
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PREFERENCE OPTIMIZATION VIA KEY-STEP ERROR EX-
PLORATION FOR MULTI-STEP REASONING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown promising performance in various
reasoning tasks, but still confront challenges when dealing with complex multi-
step reasoning. Existing methods suggest using fine-grained preference signals to
guide mathematical reasoning step by step. However, how to efficiently build a
fine-grained preference dataset with correct and incorrect steps remains an open
problem. To address this challenge, we propose an efficient method for preference
optimization via Key-step Error Exploration (KEEP). Unlike previous methods
that rely on extensive sampling of whole responses or predefined perturbations,
KEEP implements a more controllable and lightweight step-level preference data
construction. Specifically, KEEP designs a key step identification strategy to
simplify data construction by focusing on critical steps of the reasoning path.
Moreover, KEEP proactively explores the underlying errors on the key steps and
speculatively remains high-valued errors for controllability. By focusing on key
step error exploration, KEEP addresses a crucial gap in the efficient construction
of fine-grained preference datasets. Extensive experiments on models from 7B to
70B show KEEP delivers up to a 9.5% performance gain across 6 mathematical
reasoning benchmarks while reducing data generation costs by up to 10x. We
further demonstrate KEEP’s broad generality, showing strong performance on
diverse domains including logic, code generation, and long-form QA across 8
distinct domains. Moreover, our analysis indicates KEEP’s potential for training
process supervision reward models (PRMs), which could effectively advance
mathematical reasoning evaluation frameworks.

1 INTRODUCTION

Today, LLMs have shown remarkable performances in many reasoning tasks, such as: coding (Chen
et al., 2023; Liu et al., 2024b), tool usage (Schick et al., 2023; Patil et al., 2023), logical reason-
ing (Kojima et al., 2022; Lu et al., 2024a), and knowledge question answering (Madaan et al., 2022;
Singhal et al., 2023). However, mathematical reasoning remains a cornerstone challenge for LLMs as
it requires a complex and long-chain reasoning, a small mistake can deviate the reasoning path and
lead to a wrong answer.
Among many efforts to improve LLM’s reasoning ability (Luo et al., 2023; Lu et al., 2024b; Tang
et al., 2024; Mitra et al., 2024; Chen et al., 2024a; Liu & Yao, 2024; Xu et al., 2024b; Li et al.,
2024; Shao et al., 2024c; Xin et al., 2024; Ying et al., 2024; Shao et al., 2024b), Directed Preference
Optimization (DPO) (Rafailov et al., 2024) becomes a popular choice due to its simplicity. Despite
its successful applications on open-text generation, summarization, and chat benchmarks, many
studies (Lou et al., 2024; Lai et al., 2024) point out that DPO offers minimal benefits to LLM’s
mathematical reasoning as it is optimized on the whole response and overlooks the key difference
between the chosen and rejected responses, which eventually misleads preference optimization and
hinders its application on long-chain reasoning. As a remedy, previous works propose the use of
fine-grained preference signals to guide mathematical reasoning step by step (Lai et al., 2024; Chen
et al., 2024b; Lu et al., 2024d; Xu et al., 2024a; Liu et al., 2024a). However, how to efficiently curate
a fine-grained preference dataset is an open problem. A common practice is to employ a commercial
LLM (e.g., GPT4) to label the reasoning steps (Lai et al., 2024; Lightman et al., 2023), but the
accuracy of LLM being a process reward model is still low (Zheng et al., 2024) and can introduce
much noise in preference data. Some works (Chen et al., 2024b; Lu et al., 2024d) propose to employ
repeated rollout/high-temperature sampling to collect the possible errors, while this is effective, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Entropy
Perplexity

Step 1 Step 2 Step i Step N-1 Step N

Key Step Key Step

Key Steps Simple/Moderate/Complex Error Steps

Rejected Probability

LLM

Chosen Probability

Reject Sampling

Key Step Identification

Proactive Error Exploration

… …

...

