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ABSTRACT

Quality Diversity (QD) algorithms have been proposed to search for a large collec-
tion of both diverse and high-performing solutions instead of a single set of local
optima. While early QD algorithms view the objective and descriptor functions as
black-box functions, novel tools have been introduced to use gradient information
to accelerate the search and improve overall performance of those algorithms over
continuous input spaces. However a broad range of applications involve discrete
spaces, such as drug discovery or image generation. Exploring those spaces is
challenging as they are combinatorially large and gradients cannot be used in the
same manner as in continuous spaces. We introduce MAP-ELITES with a Gradient-
Informed Discrete Emitter (ME-GIDE), which extends QD optimisation with dif-
ferentiable functions over discrete search spaces. ME-GIDE leverages the gradient
information of the objective and descriptor functions with respect to its discrete in-
puts to propose gradient-informed updates that guide the search towards a diverse
set of high quality solutions. We evaluate our method on challenging benchmarks
including protein design and discrete latent space illumination and find that our
method outperforms state-of-the-art QD algorithms in all benchmarks.

1 INTRODUCTION

Quality-Diversity (QD) Optimization algorithms (Chatzilygeroudis et al.| (2021); |Cully & Demiris
(2017) have changed the classical paradigm of optimization: inspired by natural evolution, the
essence of QD methods is to provide a large and diverse set of high-performing solutions rather
than only the best one. This core idea showed great outcomes in different fields such as robotics
Cully et al.| (2015) where it allows to learn to control robots using diverse and efficient policies
or latent space exploration |Fontaine et al.| (2021) of generative models to generate a diverse set of
high quality images or video game levels. The main QD approaches are derivative-free optimizers,
such as the MAP-ELITES algorithm Mouret & Clune (2015)), a genetic algorithm that tries to find
high quality solutions covering the space defined by a variety of user-defined features of interest.
However, subsequent methods [Nilsson & Cully| (2021)); |[Fontaine & Nikolaidis| (2021)) have shown
that when the objective functions (quality) or the descriptor functions (diversity) are differentiable,
using gradients of those functions can improve convergence both in terms of speed and performance
compared to traditional QD algorithms. Those methods were applied to Reinforcement Learning
problems such as robotics |Pierrot et al.| (2022a)) or latent space illumination |[Fontaine & Nikolaidis
(2021)) of generative adversarial networks.

Those applications focused on optimization over continuous variables. However many real-world
applications are best framed using discrete features. For instance, generative architecture such as
discrete VAEs [Van Den Oord et al.| (2017); |Rolfe| (2016) have shown capability to generate high-
quality images [Razavi et al.| (2019) and have been at the core of recent successful approaches for
text-to-image generation [Ramesh et al.| (2021); |Gafni et al.[ (2022). A further natural application
using discrete variables is protein design [Huang et al. (2016): proteins play a role in key functions
in nature and protein design allows to create new drugs or biofuels. As proteins are sequences
of 20 possible amino acids, designing them is a tremendously hard task as only a few of those
possible sequences are plausible in the real world. Deep learning for biological sequences provided
significant advances in several essential tasks for biological sequence, such AlphaFold for structure
prediction Jumper et al.|(2021a) or language models for amino acid likelihood prediction |Rives et al.
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Figure 1: MAP-ELITES with Gradients Informed Discrete Emitter (ME-GIDE). At each iteration, an
element is sampled in the repertoire. Gradients are computed over continuous fitness and descriptor
functions with respect to their discrete inputs. Gradients are linearly combined to favour higher
fitness and exploration of the descriptor space. Probabilities of mutation over the neighbours of the
element are derived from this gradient information. Finally, a mutant is sampled according to those
probabilities and inserted back in the repertoire.

(2021) . These successes motivate the use of these tools as objective functions for protein design
Anishchenko et al.| (2021a).

In practice, objective functions are often written as differentiable functions of their inputs, enabling
the use of gradient information of the continuous extension if the input are discrete Grathwohl et al.
(2021)). We second this research trend and address gradient informed quality-diversity optimization
over discrete inputs when objective and descriptors functions are differentiable. We make several
contributions: (i) we introduce MAP-ELITES with a Gradient-Informed Discrete Emitter (ME-GIDE),
a genetic algorithm where mutations are sampled thanks to a gradient informed distribution. (ii)
We propose a way to select the hyperparameters of this algorithm by weighting the importance we
give to this gradient information. (iii) We demonstrate the ability of our method to better illuminate
discrete spaces on proteins and the discrete latent space of a generative model.

