedure generates samples that
reflect the learnt conditional distribution of the stochastic process.

A.3 Computing the Conditional Densities

The computation of conditional densities is crucial for our model, as it enables both maximising
log-likelihood and minimising flow loss combined with a reparametrisation trick during training. To
evaluate the conditional density pθ

(
xtj

∣∣xti ; ti, tj − ti
)
, we utilise the change of variables formula:

pθ
(
xtj

∣∣xti ; ti, tj − ti
)
= pε (ε)

∣∣∣∣det(∂fθ

∂ε

)∣∣∣∣−1

. (10)

Due to the structure of the flows used, the determinant of the Jacobian ∂fθ/∂ε can be efficiently
computed.

The Jacobian determinant is given by:∣∣∣∣det(∂fθ

∂ε

)∣∣∣∣ = ∣∣∣∣det(∂Gθ

∂u

)∣∣∣∣× |det (diag(s))| , (11)

where u = z + s⊙ ε. Since s is a diagonal scaling, det(diag(s)) =
∏

i si, and the determinant of
∂Gθ/∂u is computed depending on the specific invertible transformation used for Gθ.

B Theoretical Foundations of the Proposed Model

This appendix offers a rigorous theoretical exposition for our proposed model, demonstrating ad-
herence to the essential mathematical properties outlined in Section 3. Key properties include
diffeomorphism, independence, identity property, and stationarity for autonomous SDEs.
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Diffeomorphism. Consider the mapping fθ defined for fixed 0 < ti ≤ tj and any ε, as given in
Equation (5):

fθ (xti , ti, tj − ti, ε) = Gθ (F θ (xti , tj − ti; ti) + sθ(xti , ti, tj − ti)⊙ ε, tj − ti; ti) .

Here, F θ and Gθ are diffeomorphisms with respect to their first variables. In the case where fθ is
independent of ε, we have sθ(xti , ti, tj − ti) = 0. Consequently, fθ reduces to a composition of
diffeomorphisms:

fθ (xti , ti, tj − ti, ε) = Gθ (F θ (xti , tj − ti; ti) , tj − ti; ti) . (12)

As the composition of diffeomorphisms is itself a diffeomorphism, fθ is a diffeomorphism with
respect to xti .

Independence. For any sequence of times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, the model ensures that
the conditional probabilities pθ (xt2 |xt1 ; t1, t2 − t1) , . . . , pθ

(
xtn

∣∣xtn−1
; tn−1, tn − tn−1

)
are in-

dependent. This independence arises because in Equation (3), ε is sampled independently.

Identity Property. The model preserves identity transformation when there is no time difference,
i.e., tj = ti. Under these conditions, by construction, F θ(xti , 0; ti) = xti , Gθ(xti , 0; ti) = xti ,
and sθ(xti , ti, 0) = 0. Therefore,

fθ(xti , ti, 0, ε) = Gθ(F θ(xti , 0; ti) + 0; 0, ti) = xti , (13)

which satisfies the identity property.

Stationarity. In the case of autonomous SDEs, the model exhibits stationarity. This is ensured by
the architecture’s independence from the specific values of times ti and tj , focusing instead on the
time difference tj − ti. The conditional distributions thus remain invariant under any shift in time,
which satisfies the stationarity condition for autonomous SDEs.

C Derivation of the Flow Loss

This appendix elaborates on the derivations crucial for understanding the flow loss used in the neural
stochastic flow model.

