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ABSTRACT

Complex networks model the structure and function of critical technological, bio-
logical, and communication systems. Network dismantling, the targeted removal
of nodes to fragment a network, is essential for analyzing and improving system
robustness. Existing dismantling methods suffer from key limitations: they depend
on global structural knowledge, exhibit slow running times on large networks,
and overlook the network’s latent geometry, a key feature known to govern the
dynamics of complex systems. Motivated by these findings, we introduce Latent
Geometry-Driven Network Automata (LGD-NA), a novel framework that lever-
ages local network automata rules to approximate effective link distances between
interacting nodes. LGD-NA is able to identify critical nodes and capture latent
manifold information of a network for effective and efficient dismantling. We show
that this latent geometry-driven approach outperforms all existing dismantling
algorithms, including spectral Laplacian-based methods and machine learning ones
such as graph neural networks. We also find that a simple common-neighbor-based
network automata rule achieves near state-of-the-art performance, highlighting the
effectiveness of minimal local information for dismantling. LGD-NA is extensively
validated on the largest and most diverse collection of real-world networks to
date (1,475 real-world networks across 32 complex systems domains) and scales
efficiently to large networks via GPU acceleration. Finally, we leverage the ex-
plainability of our common-neighbor approach to engineer network robustness,
substantially increasing the resilience of real-world networks. We validate LGD-
NA’s practical utility on domain-specific functional metrics, spanning neuronal
firing rates in the Drosophila Connectome, transport efficiency in flight maps,
outbreak sizes in contact networks, and communication pathways in terrorist cells.
Our results confirm latent geometry as a fundamental principle for understanding
the robustness of real-world systems, adding dismantling to the growing set of
processes that network geometry can explain.

1 INTRODUCTION

Complex networks are the backbone of our modern world, from the biological pathways within
a cell to global financial and transportation systems (Newman, 2003). While the interconnected
nature of these systems is often a source of efficiency and strength, it also introduces profound
vulnerabilities. A localized failure can be absorbed, or it can trigger a cascade of disruptions leading
to a systemic collapse. Understanding this fragility is crucial, as the consequences are far-reaching:
targeted disruptions can compromise cellular function in metabolic networks, dictate the spread of a



virus through a social fabric, or cause catastrophic blackouts in power grids and failures in financial
markets (Artime et al., 2024; Albert et al.,|2000). The formal study of these vulnerabilities is known
as network dismantling. It addresses a fundamental question: What is the most efficient way to
fragment a network by removing a minimal set of nodes or links, to disrupt its structural integrity
and functional capacity? Answering this question is essential not only for predicting the impact of
malicious attacks but, more importantly, for designing robust and resilient systems that can withstand
them. The task of dismantling serves a dual purpose. It determines whether a system is robust and how
to reinforce desirable networks, for example preventing system failure in a flight network or security
compromises in internet infrastructure. Conversely, it reveals how to disrupt undesirable systems,
severing communications in terrorist cells or halting the spread of an epidemic. Efficient network
dismantling is challenging because identifying the minimal set of nodes for optimal disruption is
an NP-hard problem: no known algorithm can solve it efficiently for large networks (Artime et al.}
2024), forcing the field to rely on heuristic approximations. This difficulty arises not only from the
prohibitively large solution space but also from the structural complexity of real-world networks,
which exhibit heterogeneous, fat-tailed connectivity (Barabasi & Albert, |1999; [Broido & Clauset,
2019; [Voitalov et al.l [2019; [Serafino et al.| [2021)), modular and community structures (Newman,
2012), hierarchies (Ravasz & Barabasi, |2003; |(Clauset et al., 2008)), higher-order structures (Battiston
et al., 2021} [Lambiotte et al.,2019), and a latent geometry (Muscoloni et al., 2017; [Wu et al., 2015}
Boguia et al., 2021} |[Krioukov et al., 2010; |Serrano et al., 2008)).

Node Betweenness Centrality (NBC) is a network centrality measure (Freemanl |1977)) that quantifies
the importance of a node in terms of the fraction of the shortest paths that pass through it. NBC-based
attacks, where nodes are removed in order of their betweenness centrality, is considered one of, if
not the best, method for network dismantling (Engsig et al., [2024; Servedio et al., 2025; Motter &
Lail, 2002; [Holme et al.;[2002). However, like many other dismantling techniques, it requires global
knowledge of the entire network topology, and its high computational cost limits its scalability to
large networks. These limitations are shared by many other state-of-the-art dismantling methods,
which additionally rely on black-box machine learning models, and are rarely validated across large,
diverse sets of real-world networks (see Tables[I} [6] and [5).

Latent geometry has been recognized as a key principle for understanding the structure and complexity
of real-world networks. Recent works in network science suggest that the latent geometry of complex
networks could explain critical network characteristics such as small-worldness, degree heterogeneity,
clustering, and navigability, and drives critical processes like efficient information flow (Boguna
et al.| 2021} 2009; Kleinberg, |2000; Wu et al.l 2015} [Serrano et al., 2008}, |[Krioukov et al., [2010;
Muscoloni & Cannistraci, [2019;2018a). Work by Muscoloni et al.|(2017) revealed that betweenness
centrality is a global latent geometry estimator: it approximates node distances in an underlying
geometric space. They also introduced Repulsion-Attraction network automata rule 2 (RA2), a local
latent geometry estimator that uses only first-neighbor connectivity. RA2 performed comparably
to NBC in tasks such as network embedding and community detection, despite relying solely on
local information. This raises the first question: can latent geometry, whether estimated globally or
locally, guide effective network dismantling? If complex systems run on a latent manifold, estimating
it may offer a more efficient way to disrupt connectivity. The second question concerns efficiency.
While both NBC and RA2 have O(Nm) complexity (N as the number of nodes and m the number
of links), RA2 is significantly faster in practice because its local computations avoid NBC’s large
computational overhead. This motivates exploring whether local latent geometry estimators can
match the dismantling performance of global methods like NBC while offering lower running time.

Motivated by these questions, we introduce the Latent Geometry-Driven Network Automata (LGD-
NA) framework. Our first and primary contribution is the principle of (1) Latent Geometry-Driven
(LGD) dismantling, where methods estimate effective node distances on a network’s latent manifold
to expose critical structural information. Specifically, our (2) LGD-NA framework uses local network
automata rules to approximate these geometric distances; a node’s summed distance to its neighbors
estimates how critical it is for dismantling. Within this framework, we discovered that a (3) simple
common-neighbor-based rule, which we term Common Neighbor Dissimilarity (CND), is highly
effective, achieving performance close to the state-of-the-art method, NBC. We prove the effectiveness
of our approach through (4) comprehensive experimental validation on an ATLAS of 1,475 real-
world networks across 32 complex systems domains, the largest and most diverse collection to date,
showing that LGD-NA consistently outperforms all other existing dismantling algorithms, including
machine learning and spectral Laplacian-based methods. To enable dismantling at large scales,



Unweighted Network B ocal Network Automata fo c Dissimilarity-weighted Network D Node-level strength
N()
s B 5N
Muscoloni [VR 2 _ l4eitejtee; ?D/ :
| etarm 1+CN;; - - l
> > >
(ablation) |/ 1+CNy; — CND / fi
ours - Z = 5 =
(abation) |/ HFABGFAQ % ﬁ ' /eg”m
_____________________ 1
: H Reinserted Network Reinsertion : F Dismantled Network E Dynamic Dismantling
(%} %@ Author Criteria %J é 1. Compute node-level .
I Braunstein | R7: Node that joins the | measure !
| etal.[2] smallest component | 2 o
. Remove most ci al
|
| Morone | R2:Node that connects | nodsanditsedgos
| etal. [3] the fewest clusters |
#® 5
3. Check LCC threshold P
| Mugisha | R3: Node that causes the | e threshol gt ——a0
& Zhou [4] smallest LCC increase 5 i
I | Repeat until threshold is met

J

Figure 1: Overview of the LGD Network Automata framework. A: Begin with an unweighted and
undirected network. B: Estimate latent geometry by assigning a weight v;; to each edge between
nodes ¢ and j using local latent geometry estimators. C: Construct a dissimilarity-weighted network
based on these weights. D: Compute node strength as the sum of geometric weights to all neighbors in
N(@G): s, =3 JeN() Vid E-F: Perform dynamic dismantling by iteratively computing node strengths,
removing the node with the highest s; and its edges, and checking whether the normalized size of
the largest connected component (LCC) has dropped below a threshold. G-H (optional): Reinsert
dismantled nodes using a selected reinsertion method.

we implement (5) GPU-acceleration for LGD-NA, yielding remarkable running time advantages
over methods like NBC. Finally, using the explainability of our CND measure, we introduce a new
method for (6) engineering network robustness, substantially reducing the effectiveness of the best
dismantling methods. We further validate the practical utility of our dismantling framework and
robustness engineering method by demonstrating their impact on domain-specific functional metrics,
including neuronal firing rates in the Drosophila Connectome, flight map efficiency, epidemic sizes,
and communication reachability in terrorist cells.

2 RELATED WORK

Latent Geometry of Complex Networks. Many real-world networks are shaped by latent geo-
metric manifolds of the complex systems that govern their topology and dynamics. These hidden
geometries explain essential structural features such as small-worldness, degree heterogeneity, cluster-
ing, and community structure (Boguna et al., [2021} |Wu et al., [2015} |Serrano et al.,|2008; Muscoloni
& Cannistracil 2018ak [Zuev et al., 2015 Muscoloni & Cannistraci, [2018b; [Muscoloni et al.| [2017).
The underlying metric space is not only descriptive but functional: it facilitates efficient routing and
navigation with limited global knowledge (Kleinberg, 2000; Boguna et al., [2009; |Krioukov et al.|
2010; [Muscoloni & Cannistraci,|2019). Such properties emerge consistently across diverse systems,
including biological, social, technological, and socio-ecological networks (Boguna et al., 2021}
‘Wu et al.l |2015). Latent geometries also enable predictive modeling of dynamical processes such
as network growth (Papadopoulos et al.,|2012} [Muscoloni & Cannistracil [2018bjal), and epidemic
spreading (Brockmann & Helbing, 2013)).

Latent Geometry Estimators. Latent geometry estimators assign edge weights to approximate
pairwise distances of linked nodes in the hidden geometric manifold. Among them, network automata
rules based on the Repulsion-Attraction (RA) criterion use only local topological information to infer
proximity in the latent space (Muscoloni et al., 2017). RA is grounded in the theory of network
navigability (Boguiia et al.,2009), which posits that nodes with many non-overlapping neighbors tend
to occupy distant regions in the latent space. Edges between such nodes receive higher dissimilarity
scores due to strong repulsion, while those with many common neighbors are scored lower due



Table 1: Number of real-world networks Table 2: Summary of real-world networks tested in this
tested by dismantling algorithms (see Ta- paper (see Table E[)

ble[T0).
Field Subfields Types Networks
Algorithm Year Networks Ref. Biomolecular 5 PPI, Genetic, Metabolic, 27
Collective  Influence 2016 2 Morone _et_al. Molecular, Transcription
(CD) (2016) Brain 1 Connectome 529
CoreHD 2016 12 Zdeborovdetall  Covert 2 Covert, Terrorist 89
(2016)
Foodweb 1 Foodweb 71
Explosive Immuniza- 2016 5 Clusella et al.
tion (EI) 2016) Infrastructure 7 Flight, Nautical, Power 314
- - grid, Rail, Road, Subway,
Min-Sum (MS) 2016 2 Braunstein Trade
etal.|(2016)
Internet 1 Internet 206
GND 2019 10 Ren et _al.
2019) Misc 8 Citation, Copurchasing, 38
Game, Hiring, Lexical,
Resilience Centrality 2020 4 Zhang et al. Phone call, Software,
(2020) Vote
GDM 2021 57 Grassia_et_all  gocjal 7 Coauthorship, Collabo- 201
(2021) ration, Contact, Email,
CoreGDM 2023 15 Grassia & Man{ Frlendshlp, Social net-
gioni] (2023) work, Trust
Domirank Centrality 2024 6 Engsig et al| _lotal 32 1,475
(2024)
Fitness Centrality 2025 5 Servedio et al.
(2025)
LGD-NA 2025 1,475 Ours

to attraction. RA1 and RA2 are network automata rules for approximating linked nodes’ pairwise
distances on the latent manifold of a complex network. These rules are categorized as network
automata because they adopt only local information to infer the score of a link in the network
without the need for pre-training of the rule. Note that RA1 and RA2 are predictive network
automata that differ from generative network automata, which are rules created to generate artificial
networks (Barabasi & Albert, [1999; |Papadopoulos et al., 2012} [Muscoloni & Cannistraci, [2018b).
They were introduced to serve as pre-weighting strategies for approximating angular distances
associated with node similarities in hyperbolic network embeddings. RA2 performed slightly better
than RA1, so for this reason we will only consider RA2 in this study. RA2 defines dissimilarity
between nodes ¢ and j as:

1+e +ej+ei-e

1+ CNy;

where CN;; is the number of common neighbors of nodes ¢ and j, and e; and e; are the external
degrees of 7 and 7, representing the count of neighbors of ¢ and j that are not involved in the common
neighbors interactions. In the same work, Muscoloni et al. also showed that betweenness centrality is
a global latent geometry estimator. By comparing it with RA2, they demonstrated that both global
(betweenness centrality) and local (RA) estimators can effectively capture latent geometry, achieving
strong results in network embedding and community detection. See Table [3] for a comparison of
estimators and Figure 3] for illustrative examples. See also Appendix[C} where we validate the ability
of these latent-geometry estimators in identifying node importance and estimate link distances in
networks with a known geometry.

RA2(i, j) =

Topological centrality measures. Degree, betweenness centrality, and their variants have all been
used in the majority of dismantling studies (Artime et al.,|2024)), with betweenness centrality having
been found to be the most effective strategy when applying dynamic dismantling, meaning the scores
are recomputed after every step. Degree centrality ranks nodes by their number of neighbors, and
betweenness centrality (Freeman, |1977) counts how frequently a node lies on shortest paths. Other
centrality variants include eigenvector centrality (Bonacich| [1972)), which gives higher scores to
nodes connected to other influential nodes. PageRank (Page et al.,{1999), based on a random walk
model, favors nodes that receive many and high-quality links. Beyond these classical measures,
several centrality indices have been developed specifically to capture aspects of network resilience.
Fitness centrality (Servedio et al.l [2025), adapted from economic complexity theory, evaluates



node importance through the capabilities of neighbors while penalizing connections to weak nodes.
DomiRank (Engsig et al.l |2024) centrality models a competitive dynamic in which nodes gain
or lose dominance, or importance, based on the relative strength of their neighbors. Resilience
centrality (Zhang et al.|[2020), derived from a dynamical systems reduction, quantifies how a node’s
removal alters the system’s resilience (see Table [3)).

Statistical and Machine Learning Network Dismantling. We focus on network dismantling for
targeted attacks, where the goal is to fragment a network as efficiently as possible by removing
selected nodes. Message passing-based methods such as Belief Propagation-guided Decimation
(BPD) (Mugisha & Zhou, 2016) and Min-Sum (MS) (Braunstein et al.,2016) use message-passing
algorithms to decycle the network and then fragment the resulting forest with a tree-breaker algorithm,
while CoreHD (Zdeborova et al., [2016)) achieves decycling by iteratively removing the highest-degree
nodes from the 2-core of the network and also includes a tree-breaker algorithm. Decycling and
dismantling are, in fact, closely related tasks, as a tree (or a forest) can be dismantled almost opti-
mally (Braunstein et al., [2016). Generalized Network Dismantling (GND) (Ren et al.,|2019)) targets
nodes that maximize an approximated spectral partitioning. Collective Influence (CI) (Morone et al.|
2016) targets nodes with maximal influence on their neighborhoods, and Explosive Immunization
(ED) (Clusella et al.,2016)), uses explosive percolation dynamics. Machine learning-based methods
include Graph Dismantling with Machine Learning (GDM) (Grassia et al.;2021)), which trains graph
neural networks to predict optimal attack strategies in a supervised manner. FINDER (Fan et al.,
2020b) uses reinforcement learning instead to autonomously learn dismantling strategies without
needing labeled data. CoreGDM (Grassia & Mangioni, |2023)) combines ideas from CoreHD and
GDM as it attacks the 2-core of the network but uses machine learning models trained on optimal
dismantling solutions to guide node removal (see Table [6)).

3 LATENT GEOMETRY-DRIVEN NETWORK AUTOMATA

We introduce the Latent Geometry-Driven Network Automata (LGD-NA) framework. LGD-NA
adopts a parameter-free network automaton rule, such as RA2, to estimate latent geometric linked
node pairwise distances and to assign edge weights based on these geometric distances. Then, it
computes for each node its network centrality as a sum of the weights of adjacent edges. The higher
this sum, the more a node dominates numerous and far-apart regions of the network, becoming a
prioritized candidate for a targeted attack in the network dismantling process. This prioritized node
is then removed from the network, and the procedure is iteratively repeated until the network is
dismantled (see Figure|[T|for a full breakdown).