Preference Pairs

Speculative Filtering

LLM

Draft

LLM

Figure 1: Overview of the KEEP framework. The process consists of three core stages: (1) Key Step
Identification, which uses perplexity and entropy to locate critical reasoning steps; (2) Proactive
Error Exploration, where a draft model generates plausible incorrect variants of these key steps; and
(3) Speculative Filtering, which retains high-value, challenging preference pairs for optimization.

Table 1: Comparison of existing step-level preference construction methods. KEEP offers a com-
pelling combination of efficiency, controllability, and realism.

Method Efficiency Error Diversity Controllability Noise Risk Limitation

High-temp / repeated rollout ✗ ✓ ✗ Low High inference cost, poor scalability
LLM-as-PRM annotation ✗ ✓ ✓ High Noisy labels due to imperfect PRM accuracy
Predefined error templates ✓ ✗ ✓ Low Limited error types, unrealistic distribution
KEEP (ours) ✓ ✓ ✓ Low —

high inference cost hinders its scaling to large models. Yet a recent work (Xu et al., 2024a) imposes
predefined errors to construct rejected responses, but its error type is limited by predefined prompts.
In this paper, we propose an efficient method for preference optimization via Key-step Error Explo-
ration (KEEP), which implements a more controllable and lightweight step-level preference data
construction. We summarize the distinctions between existing approaches and KEEP in Table 1.
Moreover, Figure 1 illustrates the three main components of KEEP: 1) key step identification, 2)
proactive error exploration, and 3) speculative filtering.
Key Step Identification. Along the long-chain reasoning path of math problem solving, LLMs can
exhibit significant uncertainty on some key reasoning steps. To encourage the optimization to focus
on these key steps, we employ the Perplexity (PPL) and information entropy to quantify the uncertain
level of each step and identify the top-k steps as the key steps. PPL indicates the familiarity of LLMs
with the current step, while information entropy reflects the step’s informational content within the
context. A higher PPL suggests a higher likelihood of errors, and higher entropy indicates greater
contextual importance. We select steps with both high PPL and entropy as key steps.
Proactive Error Exploration. To address complex scenarios in real-world applications, we proac-
tively explore potential errors for using a draft model, such as GPT-4o. For each key step, errors
are classified as simple, moderate, or complex, ranging from character-level changes to adjustments
throughout the reasoning process within the key step.
Speculative Filtering. To ensure that preference data is effective for LLMs, we propose Speculative
Filtering based on rejection sampling to retain high-valued data. Specifically, for each keystep and its
corresponding incorrect step, we examine their probabilities. We ultimately retain incorrect steps
with high probabilities, as these are valuable for LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• An efficient and novel framework. We propose KEEP, a lightweight preference optimiza-
tion method focusing on key-step error exploration, contrasting with prior works that use
expensive rollouts or noisy annotations. KEEP achieves up to a +9.5% accuracy gain on the
challenging AQUA benchmark and demonstrates broad generality, enhancing performance
on tasks from HumanEval for code generation to long-form QA across 8 distinct domains.

• PPL–entropy-driven key-step identification. We introduce a principled scoring rule that
jointly leverages Perplexity (PPL) and information entropy. Its effectiveness is not just
theoretically motivated but also empirically validated by a strong positive correlation
(Spearman’s ρ = 0.488) with the true expected improvement in Monte-Carlo simulations.
This dual signal overcomes the bias of sampling methods that over-sample high-entropy
steps while overlooking critical high-PPL (high-complexity) steps.

• Multi-dimensional and robust experiments. We conduct extensive evaluations on models
from 7B to 70B across six mathematical datasets, including competition-level benchmarks
like AIME24 and Odyssey-MATH. KEEP consistently outperforms strong baselines, includ-
ing DPO-style method and RLVR method. Furthermore, we show KEEP can serve as a data
engine to empower the RLVR ecosystem, training a PRM that boosts the crucial error-step
F1 score by 10+ points on ProcessBench.