2 PROBLEM DEFINITION

In this work, we consider the problem of Quality Diversity Optimization over discrete spaces. The
QD problem assumes an objective function f : X — R, where X is called search space, and d
descriptors ¢; : X — R, or as a single descriptor function ¢ : X — R? We note S = c(X)
the descriptor space formed by the range of c. We only consider discrete spaces of dimension m
with K categories such that X C {1,..., K'}"". QD algorithms of the family of the MAP-ELITES
algorithm, discretize the descriptor space S via a tessellation method. Let 7 be the tessellation of S
into M cells S;. The goal of QD methods is to find a set of solutions x; € X" so that each solution
x; occupies a different cell .S; in 7 and maximizes the objective function within that cell. The QD
objective can thus be formalized as follows:

M

i), h ., i i 1
E(nea)%(;f(x) where Vi, c(x;) € S (1

We consider here that both the objective and descriptor functions are actually defined on real values
R and restricted to the discrete inputs X'. We also consider them to be first-order differentiable,
hence for any input x € X, we can compute gradients V. f(x) and V,¢;(x).
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Algorithm 1: Gradient Informed Discrete Emitter (GIDE)

Given: a batch of B elements x,, from the repertoire.
for1 <n < Bdo

// Compute the distribution

Compute dn using Equation
Compute the proposal distribution p,, using Equation

// Target entropy
Adjust T to obtain a target entropy - = Hiager Over the proposal distributions.

// Sample
Draw a mutant z;, from each x,, according to py,.

end
Return z%, ..., 7’5

3 MAP-ELITES WITH GRADIENT PROPOSAL EMITTER

MAP-Elites and Differentiable MAP-Elites MAP-ELITES is a QD method that discretizes the
space of possible descriptors into a repertoire (also called archive) via a tessellation method. Its goal
is to fill each cell of this repertoire with the highest performing individuals. To do so, MAP-ELITES
firstly initializes a repertoire over the BD space and secondly initializes random solutions, evaluates
them and inserts them in the repertoire. Then successive iterations are performed: (i) select and copy
solutions uniformly over the repertoire (ii) mutate the copies to create new solution candidates (iii)
evaluate the candidates to determine their descriptor and objective value (iv) find the corresponding
cells in the tessellation (v) if the cell is empty, introduce the candidate and otherwise replace the
solution already in the cell by the new candidate if it has a greater objective function value. When
using real variables, the most popular choice is the Iso+LineDD |Vassiliades & Mouret (2018)) that
mixes two gaussian perturbations. When using discrete variables, mutations are generally defined
as point mutation, ie select a random position and flip its value from the current one to a new one.

To incorporate gradients into MAP-ELITES algorithms, (Fontaine & Nikolaidis} |2021) introduced
MAP-ELITES with a Gradient Arborescence (MEGA) a novel way to use gradient information to
guide the mutations. First, the authors propose a novel objective function to encompass both quality
and diversity: g(z) = f(z) + Z?:l w;c;(z), where w; ~ N(0,0,1) Vi € {0,...,d}. In one
version of their algorithm, OMG-MEGA, authors simply extend MAP-ELITES by mutating selected
element of the repertoires x via 2’ = = + |wg|V,g(z) where w; are sampled at each iteration and
for each element in the batch and o4 acts similarly to a learning rate. Indeed, maximizing g will
direct the mutations towards higher fitness and different directions of the descriptor space thanks to
the randomness introduced by sampling the w;.

From Gradients to Gradient Informed Discrete Emitter As this approach has proven effective
on several tasks, we follow the previous formulation by trying to maximize g. In this case at a
should ideally find a neighbour z’ € X that maximizes g. Ideally, our operaféf should provide
r' = argmax,cy_(,) 9(2) —g(x). where H; (z) the Hamming ball of size 7 around  our mutation.