3.1 LATENT GEOMETRY-DRIVEN DISMANTLING

Our first contribution is Latent Geometry-Driven (LGD) dismantling, where any function can be used
to estimate edge weights that represent effective distances between nodes, capturing the network’s
underlying latent geometry. These inferred weights are used to construct a dissimilarity-weighted
network, encoding a hidden geometric structure beneath the observable topology and allowing the
dismantling process to prioritize nodes according to their geometric centrality in the latent manifold.
Latent geometric structures have been shown not only to explain key properties of complex networks,
but also to support the understanding of dynamical processes such as navigation, routing, and
epidemic spreading. Building on the idea that network geometry captures essential structural and
dynamical properties of complex systems, LGD dismantling is guided by a geometric intuition about
how nodes connect distant regions in the latent space. If two nodes are connected to many different
nodes but have little overlap in their neighborhoods, they are likely to be far apart in the network’s
latent space. An edge between them, therefore, connects distant regions of the network. A node
that has many such edges is central to holding the network together, as it links otherwise separate
areas. We propose that removing those geometrically central nodes is an effective way to fragment
the network. [Muscoloni et al.|(2017) also offered evidence that betweenness centrality can be used as
a latent geometry estimator, hence, NBC is a global topology centrality measure which can be used
for latent geometry-driven dismantling.



3.2 LGD NETWORK AUTOMATA

Our second contribution is the introduction of a parameter-free network automaton framework for
LGD dismantling. In this framework, node importance is estimated by aggregating edge geometric
weights into node strengths, and the network is dismantled iteratively by removing the nodes with
the highest strength and all their edges. The underlying intuition is that nodes that connect to many
external, non-overlapping regions are geometrically central and thus more structurally important,
leading to higher strength values. Formally, we begin with an undirected, unweighted network
without isolated components. A network automaton rule, such as RA2, that is able to adopt local
topology to estimate latent geometry, is applied to assign a weight v;; to the edge between node ¢ and
node j, representing the estimated geometric distance between the two nodes. We get a dissimilarity-
weighted network from these edge weights. The strength s; of node ¢ is then calculated by summing
the geometric weights of all its edges, that is, the weights to all its neighbors in the set N'(4):

S; = E Vij.

JEN ()

In this paper, we adopt three types of LGD network automata rules. The first rule is RA2, which was
proposed by Muscoloni et al.[(2017)) for hyperbolic network embedding purposes. The second rule is
proposed in this study as an ablation test of the RA2 rule. It is the denominator of the RA2, which we
call common neighbors dissimilarity (CND), defined as:

1

where CN;; is the number of common neighbors between nodes ¢ and j. Here, the lower the number
of common neighbors two interacting nodes have, the more geometrically distant they are, and thus
a higher edge weight is assigned between these two nodes. The rationale for proposing a network
automaton rule based only on the common neighbors denominator term of RA2 is to account for
the mere attraction between a node and its neighbors. Neglecting the repulsion part associated with
the external links (the numerator of RA2) makes sense in a dismantling task because any time we
compute the common neighbors of a seed node with one of its neighbors, we indirectly account for the
exclusion of nodes that are not in the topological neighborhood of the seed node. For completeness,
we also investigate a third rule as an ablation test of RA2 in which we consider only the external
links term in the RA2 numerator, expecting that the mere RA2 numerator should also work, but not
as well as the common neighbor-based denominator. Indeed, a previous study offers evidence that
common neighbors are among the topological features most associated with community organization
and mesoscale network geometry (Bianconi et al.,2014).

4 EXPERIMENTS

4.1 EVALUATION PROCEDURE

We evaluate all dismantling methods using a widely accepted procedure in the field of network
dismantling (Artime et al., [2024)). For each method, nodes are removed sequentially according to
the order it defines. After each removal, we track the normalized size of the Largest Connected
Component (LCC), defined as the ratio LCC(x)/|N|, where | N| is the total number of nodes in the
original network and LCC(z) is the number of nodes in the largest component after = removals. This
process continues until the LCC falls below a predefined threshold. A commonly accepted threshold
in dismantling studies is 10% of the original network size. To quantify dismantling effectiveness, we
compute the Area Under the Curve (AUC) of the LCC trajectory throughout the removal process,
which records the normalized LCC size at each step. A lower AUC indicates a more efficient
dismantling, as it reflects an earlier and sharper disruption of network connectivity. The AUC is
computed using Simpson’s rule. See Figures[6] [I0] [I4] and [I9]for visual illustrations of the LCC
curve.

4.2 OPTIONAL REINSERTION STEP

After reaching the dismantling threshold, we optionally perform a reinsertion step to reduce the
dismantling cost, defined as the number of removals. Nodes are sequentially reinserted back into



the network, one at a time, until the LCC of the remaining network just meets or exceeds the
predetermined dismantling threshold. Reinsertion can significantly improve dismantling performance;
recent work shows that simple heuristics with reinsertion can match or outperform complex algorithms
that include reinsertion by default 2020a). As a result, we enforce two constraints to
ensure the reinsertion step does not override the original dismantling method: (1) reinsertion cannot
reinsert all nodes to recompute a new dismantling order, and (2) reinsertion must use the reverse
dismantling order as a tiebreak. If a method includes reinsertion by default, we also evaluate its
performance without reinsertion for a fair comparison (see Table 7).

4.3 ATLAS DATASET

Our fourth contribution is the breadth and diversity of real-world networks tested in our experiments,
demonstrating the generality and robustness of LGD-NA across domains and scales. We build an
ATLAS of 1,475 real-world networks across 32 complex systems domains, which is the largest and
most diverse collection of real-world networks to date used for testing in network dismantling studies.
We first test all methods across networks of up to 5,000 nodes and 205,000 edges without reinsertion
(n = 1,296), and 38,000 edges with reinsertion (n = 1,237). To assess the practical running time of
the best performing methods, we evaluate NBC and RA2 on even larger networks of up to 23,000
nodes and 507,000 edges (n = 1,475). Current state-of-the-art dismantling algorithms have been
evaluated on no more than 57 real-world networks (see Table E[), with most algorithms tested on
fewer than a dozen. Our experiments cover 1,475 networks, representing a substantial expansion. A
key aspect of our ATLAS dataset is the diversity of network types (see Table[2)). We test across 32
different complex systems domains, ranging from protein-protein interaction (PPI) to power grids,
international trade, terrorist activity, ecological food webs, internet systems, brain connectomes, and
road maps. Since fields vary in both the number of networks and their characteristics, we evaluate
dismantling methods using a mean field approach, ensuring that fields with more networks do not
dominate the overall evaluation. Also, because dismantling performance varies in scale across fields,
we compute a mean field ranking to make results comparable across domains.

4.4 LGD-NA PERFORMANCE AND COMPARISON TO OTHER METHODS

We compare our LGD-NA framework against the best-performing dismantling algorithms in the
literature. Main results are visualized in Figure[2] and full quantitative results, including side-by-
side comparisons of absolute AUC and mean-field ranks for all methods and fields, are reported in
Tables 23] through [33]in the Appendix.
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Figure 2: Mean field ranking for each dismantling method without reinsertion (n = 1,296; upper
panel) and with reinsertion (n = 1,237; lower panel), for dynamic dismantling. In the lower panel,
a subset of the best-performing methods from each category is paired with their respective best-
performing reinsertion strategy. Methods based on latent geometry are shown in red. NR denotes
variants where the original reinsertion step was disabled. Error bars indicate the standard error of the
mean (SEM).

First, we find that all latent geometry network automata, NBC, RA2, and its variants, achieve top
dismantling performance, both with and without reinsertion. These findings show that estimating
the latent geometry of a network effectively reveals critical nodes for dismantling, confirming our
first contribution. For each method, we evaluate three reinsertion strategies and report the best



result. We show in Figure 0] that using different reinsertion methods does not change the mean field
ranking of the dismantling methods, and in Figures|l I|and [12|that the improvement in performance
varies across fields and reinsertion methods (see Figure[I0). We also adopt a dynamic dismantling
process for the network automata rules and all centrality measures, where we recompute the scores
after each dismantling step, as it consistently outperforms the static variant (see Figure [13|for an
example of the improvements for CND and Figure[I4). Second, we find that local network automata
rules RA2, CND, and RA2,,,,,, which adopt only the local network topology around a node, are
highly effective. In particular, RA2 and its variants consistently outperform all other non-latent
geometry-driven dismantling algorithms, including those relying on global topological measures or
machine learning. This confirms our second contribution. See Figure [6] for illustrative examples
where the local network automata rules outperform NBC. In addition, Appendix |C|validates the ability
of our latent-geometry-based network automata rules in identifying node importance and estimating
latent geometric distances. Third, we find that the simplest RA2 variant, based solely on inverse
common neighbors, which we refer to as common neighbor dissimilarity (CND), achieves the best
performance among all local network automata rules. This is our third contribution and demonstrates
that even minimal local topology-based information can effectively approximate latent geometry
useful for effective dismantling. NBC strictly dominates as the top-ranking method across all fields.
However, among the second-best performers, the LGD-NA methods lead in the majority of domains:
CND ranks second in Internet networks, RA2 in Biomolecular and Brain networks, and RA2,,,, in
Covert networks. The only fields where non-LGD-NA methods rank second are Foodweb (Fitness
Centrality), Infrastructure (GDM), and Social networks (GND). LGD-NA consistently outperforms
all other non-latent geometry-driven dismantling algorithms, including those relying on spectral
Laplacian-based methods and machine learning. The only measure that still outperforms LGD-NA is
the NBC metric (also latent-geometry-driven), applied to dynamic dismantling. These results strongly
demonstrate the practical reliability of our latent geometry-driven dismantling framework, LGD-NA.

4.5 GPU ACCELERATION OF LGD-NA FOR LARGE-SCALE DISMANTLING
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Figure 3: Runtime (in hours) is plotted against network size, measured by the number of edges, F,
for dynamic dismantling. The annotated time indicates the runtime for the largest network. Evaluated
on networks of up to 23,000 nodes and 507,000 edges (n = 1,475).

We implement GPU acceleration for all three LGD-NA variants by reformulating the required
computations as matrix operations. On large networks, this enables a significant speedup in running
time. When comparing RA2 and NBC, on the largest network, GPU-accelerated RA2 is 130 times
faster than its CPU counterpart, highlighting the inefficiency of matrix multiplication on CPU. It is
also over 63 times faster than NBC running on CPU, thanks to our GPU-optimized implementation.
Note that NBC on CPU remains faster than RA2 on CPU, again due to the limitations of CPU-based
matrix operations. We report only the CPU running time for NBC, as its GPU implementation did
not yield any speedup (see Table[I5). While some studies report GPU implementations of NBC with
improved performance (Fan et al., 2017} [Shi & Zhang} 2011} |Pande & Bader} |2011; McLaughlin &
Bader, 2018} |Sariyiice et al., 2013} Bernaschi et al., 2016), these are often limited by hardware-specific
optimizations, data-specific assumptions (e.g., small-world, social, or biological networks), and the
use of heuristics that are tailored to specific settings rather than offering general solutions. Moreover,
publicly available code is rare, making these approaches difficult to reproduce or integrate. Overall,
NBC is not naturally suited for GPU implementation, as it does not rely on matrix multiplication,
but is based on computing shortest path counts between all node pairs. Overall, while NBC achieves
better dismantling performance, its high computational cost makes it impractical for large-scale use.



In contrast, thanks to our GPU-optimized implementation, our local latent geometry estimators based
on network automata rules are the only viable option for efficient dismantling at scale. Here, we
look at the details of our matrix operations for the LGD-NA measures. First, the common neighbors
matrix is computed as

CNp, = Ao (A?)

where A is the adjacency matrix and o denotes element-wise multiplication. Here, A? counts the
number of paths of length two (i.e., common neighbors) between all node pairs. The Hadamard
product with A ensures that values are only retained for existing edges. Next, we compute the number
of external links a node has relative to each of its neighbors. Given the degree matrix D, the external
degree matrix is:

EL2 ZAO(D—CNLz—A)

Each entry (i, j) of Er, represents the external degree of node ¢ with respect to node j: the number
of neighbors of ¢ that are neither connected to j nor directly connected to j itself. Non-edges are
zeroed out. These matrices allow efficient construction of RA2 and its variants using only matrix
operations. The time complexity is O(NN?), with the common neighbor matrix being the dominant
operation, for dense graphs, and O(Nm) for sparse graphs, N being the number of nodes and m the
number of links. On CPU, matrix multiplication is typically memory-bound and limited by sequential
operations. GPUs, however, are optimized for matrix operations, leveraging thousands of parallel
threads. This results in a substantial speedup when implementing the GPU version. Finally, we show
in Appendix |J|that in controlled settings with nPSO networks the GPU advantage becomes apparent
when networks exceed 1,000 nodes or 100,000 edges.

4.6 LEVERAGING CND EXPLAINABILITY TO ENGINEER NETWORK ROBUSTNESS

A key advantage of our LGD-NA framework is its explainability. Indeed, we can directly explain
why any of our network-automata-based and latent-geometry-driven measures prioritize specific
nodes for dismantling. CND, our most performant network automata rule for dismantling, makes
this explainability even more straightforward and shows that the vulnerability of a node is strongly
related to the number of links its neighbors share with one another. The higher this number, the
more common neighbors exist between the adjacent nodes of a vulnerable target node. This means
that, to enhance the robustness of the network to the failure of a critical node, we should simply
increase the number of links between its adjacent nodes. The strategy is as follows. First, identify the
nodes with the highest dismantling scores according to a given measure. Here, we consider NBC,
a global shortest-path count-based measure, and CND, a local topology common-neighbor-based
network automata measure, because they use different rationales to estimate critical nodes and are
the two best-performing measures in this study. Second, for these critical nodes, add new links
between their adjacent nodes that are not already connected to each other. Robustness is defined
as the ability of a system to continue functioning when subjected to perturbations (Artime et al.,
2024)). In this initial context, we define attack tolerance, quantified by the LCC AUC, as a robustness
measure itself, representing the system’s structural integrity under dismantling attacks. We validate
our reinforcement strategy in Table|12|and Figure We clearly show that adding links between
the adjacent nodes of the most critical nodes significantly increases the AUC—and therefore the
robustness—by 36% to 95% for 1% of added links, and by 59% to 259% for 10% of added links.
Remarkably, by reinforcing only the top 1% of nodes, we increase network robustness regardless of
the dismantling method used—whether it is our CND or NBC.

4.7 REAL-WORLD APPLICATIONS: FAULT TOLERANCE, SECURITY, AND COMMUNICATIONS
To demonstrate the practical utility of LGD-NA, we evaluate its performance on four distinct
real-world systems using domain-specific functional metrics. First, we use the Drosophila Connec-
tome (Shiu et al.,[2024), where we utilize a Spiking Neural Network (SNN) model of the sugar-sensing
circuit. The metric is the sensory neuron firing rate required to trigger the proboscis extension re-
sponse. Second, the Terrorist Cell (Gutfraind & Genkin, [2017), where we analyze the network
responsible for the 2015 Paris and 2016 Brussels attacks. The metric is Commander Reach, defined
as the percentage of operatives able to communicate with at least one of the three key commanders.
Third, the Flight Map (Cardillo et al.,2013), where we measure Global Efficiency (Eg,). Fourth, a
School Contact Network (Mastrandrea et al.,2015)), where we simulate an epidemic using an SEIR
model (Anderson & May, |1991). The metric is the Final Outbreak Size. Our results in FigureE] show
that dismantling strategies effectively degrade the functional performance across all four systems. In



Drosophila Connectome

80
60 //
40

e S e
NIT
%

RyanAir Flight Map

RyanAir Flight Map

100 Hz)

Global Efficiency

Sugar Firing Rate (Freq

10% 20% o 10%  20%  30%  40%  50%
Paris/Brussels Terrorist Cell School Contact

Final Outbreak Size (SEIR)

Commander's Reach
g
2

\
40%

o
100% [ 50% 0 30% 40% [

% 10% 20% 30%
Fraction of Nodes Removed Fraction of Nodes Removed

25%
Fraction of Nodes Removed

25% 50% 75%
Fraction of Nodes Removed

Figure 4: Dynamic dismantling process for four real-world networks with field-specific functional
metrics, for NBC, CND, and RA2. The final evaluation metric is the Area Under the Curve (AUC).
Dashed line represents the dynamic dismantling process for reinforced networks. See Figure [I3]for
full results.

the Drosophila Connectome and Terrorist Cell, we observe particularly sharp drops in performance
metrics after removing only a small fraction of nodes ( 5%). We observe a more gradual deterioration
in the global efficiency of the Flight Map and the viral spread within the School Contact network.
This functional collapse is particularly significant for the two adversarial scenarios (Terrorist Cell
and School Contact Network): it confirms that LGD-NA is effective for security and communication
disruption, efficiently suppressing epidemic outbreaks and isolating hostile leadership with minimal
intervention. We subsequently applied our strategy for engineering network robustness to these
four scenarios, demonstrating its effectiveness. As shown in Table @ the reinforced networks
are significantly harder to dismantle, achieving robustness gains of up to 363%. This increased
resilience is evident across both our original topological metric (LCC AUC) and the domain-specific
functional metrics defined for each case. For the Drosophila Connectome, this analysis informs the
resilient and redundant design of fault-tolerant neuromorphic circuits by mimicking its biological
wiring (Suarez et al.| [2021; [Ham et al., 2021). In the Flight Map, it identifies specific hubs where
reinforcement prevents systemic failure. Finally, for adversarial networks, our robustness analysis
serves a diagnostic purpose when faced with incomplete data. Since social networks, and especially
covert ones, often contain unobserved links (e.g., dormant ties or unreported contacts), calculating an
empirical robustness ceiling allows us to estimate the margin of error required for successful security
operations with partial observability.