• In-depth computational cost analysis. Our theoretical and empirical analyses confirm
that KEEP yields up to a 10x lower computational cost compared to sampling-based
approaches. Critically, its effectiveness is not reliant on expensive proprietary draft models;
even when using a 7B open-source model, KEEP still significantly outperforms strong
baselines like SVPO and SCDPO.

• Comprehensive and pedagogically-valuable error generation. Through systematic analy-
sis, we demonstrate that KEEP generates a more diverse set of errors, avoiding the "mode
collapse" common in sampling-based methods. Moreover, our gradient-based attribution
analysis confirms these generated errors are pedagogically high-impact, providing stronger
and more meaningful learning signals to the model.

2 BACKGROUND

Preliminary Directed Preference Optimization (DPO) (Rafailov et al., 2024) becomes a popular
choice due to its simplicity, which directly uses pair-wise preference data to optimize the policy
model. Specifically, the input data includes an input prompt x, and a preference data pair (yw, yl),
where yw represents the better output response, and yl represents the undesirable output response.
DPO aims to maximize the probability of the better output yw and minimize that of the undesirable
output yl. The optimization objective is formulated as:

LDPO(θ) = − E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

where D denotes the pair-wise preference dataset, σ is the sigmoid function, πθ(·|x) is the policy
model being optimized, πref(·|x) is the reference model that remains unchanged during training, and
the hyperparameter β controls the deviation from the reference model.

3 METHOD

As shown in Figure 1, the KEEP system comprises three main modules: 1) key step identification, 2)
proactive error exploration, and 3) speculative filtering. For an LLM and a math question&answer,
we first identify the most confusing step in the reasoning process of answer as the key step. Then,
we proactively explore the underlying errors on the key steps via using a draft model to propose the
varying degrees of errors. Finally, we filter out the less-possible errors via reject sampling and use
the remaining high-valued ones for preference optimization.

3.1 KEY STEP IDENTIFICATION

To identify key steps that are confusing or uncertain for LLMs in multi-step reasoning, we use
the perplexity (PPL) and information entropy to score each step. Perplexity evaluates the model’s

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

predictive capability for the text within a step S, calculated as:

PPL(S) = exp

(
− 1

N

N∑
i=1

logPθ(wi | w1:i−1)

)
Here, N is the number of words wi in the step S, and Pθ(wi | w1:i−1) is the model’s predicted
probability for the i-th word given the preceding words within the same step.
Information entropy measures the uncertainty of the current step within the broader context, calculated
by considering the predicted probabilities of each word in the step:

H(S,C) = − 1

N

N∑
i=1

Pθ(wi | ci) logPθ(wi | ci)

Here, S represents the current step, C represents the context, and ci denotes the context including all
words before wi, both within the current step and from prior steps. Pθ(wi | ci) is the probability of
the i-th word given this context ci).
To combine PPL and information entropy, we use a normalized linear combination:

Score(S) = α · norm(PPL(S)) + β · norm(H(S,C))

where

norm(Xi) =
Xi −min({Xj})

max({Xj})−min({Xj})
Here, Xi represents the value for a specific step S, and {Xj} is the set of values across all steps
within the current answer. Moreover, α and β are weight coefficients, both defaulting to 1.
Finally, we select the top-scoring steps up to a certain percentage (default 50%) as key steps. This
percentage can be adjusted according to your needs.

Theoretical Motivation. Our PPL-Entropy scoring rule is grounded in a principled theoretical
analysis, detailed in Appendix D. The analysis reveals two key insights: correcting low-probability
steps yields larger log-likelihood improvement (Theorem D.1), and steps with higher conditional
entropy have a greater potential for information gain on final correctness (Theorem D.2). Our scoring
rule, therefore, translates these theoretical principles into a practical and computationally efficient
metric that approximates the true expected improvement. The effectiveness of this theoretically-
grounded approach is empirically validated by our Monte-Carlo analysis, which confirms a statistically
significant correlation (ρ = 0.488) between our score and the true expected improvement.