In our research, we utilise an auxiliary variational distribution [1, 13, 16] to constrain the upper
bounds of bidirectional KL divergences. This approach effectively encourages the model to adhere to
the flow property. By minimising these upper bounds, we guide the model towards satisfying the
Chapman-Kolmogorov relation, as shown in Equation (4), thereby improving its consistency with the
theoretical requirements of stochastic flows of diffeomorphisms. Specifically, we define Lflow as the
expectation of a weighted sum of two components:

Lflow(θ,ϕ) = E
p(ti,tj ,tk)

[λ1-to-2Lflow, 1-to-2(θ,ϕ; ti, tj , tk) + λ2-to-1Lflow, 2-to-1(θ,ϕ; ti, tj , tk)] , (14)

where λ1-to-2 and λ2-to-1 are weighting factors. The two components, Lflow, 1-to-2 and Lflow, 2-to-1,
correspond to the upper bounds of the one-step to two-step and two-step to one-step KL divergences,
respectively. In our experiments, we set both λ1-to-2 and λ2-to-1 to 0.4, balancing the contribution of
each component to the overall flow loss.

In our experiment, which focuses on the autonomous case, the triplet (ti, tj , tk) is sampled according
to the following procedure:

• The initial time ti is sampled from the data D, representing the starting times in the dataset.4

• The final time tk is sampled from a mixture distribution p(tk) = 1
2U(ti, ti + tmax) +

1
2pdata (tk|ti), where U(ti, ti + tmax) denotes the uniform distribution over the interval
[ti, ti+ tmax], and pdata (tk|ti) is the conditional data distribution of end times corresponding
to the sampled initial time ti. Here, tmax represents the maximum time horizon for model
predictions. In our experiments, we use tmax = 1.

4For non-autonomous SDEs, sampling ti uniformly or similarly to tk ensures the Chapman-Kolmogorov
equation is satisfied across all time points, which is crucial as transition probabilities depend on absolute time.
This approach helps capture the full dynamics of non-autonomous systems.
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• The intermediate time tj is uniformly sampled from the interval [ti, tk], i.e., tj ∼ U(ti, tk).

This sampling strategy is designed to reflect the structure of the data, where each sample in the dataset
is a tuple consisting of the starting time, its corresponding state, the ending time, and the state at that
time.

The inclusion of pdata (tk|ti) in the mixture distribution for sampling tk is motivated by our observation
that the model achieves higher accuracy in regions where data exists. By incorporating this data-
driven component, we aim to enhance the efficiency of the learning process, leveraging the model’s
improved performance in data-rich areas.

By employing this method of sampling, we ensure that the flow loss Lflow is computed in a manner
that is consistent with the temporal dynamics represented in the data, thereby promoting a more
accurate approximation of the true stochastic process.

C.1 One-step to Two-step KL Divergence

We begin with the derivation of the KL divergence from a one-step computation to a marginalised
two-step computation. To clarify the computation, subscripts p1θ and p2θ distinguish between the
distributions for 1-step sampling from xti to xtk and two-step sampling from xti to xtk via xtj . The
key steps are outlined as follows:

DKL

[
p1θ (xtk |xti)

∥∥∥∥∫ p2θ
(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
dxtj

]
(15)

=

∫
p1θ (xtk |xti) log

[
p1θ (xtk |xti)∫

p2θ
(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
dxtj

]
dxtk (16)

=

∫
p1θ (xtk |xti) log

[
p1θ (xtk |xti) p

2
θ

(
xtj

∣∣xti ,xtk

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

) ]
dxtk (17)

=

∫∫
p1θ (xtk |xti) qϕ

(
xtj

∣∣xti ,xtk

) [
log

[
p1θ (xtk |xti) qϕ

(
xtj

∣∣xti ,xtk

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

) ]

+ log

[
p2θ

(
xtj

∣∣xti ,xtk

)
qϕ

(
xtj

∣∣xti ,xtk

)] ]
dxtjdxtk

(18)

= E
p1
θ(xtk |xti)qϕ(xtj |xti

,xtk)

[
log

[
p1θ (xtk |xti) qϕ

(
xtj

∣∣xti ,xtk

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

) ]

+DKL
[
qϕ

(
xtj

∣∣xti ,xtk

)∥∥p2θ (xtj

∣∣xti ,xtk

)] ] (19)