5 CONCLUSION

We acknowledge the dual-use potential of this research, as understanding network vulnerabilities is
critical for both designing targeted attacks and engineering robust defensive strategies. To mitigate
this, we proactively demonstrate a constructive application for enhancing network robustness and
believe the societal benefit of openly publishing these defensive tools outweighs the risk of misuse.
In summary, we introduced Latent Geometry-Driven Network Automata (LGD-NA), a framework
that achieves state-of-the-art network dismantling using only local topological information. By
applying simple network automata rules to estimate a network’s latent geometry, LGD-NA identi-
fies critical nodes with significant speed advantages over global methods like Node Betweenness
Centrality (NBC). Across 1,475 real-world networks and 32 complex systems domains, it consis-
tently outperforms all other dismantling algorithms, including those based on machine learning (e.g.,
Graph Neural Networks) and spectral Laplacian-based ones. Notably, our minimalistic Common
Neighbor Dissimilarity (CND) measure matches NBC'’s efficacy while being orders of magnitude
faster. Leveraging the explainability of CND, we introduce a novel strategy to engineer network
robustness. Crucially, we demonstrate the practical utility of our framework across diverse domains,
from informing the design of neuromorphic circuits and reinforcing transport hubs, to disrupting
terrorist cells. This work establishes latent geometry as a powerful and efficient principle for both
explaining vulnerabilities and engineering stronger networks.
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A LATENT GEOMETRY ESTIMATORS

Table 3: Comparison of latent geometry estimators and their variants. v;; is the weight of the link
between nodes 7 and j; e; and e; denote the number of external links of nodes ¢ and j, respectively;
CNj; is the number of common neighbors shared by 7 and j. Information Locality denotes the type
of structural information required to assign a score to each node for dismantling. Time Complexity
denotes the time complexity for dynamic dismantling using each estimator on sparse graphs, without
reinsertion. N: number of nodes. m: number of links.

Estimator Author Year Formula Information Time Complexity
Locality
TFe Fe Fe, c5
Repulsion Attraction 2 Muscoloni 2017 U,SA2 = % Local O(N(Nm))
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Figure 5: Illustration of how RA2 measures are computed on two toy networks. Seed nodes are
shown in black; common neighbors (CN) are shown in white with a black border, and external nodes
are white with a grey border. The dashed line is the edge that is being assigned a weight. External
links e denote the number of edges connecting a node to nodes outside its CN set, here in red. In
black, the links to common neighbors. For the link v;; in the top network, e; = 5, ¢; = 3, and
CNjj = 1. For the link vy, in the bottom network, e, = 1, e,, = 1, and CNy,,, = 4.

Latent Geometry-Driven Network Automata rule. Figure[3]illustrates how RA2-based network
automata rules assign edge weights by estimating geometric distances using only local topological
features. The two toy subnetworks demonstrate how the RA2 rule and its variants distinguish between
geometrically distant and close node pairs. In the top subnetwork, nodes ¢ and j have only one
common neighbor and are each connected to many external nodes (e; = 5, e; = 3), indicating a weak
integration in a local community and stronger connectivity to distinct parts of the network. According
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to the Repulsion-Attraction rule, this suggests a larger latent distance due to high repulsion and low
attraction. In contrast, in the bottom subnetwork, nodes m and n share four common neighbors
and have only one external link each (e,, = 1, e, = 1). This pattern indicates a stronger local
community and a higher likelihood that the nodes are geometrically close in the latent space, with a
lower dissimilarity score. These examples highlight how latent geometry-driven RA2-based network
automata rules estimate hidden distances: fewer common neighbors and more external links suggest
geometrical separation, while many common neighbors and few external links imply proximity in the
latent manifold.

Why is RA2 a latent geometry estimator? In geometric networks, nearby nodes form dense,
closed neighborhoods: they share many common neighbors (high C'N;;) and have few “external”
links (small e). Distant node pairs show the opposite pattern. The Repulsion-Attraction rule 2
(RA2) captures these patterns in their formulation: any RA variant that decreases with C'[V;; and
increases with external connectivity, e is therefore monotonic with latent distance: small values
indicate proximity; large values indicate separation. Crucially, this relies on topological proximity,
not a specific geometric space, so it applies across hyperbolic, Euclidean, or elliptic latent geometries.
The only assumption to apply this estimator of underlying geometry is that the topology displays:

* node heterogeneity (meaning that the node degree distribution displays a standard deviation
different from zero).

* homophily (similar nodes link together), for instance geometric proximity in latent space
causes nodes that are geometrically close have overlapping neighborhoods.

We can aggregate RA2 to score node criticality by summing its pairwise RA2 to neighbors. This
turns local edge-level “distance” into a node-level bridging load:

» Few adjacent nodes (neighbors) with mostly short links yields a small RA2. This node is
peripheral and non-critical; removal has little global effect.

* Many neighbors with mostly short links still yields a modest RA2 (short links contribute
little). The node is locally redundant; removal is buffered by community structure.

* Many neighbors with a mix of short and long links yields a large RA2 because long links
carry high RA2. The node simultaneously anchors a local community and bridges distant
regions; removing it is likely to disconnect communities and degrade global connectivity.

» Few neighbors with many long links (rare under geometric attachment) still yields a large
RAZ2; such nodes are likewise critical inter-community hubs.

As aresult, RA2 encodes latent separation from purely local topology. Summing RA2 over a node’s
incident edges ranks nodes by how much long-range connectivity they support. Dismantling the
highest-scoring nodes precisely targets those bridges whose removal most effectively fragments the
network.

Time Complexity. We analyze the time complexity for the full dynamic dismantling process
(excluding reinsertion) for the latent geometry-driven network automata rules in Table [3| where
dynamic means recomputing the dismantling measure after each node removal. For RA2 and its
variants, the dominant operation is the computation of the common neighbor (CN) matrix. This
operation has a time complexity of O(N?) for dense graphs and O(Nm) for sparse graphs, where N
is the number of nodes and m is the number of links. Assuming N dismantling steps in the worst-case
scenario, the overall time complexity becomes O(N (Nm)) for sparse graphs. The assumption of N
dismantling steps applies to all the time complexity analyses of dynamic dismantling methods.

B THEORETICAL DISTINCTIONS BETWEEN GRAPH METRICS AND LATENT
MANIFOLDS

To avoid ambiguity regarding the use of manifold theory in complex systems, we clarify the distinction
between topological descriptors and latent geometric spaces. In this work, we define the latent
manifold as the hidden, lower-dimensional structure that captures the essential configuration of the
system.
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Figure 6: Dynamic dismantling process on example networks comparing local network automata
rule RA2 and its variants versus NBC, when the former outperforms NBC in terms of AUC. The plot
shows the normalized size of the largest connected component (LCC) as a function of the fraction of
nodes removed, with a target LCC threshold of 10%. The final evaluation metric is the Area Under
the Curve (AUC) of the LCC trajectory.

To infer the latent manifold from high-dimensional data, a range of general dimensionality reduction
and manifold learning techniques can be applied. These approaches seek to map the data points into
a continuous, lower-dimensional space where geometric proximity reflects similarity in the original
space. They can be broadly categorized as methods preserving local structure (e.g., t-SNE, UMAP,
and Minimum Curvilinear Embedding (MCE)), methods based on calculating intrinsic distances (e.g.,
Isomap (ISO) and its variants), spectral methods (e.g., Laplacian eigenmaps and Diffusion Maps),
and deep learning techniques (e.g., Autoencoders and VAEs) that learn the latent code necessary
for data reconstruction. Finally, specialized manifold learning approaches in dynamical systems
(e.g., Koopman operator theory) can transform complex, nonlinear dynamics into simpler, linear
representations within a manifold.

When data is organized as a complex network, the latent manifold is typically inferred using network
embedding techniques specifically designed to preserve the network’s topology. These methods
fall into three broad categories: spectral methods (e.g., spectral clustering) which use the alge-
braic properties of the graph matrices; deep learning approaches (e.g., DeepWalk, Node2Vec, and
Graph Autoencoders (GAE)) which learn representations using neural networks trained on struc-
tural information like random walks, while Graph Neural Networks (GNNs) have emerged as the
state-of-the-art for learning task-specific embeddings using topology and node/edge features; and
geometric approaches such as Hyperbolic network embeddings. These geometric methods (e.g.,
Poincaré embeddings, Hypermap) utilize non-Euclidean geometries, such as negative curvature, to
efficiently capture the hierarchical and scale-free properties of complex networks. Specific algorithms
like LPCS generate node coordinates by analyzing and ordering the network’s community structure.

We distinguish this latent manifold from graph metrics. For example, standard topological graph
descriptors such as small-worldness, community structure, and degree heterogeneity are not direct
descriptors of the manifold themselves. However, since the network is sampled from a specific latent
space, these observed properties are influenced by the manifold’s geometry. Consequently, these
topological metrics do characterize the topology of a network that is embedded in a specific latent
space: for instance, small-worldness suggests short geodesic distances, community structure can
imply stratification or clustering, and degree heterogeneity may reflect features such as local curvature
or singularities. Our approach uses the topology of the observable network to infer the geometric
distance between nodes within the network’s latent manifold, thereby allowing us to exploit the
manifold’s geometric properties for dismantling.

Note that we include a GNN-based dismantling algorithm, Graph Dismantling with Machine learning
(GDM) (Grassia et al. 2021)), in our experiments. GDM is a GNN that is trained on optimally
dismantled networks, and is considered a state-of-the-art dismantling algorithm (Artime et al., [2024;
Grassia et al., [2021) that can implicitly capture features of the underlying latent geometry of the
target network. The fact that our LGD-NA methods consistently outperform GDM in all situations
suggests that our estimators might be yielding a more accurate estimation of the target network’s
latent geometry.”
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C GEOMETRIC VALIDATION OF LATENT GEOMETRY ESTIMATORS

To provide visual and empirical validation for our latent-geometry estimators, we analyze the ability
of our latent-geometry estimators to identify node importance and estimate link distances using
synthetically generated networks with a known geometry. As previously mentioned, the RA measures
were introduced to serve as pre-weighting strategies for approximating angular distances associated
with node similarities in hyperbolic network embeddings (Muscoloni et al., 2017).

To investigate this, we synthetically generate networks using the non-uniform Popularity-Similarity
Optimization (nPSO) model (Muscoloni & Cannistraci, [2018b). The nPSO model is built on the
principle that radial coordinates represent hierarchy (popularity) while angular coordinates represent
similarity. It produces networks that are both scale-free (characterized by a power-law degree
distribution, meaning a network has a few highly connected hubs while the majority of nodes have
few links) and clustered with distinct communities, closely mimicking the structure of many real-
world complex systems. We utilize the nPSO network model specifically for this task because these
networks are generated with known node coordinates and a known underlying hyperbolic geometry,
making them highly suitable for validating geometry-related measures in network science.

We generate various nPSO networks keeping the number of nodes (N = 500) and communities
(C' = b) fixed. We test different network topologies by varying:

* The power-law exponent v € {2, 3} represents common bounds for real-world scale-free
networks. With v = 3, fewer high-degree hubs exist, creating less hierarchy (seen through
the radial coordinates) and reduced network hyperbolicity (meaning that they become more
similar to a Erdos-Renyi random graph compared to when v = 2).

* The number of nodes a new node will connect to when being added to the network, m €
{10, 20, 50}. This value represents approximately half of the average node degree, making
the network more or less connected. This results in networks with three different density
levels p € {0.04,0.08,0.2}.

* The temperature 7' € {0.3,0.6,0.9} controls clustering, where lower temperatures pro-
duce stronger clustering. Higher temperatures reduce clustering (seen through the angular
coordinates) and increase the randomness of connectivity, thus reducing the generated net-
work’s hyperbolicity (nodes connect more by random rather than following the underlying
hyperbolic geometry).

Figure[7] visualizes synthetic nPSO networks with nodes colored by CND score (red: high, blue: low)
and sized by degree. The visualization clearly shows that high CND scores correspond to nodes with
highcentrality, hubs located near the center of the hyperbolic disk. This relationship is most evident
for v = 2, where the skewed degree distribution creates a clear distinction between central hubs
and peripheral nodes. For v = 3, the trend persists but is less pronounced due to fewer super-hubs,
consistent with the network’s reduced hyperbolicity. These results provide strong visual evidence
that CND effectively identifies structurally important nodes in the hyperbolic latent space.

To quantitatively support our claim, we evaluate how well the latent geometry estimators approximate
the true hyperbolic distances. We use the hyperbolic distance correlation (HD-correlation) metric, the
Pearson correlation between all pairwise geometrical shortest path distances in the networks’ original
hyperbolic space and the weighted shortest path distances using the latent-geometry estimators as
edge weights (Muscoloni et al., 2017). The higher this correlation, the better the latent-geometry
estimator is able to recover the geometrical distances between pairs of nodes in a network’s underlying
geometry.

Figure ] shows a high HD-correlation for both CND and RA?2 across all tested nPSO configurations,
confirming that these measures used in our dismantling framework are effective latent geometry
estimators. This is further supported by the statistical significance reported in Table [20]

The Pearson correlation is visualized in Figure [§ for different parameters, visualizing how well the
distance approximation changes as the network becomes less hyperbolic. As expected, for v = 2, the
correlation decreases for both estimators with increasing temperature (i.e., reduced clustering and
hyperbolicity). For the less hyperbolic v = 3 networks, this decreasing trend persists for CND but
not for RA2. This suggests that CND remains a robust estimator of the latent geometry even when
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Figure 7: nPSO model networks visualized in the hyperbolic space. Fixed parameters are the number
of nodes, N=500, and the number of communities, C=5. Nodes are colored according to their CND
measure, where red represents higher CND scores and blue lower ones. Ranges of CND values are
reported in the color bar and are different for each density level. Node sizes are positively correlated

with their degree.
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hyperbolic structure is less pronounced, whereas RA2’s performance is more dependent on strongly
hyperbolic conditions, consistent with our dismantling experiments.

We also conducted experiments considering only existing links, correlating their estimated weights
with the true geometrical shortest path distances in the hyperbolic space (Figures [21]and 22). The
results confirm that both CND and RA?2 are effective latent geometry estimators, as the link weights
strongly correlate with the true distances.

This visual and quantitative evidence demonstrates our LGD-NA measures’ ability to accurately
estimate the geometric distance between nodes. Consequently, the node aggregation step in our
LGD-NA framework can successfully identify nodes that connect distant regions in the latent space.

Table 4: Pearson correlation between all the pairwise geometrical shortest path distances of
the network nodes in the original nPSO model and in the reconstructed hyperbolic space (HD-
correlation) (Muscoloni et al.|[2017)). Mean values over 10 seeds are reported, with a color gradient
where green corresponds to values approaching 1 and red to values approaching -1. The power-law
exponent -y represents the scale-freeness found in real-world networks. networks. p is the density of
the networks. The temperature T controls the level of clustering (lower temperatures yield stronger
clustering). Fixed parameters are the number of nodes, N = 500, and the number of communities,
C = 5. Standard Error of the Mean (SEM) and Fisher p-value are found in Table

N=500, C=5 0=0.04 0=0.08 p=0.2

T=0.3 0.722 0.792 0.846 1
CND T=0.6 0.693 0.768 0.801
_ 1=0.9 0.633 0.765 0.777
Y= 1=0.3 0.521 0.532 0.521
RA2 T=0.6 0.524 0.484 0.308
T=0.9 0.498 0.460 0.303
1=0.3 0.584 0.624 0.645
CND 1=0.6 0.510 0.579 0.590
_ T=0.9 0.452 0.552 0.597
Y= T=0.3 0.685 0.714 0.783
RA2 1=0.6 0.722 0.780 0.805

T=0.9 0.688 0.795 0.755 1

D ToOPOLOGICAL CENTRALITY MEASURES

Table 5: Comparison of topological centrality measures and the associated time complexity for dy-
namic dismantling using each centrality measure. Information Locality denotes the type of structural
information required to assign a score to each node. Time Complexity denotes the time complexity for
dynamic dismantling using each centrality measure on sparse graphs, without reinsertion. N: number
of nodes. m: number of links.

Measure Author Year Type Information Time Complexity
Locality

Degree Degree-based Local O(N log N)

Eigenvector Bonacich|(1972) 1972 Walks-based Global O(N(N +m))

Node Betweenness Freeman|(1977) 1977 Shortest path-based Global O(N(Nm))

(NBC)

PageRank (PR) Page et al.{(1999) 1999 Random walk-based Global O(N(N + m))

Resilience Zhang et al.|(2020) 2020 Resilience-based Global O(N(N +m)

Domirank Engsig et al.|(2024) 2024 Fitness-based Global O(N(N +m)

Fitness Servedio et al.[(2025) 2025 Fitness-based Global O(N(N + m)

Time Complexity. We analyze the time complexity of dynamic dismantling (excluding reinsertion)
for the topological centrality measures used in our experiments, summarized in Table[5] As before,
the analysis assumes /N dismantling steps in the worst-case scenario. For degree, the score update
after each removal is local and can be done in O(log V) time using a binary heap. For NBC, we use
Brandes’ algorithm (Brandes, 2001)), which computes betweenness centrality in O(Nm) time per
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step for unweighted networks. Eigenvector, PageRank, Resilience, Domirank, and Fitness all rely on
matrix-vector multiplications, which has a time complexity of O(m). We also add the term N, which
represents the overhead of looping over nodes to update or normalize the resulting vector at each
iteration. This leads to a total per-step cost of O(N +m). We also omit the constant % for Eigenvector,
PageRank, and Fitness centrality, which represents the number of iterations these methods perform.
In practice, reaching full convergence to a single optimal solution is often computationally infeasible;
this is why a fixed number of k iterations is typically defined.