However, for a given variable « € {1, ..., K}", even for 7 = 1 the cardinality of this Hamming
ball is mK — 1. Hence finding the optimal ' requires mK — 1 evaluations of g. Doing it at each
step would be too expensive but since those differences are local, they can be approximated using
gradient information. Following |Grathwohl et al.|(2021)) we use Taylor-series approximation of the
local differences: noting (*-*) the mutant from z by flipping the position i from x; to k, we estimate
those differences as

(@) — g(x) = Vog(@)ix — 2] Vog(@); = dix @

where a2’ differs from z by a flip on position 1 < ¢ < m from z; to k € {1, ..., K'}. The previous
formulation works in the case where 7 = 1 but similar approximations can be derived for larger
window sizes at the expense of the approximation’s quality.
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Using those approximations, we could straightforwardly compute a local maximum of g by taking
the argmax at each step. In order to encourage exploration, we use those approximate local differ-
ences to create a proposal distribution over the neighbours of x. Inspired by sampling techniques
such as Metropolis-Hastings, we define the probability p(x(i’k) |2) of mutating from z to (k) ag

dig

p(x®P)z) o e (3)

where T' > ( is a temperature parameter. The temperature parameter tempers whether the mutation
will go towards the argmax (I'" — 0) or a purely random mutation (I' — +o0). Finally, in order
to sample flips at position ¢ from z; to k, we normalize those probabilities by computing a softmax
over every possible flip (mK possibilities):

edin/T

m,K

> edjt/T

=1

p(z™®|z) = (4)

As every approximated difference dj can be computed in one gradient evaluation V,g(x), those
probabilities can be efficiently computed.

Formally our Gradient Informed Discrete Emitter (GIDE) receives a candidate x, computes dir using
Equation [2} then computes mutation probabilities using Equation [4| and finally samples a mutated
2(**) using these probabilities. We summarize this procedure in Algorithm

Using this emitter, we design our main algorithm: MAP-ELITES with a Gradient Informed Discrete
Emitter (ME-GIDE). The procedure follows the one of MAP-ELITES: we firstly initialize a repertoire
of behaviour descriptors. Then at each iteration, the following operations are performed: (i) select
a batch of solutions uniformly over the repertoire (ii) sample mutants using our GIDE (iii) evaluate
the candidates and add them in the repertoire if their fitness is higher than the existing solution in
the cell. This procedure is described in Algorithm [2| with an additional step to control the strength
of the gradient guidance defined in the following paragraph.

Algorithm 2: MAP-Elites with Gradient Informed Discrete Emitter (ME-GIDE)

Given: the number of cells M and tesselation 7 ; the batch size B and the number of iterations IV ;the
descriptors function ¢ and the multi-objective function f ; a target entropy value H¢qrget ; the
initial population of solution candidates {xx }

// Initialization
For each initial solution, find the cell corresponding to its descriptor and add initial solutions to their cells.

// Main loop
for 1 < ngeps < N do

// Select new generation
Sample uniformly B solutions x,, in the repertoire with replacement

// Compute the gradients

Randomly draw weights w™ ~ A (0, T)

Compute gradients V,, f(z») and Vg, c(xr)

Normalize the gradients.

Compute combined updates V,, = [w{™ Vo, f(z) + 3 w™ V., ci(zn)
i=1

// Gradient-Informed Discrete Emitter

Use Algorithmto sample mutants 7,

// Addition in the archive
Add each mutant in its corresponding cell if it improves the cell fitness, otherwise discard it.

end
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Controlling the Gradient Guidance with a Target Entropy The shape of the flip distribution
pi,;; computed by GIDE strongly depends on the choice of the temperature parameter 7. However,
searching for an optimal value of this unbound parameter can be tedious owing to the fact that it lies
in [0, +00] and has limited human-interpretability. Since this temperature parameter 7' controls the
concentration of the probability mass over the directions with highest estimated-improvement values

d; 1, mispecifying it would result in suffering either degenerated or uniform distribution. The former
means being too greedy towards the most promising directions, which hinders exploration, while
the latter means under-exploiting our estimate. We propose to tackle this exploration-exploitation
tradeoff by controlling the Shannon entropy of the flip-distribution H (p; ;). When T' — 0, we
approach the deterministic distribution over the highest estimate, i.e. with minimum entropy and
when T' — 400 we approach the uniform distribution, i.e. with maximum entropy.