≤ E
p1
θ(xtk |xti)qϕ(xtj |xti

,xtk)

[
log

[
p1θ (xtk |xti) qϕ

(
xtj

∣∣xti ,xtk

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

) ]]
(20)

=: Lflow, 1-to-2(θ,ϕ; ti, tj , tk). (21)

The equation from the second line to the third line is obtained using Bayes’ theorem and the Markov
property: ∫

p2θ
(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
dxtj =

p2θ
(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtj

∣∣xti ,xtk

) . (22)

Note that for clarity, the time arguments are omitted from the probability distributions within the
equations.
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C.2 Two-step to One-step KL Divergence

Building upon the previous analysis, we now explore the derivation of the KL divergence from a
marginalised two-step computation to a one-step computation. We denote this as Lflow, 2-to-1. The key
steps are outlined as follows:

DKL

[∫
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
dxtj

∥∥∥∥p1θ (xtk |xti)

]
(23)

=

∫ [∫
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
dxtj

]
log

[
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]
dxtk (24)

=

∫∫
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
log

[
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]
dxtjdxtk (25)

= E
p2
θ(xtj |xti)p

2
θ(xtk |xtj )

[
log

[
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
p2θ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]]
(26)

= E
p2
θ(xtj |xti)p

2
θ(xtk |xtj )

[
log

[
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
qϕ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]
− log

[
p2θ

(
xtj

∣∣xti ,xtk

)
qϕ

(
xtj

∣∣xti ,xtk

)]]
(27)

= E
p2
θ(xtj |xti)p

2
θ(xtk |xtj )

[
log

[
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
qϕ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]]
− E

p2
θ(xtk |xti)

[
DKL

[
p2θ

(
xtj

∣∣xti ,xtk

)∥∥qϕ (
xtj

∣∣xti ,xtk

)]] (28)

≤ E
p2
θ(xtj |xti)p

2
θ(xtk |xtj )

[
log

[
p2θ

(
xtj

∣∣xti

)
p2θ

(
xtk

∣∣xtj

)
qϕ

(
xtj

∣∣xti ,xtk

)
p1θ (xtk |xti)

]]
(29)

=: Lflow, 2-to-1(θ,ϕ; ti, tj , tk). (30)

From the first line to the second line, we use the relationship in Equation (22). Although the
expression inside the log appears to depend on xtj at first glance, it does not actually depend on xtj
due to this relationship. Therefore, the range of integration is changed to integrate over xtj first.

By minimising Lflow, we encourage the model to satisfy the flow property in both directions simulta-
neously. This approach provides a flexible way to balance the trade-off between model expressiveness
and adherence to theoretical constraints, which is crucial for the performance and reliability of neural
stochastic flow models.

C.3 Data Augmentation

Although not used in the current experiment, we observe that when the variation in time intervals
within the dataset is extremely limited, a data augmentation technique can be effective. This technique
is equivalent to the one-step to two-step KL divergence flow loss and can help improve the model’s
performance in scenarios where the dataset lacks diversity in time intervals, thereby enhancing the
model’s ability to generalise across different time scales.

The data augmentation loss Laug is defined as the following negative log-likelihood:

Laug(θ) = E
(xti

,xtj
)∼D

 E
tk−tj∼D

pθ(xtk |xtj )

[− log [pθ (xtk |xti)]]

 . (31)

Here, (xti ,xtj ) are sampled from the dataset D, time interval tk − tj is sampled from the time
intervals in D, and xtk is then sampled from the model distribution pθ

(
xtk

∣∣xtj

)
.
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It is worth noting that we sample both tj − ti (implicitly through xtj ) and tk − tj from the dataset D.
This approach is taken because the model tends to exhibit higher accuracy for time intervals that exist
in the training data. By sampling time intervals from the dataset, we focus on improving the model’s
performance for these more reliable time scales, which can then be generalised to other intervals.