3.2 PROACTIVE ERROR EXPLORATION

For each identified key step, we proactively explore the underlying errors on the key steps to generate
incorrect steps at three different levels: simple, medium, and complex.

• Simple Errors: These occur at the character level, such as spelling mistakes or symbol
substitutions (e.g., replacing “+” with “-”). Example: For the mathematical step 2x+ 3 = 7,
a simple error might be 2x+ 3 = 8.

• Medium Errors: These involve minor logical or calculation mistakes within a step. Exam-
ple: In the step “subtract 3 from both sides to get 2x = 4,” a medium error might be “add 3
to both sides to get 2x = 10.”

• Complex Errors: These involve significant adjustments to the logic or reasoning process of
the entire step. Example: Instead of solving the equation directly, a complex error might
involve incorrectly applying a different method, such as using substitution when elimination
is appropriate.

We input the key step and its context into a general-purpose draft model (e.g., GPT-4o) and use
carefully crafted prompts to propose incorrect steps with these three-level possible errors. Detailed
prompts can be found in Appendix A.2.

3.3 SPECULATIVE FILTERING

To ensure that preference data is effective for LLMs, we propose Speculative Filtering based on
rejection sampling to retain high-valued data. For each preference pair, we calculate the generation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

probabilities for the correct step and the incorrect step using the LLM. These are referred to as Pchosen
and Prejected, respectively. The formula is:

P(S,C) =

n∏
i=1

Pθ(wi | ci)

where S represents the current step, C represents the context, and ci denotes the context including all
words before wi, both within the current step and from prior steps. Pθ(wi | ci) is the probability of
the i-th word given this context ci, and n is the number of words in the step.

We use the ratio Prejected

Pchosen
to determine whether to retain the current preference pair. A higher ratio

indicates that the LLM finds it challenging to distinguish between the correct and incorrect steps, so
we aim to retain such pairs to improve the model’s discriminative ability.

3.4 PREFERENCE OPTIMIZATION

Many studies (Lou et al., 2024; Lai et al., 2024) point out that traditional DPO offers minimal
benefits to LLM’s mathematical reasoning as it is optimized on the whole response and overlooks the
key difference between the chosen and rejected responses, misleading the preference optimization
and hindering its application on long-chain reasoning. Thus, we follow (Lai et al., 2024) to use
fine-grained preference signals to guide mathematical reasoning step by step.
Specifically, given an input prompt x and a sequence of initial correct reasoning steps s1∼k−1 =
s1, . . . , sk−1, Step-wise DPO aims to maximize the probability of the next correct step sw and mini-
mize the probability of the next incorrect step sl. We let z=(x, s1∼k−1, sw, sl), and the optimization
objective can be formulated as:

L(θ) = − E(z)∼D

[
log σ

(
β log

πθ(sw|x; s1∼k−1)

πref(sw|x; s1∼k−1)
− β log

πθ(sl|x; s1∼k−1)

πref(sl|x; s1∼k−1)

)]
where D is the dataset containing step-wise preference pairs, σ is the sigmoid function,
πθ(·|x; s1∼k−1) is the policy model to be optimized, πref(·|x; s1∼k−1) is the reference model that
remains unchanged during training, β is a hyperparameter that controls the distance from the reference
model.

4 EXPERIMENTS

To comprehensively validate our proposed method, we structure our experimental evaluation to
systematically demonstrate KEEP’s effectiveness, generality, and robustness. Our experiments are
organized as follows:

• First, we establish KEEP’s superior performance in mathematical reasoning, showing it
consistently outperforms state-of-the-art DPO-style methods and is highly competitive with
strong RLVR baselines (Section 4.2).

• Second, we demonstrate the broad generality of KEEP’s core mechanism by evaluating it
on diverse non-mathematical tasks, including logic, code generation, and long-form question
answering (Section 4.3).

• Third, we conduct a series of in-depth analyses and ablation studies to validate each of
our core components. These analyses confirm the robustness of our design choices and,
critically, quantify the efficiency and quality of our data generation pipeline (Section 4.4).