To avoid either degenerate cases, we set a target Hmrget for the normalized entropy H (p,k) =
Hpir) [0, 1] of the flip distribution. We aim to find a value T such that H(p; ) = H'mget.

— log(nm
Thegr(elat)ionship between the normalized entropy and the temperature is non-trivial and depends on
the gradients of g. Using Equation 4] we can write the normalized entropy equation as a func-
tion of the temperature T, we solve numerically for 7' by minimizing by gradient descent the
penalty. In practice, to select an appropriate target Hi,ger, We find it enough to test a few values
in }_Itargel € {0.4,0.6,0.8}. One can note that setting flmget = 1 corresponds to completely random
mutations.

4 EXPERIMENTS

4.1 SETTINGS

We conduct experiments on different benchmarks to assess the performance of our new emitter.
Namely, we experiment on three challenging applications: illuminating a family of proteins, gener-
ating diverse images by working directly on the discretized pixel space and illuminating the discrete
latent space of a generative model.

Design in the Ras Protein Family As proteins are involved in numerous biological phenomena,
including every task of cellular life, designing them has been a longstanding issue for biologists. The
simplest way to describe a protein is through its primary structure: a natural protein is a sequence of
20 basic chemical elements called amino-acids. Designing a protein is generally framed as finding
the sequence of amino acids that maximizes a score representing a property of a protein, such as
its ability of binding to a virus or its stability. It is a tedious task as the search space grows expo-
nentially with the length of the protein of interest, for instance designing a protein of 100 residues
operates over a space of 20'° elements. In our experiment, we aim to redesign members of the
”Rat sarcoma virus” (Ras) protein family (extracted from PFAM database (Mistry et al., 2021)), in-
volved in cellular signal transduction and plays a role in cancer development |Bos|(1989).Following
a common procedure in computational protein design [Huang et al|(2016), we aim to redesign its
members to maximize their stability. While many methods use biophysical simulations to estimate
this stability [Desmet et al.| (1992), we follow recent trends |Anishchenko et al.| (2021b) and use a
pre-trained neural network to approximate it.

Namely, for a given sequence, our objective function is defined as the log-likelihood provided by
a pre-trained protein language model: ESM2 [Lin et al.| (2022)); Rives et al.| (2021). Indeed, it was
shown that this quantity is correlated to the stability of a protein and can even be used to predict
the effect of these mutations |Hopf et al.| (2017); |Riesselman et al.| (2018)). We use an unsupervised
procedure to create descriptors similar to AURORA |Grillotti & Cully|(2022): we sample 1,000,000
proteins from the Uniref50 F_] database, compute their 640-dimensional embeddings using ESM2 at
the 20" layer and perform a PCA on those embeddings to extract 5 components. Finally we use
a K-Means algorithm with K = 30000 on these projected embeddings to create the tesselation
with 30, 000 cells. The descriptors of a sequence is the corresponding projected embedding of this
sequence and is mapped to its corresponding cell by finding the closest centroid. In practice, we use
the 120, 000 elements of this family at initialization.

'"https://www.uniprot.org/help/uniref
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Figure 2: (Top) QD-score evolution on the different domains (median and interquartile range over 5
seeds). ME-GIDE outperforms MAP-ELITES on every experiment and ME-GDP on every experiment
except for Binarized Digits. Only the solution corresponding to the best set of hyperparameters are
shown for MAP-ELITES and ME-GDP. (Middle) Final repertoire of ME-GIDE for one seed. A yellow
color corresponds to a high fitness, whereas darker colours correspond to lower fitnesses. (Bottom)
Repertoire of the best performing baseline.