E STATISTICAL AND MACHINE LEARNING NETWORK DISMANTLING.

Table 6: Comparison of dismantling algorithms (Artime et al.,|2024). Information Locality denotes
the type of structural information required to assign a score to each node. Dynamicity indicates
whether scores are recomputed after each removal. Reinsertion specifies whether the algorithm
includes a reinsertion step after dismantling. Time Complexity denotes the time complexity of the
method on sparse graphs, without reinsertion. N: number of nodes. m: number of links. 4: number
of attention heads. 7: maximal diameter of the trees in the forest for BPD and MS. € is a small
constant used in spectral partitioning operations. Included states whether the method was run in our
experiments; if not, a brief reason is provided.

Algorithm Type Author Year Information | Dynamicity Reinsertion Time Complexity Included
Locality

Collective Influ- Influence maxi- Morone 2016 Local Dynamic Yes O(Nlog N) Yes

ence (CI) mization et al.|(2016)

Belief Message Mugisha 2016 Global Dynamic Optional O(mT) No

propagation- passing-based & Zhou, Code

guided decima- decycling (2016) miss-

tion (BPD) ing

Min-Sum (MS) Message Braunstein 2016 Global Dynamic Yes O(mT) + | Yes
passing-based et al[(2016) O(N(log N +
decycling T))

Generalized Net- Spectral parti- Ren__et_al. 2019 Global Dynamic Optional O(N log e N)| Yes

work Dismantling tioning (2019)

(GND)

CoreHD Degree-based Zdeborova 2016 Global Dynamic Yes O(N) Yes
decycling et al.|(2016)

Explosive Immu- Explosive per- Clusella 2016 Global Dynamic No O(Nlog N) Yes

nization (EI) colation et al.|(2016)

FINDER Machine learn- Fan_et_al. 2020 Global Dynamic Optional O(N(1 + No
ing (2020b) log N) + m) Code

out-
dated

Graph Disman- | Machine learn- | |Grassia 2021 Global Static Optional O(h(N + m)) Yes

tling  Machine ing et al.|(2021)

(GDM)

CoreGDM Machine learn- | |Grassia & 2023 Global Static Yes O(h(N 4+ m)) Yes
ing Mangioni

(2023)

Table E] is adapted and extended from Table 1 of Artime et al. (Artime et al., 2024])), a recent and
comprehensive review which has become a key reference in the field of network dismantling. The
majority of these algorithms were included in our experiments, with the exception of BPD and
FINDER due to unavailable or outdated code, respectively.

F REINSERTION METHODS

Reinsertion was originally introduced in the context of immunization as a reverse process: starting
from a fully dismantled network, nodes are reinserted one by one, each time selecting the node whose
addition causes the smallest increase in the largest connected component (LCC) (Schneider et al.}
2012). This reversed sequence then defines an effective dismantling order. In subsequent studies,
reinsertion has been used as a post-processing step to improve dismantling outcomes (Artime et al.,
2024): the network is first dismantled by a given method, and nodes are reinserted until the LCC
reaches the dismantling threshold. This reduces the dismantling cost while preserving the original
attack target.

In this work, dismantling cost is defined as the number of nodes removed from the network. The
reinsertion step aims to directly minimize this cost by reintroducing nodes that were initially removed
but found to be unnecessary for achieving the dismantling objective. It’s important to note that
while reinsertion reduces the number of physical removals, it does introduce a higher computational
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cost as it’s a post-processing step performed after the initial dismantling. However, the primary
objective is to minimize this physical intervention, as in many real-world scenarios, the logistical and
financial implications of physically removing network components (e.g., infrastructure) far outweigh
the computational resources expended during the optimization phase. This is why we compare all
methods with and without the reinsertion step.

Several reinsertion criteria have been proposed: |Braunstein et al.| (2016) select the node that ends
up in the smallest resulting component after reinsertion; Morone et al.|(2016) choose the node that
reconnects the fewest components; |[Mugisha & Zhou| (2016) select the node that causes the smallest
LCC increase. See Table[7|for a full comparison.

Reinsertion can greatly enhance dismantling performance. However, recent work shows that this step
can overpower the dismantling algorithm itself, allowing weak methods to appear effective when
paired with reinsertion (Fan et al.,|2020a). To address this, we enforce two constraints to ensure fair
comparisons and prevent reinsertion from dominating the dismantling process:

1. Reinsertion must stop once the LCC exceeds the dismantling threshold. Recomputing a new
dismantling order by reinserting all nodes is not allowed.

2. Ties in the reinsertion criterion must be broken by reversing the dismantling order: nodes
removed later are prioritized.

These rules ensure that reinsertion complements rather than overrides the dismantling process,
preserving the integrity of the original method.

In our experiments, we implement three reinsertion methods, adapted from prior work, here we
explain which part of their method we change for our experiments. Those changes are marked with
an asterisk (*) in Table[7}:

* R1 (Braunstein et al.,|2016): We replace their original tiebreak (smallest node index) with
reverse dismantling order.

* R2 (Morone et al.| 2016): We apply the LCC stopping condition. Originally, all nodes are
reinserted to compute a new dismantling sequence.

* R3 (Mugisha & Zhou, 2016)): We apply reverse dismantling order as the tiebreak, as no rule
is defined in their paper, and their code is unavailable.

R3 is the most similar to the reverse immunization method proposed by |Schneider et al.| (2012]),
where nodes are added back one by one based on minimal LCC growth. In their original method, ties
are broken by selecting the node with the fewest connections to already reinserted nodes; if multiple
candidates remain, one is chosen at random.

We note that reinsertion typically reduces the number of removals but does not always lead to a
lower AUC. Since the trajectory of the LCC changes with reinsertion, the dismantling process may
reach the threshold faster, improving AUC. However, this is not guaranteed, as we see in the first
two subplots of Figure [I0]for the Foodweb and Fruit Fly Connectome networks. The methods with
reinsertion arrive at the dismantling threshold in fewer number of removals, but the change in the
LCC curve results in a worse final AUC.

We also see that the reduction in AUC is not proportional to the reduction in the number of removals,
as seen in Figures[[T)and[I2]for CND. Indeed, reinsertion, by definition, reinserts nodes that were
ultimately unnecessary for the dismantling process to reach its target.

A significant limitation in previous literature is the lack of differentiation between algorithms that
inherently include reinsertion and those that do not, leading to inconsistent comparisons. To ensure
a strictly fair evaluation, we standardized two critical control variables across all experiments: the
tie-breaking mechanism for the order of reinsertion and the stopping criteria. Furthermore, rather
than arbitrarily assigning a reinsertion strategy, we evaluated every method under the three reinsertion
methods. We report the best performance for each method, ensuring that the results reflect the
maximum potential of the dismantling strategy rather than an inconsistent application of reinsertion.

Ranking Stability. Across all tested reinsertion methods, the mean-field ranking remains the same:
NBC consistently outranks CND, which in turn outranks GDM. This order holds true both when
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comparing specific fixed reinsertion methods and when selecting the best-performing method for each
dismantling method. However, we observe a nuanced interaction between the dismantling algorithms
and their best reinsertion strategy: the optimal reinsertion method varies (R2 is optimal for NBC, R3
for CND, and R1 for GDM). For all other algorithms, though, R1 is the most effective reinsertion
strategy.”

Time Complexity. We report the total time complexity of each reinsertion method over the full
reinsertion process in Table|/| assuming all dismantled nodes are considered for reinsertion for every
step and that all nodes are reinserted. Candidates for reinsertion are denoted as r. As a result, we
multiply the per-step cost of updating for each method by the total number of reinsertion candidates.
kmax 1s the maximum number of components a node can connect to, equal to the maximum degree in
the original graph, and C’ is the maximum size of any connected component during the reinsertion
phase. For R1, the candidate node that ends up in the smallest resulting component is selected.
Reinserting a node may merge up to k., components, each of size at most C”, requiring an update
of at most kpax - C’ nodes. These updates are tracked in a binary heap of size 7, where at maximum
kmax - C' nodes have to be updated, giving a cost of log(kmax - C’) per update. The per-step cost
is therefore O(kmax - C'log(kmax - C'). R2 selects the node that connects the fewest existing
components. Unlike R1, it requires inspecting not only the components merged by the candidate
node, but also the neighbors of the affected neighbors. This increases the complexity by a factor
Of kmax, resulting in a per-step time complexity of O(k2,,, - C'log(k2,,. - C"). R3 evaluates each
candidate by explicitly computing the resulting LCC size after reinsertion. Each evaluation requires a
graph traversal to recompute connected components, which takes O(N + m) time on sparse graphs.
This has to be done for each reinsertion candidate, at every step, so (9(7’2 (N +m),

Table 7: Comparison of reinsertion methods. Criteria defines the criterion for selecting which node
to reinsert. Tiebreak specifies how ties are resolved. LCC Condition indicates whether all dismantled
nodes are reinserted or if reinsertion stops once the predefined LCC threshold is reached. Time
Complexity denotes the time complexity of each reinsertion method on sparse graphs, for the whole
reinsertion process. N: number of nodes. m: number of links. r: set of reinsertion candidates. Ky ax:
maximum degree in the original graph G. C’: maximum size of any connected component during the
reinsertion phase. Used In lists the methods that use each method, in bold, the dismantling method
that originally proposed that reinsertion method. An asterisk (*) marks components of the reinsertion
method that were modified in our study, as detailed in Appendix E}

Name Author Year Criteria Tiebreak LCC Con- Time Complexity Used In
dition
R1 Braunstein 2016 Node that ends Reverse disman- Yes O(r(kmax - c’ . MS,
et al.[(2016) up in the smallest tling order* log(kmax - C'))) CoreGDM,
component CoreHD,
GDM,
GND
R2 Morone 2016 Node that con- Reverse disman- Yes* O(kimx .o CI
et al.|(2016) nects to the fewest tling order 10g<k:2n’xx o))
clusters °
R3 Mugisha 2016 Node that causes Reverse disman- Yes O(r2(N +m)) BPD
& Zhou the smallest in- tling order*
2016) crease in LCC
size

G DyNAMIC & STATIC DISMANTLING

In static dismantling, node scores are computed once at the beginning and are then removed in
descending order of importance until the dismantling threshold is reached. In contrast, dynamic
dismantling recomputes the scores after each removal. As shown in Figure[I3] with CND given as an
example, dynamic dismantling consistently outperforms static dismantling across all fields. Dynamic
variants achieve lower AUC and fewer removals in every case, confirming the advantage of score
recomputation.
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Figure 11: Mean AUC and number of removals by field for CND without reinsertion and with each
reinsertion method (R1, R2, R3) (n = 1,237 for all methods). Error bars represent the standard
error of the mean (SEM). Red text indicates the percentage improvement achieved by using the
best-performing reinsertion method for each field. Quantitative results for the AUC and removals
improvement from each reinsertion methods are reported in Table |§|
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Table 8: Percentage improvement for the mean AUC and mean number of removals for each
reinsertion method over the baseline for CND and RA2 (n = 1,237). In bold the method that
improves the baseline the most, by field.

CND RA2
AUC AUC
R1 R2 R3 R1 R2 R3
Biological 11.2% 9.9% 11.0% Biological 8.0% 8.3% 8.5%
Connectome 1.9% 2.0% 2.0% Connectome  -0.3% 0.0% -0.1%
Covert 5.3% 6.0% 6.0% Covert 3.4% 3.5% 3.8%
Foodweb 2.2% 2.0% 2.0% Foodweb 2.3% 2.0% 2.1%
Infrastructur 5.6% 5.0% 5.7% Infrastructur 4.1% 3.4% 4.0%
Internet 6.1% 5.5% 5.8% Internet 5.0% 4.3% 4.9%
Misc 4.4% 4.0% 4.2% Misc 3.2% 3.1% 3.4%
Social 3.2% 3.1% 3.2% Social 3.1% 3.1% 3.1%
CND RA2
Removals Removals
R1 R2 R3 R1 R2 R3
Biological 24.9% 21.9% 23.1% Biological 20.3% 19.1% 20.1%
Connectome 8.4% 8.2% 8.3% Connectome 4.4% 4.4% 4.5%
Covert 18.0% 17.4% 17.7% Covert 12.3% 12.1% 12.3%
Foodweb 8.0% 7.9% 8.0% Foodweb 6.7% 6.2% 6.4%
Infrastructurr  28.7% 26.2% 28.7% Infrastructur 21.9% 19.4% 21.8%
Internet 17.5% 15.8% 16.7% Internet 14.1% 12.6% 13.5%
Misc 19.8% 18.3% 19.3% Misc 11.9% 10.5% 11.6%
Social 19.7% 17.5% 19.1% Social 16.0% 15.3% 15.7%

Table 9: Full summary statistics of the ATLAS networks used in this study, averaged by field: number
of subfields and networks, average number of nodes (), number of edges (F), density (p), mean
degree ((d)), characteristic path length (¢}, assortativity (r) (Newman, 2002), transitivity (7), mean
local clustering coefficient ((Loc. CC)), maximum k-core (k,.x), average k-core ((k)), LCP-corr
(LCP,.orr) (Cannistraci et al.|, 2013)), and modularity (Q) (Newmanl [2004)

Field Biomolecular Brain Covert Foodweb Infrastructure Internet Misc Social Total
Subfields 5 1 2 1 7 1 8 7 32
Networks 27 529 89 71 314 206 38 201 1,475
(N) 2,997 97 107 117 664 5,708 2,880 3,267
(E) 11,855 1,535 266 1,087 1,332 19,601 19,921 53,977
(p) 0.01 0.34 0.17 0.16 0.07 0.01 0.07 0.11
() 6.7 283 57 152 49 75 14.1 269
() 44 17 3 22 9.9 34 35 35
(r) -0.21 -0.03 -0.15 -0.28 -0.52 -0.22 -0.07 -0.05
(T) 0.06 0.55 0.39 0.19 0.06 0.11 0.22 0.29
({(Loc.CC)) 0.13 0.63 0.46 0.22 0.11 0.31 0.34 0.36
(kmax) 10.6 20.1 5.9 12.8 4.9 25 216 257
(k) 3.6 17.5 42 9.2 3 4 83 154
(LC Peorr) 0.66 0.97 0.76 0.67 0.15 0.94 0.85 0.77
(Q) 0.59 0.25 0.48 0.26 0.46 0.5 0.49 0.5
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Table 10: Number and size of real-world networks tested by dismantling algorithms. N denotes the
number of nodes, E the number of edges.

Algorithm Year Networks Npax Emax
Collective Influence (CI) (Morone et al.,[2016) 2016 2 14M  51IM
CoreHD (Zdeborovi et al., 2016) 2016 12 1.7M  11M
Explosive Immunization (EI) (Clusella et al.| 2016) 2016 5 50K 344K
Min-Sum (MS) (Braunstein et al., 2016) 2016 2 1.IM 29M
Generalized Network Dismantling (GND) (Ren et al.,2019) 2019 10 5K 17K
Resilience Centrality (Zhang et al.| 2020) 2020 4 IK 14K
Graph Dismantling Machine (GDM) (Grassia et al[2021) 2021 57 1AM 2.8M
CoreGDM (Grassia & Mangioni, [2023) 2023 15 79K 468K
Domirank Centrality (Engsig et al.|[2024) 2024 6 24M  58M
Fitness Centrality (Servedio et al.| 2025) 2025 5 297 4K
LGD-NA 2025 1,475 23K 507K
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Figure 13: Mean AUC and number of removals for dynamic and static CND (n = 1,296. Error

bars represent the standard error of the mean (SEM). Red text indicates the percentage improvement
achieved by using dynamic over static variants.

31



Table 11: Percentage improvement for the mean AUC and mean number of removals for dynamic

CND over static CND (n = 1,296), by field.

Molecular Yeast Phosphorylation

AUC Removals
Biomolecular 12.53% 18.42%
Brain 7.37% 7.43%
Covert 10.35% 11.30%
Foodweb 20.57% 27.81%
Infrastructure 7.36% 22.95%
Internet 14.20% 33.47%
Misc 11.47% 19.27%
Social 8.22% 11.99%

Roadmap Anaheim

Email DNC Corecipient

Bird Connectome Synaptic

\

AN

—e— CND-D
CND-S

9
\\
N

0

2%

4% 0 15%

30% 0

10% 20%

Fraction of Nodes Removed

0 20% 40% 60%

Figure 14: Dismantling process on example networks comparing dynamic and static CND. The plot
shows the normalized size of the largest connected component (LCC) as a function of the fraction of
nodes removed, with a target LCC threshold of 10%. Performance is evaluated using the Area Under
the Curve (AUC) of the LCC trajectory.
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H ENGINEERING NETWORK ROBUSTNESS

Here, we would like to comment on the feasibility of our suggested network modifications in practical
scenarios. In the case of PPI networks, recent advances in structural modeling of molecules using
AlphaFold 3 (AF3) (Abramson et al.,[2024) have reduced the longstanding limitations in testing and
engineering arbitrary proteins. Coupling our dismantling predictions with AF3 could impact drug
repositioning and drug design. For example, in the case of antibiotic-resistant bacteria, knowledge
of how to dismantle the bacterial PPI network could be used to identify which proteins to target
with repositioned, modified, or newly designed antibiotics. Meanwhile, to minimize side effects
of newly designed drugs that target critical proteins in bacterial PPI networks, our reinforcement
strategy based on common-neighbor generation could be applied to predict which protective bindings
to promote in the human PPI network, thereby reducing the destructive impact of a drug on a critical
human protein whose impairment could cause side effects. Finally, the application of the proposed
common-neighbor reinforcement strategy to increase the robustness of flight and shipping networks is
straightforward, as it can indicate which critical nodes should be reinforced by adding links between
their adjacent nodes.