• Finally, we explore KEEP’s potential to empower the RLVR ecosystem by using its gener-
ated data to train high-quality Process Supervision Reward Models (PRMs) (Section 4.5).

To supplement these findings, we provide an extensive appendix that substantiates our core claims.
This begins with the theoretical motivation for our key-step identification strategy (Appendix D),
followed by deep empirical analyses, including: a detailed study confirming KEEP’s ability to reduce
data generation costs by up to 10x (Appendix B); a rigorous quality audit of our generated data, which
confirms its high purity (<5% noise) and pedagogical value via gradient attribution (Appendix F);
and a comparative analysis showing KEEP produces a more diverse error distribution, avoiding the
"mode collapse" seen in sampling methods (Appendix G). Further appendices delve into the roles of
PPL and entropy (Appendix E) and provide illustrative case studies (Appendix H).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We evaluate our method on a wide array of reasoning benchmarks to test its effectiveness and gener-
ality. 1) For mathematical reasoning, we use six datasets: three in-domain (GSM8k (Cobbe et al.,
2021), MATH (Yu et al., 2023), and AQuA (Ling et al., 2017)) and three out-of-domain to test gener-
alization (SVAMP (Patel et al., 2021), AIME24 (MAA, 2024), and Odyssey-MATH (Netmind.AI,
2024)). These benchmarks cover a wide spectrum of difficulty, from grade-school arithmetic to
competition-level challenges. 2) For general reasoning, we further test the broad generality of our
method on benchmarks for logical reasoning (ZebraLogic (Mallen et al., 2023)), code generation
(MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021)), and multi-domain long-form question
answering (ELI5 (Fan et al., 2019)), where we evaluate across 8 distinct domains.

4.1.2 BASELINES

• General-purpose LLMs: State-of-the-art open-source instruction-tuned LLMs like the
Qwen2 series (Yang et al., 2024) and the Llama 3.1 series (Meta AI, 2024). We also report
scores from leading closed-source models such as OpenAI’s GPT-4o (OpenAI, 2024) and
Anthropic’s Claude-3.5-Sonnet (Anthropic, 2024) for context.

• Mathematics-enhanced LLMs: Models specifically optimized for mathematical reasoning,
e.g., DeepSeekMath-RL (Shao et al., 2024b), Llemma (Azerbayev et al., 2024), ToRA (Gou
et al., 2024), MAmmoTH (Yue et al., 2024a), and MathGenieLM (Lu et al., 2024c).

• Stepwise DPO-optimized LLMs: Advanced models fine-tuned with stepwise Direct Prefer-
ence Optimization (DPO), such as Step-DPO (Lai et al., 2024), SVPO (Chen et al., 2024b),
MCTS-DPO (Xie et al., 2024), SCDPO (Lu et al., 2024d), and RISE (Xu et al., 2024a).

• RL with Verifiable Reward (RLVR) Methods: We also include strong RL-based methods
like PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024a), which are mainstream
approaches for mathematical reasoning.

4.2 SUPERIOR PERFORMANCE ON MATHEMATICAL REASONING

Table 2: Comparison of results on different com-
monly used mathematical datasets. † represents
out-of-domain datasets.
Model GSM8K MATH AQuA SVAMP†