Binarized Digits To further illustrate the interest of our method, we design an experiment on
binary data consisting in generating diverse MNIST digits with QD methods. Given our fitness
and descriptor functions, we aim to find out how QD methods compare in generating diverse digits
by directly searching over the image space. We define the fitness using an energy-based model
trained on discrete MNIST data. Following|Grathwohl et al.|(2021)), we train a restricted Boltzmann
machine (RBM) on the binarized 28x28 images. To obtain descriptors we define
a diversity space by embedding the MNIST dataset into the hidden layer of the RBM and then by
computing a PCA over these embeddings. Thus, descriptors are defined as projections over the top-d
components of this PCA with d = 20. We again finally use a K-Means algorithm with K = 10000
on these projected embeddings to create the tesselation with 10, 000 cells. We display in Appendix[D]
how this descriptor space spans the different digits’ classes. In our experiments, we initialize our
images with a randomly uniform distribution.

Discrete Latent Space Illumination (LSI) Recent works|Fontaine et al|(2021]),[Fontaine & Niko-
(2021) have proposed the latent space illumination of generative models (LSI) problem as a

benchmark for QD methods. It consists in searching the latent space of a large generative model for
diverse and relevant latent codes. The diversity of the sampled images being a major concern for
generative models, it perfectly aligns with the QD methods design. For instance, |[Fontaine & Niko-|
laidis uses QD methods to illuminate the latent space of a StyleGAN, they leverage CLIP
Radford et al.| (2021)) prompts to create both a fitness function and a descriptor space and to gener-
ate diverse images that satisfy some prompts. Since our work is focused on discrete variables, we
instead chose to illuminate the latent space of a discrete VAE. Specifically, we choose to explore
the latent space of a vector-quantized auto-encoder (VQ-VAE). Similarly to previous work, we use
CLIP to evaluate the quality of the VQ-VAE-decoded latents as well as their diversity. We have
experimented two sets of prompts. The first one aims to generate labrador dog images, the fitness is
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defined with the prompt ”A labrador” while the descriptor functions are defined as A white puppy”
and A dog with long hair”. The second set of prompt searches for truck images with fitness prompt
”A truck” and descriptor prompts A red truck”, ”A blue truck”. The aim of this experiment is to
find a large set of latent codes which - once decoded - yield diverse images with high scores accord-
ing to the CLIP evaluation. We refer the reader to the Appendix [C|for the VQ-VAE model’s details,
and the training procedure. We want to stress that our goal is only to explore the latent space of the
VQ-VAE in the light of the CLIP score and descriptors functions, we do not aim to compete with
image generation procedure nor with text-to-image approaches.

Experiment Setup In addition to our ME-GIDE al-
gorithm, we compare with two main baselines. The
first baseline, MAP-ELITES stands for the original MAP-
ELITES algorithm with completely random mutations at
each step. Searching via random mutations is the most
popular solution when no prior knowledge is assumed
over the structure of a solution. We also consider addi-
tional variation operators such as crossover. We also com-
pare ME-GIDE to a natural baseline: gradient descent with
projection (ME-GDP). Inspired by Fast SeqProp Linder &
Seelig| (2020), ME-GDP uses gradients following Objec-
tive and Measure Gradient MAP-ELITES via Gradient Ar-
borescence (OMG-MEGA)|Fontaine & Nikolaidis|(2021])
and projects the mutants back to the discrete set. We im-
plement every method based on Jax using the QDax open
source library |Lim et al.| (2022).

Figure 3: Ras proteins designed by ME-
GIDE, visualized using the prediction of We run every experiment over 5 different seeds for each
AlphaFold. One can see diverse pat- method. We use a repertoire with 30, 000 centroids for the
terns in the secondary structure, while protein experiment, 10,000 centroids for the binarized
still retaining high estimated stability. digits experiments and 40, 000 centroids for the discrete

LSI experiments. We stop the illumination after evaluat-
ing le6 candidates on the protein and binarized digits experiment and 5e6 evaluations for the discrete
LSI experiment. We provide more details about the settings in Appendix [A]

4.2 RESULTS AND ANALYSIS

Figure [2] summarizes the results of our experiments, we display the median and the interquartile
range over 5 seeds for every benchmark. In the Ras and Discrete LSI experiments, ME-GIDE outper-
forms other methods, since it converges in fewer iteration to higher performances. For clarity, we
only plot the results corresponding for the best set of hyperparameters for the baselines MAP-ELITES
and ME-GDP. We use a Wilcoxon signed-rank test|Wilcoxon| (1992) to compare the distribution of
the scores obtained over different seeds where the null hypothesis is that the obtained scores have
the same median. It shows that ME-GIDE constantly outperforms MAP-ELITES in the QD score with
p-values lower than 0.05 in every experiment and outperforms ME-GDP on every experiment except
Binarized Digits.