We validate our reinforcement strategy explained in Section.6]on three types of real-world networks
considered critical: a human PPI network (biological), a flight map network (transportation with
social and geographic constraints), and a shipping trade network (transportation with economic and
geographic constraints). We select the top 1% of highest-scoring nodes according to the chosen
measure (NBC or CND) and randomly add either 1% or 10% of the potential links between their
respective adjacent nodes, thereby modifying the network topology according to the explainable rule
discovered via CND.

Table 12: Area Under the dismantling Curve (AUC) for NBC and CND on the original network and
’reinforced” networks, by adding 1% and 10% of the links between common neighbors of the top 1%
of nodes. In parentheses the increase in the AUC compared to the original network, representing the
reduction in the dismantling effectiveness.

Human PPI 0% Links 1% Links 10% Links
NBC- 0.051

baseline

NBC- 0.093 (+84%) 0.159 (+214%)
reinforced

CND- 0.055

baseline

CND- 0.098 ((+79%)) 0.198 ((+259%))
reinforced

Flight Map 0% Links 1% Links 10% Links
us

NBC- 0.042

baseline

NBC- 0.067 (+61%) 0.122 (+193%)
reinforced

CND- 0.055

baseline

CND- 0.098 ((+95%)) 0.172 ((+241%))
reinforced

Trade 0% Links 1% Links 10% Links
Shipping

NBC- 0.138

baseline

NBC- 0.236 (+71%) 0.240 (+74%)
reinforced

CND- 0.220

baseline

CND- 0.298 ((+36%)) 0.350 ((+59%))

reinforced

Our results in Figure 4] and Table[I3]also confirm that engineering robustness translates into func-
tional gains across the four real networks studied. Regarding Fault Tolerance, in the Drosophila
Connectome and Flight Map, the analysis informs the design of fault-tolerant neuromorphic circuits
and identifies critical hubs where reinforcement prevents systemic transport failure. For Security and
Communications, in the adversarial systems (Terrorist Cell and School Contact Network), we can
calculate the theoretical robustness ceiling, by accounting for unobserved links (e.g., dormant ties in
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Figure 15: Dismantling curve on the original (solid) and reinforced networks (dashed). The plot
shows the normalized size of the largest connected component (LCC) as a function of the fraction of
nodes removed, with a target LCC threshold of 10%. Performance is evaluated using the Area Under
the Curve (AUC) of the LCC trajectory.

covert networks) and quantify the margin of error required to successfully disrupt communications or
secure the network against epidemics despite incomplete data.

I FUNCTIONAL METRICS AND REAL-WORLD APPLICATION DETAILS

We now provide the specific experimental setup for the real-world functional experiments described
in Section[l] Unlike topological metrics (e.g., LCC size), these experiments measure the functional
performance of the systems under dismantling.

Drosophila Connectome: We utilize the central brain connectome of Drosophila melanogaster
(FlyWire), comprising over 125,000 neurons and 50 million synaptic connections. To assess func-
tional performance, we employ a Leaky Integrate-and-Fire (LIF) spiking computational model, as
established by [Shiu et al.|(2024). We focus on the sugar-sensing gustatory circuit (which results in a
smaller subnetwork of 377 nodes and 13,671 edges), a critical pathway for feeding initiation. We
simulate the activation of sugar-sensing Gustatory Receptor Neurons (GRNs), with a stimulation
frequency of 100 Hz. We use the default parameters provided by [Shiu et al.|(2024)), with the trial
duration adjusted to 100 ms for the sake of time. The performance metric is the Motor Neuron Firing
Rate, MNO. A dismantling attack is considered successful if the removal of specific interneurons
prevents the propagation of the signal from the sensory GRNSs to the motor neurons, causing the firing
rate to drop.

Paris/Brussels Terrorist Cell We analyze the network of the terrorist cell responsible for the
November 2015 Paris attacks and the 2016 Brussels bombings (Gutfraind & Genkin} 2017)), with 77
nodes and 271 edges. In adversarial networks, the ability of the leadership to communicate with the
rest of the operational network, and vice versa, is crucial. As a result, we define Commander Reach
as the percentage of network operatives (nodes) that retain a valid communication path to at least one
of the three identified cell commanders.
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Table 13: Network-specific evaluation metric and the original LCC AUC performance metric for four
real-world networks, for NBC, CND, and RA2. N denotes the number of nodes, E the number of
edges. Reinforced are the those reinforced by adding 10% of the links between common neighbors of
the top 5% of nodes according to each method, as detailed in Appendix [H] In red the improvement
in robustness compared to the baseline network, assuming that a higher value indicates worse
dismantling performance, meaning the network is more robust. Specific functional metrics are
detailed in Appendix I} In bold the best method for each metric and network.

DrosophilaConnectome LCCAUC Sugar Firing Rate (Freq.=100 Hz)AUC
N=377,E=13,671 Baseline Reinforced Baseline Reinforced
NBC 0.410 0.465 +14% 0.030 0.139 +363%
CND 0.454 0.461 +1% 0.093 0.180 +93%
RA2 0.459 0.480 +5% 0.042 0.153 +261%
Paris/ B”'S;::f Terrorist LccAuC Commander’s Reach AUC
N=77,E=273 Baseline Reinforced Baseline Reinforced
NBC 0.123 0.264 +114% 0.182 0.305 +67%
CND 0.125 0.274 +120% 0.149 0.182 +22%
RA2 0.114 0.264 +133% 0.095 0.274 +188%
RyanAir Flight Map LCCAUC Global Efficiency AUC
N=128, E=601 Baseline Reinforced Baseline Reinforced
NBC 0.149 0.322 +116% 0.040 0.111 +179%
CND 0.143 0.338 +136% 0.039 0.121 +207%
RA2 0.142 0.336 +136% 0.040 0.116 +189%
School Contact LCCAUC Final Outbreak Size AUC
N=327,E=5,818 Baseline Reinforced Baseline Reinforced
NBC 0.359 0.417 +16% 0.351 0.366 +4%
CND 0.420 0.452 +8% 0.288 0.339 +17%
RA2 0.418 0.457 +9% 0.285 0.312 +9%

Ryanair Flight Map: This network represents the flight routes of Ryanair in Europe (Cardillo et al.,
2013), with 128 nodes and 601 edges. Nodes represent airports, and edges represent direct flight
connections. We measure the functional integrity of the transport system using Global Efficiency
(Egi0b), rather than the Average Shortest Path Length (APL), because: APL is mathematically
undefined (or diverges to infinity) when a network fragments into disconnected components, which
inevitably occurs during dismantling. Global Efficiency avoids this divergence by averaging the
inverse geodesic distances.

1 1
By = —— S —
glob N(N—l);dij

Where N is the number of airports and d;; is the shortest path length between airport ¢ and j. If no
path exists, % = 0. This metric correctly quantifies the remaining communication capacity of a
i

fragmented network.

School Contact Network: We utilize a contact network collected from a French high school (Mas+
trandrea et al., [2015)), with 327 nodes and 5,818 edges, where nodes represent students and edges
represent close-proximity physical contacts capable of disease transmission. We simulate the spread
of an infectious disease using a classic Susceptible-Exposed-Infectious-Recovered (SEIR) compart-
mental model (Anderson & Mayl [1991)). Unlike basic SIR models, SEIR includes an “Exposed”
state to account for the latency period typical of real-world pathogens. The simulation begins with
5% of nodes infected; over 200 discrete time steps, individuals progress from Susceptible (S) to
Exposed (E) (based on contact with infected neighbors and rate 5 = 0.01), then to Infected (I) (based
on latency rate o = 0.01), and finally to Recovered R (based on recovery rate v = 0.01). These
uniform parameters were selected to establish a generic baseline, ensuring that observed variations in
outbreak size are attributable to network topology rather than pathogen-specific characteristics. We
average the results of 50 independent simulations. The functional integrity of the network is measured
by the Final Outbreak Size, defined as the total percentage of the population that was infected and
subsequently recovered. The size is normalized with the size of the largest connected component,
from which the epidemic starts from.
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Engineering Network Robustness Protocol: To validate our method for “engineering robustness”,
we also reinforce these networks as defined in Section[4.7} choosing the top 5% of nodes and adding
10% of links, and rerun the dismantling process under the exact same conditions.

Table [T3] shows the quantitative results for our original dismantling metric, LCC AUC, alongside
the functional metrics defined above. Notably, both metrics yield highly similar rankings of the top
methods, further validating our choice of LCC AUC as a robust evaluation standard.”
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Figure 16: Running time (in seconds) comparison between CND on GPU and NBC on CPU on
synthetic nPSO networks, as a function of network size in terms of edges. Experiments were
conducted with network sizes ranging from 10 to 2,499,500 edges with densities (p) of 4%, 8%,
and 20%, using fixed temperature 7' = 0.3 and community counts scaled by network size (C' = 2
for N € {10,50,100}, C = 5 for N € {500,1,000}, C = 10 for N = 5,000). See Figurefor
quantitative results.

Table 14: Average runtime (in seconds) and standard error of the mean (SEM) by field and method for
dynamic dismantling. Evaluated on networks of up to 23,000 nodes and 507,000 edges (n = 1,475).
In bold the fastest method per field.(N') denotes average number of nodes and (E') number of edges.

Field (N) (E) CND-CPU CND-GPU NBC-CPU RA2-CPU RA2-GPU
Biomolecular 2,997 11,855 1,688.9 +553.2 37.7+9.6 1745742 3,699.8 £ 1155.6 29.4+7.2
Brain 97 1,535 717 4.2+0.6 0.2+0.1 7.7+26 2401
Covert 107 266 7.3x55 0.9+0.2 0.2x0.1 19.8+15.4 0.6+0.1
Foodweb 117 1,087 2427 2403 0.2x0.1 25.4+10.8 1.9+0.2
Infrastructure 664 1,332 2,610.8+921 349+11.6 11.6x4.5 2,441.8+861.2 27+95
Internet 5,708 19,601 6,149.2 + 853.2 34.2+3 138.6+15.3 9,801.8+1176.6 31.9+28
Misc 2,880 19,921 3,641.8+1771.9 54.9+15.9 439.3+170 5,065.1+1990.8 53.2+21.2
Social 3,267 53,977 8,322.5+1287.6 149.4 £20.1 4,840.6 +1008.5 12,474.4+2146 161+44

Since the difference in running time between the three LGD-NA methods is not relevant, neither
for CPU nor GPU, we report the running time of the original RA2 in the main text (Figure[3) and
the CND in the Appendix (Figure [I8). When comparing CND and NBC, on the largest network,

36



y=2,p=0.04 y=2,p=0.08 y=2,p=0.2

10000
1200 —— NBC-CPU 6000 /
—— CND-GPU
5000 8000
1000
P 4000
@ 800 6000
b 600 3000
€ 4000
F 100 X 2000
200 1000 2000 /
0 - o—t 0 " .__ﬂ/’///// 0 — o—s
102 103 10 102 103 104 102 103 104
y=3,p=0.04 y=3,p=0.08 vy=3,p=0.2
3500 ; ; 10000
3000 6000 8000
2500
n 2000 4000 6000
Q
g 1500 4000
}_
1000 2000
. 2000 o
500 /////// ///////.
0 o—- o— 0] e—- — 0] o—-= o—
102 103 10 102 103 104 102 103 104
Network Size (E) Network Size (E) Network Size (E)

Figure 17: Running time (in seconds) comparison between CND on GPU and NBC on CPU on
synthetic nPSO networks, as a function of network size in terms of nodes. Experiments were
conducted with network sizes ranging from 10 to 5,000 nodes with densities (p) of 4%, 8%, and
20%, using fixed temperature 7' = 0.3 and community counts scaled by network size (C' = 2 for
N € {10,50,100}, C = 5 for N € {500,1,000}, C = 10 for N = 5,000). See Figurefor
quantitative results.
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Figure 18: Runtime (in hours) is plotted against network size, measured by the number of edges, F,
for dynamic dismantling. The annotated time indicates the runtime for the largest network. Evaluated
on networks of up to 23,000 nodes and 507,000 edges (n = 1,475). See Figure[T4]for quantitative
results.
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Table 15: Runtime (in seconds) for NBC run on CPU (graph-tool) and GPU (cuGraph) on a subset of
networks. N denotes the number of nodes and E the number of edges.

N E NBC-GPU NBC-CPU
Foodweb Blackrock 86 375 4.7 0.04
Phonecall2012 193 1,030 20.7 0.08
Rat Transcription 2010 524 1,081 379 0.10
Roadmap Winnipeg 1,040 1,595 848.3 0.41

GPU-accelerated CND is over 46 times faster than its CPU counterpart and also over 63 times faster
than NBC running on CPU.

To empirically validate these runtime advantages in a controlled setting, we conducted additional
experiments using the nPSO model (Muscoloni & Cannistraci, [2018b)) with network sizes ranging
from 10 to 5,000 nodes, and 10 to 2,499,500 edges, with densities of 4%, 8%, and 20%. We
keep the temperature (lower temperature yields higher clustering) fixed (1" = 0.3) and adjust the
number of communities to suit the size of the network (C = 2 for N € {10, 50,100}, C = 5 for
N € {500,1,000}, C = 10 for N € {5,000}). Our results demonstrate that GPU-accelerated
LGD-NA methods begin to show running time advantages over NBC-CPU when networks exceed
approximately 1,000 nodes (see Figure or 100,000 edges (see Figure[I6). This threshold aligns
with our observations in real-world networks (see Figures |3| and and Table , where GPU
methods achieve superior running times for larger-scale networks such as biomolecular, internet, and
social networks, while offering no runtime benefit for smaller networks where CPU implementations
remain efficient.

Section [4.5] details how we implement the RA-based measures for GPU, using matrix multiplication.
We end up with the following formula for RA2:

1+E,+E,+E,oE],

RA2 =
14+ CNp,

and for CND:

1

CND=————
14+ CNp,

In our experiments, the CPU-based RA2 and CND implementation uses Python’s (imple-

mented in C) while the GPU implementation uses Python’s[CuPy](implemented in C++/CUDA).

As mentioned earlier, we report only the CPU running time for NBC, as its GPU implementation
did not yield any speedup. While some studies report GPU implementations of NBC with improved
performance (Fan et al., 2017; |Shi & Zhang, 2011} Pande & Bader, 2011; McLaughlin & Bader,
2018 [Sariytice et al., 2013} Bernaschi et al., 2016), these are often limited by hardware-specific
optimizations, data-specific assumptions (e.g., small-world, social, or biological networks), and
using heuristics that are tailored to specific settings rather than offering general solutions. Moreover,
publicly available code is rare, making these approaches difficult to reproduce or integrate. Overall,
NBC is not naturally suited for GPU implementation, as it does not rely on matrix multiplication,
but is based on computing shortest path counts between all node pairs. In our experiments, the CPU-
based NBC implementation from Python’s graph_tool (implemented in C++), based on Brandes’
algorithm (Brandes, 2001) with time complexity O(Nm) for unweighted graphs, outperformed the
GPU version from Python’s|cuGraph (implemented for C++/CUDA).

It is important to note that our LGD-NA implementation inherently utilizes a hybrid workflow: the
sequential dismantling logic is managed by the CPU, while the expensive latent geometry estimations
(relying on matrix multiplication) are offloaded to the GPU. This architecture is highly effective for
LGD-NA but is not applicable to NBC. For NBC, the core computational burden is the calculation of
all-pairs shortest paths, a task that does not lend itself well to GPU computations, meaning a hybrid
pipeline yields no significant performance gain, and thus solely runs on CPU.
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K NBC APPROXIMATORS

Table 16: Average runtime (in seconds), AUC, and number of removals with their associated
standard error of the mean (SEM) by field and method for dynamic dismantling. Evaluated where
Npin = 2,235, Nppaz = 9,885, Epnin = 10,075, Epyqe = 506,437, (n = 157). In bold the best
method per field, by runtime, AUC, and number of removals. (N') denotes average number of nodes
and (E) number of edges.

Field (N) (E) Method Running time (sec) AUC Removals
CND 8617 0.087+0.016 830+ 134
Biomolecular 5,528 26,804 NBC 453 £171 0.082+0.017 708 +124
NBC-20 437 £183 0.081+0.016 705+124
NBC-log 365+81 0.08 £0.015 733130
CND 203+113 0.099+0.019 1,324+ 575
Infrastructure 5,803 15,068 NBC 76+42 0.0210.006 24113
’ ’ NBC-20 105+43 0.022 +0.006 249+ 16
NBC-log 141+£29 0.022+0.006 266+24
CND 29%2 0.02+0 2639
Internet 6.623 31.292 NBC 196 £ 28 0.016+0.001 1716
’ ’ NBC-20 495 0.016 + 0.001 1716
NBC-log 119+6 0.016+0.001 172+6
CND 121+ 26 0.134+0.03 1,114+ 229
Misc 5444 53.289 NBC 1,220 + 402 0.106 + 0.028 876215
’ ’ NBC-20 655 + 338 0.106 + 0.028 889+ 217
NBC-log 491+117 0.108 + 0.028 929+ 228
CND 405x45 0.325+0.019 2,805+218
Social 5778 156,918 NBC 14,961 2,782 0.277£0.016 2,527 +206
’ ’ NBC-20 1,368 = 147 0.274+0.016 2,543 207
NBC-log 1,363+ 118 0.279+0.017 2,745+ 230

While the high computational cost of Node Betweenness Centrality (NBC) has motivated the
development of numerous approximators (Bader et al.| 2007; Bergamini & Meyerhenke, 2015}
Haghir Chehreghani| 2013} Riondato & Kornaropoulos,2014), comparing against them is challenging
due to the scarcity of standardized, publicly available code and the complexity of their sampling
algorithms, which are often performant only for specific domains or incompatible with disconnected
graph structures.