This loss function encourages the model to generate consistent predictions over multiple time steps,
even when the training data lacks diverse time intervals. It does this by comparing the direct prediction
from xti to xtk with the two-step prediction via xtj .

Interestingly, this augmentation loss is closely related to the KL divergence between the marginalised
two-step prediction and the direct one-step prediction:

DKL

[
sg

(∫
pθ

(
xtk

∣∣xtj

)
pdata

(
xtj

∣∣xti

)
dxtj

)∥∥∥∥pθ (xtk |xti)

]
= Laug + const. (32)

In this equation, sg(·) denotes the stop-gradient operator, which treats its argument as a constant with
respect to gradients. This relationship shows that minimising Laug is equivalent to minimising the KL
divergence between the marginalised two-step prediction and the direct one-step prediction, up to a
constant term.

D Optimisation Procedure

Algorithm 1 outlines the optimisation procedure for our neural stochastic flow model. This pro-
cedure first optimises the auxiliary model parameters ϕ, which guide the variational distribution
qϕ

(
xtj

∣∣xti ,xtk

)
to align with the model’s conditional distribution pθ

(
xtj

∣∣xti ,xtk

)
, before updat-

ing the main model parameters θ. This sequencing ensures that the main model is updated based
on an auxiliary model that closely approximates the model’s own transition density, leading to more
consistent parameter estimates and improved satisfaction of the flow property.

Algorithm 1: Optimisation Procedure for Neural Stochastic Flows
Input: Dataset D, batch size B, number of inner optimisation steps K
Output: Optimised model parameters θ, auxiliary model parameters ϕ
while not converged do

Sample batch {(xti ,xtj , ti, tj)b}Bb=1 ∼ D;
for k = 1 to K do

Update ϕ← ϕ− ηϕ∇ϕLflow(θ,ϕ);
end
Compute L(θ,ϕ) = − 1

B

∑B
b=1 log pθ

(
xtj ,b

∣∣xti,b; ti,b, tj,b − ti,b
)
+ Lflow(θ,ϕ);

Update θ ← θ − ηθ∇θL(θ,ϕ);
end
return θ,ϕ

We train the models using the AdamW optimiser with a learning rate of 3× 10−4 and weight decay
of 10−5, using a batch size of 2,048. The training and test dataset sizes are 100,000 samples each.
For the auxiliary model optimisation, we perform K = 5 inner optimisation steps per main model
update.

E Experimental Details

In our experiments, we consider two types of SDEs: the OU process and GBM. For an n-dimensional
system, we employ independent equations for each dimension in both processes.

OU Process The OU process is represented as:

dxt = Θ(µ− xt)dt+Σ1/2dW t. (33)

GBM The GBM is represented as:

dxt = diag(µ)xtdt+ diag(xt)Σ
1/2dW t. (34)
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In both equations, Θ = diag([θ1, . . . , θn]), µ = [µ1, . . . , µn]
T , Σ = diag([σ2

1 , . . . , σ
2
n]), and W t is

an n-dimensional Wiener process. Here, diag(·) denotes a diagonal matrix with the given elements
on its main diagonal.

E.1 Parameter Sampling

OU Process For the OU process, we sample parameters for each dimension independently as
follows:

• Mean reversion rate: θi ∼ U(0.1, 2.0)
• Long-term mean: µi ∼ N (0, 1)

• Volatility: σi ∼ U(0.1, 1.0)

Initial values are sampled from N (0, 1) for each dimension.

GBM For GBM, we use for each dimension:

• Drift: µi ∼ N (0, 0.52)

• Volatility: σi ∼ U(0.1, 0.5)

Initial values are sampled from |N (0, 1)| for each dimension to ensure positivity.

E.2 Specific Parameter Instances for Numerical Experiments

Table 1 presents specific instances of the OU process and GBM used in our detailed analyses
(Figures 2, 3, and 4). These parameters are single samples randomly drawn from the distributions
specified in Appendix E.1. We show both 2D and 4D configurations to demonstrate our model’s
capability across different dimensionalities.