Our target entropy procedure allows an easier choice of hyperparameters for ME-GIDE. Indeed, in
our experiment, we only try for three values: 0.4, 0.6 and 0.8. While we display the best results
for clarity on Figure |2} the conclusion are similar for values in the range [0.4,0.8] as detailed in
Appendix [B]

Interestingly, ME-GDP under-performs compared to purely random mutations for any set of hyper-
parameters on both protein and VQ-VAE experiments. This means performing gradient descent
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similarly as in the continuous case is dangerous when us-
ing discrete variables. We validate that the estimation of
g(z)) — g(z) using d;;, is sensible by computing the cor-
relation for some elements of each domain between those two
quantities. For instance, for the discrete LSI experiment, we
find an average correlation p = 0.55, which means that even
though the step between z(**) and = might be large, gradient
information is indeed relevant. We give more details about this
analysis in Appendix [E]

We display some samples of the final repertoire obtained by

ME-GIDE on Figure [3] To visualize the 3D structure of those E E . .
proteins, we use AlphaFold2 Jumper et al.[(2021b). One can

see that ME-GIDE manages to extract proteins with various sec-

ondary and tertiary structures and that those proteins have high Figure 4: Samples from ME-GIDE
confidence score according to AlphaFold. We also conduct final repertoire on the Binarized
further validation on the protein experiment. We subsample Digits experiment. ~ We down-
our repertoire by recomputing larger cells to obtain a repertoire  sample the 40,000 elemnts in the
with 300 cells. Then, we insert the original repertoire into this reprtoire by clustering its centroids
smaller one to obtain the most fit solutions in each region. We to 16 and display the element in
firstly analyze the diversity in the sequence space, defined as each cell.

the average edit distance between obtained solutions. We find

that ME-GIDE reaches an average distance of 106.9 whereas MAP-ELITES gets 97.2. We also use
S4Pred|Moffat & Jones|(2021) to predict the secondary structure of each protein and use the average
edit distance between secondary structures. ME-GIDE outperforms MAP-ELITES, obtaining an aver-
age distance of 44.2 against 34.9, and finds more diverse structures while also reaching an overall
higher average fitness.

ME-GIDE samples vs ImageNet images On Figure 4 we first display some samples found
by ME-GIDE on the binarized MNIST experiment.
One can see that ME-GIDE is able to find diverse im-
ages that resemble MNIST images and covers every

Image CLIP-score Image CLIP-score

66.2 digit. We also visualize on Figure [5] top-performing
images from the repertoire learned by ME-GIDE as
well as natural images from the ImageNet dataset.

667 Images found by ME-GIDE cannot be considered to

match the prompt from a human point of view al-
though a small shape of a dog appears in the cen-
ter of the image. It should still be noted that these
Figure 5: Samples found by ME-GIDE on images have higher CLIP scores than natural im-

the ”Labrador” prompt against highest scor- €S that humans would score as perfectly aligned
ing images from ImageNet dataset. While with the score prompt. In a sense, ME-GIDE man-
the images found by ME-GIDE are not nat- ages to ”fool” CLIP. Our work emulates' the findings
ural images, they achieve a higher score to qf Nguyen et al.| (2015a) Wherg Evolutionary A!go-
be a “labrador” according to CLIP. rithms manage to fool” a classifier . Our study high-

lights the difficulty of directly sampling relevant la-
tent codes in the latent space of a discrete VAE, which is in general bypassed by an additional
auto-regressive model that learns to sample meaningful latent codes.