To address this, we implemented two standard randomized pivoting strategies for approximation.
NBC-20 estimates betweenness centrality using a random sample of 20% of the nodes. NBC-log
uses a random sample of 10 * log, (V) nodes. NBC-20 prioritizes accuracy by always scanning a
fixed slice of the network (20%), whereas NBC-log prioritizes speed by scanning a much smaller,
logarithmically scaled subset that grows very slowly as the network gets larger. We evaluated these
baselines against the exact NBC and our CND method on a subset of 157 networks selected for their
size, where exact NBC calculation begins to become computationally expensive.

Table[I6]reports the dismantling performance (AUC) and total runtime, averaged by field. First, we see
that the NBC approximators perform comparably to the exact NBC, even occasionally outperforming
it. However, this performance increase of NBC approximators should not be overstated due to the
smaller sample size of this experiment. Second, while NBC approximators are significantly faster
than exact NBC, CND remains faster than both approximation methods in almost all domains. A
notable exception occurs in the Infrastructure field. Here, the usually slowest method NBC is actually
the fastest in terms of total runtime because it takes a significantly lower number of removals to
dismantle the network. Consequently, even though CND is faster per step, the NBC-based methods
result in a lower total runtime simply because the dismantling threshold is reached much earlier.

Finally, it is critical to distinguish the theoretical foundations of these approaches. Existing NBC
approximators focus on accelerating the estimation of a global metric. In contrast, LGD-NA leverages
purely local topological information to directly estimate pairwise distances in the latent metric space.
This distinction allows LGD-NA to bypass the need for global knowledge or more complex sampling
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strategies. Although approximation techniques improve NBC’s speed, their reliance on sampling
global paths is inherently less efficient than our strictly local approach, as we validate in Table [I6]
Furthermore, sampling global information remains vulnerable to missing data and adversarial noise.
The strength of LGD-NA, therefore, lies in its ability to achieve high dismantling performance by
directly utilizing local geometric insights, rather than attempting to approximate a computationally
intensive global metric.

L APPLICATION TO DIRECTED NETWORKS

While network dismantling has primarily targeted undirected networks |Artime et al.| (2024)), many
critical real-world systems, such as neural circuits, social media platforms, and financial transaction
systems, are inherently directed. Although our LGD-NA framework is designed for undirected
network, we explore its applicability to directed graphs. Research on directed network dismantling
is relatively underexplored. Directed Node Entanglement (DNE) (Wu et al.l 2025]) generalizes the
network density matrix to specifically capture and disrupt directed information flow within a system.
Ma et al.| (2022)) utilizes the non-backtracking matrix to identify and remove the minimum set of
nodes connecting distinct edge modules. Dismantling on Signed Networks based on Evolutionary
Deep Reinforcement Learning (DSEDR) (Ou et al.l [2024) is an evolutionary deep reinforcement
learning approach designed to dismantle signed networks by optimizing a novel objective function.
Embedding-based Signed Network Dismantling (ESND) (Xie et al.,|2025) combines giant component
detection, network embedding, and node clustering to identify critical nodes.

We evaluate our LGD-NA framework on directed graphs using two approaches: applying the original
method (treating the graph as undirected) and a directed variant where node scores are computed
aggregating only outgoing links. For comparison, we implement Directed Node Entanglement
(DNE) as a baseline specific to directed networks. We exclude other methods—such as the set-based
approach of [ Ma et al.| (2022) and the complex, multi-step frameworks of DSEDR and ESND—to
maintain a focused comparison on computationally efficient, node-ranking strategies.

Table 17: LCC AUC for the three LGD-NA estimators treating a directed network as undirected,
their directed variant, and DNE, a specific directed network dismantling method. In bold the best
performing method per network. /N denotes the number of nodes and E the number of edges.

College Messages DrosophilaConnectome EmailEU
N=1,899, E=20,296 N=377,E=13,671 N=986, E=24,929

CND 0.1426 0.4470 0.2710
CND-Directed 0.1537 0.4512 0.3064
RA2 0.1427 0.4529 0.2824
RA2-Directed 0.1466 0.4507 0.2955
RA2num 0.1431 0.4625 0.2873
RA2num-Directed 0.1485 0.4653 0.2984
DNE 0.4069 0.4923 0.4311

We focus on three directed networks from different fields. College Messages (Social) (Panzarasa
et al.l |2009) represents private messages on a social network at UC Irvine (1,899 nodes, 20,296
edges). Drosophila Connectome (Brain) (Shiu et al., 2024), focuses on the sugar-sensing gustatory
circuit (377 nodes, 13,671 edges). Email EU (Social)(Paranjape et al.,2017) are anonymized internal
emails from a European research institution (986 nodes, 24,929 edges).

Table shows two key results. First, for our LGD-NA framework, treating directed networks
as undirected yields superior dismantling performance over our directed variant. Second, even
when applied in this undirected way, LGD-NA outperforms the directed-specific DNE baseline,
demonstrating its effectiveness on directed networks.
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Finally, our framework is predicated on the association between network topology and a latent geom-
etry. For directed networks, this relationship is less established, with only preliminary studies (Allard
et al.,|2024). Therefore, designing asymmetric network measures that account for directional flow
remains an open challenge, yet a promising direction for future research.

M EXPERIMENTAL SETUP

Baseline Topological Centrality Measures. We selected centrality measures to cover diverse
categories: shortest path-based (NBC), degree-based (degree), walk-based (eigenvector), random
walk-based (PageRank), resilience-based (Resilience), and fitness-based (Domirank and Fitness
centrality). We also tested closeness and load centrality, but both performed worse than NBC and rely
on the same shortest-path principle; thus, we retained NBC. Similarly, Katz centrality underperformed
compared to eigenvector centrality and is also based on spectral properties of the adjacency matrix.
For DomiRank, we tested three values for the numerator in the o parameter formula: 0.1, 0.5, and
0.9. While the original study sometimes performs a grid search to find the optimal o per network,
this is not feasible for our large-scale evaluation. Instead, we selected a representative range and
found that 0., = 0.5 yielded the best performance, and we report that value. The parameter o
controls the balance between local degree-based dominance and global network-structure-based
competition. As 0 — 0, the scores approximate degree centrality. As o increases, nodes are evaluated
in increasingly competitive environments, where centrality depends more on non-local structural
dominance than individual connectivity. For Fitness centrality, we capped the number of iterations at
k = 100. Without this cap, the method took a prohibitively long time to converge, especially on large
networks.

Baseline Dismantling Methods. We selected the best-performing and most widely adopted dis-
mantling algorithms from the literature (Artime et al., 2024). As mentioned earlier, we did not
include BPD and FINDER in our experiments due to unavailable and outdated code, respectively. For
Collective Influence (CI), we tested values ¢ = 1, 2, 3, where ¢ defines the radius of a ball centered
at node 7, and 0B(4, ¢) is the frontier at distance ¢ (i.e., nodes exactly ¢ hops away). We found that
¢ = 1 performed best across our benchmarks and report this setting, while £ = 3 performed the
worst. For Explosive Immunization (EI), we evaluated both scores ¢(*) and 0(2). The (1) score
targets high-connectivity nodes to rapidly fragment the network early on. The ¢(?) score aims to
prevent large cluster merges near the percolation threshold by avoiding the connection of separate
components. We found that o) consistently outperformed ¢(?), and thus we use it in our final
experiments. For eigenvector centrality, we capped the number of power iterations at £ = 100
to avoid long or unbounded runtimes, since convergence can be very slow in large networks. For
PageRank, we used a convergence tolerance of ¢ = 1075, as the algorithm runs until the change in
scores falls below this threshold.

LGD-NA Measures. Our analysis of pure win rates (draws are excluded) in Table [18] reveals
distinct domain-specific strengths. CND achieves the highest win rate in Biomolecular, Foodweb,
Infrastructure, Internet, and Social networks. In contrast, RA2 is the preferred method for Brain and
Covert networks. Notably, RA2,,,,,,, does not emerge as the top-performing method in any of the
tested domains.

Robustness to Threshold Variations. ~As shown in Table[I9} the mean field rankings of the methods
are broadly consistent across removal thresholds of 10%, 25%, and 50%. While permutations occur,
the dominance of NBC and CND is consistent across different thresholds, confirming that our
conclusions are not artifacts of the 10% threshold.

Note on Reinsertion. We did not apply reinsertion techniques on all networks included in the
initial dismantling experiments. In some cases, certain methods performed so poorly that applying
reinsertion became prohibitively slow. To ensure consistency, we excluded these networks from the
reinsertion analysis for all methods. Specifically, we imposed a cutoff: networks were excluded if
any method required more than 800 node removals to reach the dismantling threshold. Based on this
criterion, 59 networks were excluded.
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Table 18: Pure win rate (draws excluded), for LGD-NA measures, without reinsertion (n = 1,296).
In bold the method with the highest win rate per field.

CND RA2 RA2num

Biomolecular 52% 30% 17%
Brain 28% 68% 4%

Covert 16% 42% 41%
Foodweb 67% 16% 16%
Infrastructure 65% 16% 19%
Internet 52% 46% 2%

Misc 41% 45% 14%
Social 51% 29% 20%

Table 19: Mean field ranking with standard error of the mean (SEM), for different threshold levels
(n = 1,296). In bold the best method per threshold.

Threshold 10% 25% 50%
NBC 10 1+0 1+0
CND 3.625+0.56 3.5%0.5 3.25+0.25
RA2 4+0.93 3.875+0.79 5.125+0.77
RA2num 4.875+0.72 5.5+0.76 8.375+0.73
GDM 5+0.5 5.25+£0.56 4.875+0.58
CoreGDM-NR 6.125+0.52 6.25+0.62 7.25+0.86
GND 8.875+2.07 7.75+2.09 5.875+1.83
Degree 8.875+0.64 9+0.63 9.75+0.8
Domirank go.s 8.875+0.64 8.625%0.6 8.75+0.59
PR 9.125+1.08 8.375+1.05 6.5+ 0.96
Fitness 9.5+1.34 8.625+1.03 7.375+1.02
Resilience 11.125+x0.4 11.625+0.42 12.375%0.42
Cl1 13+0.63 12.625+0.42 13.125+0.44
El o1 13.625+1.29 15.25+0.45 15.5+0.38
Eigenvector 14.25+£0.31 14.3756+£0.32 14.5+£0.46
MS 15.125+0.61 15.375+0.56 14.625+1.27
CoreHD-NR 16+ 0.5 16+ 0.38 14.75+£1.44




LCC AUC as the evaluation metric. We employ LCC AUC as our primary evaluation metric
because it provides a unified standard for comparing methods across 32 distinct complex system
domains. As the established standard in the vast majority of dismantling studies (Artime et al.,
2024), it allows for direct comparisons between diverse networks from disparate fields and different
dismantling algorithms. While dynamical metrics offer specific insights, simulating ’live’ system
dynamics for every network is computationally unfeasible and conceptually inconsistent given
the broad scope of domains. Crucially, our functional analysis in Section 4.7 demonstrates that
rankings based on LCC AUC align closely with domain-specific functional metrics, validating LCC
fragmentation as a reliable proxy for functional disruption. Note that a lower number of removals
does not always imply a lower AUC. Our AUC metric rewards methods that fragment the network
early, even if they require more steps to reach the dismantling threshold. As shown in Figure|19] we
show cases where a method that reaches the threshold with more removals can still achieve a lower
AUC, due to earlier damage to the network structure.

Co-authorship NetSci Flightmap US Phonecall
1 RA2 RA2 —— RA2pum
—e— RA2,um —e— CND —e— CND
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Figure 19: Dynamic dismantling process on example networks comparing CND, RA2 and RA2,,,,,,
showing a lower removal number does not necessarily mean a lower Area Under the Curve (AUC) of
the LCC trajectory. The plot shows the normalized size of the largest connected component (LCC) as
a function of the fraction of nodes removed, with a target LCC threshold of 10%.

N TECHNICAL IMPLEMENTATION AND REPRODUCIBILITY

Code. All our methods are implemented in our codebase, available in the supplementary material.
We implement RA2, RA2,,,..,,, CND, NBC, as well as degree and eigenvector centrality. We also
adapt and integrate the original implementations of Domirank centrality and Fitness centrality. Since
no code was available for Resilience centrality, we implemented it ourselves based on the original
description in the paper. Instructions for running these methods and reproducing the experiments are
included in the supplementary material. We also provide a representative network from the ATLAS
dataset for testing purposes. For GDM, CoreGDM, GND, CI, EI, MS, and CoreHD, we use the
publicly available code from Artime et al. (2024)’s review.

Computational Resources. All experiments were conducted on a machine equipped with an AMD
Ryzen Threadripper PRO 3995WX CPU (64 cores), 251 GiB of RAM, and a single NVIDIA RTX
A4000 GPU with 16 GiB of memory. All code was implemented in Python, with dependencies and
library versions specified in the supplementary material to ensure full reproducibility.

Quantitative Results. All results are in Tables and
in the Appendix.

O DISCUSSION, LIMITATIONS, AND FUTURE WORK

Missing or Manipulated Data. The robustness of our LGD-NA methods to missing or manipulated
information, such as missing neighbor data or adversarial modifications to neighborhood structure,
is a crucial question for practical applications of any network analysis method, especially those
relying on local information. Our LGD-NA methods, by design, are inherently more robust to global
missing or manipulated information compared to methods that require a complete global view of the
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network (e.g., exact NBC). Since our methods rely solely on local neighborhood information, random
missing data across the network would primarily affect only the scores of directly impacted nodes,
rather than propagating errors throughout the entire graph. Similarly, adversarial modifications would
need to target specific local neighborhoods to significantly alter a node’s dismantling score, making
large-scale, coordinated attacks more challenging than for global metrics. However, we acknowledge
that direct adversarial manipulation of a node’s immediate neighborhood could indeed impact its
calculated score.

Weighted Networks. While many real-world systems, such as citation networks, neural synaptic
connections, transportation and trade networks, contain directed interactions, our LGD-NA measures
focus on unweighted topologies for two key reasons. First, in practical dismantling contexts, weight
data is often dynamic, temporal, or unavailable, whereas topology is more robust. Second, current
state-of-the-art dismantling algorithms focus on unweighted graphs (Artime et al.,|2024), making fair
comparisons impossible. Consequently, we consider the extension of latent-geometry approaches to
weighted graphs as a promising avenue for future work.

Limitations. A limitation of this study is the mismatch between theoretical and observed runtimes,
which can vary across methods. These differences stem from factors such as the programming
language used, hardware acceleration, and implementation-level optimizations. However, all experi-
ments were run on the same CPU and GPU to ensure a fair comparison, and we made a strong effort
to optimize all methods both in terms of runtime and dismantling performance. For example, we
tested different parameters for Domirank, CI, and EI, and evaluated multiple variants of shortest
path-based and spectral partitioning-based centrality measures. Furthermore, we were unable to test
on extremely large networks due to hardware constraints and the high computational cost of running
a broad set of dismantling methods. However, we are confident that our results would generalize to
larger networks, given the diversity of the 1,475 networks tested, spanning a wide range of domains
and sizes from very small to large. Another limitation relates to the parameter tuning required by
some baseline methods, especially machine learning-based approaches and Domirank. Due to the
scale of our experimental setup—both in the number and size of networks—we were unable to
perform extensive tuning. Although targeted tuning could enhance performance for specific methods
on individual networks, it would compromise consistency across the wide range of complex systems
domains considered. In contrast, LGD-NA requires no parameter tuning and consistently achieves
strong, generalizable performance across all tested networks.

Future Work. Future research could further explore latent geometry, particularly how to effectively
combine local and global information in dismantling strategies. Improving the scalability of matrix-
based computations, especially for very large and sparse networks, is another important direction.
There is also a need for more cost-efficient dynamic dismantling strategies that reduce the overhead
of recomputing scores after every node removal without significantly sacrificing performance. In
addition, edge dismantling remains a relatively underexplored area compared to node-based disman-
tling, and it would be valuable to investigate whether latent geometry-driven principles can also
guide the efficient removal of links in complex networks. Targeting edges can be just as important as
targeting nodes, and in many real-world systems, such as transportation networks (railroads, roads,
subways, or shipping trade routes), edge removal may represent the more realistic and sensible threat
scenario, making it highly relevant for dismantling strategies. Finally, our work can also be of interest
to Explainable AI (XAI) for models like GNNs and Reservoir Computers (RC). By identifying
critical (dismantling) or unimportant (percolation) nodes in a network, we can conduct “’perturbation
experiments” to assess their impact on an ML model’s performance. This process reveals which parts
of the graph are most crucial for the model’s predictions or computations, effectively opening the
model’s “black box” and providing crucial insights into its internal decision-making, robustness, and
vulnerabilities.