Closed-source Models

GPT-4o 96.0 78.1 82.2 94.3

Claude-3.5-Sonnet 94.9 68.5 77.5 92.9

Open-source Models

Qwen2-7B-Instruct 85.4 52.2 66.5 89.3

Llama-3.1-8B-Instruct 84.0 48.3 55.9 85.7

DeepSeekMath-RL-7B 87.7 52.7 59.0 88.4

Llemma-7B 36.4 18.0 - -

MathGenieLM-7B 80.5 45.1 - 83.3

MAmmoTH-7B 53.6 31.5 44.5 67.7

ToRA-7B 68.8 40.1 23.6 68.2

Step-DPO(7B) 88.5 55.8 63.0 88.7

SVPO(7B) 81.7 59.5 - -

MCTS-DPO(7B) 81.8 34.7 - -

SCDPO(7B) 80.1 47.7 48.4 83.2

RISE(Qwen2-7B) 88.4 59.9 69.7 91.6

RISE(Llama-3.1-8B) 87.9 51.0 61.4 87.5

KEEP(Qwen2-7B) 89.1 59.9 72.8 91.9
KEEP(Llama-3.1-8B) 88.3 52.0 65.4 88.2

To validate KEEP’s effectiveness, we first estab-
lish its performance in the challenging domain
of math. This section is structured to demon-
strate its capabilities, starting from common
benchmarks and then scaling up to larger models
and competition-level problems.

4.2.1 MAIN
RESULTS ON COMMON BENCHMARKS

We begin by conducting comprehensive com-
parisons on four classic mathematical datasets.
As shown in Table 2, our approach consistently
achieves the best results among open-source
models across both the Qwen2-7B and Llama-
3.1-8B base models. Notably, our method not
only delivers substantial improvements over the
base models but also matches or surpasses the
strongest baselines RISE, SCDPO and SVPO on
key benchmarks like MATH and GSM8K, while
establishing a clear advantage on AQuA. These
gains are particularly significant. Specifically,
KEEP boosts the Qwen2-7B model’s score on
the challenging MATH benchmark by +7.7%
(from 52.2% to 59.9%), and improves the Llama-
3.1-8B model’s score on AQuA by a remarkable
+9.5% (from 55.9% to 65.4%). This demon-
strates the superior effectiveness of our fine-
grained preference optimization strategy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2.2 CHALLENGING RESULTS ON
LARGE-SCALE MODELS Table 3: Results on competition-level datasets.

Model AQuA AIME24† Odyssey†

Closed-source Models
GPT-4o 82.2 3/30 52.9
Claude-3.5-Sonnet 77.5 4/30 48.0

Open-source Models
ToRA-70B 41.3 0/30 26.8
MAmmoTH-70B 65.0 0/30 15.7
Qwen2-72B-Instruct 78.3 4/30 45.7
Llama-3.1-70B-Inst. 77.1 7/30 60.4
Step-DPO(Qwen2-72B) 77.5 4/30 50.1
RISE(Qwen2-72B) 79.1 4/30 49.4
RISE(Llama-3.1-70B) 77.7 7/30 58.9
KEEP(Qwen2-72B) 81.5 6/30 48.8
KEEP(Llama-3.1-70B) 80.7 9/30 63.6

To test KEEP’s scalability, we performed ex-
periments on 70B+ scale models using more
difficult, competition-level datasets. As shown
in Table 3, our method continues to deliver con-
sistent and meaningful improvements even on
these challenging problems. For example, on
the notoriously difficult AIME24 benchmark,
KEEP improves the score of Llama-3.1-70B
from 7/30 to 9/30, a substantial gain on prob-
lems designed to challenge human competitors.
Similarly, on the Odyssey-MATH dataset, KEEP
improves the performance of Llama-3.1-70B by
+3.2%. This consistent performance on complex
problems with SOTA models underscores the
scalability and effectiveness of our approach.

4.2.3 FURTHER COMPARISON WITH SOTA METHODS

To provide a direct head-to-head comparison, we first applied core DPO-style baselines to the same
7B/8B base models. As presented in Table 4, the results confirm KEEP’s strong and consistent
performance, achieving superior or highly competitive results across the full suite of six mathematical
datasets, validating its robustness and broad-ranging effectiveness within its paradigm. Furthermore,
to situate KEEP against the mainstream RLVR paradigm, we conducted direct comparisons on key
benchmarks. As shown in Table 5, KEEP achieves performance on par with or exceeding strong
RLVR methods. Notably, on the challenging MATH benchmark, KEEP matches the strong PPO
baseline while significantly outperforming GRPO. This suggests that our data generation strategy
can produce training signals competitive with those from traditional RL pipelines in these reasoning
tasks.