Table 1: Specific Instances of Parameters for OU and GBM Processes

Process Parameters Initial Value Used in

OU (2D)
Θ = diag([0.3469, 1.0038])

x0 = [1, 1]T
Figure 2a
Figure 3aµ = [−0.8245, 0.6506]T

Σ = diag([0.49342, 0.84942])

OU (4D)
Θ = diag([1.5789, 0.4698, 0.9868, 0.1832])

x0 = [1, 1, 1, 1]T
Figure 3c
Figure 4aµ = [0.4127, 0.4308, 2.1416,−0.4064]T

Σ = diag([0.39322, 0.43342, 0.52262, 0.27052])

GBM (2D) µ = [0.0330, 0.5636]T
x0 = [0.25, 0.25]T

Figure 2b
Figure 3bΣ = diag([0.27742, 0.19092])

GBM (4D) µ = [0.3716, 0.2716,−0.3328, 0.1161]T
x0 = [0.25, 0.25, 0.25, 0.25]T

Figure 3d
Figure 4bΣ = diag([0.25502, 0.21532, 0.37302, 0.15592])

E.3 Analytical Solutions

For both processes, we utilise their known analytical solutions to compute the ground truth distribu-
tions:

OU Process The OU process is modelled as a Gaussian distribution with known mean and covari-
ance. In the general multivariate case, the mean and covariance at time t are given by:

E[xt] = µ+ e−Θt(x0 − µ) (35)

Cov[xt] =

∫ t

0

e−Θ(t−s)Σe−ΘT (t−s)ds. (36)
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When each dimension of the OU process is independent, meaning that both Θ and Σ are diagonal
matrices, the covariance matrix simplifies considerably. Each diagonal element of the covariance
matrix can be explicitly calculated, yielding:

Cov[xt] = diag
(

σ2
1

2θ1
(1− e−2θ1t), . . . ,

σ2
n

2θn
(1− e−2θnt)

)
. (37)

GBM For the GBM, we consider the case where each dimension is independent. Assuming x0,i > 0
for all i (which is typical in most applications), at time t, the distribution for each dimension i is
given by:

xt,i ∼ LogNormal
(
log(x0,i) + (µi −

1

2
σ2
i )t, σ

2
i t

)
, i = 1, . . . , n. (38)

Here, LogNormal(µ, σ2) denotes the univariate log-normal distribution. If y ∼ LogNormal(µ, σ2),
then log(y) ∼ N (µ, σ2). The parameters µ and σ2 are the mean and variance of the associated
normal distribution of the logarithm of the random variable.

E.4 Model Architecture

Our neural stochastic flow model employs the architecture described in Equation (5), with the
following specifications:

• F θ(xti , tj − ti) and Gθ(xti , tj − ti): These are implemented as 4-layer coupling flows [2].
Each coupling flow layer uses a multi-layer perceptron (MLP) with the following structure:

– Input: xti and tj − ti
– Two hidden layers of 128 units each with ReLU activation functions
– Output layer with dimension matching xti

We employ hyperbolic tangent rescaling [4] for numerical stability.

• sθ(xti , tj − ti): This is implemented as an MLP with the following structure:

– Input: xti and tj − ti
– Two hidden layers of 128 units each with ReLU activation functions
– Output layer with dimension matching xti

– The output is passed through a softplus function and multiplied by
√
tj − ti to ensure

positivity, proper scaling with time, and to ensure it outputs a zero vector when the
time difference is zero

• Auxiliary model qϕ
(
xtj

∣∣xti ,xtk

)
: The architecture of this model is chosen based on the

problem setting:

– For OU process: We employ a parameterised Gaussian distribution. Its parameters are
predicted by an MLP with the following structure:

* Input: xti , xtk , tj − ti, and tk − tj

* Two hidden layers of 128 units each with ReLU activation functions
* Output layer split into two parts: one for the mean and one for the standard deviation

(via softplus transformation)
– For GBM: We use a conditional normalising flow approach with the following structure:

* Input: Sample from a standard normal distribution
* 4 coupling flow layers, each implemented as an MLP with:

· Input: Partial vector from previous layer, xti , xtk , tj − ti, and tk − tj
· Two hidden layers of 128 units each with ReLU activation functions
· Output layer for affine transformation parameters

As we are modelling autonomous SDEs, the ti condition parameter is omitted from F θ , Gθ , and sθ ,
as mentioned in Section 3. These functions are conditioned sorely on the time difference tj − ti.
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E.5 Evaluation Setup for KL Divergence Analysis

For the KL divergence analysis presented in Figure 1, we use the following setup:

• 8 different SDEs for each process (OU and GBM), with parameters sampled as described in
Appendix E.1

• 5 distinct initial conditions for each SDE, sampled according to the method outlined in
Appendix E.1

• Evaluations at 20 time points, with intervals of 0.05 from 0.05 to 1.00
• 1,000 samples from both the predicted and true distributions at each time point

The KL divergence is computed for each combination of SDE, initial condition, and time point. We
then calculate the mean and standard deviation of these KL divergences across all SDEs and initial
conditions for each time point.

F Experimental Results

F.1 Entropy Analysis

Figure 3 illustrates the temporal evolution of entropy for our OU and GBM processes in both 2D
and 4D configurations. These results are obtained using the specific parameter instances described
in Table 1. The plots compare the entropy values calculated from the ground truth distributions
with those estimated by our model over time. The horizontal axis represents the time progression,
whilst the vertical axis shows the corresponding entropy values. These entropy plots provide valuable
insights into how well our model captures the dynamics of uncertainty in the OU and GBM processes.

The OU process, with its linear dynamics and Gaussian solution, shows excellent agreement between
model estimates and ground truth. The GBM, despite its linear SDE, exhibits more complex
behaviour due to its multiplicative noise term and log-normal solution, leading to slight deviations in
model estimates. Entropy analysis suggests that increasing dimensionality from 2D to 4D does not
substantially affect model performance for either process. Notably, for both processes, the model
overestimates entropy at small t, resulting in higher KL divergence in this region (Figure 1). This
phenomenon is likely due to the model’s entropy decreasing more slowly than the ground truth as t
approaches zero.

F.2 Probability Density Function Analysis

Figure 4 illustrates the estimated probability density functions for the first two dimensions of our 4D
processes, as specified in Table 1. These estimations are derived using a histogram-based approach
with 500,000 samples and a 50x50 grid for each axis. The horizontal axis represents the first
dimension, whilst the vertical axis denotes the second dimension.

The model demonstrates robust performance in capturing the Gaussian nature of the OU process across
higher dimensions. For the GBM, while the overall trend is well-captured, subtle discrepancies emerge
in the estimated probability densities. Notably, despite the model’s use of coupling flow layers, which
theoretically allow for the representation of non-Gaussian distributions, the estimates tend to converge
towards more Gaussian-like shapes. This behaviour suggests that while the model architecture
is capable of expressing complex, non-Gaussian distributions like the log-normal distribution of
the GBM, it appears to favour simpler, more Gaussian-like approximations. This tendency may
contribute to the increased complexity in accurately modelling the log-normal distribution of the
GBM, especially as dimensionality increases.
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Figure 3: Temporal evolution of entropy for the OU and GBM processes in 2D and 4D configurations.
The plots compare the ground truth entropy values with those estimated by our model over time.
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Figure 4: Temporal evolution of probability density for the 4D OU process and GBM, marginalised
over the third and fourth dimensions. The colour gradient represents the density, with lighter hues
indicating higher probability densities and darker shades representing lower densities.
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