P ETHICS STATEMENT

The research on network dismantling presented in this paper has a potential for dual use. The
techniques developed to identify and exploit network vulnerabilities could theoretically be used to
design targeted attacks on critical systems, such as communication, transportation, or power grid
networks. However, it can also be used for defensive strategies. A thorough understanding of network

44



vulnerabilities is a prerequisite for designing robust systems. To directly address the dual-use concern,
we demonstrate the constructive potential of our work by presenting a novel technique for proactively
engineering network robustness using our latent geometry-based methods (see Sectiond.6). This
application moves beyond vulnerability analysis to provide an explainable framework for modifying
a network to enhance its resilience. Finally, by openly publishing our theoretical foundations, source
code, and comprehensive evaluations, we aim to ensure that the benefits of this research, namely the
ability to secure critical networks, are accessible to all. We believe the societal benefit of advancing
defensive capabilities significantly outweighs the risk of potential misuse.

Q REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we have made our source code publicly available, including detailed
instructions on how to replicate all experiments. The codebase includes an implementation of our
LGD-NA framework (illustrated in Figure [I)), the exact formulas used (detailed in Appendix [A),
and an example network for demonstration. The code is compatible with both CPU and GPU
environments and also provides the necessary tools to engineer network robustness as described in
this work. The baseline methods were implemented using the code from the review by |Artime et al.
(2024). The exact topological measures of all networks used in our study are provided in Appendix [9]
Further details regarding the experimental setup, including hardware specifications, are described in

Appendix M| and
R CLAIM OF THE LLM USAGE

We used LLM-based tools to improve the language and flow; the principles, core logic, and innovations
are entirely the authors’.

SUPPLEMENTARY MATERIAL

Table 20: Pearson correlation between between all the pairwise hyperbolic distances of the network
nodes in the original nPSO model and in the reconstructed hyperbolic space (HD-correlation) (Mus+
coloni et al.,[2017)). Mean values over 10 seeds and Standard Error of the Mean (SEM) are reported,
and the Fisher p-value in parentheses. The power-law exponent ~y represents the scale-freeness found
in real-world networks. networks. p is the density of the networks. Fixed parameters are the number
of nodes, N = 500, and the number of communities, C' = 5. The temperature I" controls the level of
clustering (lower temperatures yield stronger clustering).

N=500, C=5 p=0.04 p=0.08 p=0.2
T=0.3 0.722+0.005(0.000) | 0.792+0.002(0.000) | 0.846+0.001 (0.000)
CND T=0.6 0.693+0.004(0.000) | 0.768+0.002(0.000) | 0.801:+0.001(0.000)
_ T=0.9 0.633+0.008 (0.000) | 0.765+0.003(0.000) | 0.777+0.001(0.000)
Y= 1=0.3 0.521+0.007 (0.000) | 0.532%0.007(0.000) | 0.521+0.010(0.000)
RA2 T=0.6 0.524+0.007 (0.000) | 0.484+0.010(0.000) | 0.308:+0.008 (0.000)
T=0.9 0.498+0.003(0.000) | 0.460+0.004(0.000) | 0.303:+0.008 (0.000)
T=0.3 0.584+0.004(0.000) | 0.624+0.003(0.000) | 0.645+0.001 (0.000)
CND T=0.6 0.510+0.005(0.000) | 0.579+0.002(0.000) | 0.590+0.002 (0.000)
_ T=0.9 0.452:+0.004(0.000) | 0.552+0.003(0.000) | 0.597+0.003 (0.000)
Y= T=0.3 0.685+0.009(0.000) | 0.714+0.006(0.000) | 0.783+0.008 (0.000)
RA2 T=0.6 0.722+0.003(0.000) | 0.780+0.003(0.000) | 0.805:0.006 (0.000)
T=0.9 0.688:0.002(0.000) | 0.795%0.004(0.000) | 0.755+0.010 (0.000)
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Table 21: Pearson correlation between estimated link weights from CND and RA2 versus true
geometric distances in nPSO networks. Mean values over 10 seeds are reported, with a color gradient
where green corresponds to values approaching 1 and red to values approaching -1. The power-law
exponent -y represents the scale-freeness found in real-world networks. networks. p is the density of
the networks. The temperature 7" controls the level of clustering (lower temperatures yield stronger
clustering). Fixed parameters are the number of nodes, N = 500, and the number of communities,

C = 5. Standard Error of the Mean (SEM) and Fisher p-value are found in Table

N=500,C=5

p=0.04

p=0.08

p=0.2

Y=2

CND

T=0.3
T=0.6
T=0.9

0.534
0.602
0.649

0.641
0.675
0.690

0.664
0.719
0.746

RA2

T=0.3
T=0.6
T=0.9

-0.044
0.066
0.140

0.062
0.239
0.361

0.319
0.562
0.682

CND

T=0.3
T=0.6
T=0.9

0.329
0.543
0.607

0.370
0.512
0.553

0.394
0.473
0.510

RA2

T=0.3
T=0.6
T=0.9

0.301
0.441
0.473

0.388
0.542
0.588

0.530
0.625
0.669

Table 22: Pearson correlation between estimated link weights from CND and RA2 versus true
geometric distances in nPSO networks. Mean values over 10 seeds is reported and Standard Error
of the Mean (SEM) are reported, and the Fisher p-value in parentheses. The power-law exponent y
represents the scale-freeness found in real-world networks. networks. p is the density of the networks.
Fixed parameters are the number of nodes, NV = 500, and the number of communities, C' = 5. The

temperature 71" controls the level of clustering (lower temperatures yield stronger clustering).

N=500,C=5 p=0.04 p=0.08 p=0.2
T=0.3 | 0.534%0.006(0.000) | 0.641+0.004(0.000) | 0.664*0.001(0.0)
CND T=06 | 0.602+0.003(0.000) | 0.675+0.005(0.000) | 0.719+0.001(0.0)
9 T=0.9 | 0.649+0.002(0.000) | 0.690+0.004(0.000) | 0.746+0.001(0.0)
¥ T=0.3 | -0.044%0.004(0.000) | 0.062%0.003(0.000) | 0.319%0.003(0.0)
RA2 T=0.6 | 0.066+0.004(0.000) | 0.239+0.003(0.000) | 0.562+0.002(0.0)
T=09 | 0.140+0.005(0.000) | 0.361+0.004(0.000) | 0.682+0.002(0.0)
T=03 | 0.329%0.005(0.000) | 0.370%0.003(0.000) | 0.394=0.006 (0.0)
CND T=0.6 | 0.543:0.006(0.000) | 0.512+0.002(0.000) | 0.473+0.004(0.0)
3 T=09 | 0.607%0.003(0.000) | 0.553%0.001(0.000) | 0.510=0.003(0.0)
! T=0.3 | 0.301+0.006(0.000) | 0.388+0.003(0.000) | 0.530+0.003(0.0)
RA2 T=0.6 | 0.441:0.003(0.000) | 0.542+0.003(0.000) | 0.625+0.003(0.0)
T=09 | 0.473%0.003(0.000) | 0.588%0.002(0.000) | 0.6690.003(0.0)

AuC Clu Cliz Clus CND-D CND-S CoreGDM-NR CoreHD-NR Degree Domirank go.1 Domirank gos Domirank gos
Biomolecular 0.0794+0.021 0.0722+0.018 0.0879+0.024 0.0721+0.018 0.0825+0.021 0.0772+0.02 0.0951+0.021 0.0783+0.021 0.0793+0.021 0.0786+0.021 0.0792£0.02
Brain 0.4177+0.002 0.4367 +0.002 0.4746 +0.002 0.3883+0.002 0.4192+0.002 0.4080.002 0.4244+0.002 0.4158+0.002 0.4153+0.002 0.4147 £ 0.002 0.4133£0.002
Covert 0.1407+0.009 0.1949+0.013 0.2819£0.013 0.1223£0.009 0.1364 %0.009 0.1208+0.009 0.1709+0.01 0.1282+0.009 0.1282+0.009 0.1286 +0.009 0.1268 £0.009
Foodweb 0.2346+0.01 0.2428+0.013 0.4134 £0.009 0.215+0.01 0.2707 £0.012 0.2175+0.01 0.2472+0.01 0.2199+0.01 0.2194£0.01 0.2156 +0.009 0.2177 £0.009
Infrastructure 0.0906 +0.005 0.1347+0.007 0.2742+0.007 0.04810.003 0.05190.003 0.0466 £ 0.003 0.0593+0.004 0.0491+0.003 0.0498 £0.003 0.0498 £ 0.003 0.0495 £0.003
Internet 0.0612+0.003 0.0587 +0.003 0.0907 +0.009 0.0579+0.003 0.0675+0.003 0.0597+0.003 0.0776+0.003 0.0608+0.003 0.0613+0.003 0.0615+0.003 0.0625 £0.003
Misc 0.2127+0.024 0.2133+0.024 0.2815+0.029 0.2043+0.023 0.2307 £0.025 0.2075+0.024 0.2338+0.023 0.2119+0.023 0.2128+0.023 0.2122+0.023 0.213£0.023
Social 0.2506+0.014 0.2638+0.014 0.3045+0.015 0.2319+0.013 0.2527+0.014 0.2399+0.014 0.2696+0.013 0.2472+0.014 0.2458+0.014 0.2449+0.014 0.2462+0.014

AUC Elos Elo:2 Elgenvector Fitness GDM GND. MS NBC PR RA2 RAZuum Resllence
Blomolecular 0.0782 + 0.019 0.389+0.014 0.0828 + 0.022 0.0798 + 0.021 0.0769 = 0.02 0.0749 £ 0.015 0.0961 = 0.021 0.0579£0.013 0.0793 £ 0.021 0.0717 £ 0.018 0.0742 + 0.019 0.079 + 0.021
Brain 0.4128 + 0.002 0.4791 + 0.001 0.421 £ 0.002 0.415 + 0.002 0.4074 + 0.002 0.3957 £ 0.002 0.424 £ 0.002 0.3617+0.002 0.4156+0.002 0.3792 +0.002 0.3979 + 0.002 0.4173 + 0.002
Covert 0.1772+0.01 0.3636 + 0.009 0.1393 + 0.009 0.1282 + 0.009 0.1144 + 0.009 0.1302+0.01 0.1685 + 0.01 0.1104£0.009 0.1346 +0.009 0.1144 +0.009 0.1141 + 0.009 0.1303+0.01
Foodweb 0.249 £ 0.009 0.3903 £ 0.01 0.244 +0.01 0.2116 + 0.009 0.2167 £ 0.01 0.2641 £ 0.012 0.2407 £ 0.01 0.1948 = 0.009 0.2128 + 0.01 0.2244 £ 0.01 0.2243+£0.01 0.2337 +0.011
Infrastructure 0.0926 + 0.005 0.3873 + 0.005 0.0837 + 0.004 0.0499 + 0.003 0.0455 + 0.003 0.06 + 0.003 0.0581+0.004 0.0404:0.003 0.0508+0.003 0.0472%0.003 0.0477 £ 0.003 0.0571 +0.004
Internet 0.0666 + 0.003 0.4528 + 0.001 0.0629 + 0.003 0.062 + 0.003 0.0594 + 0.003 0.0723+0.004 0.0768 = 0.003 0.049 £ 0.003 0.0605+0.003 0.0581+0.003 0.0593 + 0.003 0.0609 + 0.003
Misc 0.2217 £ 0.023 0.4449 £ 0.01 0.2173+0.023 0.2131+0.023 0.2071+0.024 0.2068 = 0.023 0.2313+0.022 0.171220.022 0.2115%0.023 0.2053 + 0.024 0.2073 £ 0.023 0.2124 £ 0.024
Soclal 0.2525 + 0.014 0.4329 + 0.006 0.2549 + 0.014 0.2448 + 0.014 0.2389+0.014 0.2306+0.014 0.2683+0.013 0.203920.013 0.2455+0.014 0.2348 +0.014 0.2343 + 0.014 0.2491 + 0.014

Table 23:

Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method
(n = 1,296). In bold the best method per field.
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Table 24: Mean and standard error of the mean (SEM) for the number of removals per field, by
dismantling method (n = 1,296). In bold the best method per field.

Removals Clu Clz Cls CND-D CND-S CoreGDM-NR CoreHD-NR Degree Domirank go.1 Domirank o5 Domirank gos
Biomolecular 259171 247.9+70.2 258.3:69.4 2643727 3239939 2647755 2727716 2722%742 2803:76.1 28442763 295.3:78.1
Brain 60717 719%2 814229 59416 642:21 59.417 62417 604217 60517 60517 60417
Covert 1592 21718 334243 153%22 17324 143+18 19.8+4.4 149+2.1 15.2%22 153+23 15.3+2.3
Foodweb 46.4%5 48.8+49 89.87.6 448%52 62+7.2 45252 43949 44£5.1 442%51 436%5.1 44152
Infrastructure 321:43 40648 58167 27.3%51 355+7.7 22737 277438 287:53 28.1:49 284%5 28+4.9
Intemet 89.6+3.3 88.9:3.9 1159+7.2 96+3.8 1442:63 90.8+3.4 10074 957338 97.8+3.9 100.3+4.1 10242
Misc 3249986 317.2+95.9 377.3+100.8 330.3:98.8 409.2+1225 33541032 339.5:99.7 3332996 338.2+100.8 340.8+101 347.7+103.4
Social 431.4+647 427 +63.5 543.7 80 423.5%64.2 4812724 439.4%68 449.5+65.5 434.1+64.8 436.4+65 435+64.9 437.5+65.3

Removals Elgs Elgz Eigenvector Fitness GDM GND MS NBC PR RA2 RAZnum Resllience
Blomolecular 2165+653  1766.3+2982  2693+725 2086+78.1 2843+801  8461=1137  2605+705 2143265.7 292778 2516+703 2559+713 2649+728
Brain 574+15 85.1+39 612+18 608+18 59.4+17 65142 618417 559:14 614+18 567416 566417 605+17
Covert 139+13 822366 16424 15423 139+19 159+18 20444 134213 159423 1422 1382 148+21
Foodweb 437+46 847+94 4635 439+52 452+53 613+7.7 44449 416246 444+52 444+5 433+48 453+5
Infrastructure 18+23 1415+263 293+43 285+5 232+39 209+27 271+47 15322 314+57 2354 241+41 262+43
Internet 782+27 1095 +94.2 92434 104143 938+37 1185+338 10034 743223 101224 89.4+33 902+33 926+35
Misc 281.1+87.3 9348228 3309+99.3 348+1034 343521055  383.81267 3372989 2636:821  347.8:1023 3122959 31794967 32514984
Social 3898461  10497+1042 439465 4414+656 4495 +69.2 4763+738 446648 37722594 440658 41374634 4154+638 43364648

Table 25: Ranking per field for selected dismantling method (n = 1,296). In bold the best method

per field.

Ranking NBC CND RAZ RAZoum oM ‘CoreGDM-NR GND Degree. PR Fitness Resillence [ Elo Eigenvector [ CoreHD-NR.
‘Biomolecular 1 3 2 O g 7 5 g 10 12 14 ey 13 g 15 17 16
Brain 1 3 2 5 6 7 4 12 B 1 10 13 1 8 15 16 17
Covert 1 6 3 2 a 5 10 7 ° 12 8 1 14 17 13 15 16
Foodweb 1 4 10 9 6 7 17 8 5 3 2 1 12 16 14 13 15
Infrastructure 1 6 4 5 2 3 14 7 8 10 9 1 16 7 15 12 13
Intemet 1 2 3 4 s 6 15 8 1 7 12 o 10 1 13 16 17
Misc 1 2 3 6 5 7 4 9 10 8 13 1 12 15 14 16 17
Social 1 3 5 4 6 7 2 1 9 8 12 13 14 15 16 17
Mean = SEM 120 362562057 4093 48752072 52050 _ 6125:052 8.875:2.07 8.8/5:0.64 88/5:064 912:108 _ 95:134 111262040 _ 13+063 _ 13.626:130 14.25:081 151252061 _ 162050

Table 26: Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method,
for reinsertion method R1, (n = 1,237). In bold the best method per field.

AUC Clui-R1 CND-R1 CoreGDM-R1 CoreHD-R1 Domirank go.s-R1 Fitness-R1 GDM-R1 MS-R1 NBC-R1
Biomolecular 0.0599 + 0.022 0.0564 £ 0.021 0.0606 +0.023 0.0632 +0.021 0.0615 0.024 0.0606 +0.023 0.0585 + 0.022 0.0696 = 0.025 0.049 £0.018
Brain 0.4051 £ 0.002 0.381+0.002 0.3984 +0.002 0.4045 = 0.002 0.4035 £ 0.002 0.4032 £ 0.002 0.3988 + 0.002 0.4069 = 0.002 0.3679 £ 0.002
Covert 0.127 £0.009 0.1158 + 0.009 0.1168 + 0.009 0.1501+0.01 0.1225+0.009 0.1219+0.009 0.1134 + 0.009 0.1476 £0.01 0.1048 + 0.009
Foodweb 0.227 £0.01 0.2103 + 0.009 0.2135+0.01 0.2371%0.01 0.2122 +0.009 0.2087 = 0.009 0.2124£0.01 0.23110.009 0.1968 * 0.009
Infrastructure 0.0577 +0.004 0.0449 +0.003 0.0446 = 0.003 0.0521 + 0.003 0.0459 £ 0.003 0.0457 £0.003 0.0436 + 0.003 0.0508 +0.003 0.041 £ 0.003
Internet 0.0601 +0.003 0.0567 +0.003 0.059 +0.003 0.0682 + 0.003 0.0599 £ 0.003 0.0596 +0.003 0.0587 + 0.003 0.0673 £0.003 0.0532 +0.003
Misc 0.1948 + 0.026 0.1863 +0.025 0.1889+0.026 0.2033 + 0.025 0.1929 +0.025 0.1936 + 0.025 0.1895 + 0.026 0.1996 + 0.025 0.1732+ 0.025
Social 0.2137 + 0.015 0.1975 +0.014 0.2061 +0.015 0.2228 + 0.015 0.2097 +0.015 0.2091 + 0.015 0.2052 + 0.015 0.2234 +0.015 0.1883 + 0.014

Table 27: Mean and standard error of the mean (SEM) for the number of removals per field, by
dismantling method, for reinsertion method R1, (n = 1,237).In bold the best method per field.