Table 4: Fair comparison with DPO-style methods using the same base models.
Base model Method GSM8K MATH AQuA SVAMP AIME Odyssey

Qwen2-7B-instruct

DPO 86.1 49.1 70.9 89.8 2/30 34.0
SVPO 86.7 52.2 71.3 89.6 0/30 12.6

SCDPO 86.8 51.6 70.5 89.6 1/30 18.9
RISE 88.4 59.9 69.7 91.6 2/30 36.2

KEEP 89.1 59.9 72.8 91.9 4/30 44.4

Meta-Llama-3.1-8B-Instruct

DPO 82.8 50.1 59.8 84.1 3/30 48.2
SVPO 84.8 48.7 59.1 84.3 2/30 54.1

SCDPO 84.4 48.8 63.2 85.1 2/30 48.5
RISE 87.9 51.0 61.4 87.5 3/30 49.3

KEEP 88.3 52.0 65.4 88.2 4/30 54.3

4.3 BROAD GENERALITY ACROSS DIVERSE REASONING DOMAINS

A key advantage of KEEP is that its core mechanism—identifying and correcting errors at points of
high model uncertainty—is domain-agnostic. To validate this, we applied KEEP to non-mathematical
reasoning tasks. As shown in Table 6, KEEP brings significant improvements to logical reasoning
and code generation, outperforming other DPO-style methods. For example, it improves the score
on HumanEval from a 47.5 baseline to 51.6. Furthermore, we evaluated KEEP on a multi-domain
long-form QA task (ELI5), where verifiable reward signals are often unavailable, making RLVR
methods challenging to apply. As presented in Table 7, KEEP consistently improves answer quality
across 8 diverse domains, enhancing not only overall scores but also specific dimensions like accuracy
and completeness. These results strongly suggest that KEEP is a general framework for enhancing
complex reasoning in LLMs.

4.4 IN-DEPTH ANALYSIS AND ABLATION STUDIES

4.4.1 ABLATION ON CORE COMPONENTS

To demonstrate the importance of each module in our method, we designed an ablation study. As
shown in Table 8, removing any of the three core components—key step identification, proactive

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Comparison with mainstream RLVR
methods on key benchmarks, using Qwen2-7B-
instruct as the base model.

Method GSM8K MATH

Base Model 85.4 52.2

PPO (RLVR) 87.5 59.4
GRPO (RLVR) 89.1 48.0
KEEP 89.1 59.9

Table 6: Performance on Logic and Code Tasks.
MBPP and HumanEval are code benchmarks.
Qwen2-7B-instruct as the base model.

Method ZebraLogic MBPP HumanEval

Base 21.5 42.2 43.9
DPO 20.8 42.0 45.1
RISE 23.2 42.4 47.5
KEEP 35.8 43.1 51.6

Table 7: Multi-domain long-form QA (ELI5) results on 8 domains.

Domain Overall Score Accuracy Score Completeness Score Clarity Score
Baseline KEEP Baseline KEEP Baseline KEEP Baseline KEEP

Biology 7.48 7.75 7.53 8.12 6.66 6.89 8.29 8.50
Chemistry 7.45 7.63 7.82 8.11 6.49 6.86 8.08 8.10
Economics 7.67 7.81 8.14 8.31 6.77 7.15 8.05 8.23
Engineering 7.44 7.71 7.55 7.90 6.76 6.92 7.89 8.12
Mathematics 7.72 8.12 8.35 8.76 6.77 7.32 7.95 8.22
Physics 7.26 7.35 7.89 7.94 6.42 6.56 7.53 7.84
Technology 7.71 7.99 8.02 8.35 6.98 7.12 8.15 8.27
Other 7.32 7.46 7.60 7.71 6.55 6.69 7.88 7.94

error exploration, or speculative filtering—leads to a significant performance drop on both GSM8K
and MATH datasets. This validates the integral role each component plays in KEEP’s effectiveness.

Table 8: Ablation study of training settings.