5 RELATED WORKS

Discrete Optimization Discrete optimization Parker & Rardin|(2014)) is a longstanding branch of
optimization where some of the variables or constraints are discrete. It is also named combinato-
rial optimization as the set of feasible solutions is generally finite but evaluation every solution is
irrealizable. A first class of algorithms search for an exact solution: in particular, Integer Linear
Prgoramming [Schrijver| (1998) has been the main subject of interest with exact methods such as
cutting plan |Gilmore & Gomory| (1961)) or branch and bound [Land & Doig (2010). On the other
hand, evolutionary algorithms have been very popular as they allow for more flexibility and can be
stopped at any iteration to get the best solution explored so far |Dorigo et al.|(1999). Most of those
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algorithms either incorporate this knowledge by mutating only to feasible solutions or use a relax-
ation and then project back to the feasible set|Lin & Hajelal (1992). For instance, for protein design,
exact methods have been proposed for specific biophysical cost functions related to the potential
energy Desmet et al.| (1992)) of the protein or its binding affinity Ojewole et al.|(2018)). However, due
to the limitations in flexibility of the previous methods, the most popular design tool, incorporated
in the popular Rosetta library, is based on simulated annealing |Huang et al.| (2011)). Several work
tried to leverage recent breakthroughs of deep learning methods tailored to proteins in the protein
design, such as AlphaDesign |Jendrusch et al.|(2021) or TrDesign [Norn et al.|(2021)). To the best of
our knowledge, our work is the first to propose QD as a solution for protein design.

Quality Diversity Optimization Searching for novelty instead of quality Lehman & Stanley
(2011a) was the first work formulating diversity as an end in itself. It was further refined by in-
troducing a notion of local quality with local competition Lehman & Stanley| (2011b). MAP-ELITES
Mouret & Clune| (2015) refined the notion of diversity by introducing the notion of repertoire over
a set of descriptors. Further improvement were made on the design the descriptor space such as
using a Voronoi tessellation [Vassiliades et al.[(2017) or use unsupervised descriptors |Cully| (2019);
Grillotti & Cully| (2022) as defining tailored descriptors can be tedious for some tasks. More effi-
cient ways to illuminate this space have been proposed, such as more efficient mutation operators
Vassiliades & Mouret| (2018)) or covariance matrix adaptation [Fontaine et al.|(2020). Closest to this
work is Differentiable QD [Fontaine & Nikolaidis|(2021) where gradients are used to directly update
over the continuous variables.

Application specific methods were developed to apply QD algorihtms to noisy domains [Flageat &
Cully|(2020) or when multiple objectives are at stake Pierrot et al.| (2022b). Reinforcement Learning
is one of the most popular application of QD |Arulkumaran et al.| (2019) and some methods try to
incorporate diversity directly in RL algorithms Nilsson & Cully| (2021); [Pierrot et al.| (2022a). QD
methods have already been applied to Latent Space Exploration, one of the domains we experiment
on. The earliest work was named Innovation Engines Nguyen et al.| (2015b) where authors try to
generate diverse images using a QD approach over ImageNet. Later Latent Space [llumination has
been introduced to generate game levels Schrum et al.| (2020) or images |[Fontaine & Nikolaidis
(2021). Our work is also applicable to LSI in the case of a discrete latent space and is the first work
of its kind to the best of authors’ knowledge.

6 CONCLUSION

We introduced ME-GIDE, a genetic algorithm that leverages gradient information over discrete vari-
ables for Quality Diversity optimization and show it outperforms classical baselines. Our entropy-
based guidance allows to ease the search for good hyperparameters which can be tedious for some
applications. Our experiment on protein design is the first using QD methods to the best of author’s
knowledge and this opens a way for more applications in the future. Indeed, we believe that gener-
ating not only fit but also diverse proteins can be useful as the fitness given by the model does not
always translate to good properties in the lab.

Our goal was not to propose a novel image generation technique but while the results of our LSI
experiment are interpretable and ME-GIDE finds images with higher fitnesses than realistic images,
further research can be done to better understand and exploit these results. Our method can be used
to create adversarial examples for generative models using discrete latent spaces, that are becoming
more and more popular. On the other hand, to generate more realistic images, we could constrain
the search to a few latent codes and use a recurrent architecture to generate a more realistic prior, at
the cost of potentially facing vanishing or exploding gradients. We leave these open questions for
future works.

As our method involves computing gradients of the fitness and descriptor functions, we expect it to
be intractable for functions involving large neural networks, such as AlphaFold. Using a surrogate
model to guide the search while keeping a large model for evaluation or validation to handle those
cases could be a good research direction.
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