Removals Cl.1-R1 CND-R1 CoreGDM-R1 CoreHD-R1 Domirank co.s-R1 Fitness-R1 GDM-R1 Ms-R1 NBC-R1
Biomolecular 70.1+£11.8 71.1£12.3 71.5+11.7 69.2+11.3 72.6+12.7 73.6+12.9 71.9+12.1 71.1+11.3 65.4+10.6
Brain 54.9+0.9 53.3+0.9 54.2+0.9 54.9+0.9 54.8+0.9 54.8+0.9 54.4x0.9 55.2x0.9 52.8+0.8
Covert 13+15 12615 12.7+15 13.8+1.9 12.8+1.5 12.8+1.6 12.6+1.4 13.9+19 12+1.2
Foodweb 41.8+4.5 41.2+4.6 41.7+4.6 41+46 4147 4147 41.7+4.6 40.9+4.6 39.8:x4.4
Infrastructure 14.9+1.9 13.4+1.8 13.3+£1.9 13.7£2 13.9+2 13.7x19 13.6+1.9 13.8%2 12316
Internet 75428 77.1x3.1 7663 75.6x2.7 79.63.3 80.1+3.4 78.2%3.2 75.3%2.7 70+2.4
Misc 98.4£22.7 9823 99.5+23.3 99.8+23.4 99.9+23.4 101.3+23.7 99.9+23.6 99.2+23.1 92.3+21.8
Social 62.4+8.3 61.3+8.1 62.2+8.3 62.5+8.3 63.1+8.3 63.3+8.4 63.8+8.5 62.7+8.4 58+7.7

Table 28: Ranking per field for selected dismantling method, for reinsertion method R1, (n = 1,237).
In bold the best method per field.

Ranking NBC-R1 CND-R1 GDM-R1 CoreGDM-R1 Fitness-R1 Domirank co.5-R1 Clui-R1 MS-R1 CoreHD-R1
Biomolecular 1 2 3 5 6 7 4 9 8
Brain 1 2 4 3 5 6 8 9 7
Covert 1 3 2 4 5 6 7 8 9
Foodweb 1 3 5 6 2 4 7 8 9
Infrastructure 1 4 2 3 5 6 9 7 8
Internet 1 2 3 4 5 6 7 8 9
Misc 1 2 4 3 6 5 7 8 9
Social 1 2 3 4 5 6 7 9 8
Mean + SEM 10 2.5%0.27 3.25+0.37 4+0.38 4.875%0.44 5.75+0.31 7+0.50 8.25+0.25 8.375+0.26
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Table 29: Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method,
for reinsertion method R2, (n = 1,237). In bold the best method per field.

AUC Clu1-R2 CND-R2 CoreGDM-R2 CoreHD-R2 Domirank co.s-R2 Fitness-R2 GDM-R2 MS-R2 NBC-R2
Biomolecular 0.062 * 0.024 0.0572+0.021 0.0613 +0.023 0.0664 +0.022 0.0626 + 0.024 0.064 * 0.025 0.0612 + 0.023 0.0725 +0.026 0.0485 +0.017
Brain 0.406 = 0.002 0.3805 + 0.002 0.3991 +0.002 0.4084 +0.002 0.4045 +0.002 0.4043 + 0.002 0.3996 + 0.002 0.4097 +0.002 0.3659 +0.002
Covert 0.1272+0.009 0.1149 = 0.009 0.1167 +0.009 0.1514£0.01 0.1226 + 0.009 0.1217 £ 0.009 0.1131+0.009 0.1484 £0.01 0.1036 + 0.009
Foodweb 0.2273+0.01 0.2108 = 0.009 0.2138£0.01 0.2377 £0.01 0.2124 £0.009 0.2089 £ 0.009 0.213+0.01 0.2319+0.009 0.1957 £ 0.009
Infrastructure 0.0582 +0.004 0.0451 £ 0.003 0.0449 £ 0.003 0.0529 £ 0.003 0.0463 £ 0.003 0.0462 £ 0.003 0.0438 £ 0.003 0.0514 £0.003 0.0409 £ 0.003
Internet 0.0607 +0.003 0.0571+0.003 0.0596 = 0.003 0.0697 +0.003 0.0605 = 0.003 0.0603 £ 0.003 0.0593 £ 0.003 0.0687 £ 0.003 0.0529 £0.003
Misc 0.1961+0.026 0.187 % 0.025 0.1902 +0.026 0.2054 +0.025 0.1946 +0.025 0.1954 +0.025 0.1908 + 0.026 0.2032 +0.025 0.1711+0.025
Social 0.2148 +0.015 0.1977+0.014 0.207 +0.015 0.2270.015 0.2113+0.015 0.2107 +0.015 0.2065 +0.015 0.2275 +0.015 0.1852 +0.014

Table 30: Mean and standard error of the mean (SEM) for the number of removals per field, by
dismantling method, for reinsertion method R2, (n = 1,237). In bold the best method per field.

Removals Clu1-R2 CND-R2 CoreGDM-R2 CoreHD-R2 Domirank co.s-R2 Fitness-R2 GDM-R2 MS-R2 NBC-R2
Biomolecular 71.5+11.9 73.9+13.2 73.4+12.4 74.1£12.2 76.2+13.6 78.7+14.1 76.9+13.9 75.6+12.3 65.3+10.6
Brain 55.1+0.9 53.4£0.9 54.4%0.9 55.7+0.9 55.1+£0.9 55.1+0.9 54.7x1 55.8+0.9 52.8+0.8
Covert 13+1.6 12.7+15 12.8+1.5 14.2+£2.1 12.8+1.6 129+1.7 12.8+1.6 14322 11912
Foodweb 42.1+4.7 41247 42.1+4.8 41.2+46 41.1+4.7 41.2+4.8 42.1+4.8 41+4.6 39.9:4.4
Infrastructure 15.8+2.1 13.9%1.9 14£2 145+2.2 145+2.1 146+2.2 14£2.1 146+22 12.3+1.6
Internet 76.7+2.9 78.6+3.2 78+3.1 7793 81.5+3.4 82.6+3.5 79.9+3.3 7753 70.1£2.4
Misc 101.9£23.9 99.8+23.5 102.3+24.2 104.2+24.5 102.8+24.1 106 +24.8 103.1+24.5 104 +24.3 92.8+21.9
Social 64+8.6 62.9+8.4 64.4+8.7 65.8+8.7 65.7+8.7 65.9%8.7 65.8+8.9 66.1+8.7 57.6x7.7

Table 31: Ranking per field for selected dismantling method, for reinsertion method R2, (n = 1,237).
In bold the best method per field.

Ranking NBC-R2 CND-R2 GDM-R2 CoreGDM-R2 Fitness-R2 Domirank go.5-R2 ClL1-R2 MS-R2 CoreHD-R2
Biomolecular 1 2 3 4 7 6 5 9 8
Brain 1 2 4 3 5 6 7 9 8
Covert 1 3 2 4 5 6 7 8 9
Foodweb 1 3 5 6 2 4 7 8 9
Infrastructure 1 4 2 3 5 6 9 7 8
Internet 1 2 3 4 5 6 7 8 9
Misc 1 2 4 3 6 5 7 8 9
Social 1 2 3 4 5 6 7 9 8
Mean + SEM 10 25+0.27 3.25+0.37 3.875+0.35 50.50 5.625%0.26 7+0.38 8.25%0.25 8.5+0.19

Table 32: Mean and standard error of the mean (SEM) for the AUC per field, by dismantling method,
for reinsertion method R3, (n = 1,237). In bold the best method per field.

AuC Clu1-R3 CND-R3 CoreGDM-R3 CoreHD-R3 Domirank go.s-R3 Fitness-R3 GDM-R3 MS-R3 NBC-R3
Biomolecular 0.0603 £ 0.022 0.0565 = 0.021 0.0611+0.023 0.063 +0.021 0.0617 £0.024 0.0619 £0.024 0.0594 £ 0.022 0.0702 £ 0.025 0.0484 +0.017
Brain 0.4052 £ 0.002 0.3804 + 0.002 0.3986 + 0.002 0.405 +0.002 0.4037 £ 0.002 0.4033 £ 0.002 0.3992 £ 0.002 0.4071 £ 0.002 0.3662 £ 0.002
Covert 0.127 £ 0.009 0.115 % 0.009 0.1169 £ 0.009 0.1503 £0.01 0.1225 +0.009 0.1219+0.009 0.1131£0.009 0.148 £0.01 0.1038 £ 0.009
Foodweb 0.2273+0.01 0.2107 +0.009 0.2136 £0.01 0.2371+0.01 0.2122 +0.009 0.2088 + 0.009 0.2126 +0.01 0.2311+0.009 0.1963 + 0.009
Infrastructure 0.0582 £ 0.004 0.0448 +0.003 0.0447 +0.003 0.0522 +0.003 0.046 = 0.003 0.0458 +0.003 0.0436 +0.003 0.0509 +0.003 0.0409 +0.003
Internet 0.0602 +0.003 0.0569 +0.003 0.0591 +0.003 0.0684 +0.003 0.06 +0.003 0.0599 + 0.003 0.059 £0.003 0.0675 + 0.003 0.053 + 0.003
Misc 0.1946 £ 0.026 0.1866 + 0.025 0.1892 + 0.026 0.2038 £ 0.025 0.1935+0.025 0.1945 + 0.025 0.1897 £ 0.026 0.2£0.025 0.1711 + 0.025
Social 0.214 £0.015 0.19750.014 0.2063 + 0.015 0.2245 £ 0.015 0.2101+0.015 0.2094 + 0.015 0.2059 £ 0.015 0.2253 +0.015 0.1857 +0.014

Table 33: Mean and standard error of the mean (SEM) for the number of removals per field, by
dismantling method, for reinsertion method R3, (n = 1,237). In bold the best method per field.

Removals ClL1-R3 CND-R3 CoreGDM-R3 CoreHD-R3 Domirank go.s-R3 Fitness-R3 GDM-R3 MS-R3 NBC-R3
Biomolecular 70.6+11.8 72.8+13 72.5+11.8 70.2+11.6 73.4x12.8 76.2+13.6 73.4x12.5 71.6x11.4 65.3+10.6
Brain 54.9+0.9 53.4+0.9 54.2+0.9 55+0.9 54.9+0.9 54.9+0.9 546%1 55.2%0.9 52.8+0.8
Covert 13+1.5 12.6+1.5 12.8+1.5 13.9%2 12.8+15 13+1.7 126+1.4 14+1.9 11912
Foodweb 42.1+4.6 41247 41746 41+4.6 41147 41247 41.9+4.7 40.9+4.6 39.8:x4.4
Infrastructure 15.4%2 13.4+1.8 1362 1362 1422 14£2 13.7x2 1421 12.3+1.6
Internet 75.6+2.8 77.8+3.2 77.2x3 7627 80.2+3.3 81.1+3.4 79+3.2 75.4£2.7 70.1x2.4
Misc 98.8+23.1 98.7+23 100.1+23.6 100.8 £23.3 100.6 £23.4 104.3£24.5 100.9£23.8 99.6+23.2 92.6+21.8
Social 62.7+8.3 61.8+8.2 63+8.5 63.8+8.4 64+8.5 64.3+8.6 65+8.7 63.8+8.4 57.5+7.6
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Table 34: Ranking per field for selected dismantling method, for reinsertion method R3, (n = 1,237).
In bold the best method per field.

Ranking NBC-R3 CND-R3 GDM-R3 CoreGDM-R3 Fitness-R3 Domirank co.5s-R3 ClL1-R3 MS-R3 CoreHD-R3
Biomolecular 1 2 3 5 7 6 4 9 8
Brain 1 2 4 3 5 6 8 9 7
Covert 1 3 2 4 5 6 7 8 9
Foodweb 1 3 5 6 2 4 7 8 9
Infrastructure 1 4 2 3 5 6 9 7 8
Internet 1 2 3 4 5 6 7 8 9
Misc 1 2 4 3 6 5 7 8 9
Social 1 2 3 4 5 6 7 9 8
Mean + SEM 10 2.5+0.27 3.25+0.37 4+0.38 5+0.50 5.625%0.26 7+0.50 8.25+0.25 8.375+0.26

Table 35: Ranking per field for selected dismantling method with their best-performing reinsertion
method (n = 1,237). In bold the best method per field.

Ranking NBC-R2 CND-R3 GDM-R1 CoreGDM-R1 Fitness-R1 Domirank go.5-R1 Clu1-R1 MS-R1 CoreHD-R1
Biomolecular 1 2 3 5 6 7 4 9 8
Brain 1 2 4 3 5 6 8 9 7
Covert 1 3 2 4 5 6 7 8 9
Foodweb 1 3 5 6 2 4 7 8 9
Infrastructure 1 4 2 3 5 6 9 7 8
Internet 1 2 3 4 5 6 7 8 9
Misc 1 2 4 3 6 5 7 8 9
Social 1 2 3 4 5 6 7 9 8
Mean + SEM 10 2.5+0.27 3.25+0.37 4+0.38 4.875%0.44 5.75+0.31 7%0.50 8.25+0.25 8.375+0.26

Table 36: Average AUC by field for top two performing methods: NBC and CND, under different
reinsertion methods (n = 1,237) and without reinsertion (n = 1,296). In bold the best method per
field and reinsertion method.

AUC Baseline R1 R2 R3
CND NBC CND-R1 NBC-R1 CND-R2 NBC-R2 CND-R3 NBC-R3
Biomolecular 0.072 0.058 0.056 0.049 0.057 0.048 0.057 0.048
Brain 0.388 0.362 0.381 0.368 0.380 0.366 0.380 0.366
Covert 0.122 0.110 0.116 0.105 0.115 0.104 0.115 0.104
Foodweb 0.215 0.195 0.210 0.197 0.211 0.196 0.211 0.196
Infrastructure 0.048 0.040 0.045 0.041 0.045 0.041 0.045 0.041
Internet 0.058 0.049 0.057 0.053 0.057 0.053 0.057 0.053
Misc 0.204 0.171 0.186 0.173 0.187 0.171 0.187 0.171
Social 0.232 0.204 0.198 0.188 0.198 0.185 0.198 0.186
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Table 37: Running time (in seconds) comparison between CND on GPU and NBC on CPU on
synthetic nPSO networks. Experiments were conducted with network sizes ranging from 10 to 5,000
nodes and densities (p) of 4%, 8%, and 20%, using fixed temperature 7" = 0.3 and community counts
scaled by network size (C' = 2 for N € {10, 50,100}, C = 5 for N € {500, 1,000}, C = 10 for
N = 5,000). In bold the fastest method per network. N denotes number of nodes and £ number of

edges.
Yy | € N E p GND-GPU NBC-CPU
2| 2 10 10 0.22 0.020 0.011
2 | 2 10 20 0.44 0.008 0.003
2 | 2 10 30 0.67 0.007 0.004
2 | 2 50 49 0.04 0.19 0.13
2 | 2 50 98 0.08 0.37 0.20
2 | 2 50 245 0.20 0.80 0.13
2 | 2 100 198 0.04 0.50 0.16
2 | 2 100 396 0.08 1.23 0.23
2 | 2 100 980 0.20 3.10 0.52
2 |5 500 4,990 0.04 8.78 3.26
2|5 500 9,980 0.08 11.62 475
2|5 500 24,950 0.20 15.76 12.83
2 | 5 | 1,000 19,980 0.04 23.93 9.53
2 | 5 | 1,000 39,960 0.08 33.47 10.30
2 | 5 | 1,000 99,900 0.20 37.50 30.22
2 | 10 | 5000 499,900 0.04 390.67 1,304.82
2 | 10 | 5000 999,800 0.08 674.40 5,860.19
2 | 10 | 5000 2,499,500 0.20 1,448.55 9,632.88
3| 2 10 10 0.22 0.003 0.002
3| 2 10 20 0.44 0.004 0.002
3| 2 10 30 0.67 0.005 0.002
3| 2 50 49 0.04 0.23 0.07
3| 2 50 98 0.08 0.67 0.13
3| 2 50 245 0.20 1.13 0.16
3| 2 100 198 0.04 1.12 0.11
3| 2 100 396 0.08 1.81 0.22
3| 2 100 990 0.20 2.77 0.40
3|5 500 4,990 0.04 12.97 4.64
3|5 500 9,980 0.08 17.18 6.69
3|5 500 24,950 0.20 21.37 9.38
3 | 5 | 1,000 19,980 0.04 34.24 25.47
3 | 5 | 1,000 39,960 0.08 40.73 35.08
3| 5 | 1,000 99,900 0.20 44.92 47.46
3 | 10| 5000 499,900 0.04 632.02 3,593.83
3 | 10| 5000 999,800 0.08 946.71 7,367.02
3 | 10 | 5000 2,499,500 0.20 2,000.94 10,122.08
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