Method GSM8K MATH

Qwen2-7B-Instruct 85.4 52.2

QWEN2-7B + KEEP 89.1 59.9
- w/o key step identification 87.8 56.6
- w/o proactive error exploration 88.0 58.3
- w/o speculative filtering 87.8 57.7

Method GSM8K MATH

Llama-3.1-8B-Instruct 84.0 48.3

LLAMA-3.1-8B + KEEP 88.3 52.0
- w/o key step identification 83.8 43.8
- w/o proactive error exploration 84.8 50.9
- w/o speculative filtering 86.2 50.7

4.4.2 PRACTICALITY WITH SMALL-SCALE DRAFT MODELS

A key concern for data generation pipelines is their reliance on powerful, often proprietary, draft
models. We tested KEEP’s practicality by using small, open-source QWen models (7B and 13B) as
the draft model. Table 9 shows that even with a 7B draft model, KEEP consistently and significantly
outperforms strong baselines like SVPO and SCDPO. This result is critical, as it demonstrates that
KEEP’s effectiveness stems from its structured data generation process, not the sheer power of the
draft model, making it a practical and cost-effective solution.

Table 9: The results of experiments using smaller open-source models as Draft Model for KEEP.

Method Draft Model GSM8K MATH AQuA SVAMP AIME Odyssey

DPO - 86.1 49.1 70.9 89.8 2/30 34.0
SVPO - 86.7 52.2 71.3 89.6 0/30 12.6
SCDPO - 86.8 51.6 70.5 89.6 1/30 18.9

KEEP 7B 88.3 56.6 72.1 90.9 3/30 36.2
KEEP 13B 88.7 58.2 72.3 91.2 3/30 41.5
KEEP GPT-4o 89.1 59.9 72.8 91.9 4/30 44.4

4.4.3 ROBUSTNESS OF DESIGN CHOICES

To address concerns about the heuristic nature of our design choices, we conducted experiments on
two key parameters. First, as shown in the left part of Table 10, we replaced the linear fusion of PPL
and entropy with alternative, theoretically-grounded functions (Multiplicative and Log-Sum-Exp).
All methods yielded strong, comparable results, confirming our framework is robust and not tied
to a specific fusion function. Second, the right part of Table 10 shows that our choice of a 50%
key-step threshold provides a robust balance between performance and computational cost, with
similar performance observed for 30% and 70% thresholds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 10: Robustness analysis of key design: fusion method (left) and key step proportion (right).

Method GSM8K MATH

KEEP (Linear Fusion) 89.1 59.9
KEEP (Multiplicative) 88.9 59.9
KEEP (Log-Sum-Exp) 88.4 59.1

Proportion GSM8K MATH

30% 86.50 54.10
50% 88.10 56.58
70% 88.25 56.52

4.5 EMPOWERING RLVR WITH HIGH-QUALITY PRMS

Beyond being a standalone preference optimization method, we investigated KEEP’s potential to
enhance the broader RLVR ecosystem. A high-quality Process-level Reward Model (PRM) is the
cornerstone of many RLVR systems. We used the data generated by KEEP to train an open-source
PRM (RLHFlow-PRM-Mistral-8B) and evaluated it on the ProcessBench benchmark. As shown
in Table 11, the PRM trained on KEEP’s data significantly outperforms baselines, especially in the
crucial task of identifying error steps (e.g., boosting the correct step F1 score on the Omni-MATH
benchmark by over 12 points, from 42.3 to 54.4). This demonstrates that KEEP serves as a powerful
data engine capable of producing high-quality supervision signals that can directly benefit and
empower mainstream RLVR pipelines.
Table 11: Training PRM based on KEEP data, evaluation results on ProcessBench dataset. The
KEEP-trained PRM shows superior performance in identifying both error and correct steps.

Model GSM8K MATH OlympiadBench Omni-MATH
error correct F1 error correct F1 error correct F1 error correct F1

PRM 33.8 99.0 50.4 21.7 72.2 33.4 8.2 43.1 13.8 9.6 45.2 15.8
PRM+SPO 38.6 98.4 55.5 20.4 74.3 31.8 8.3 57.5 14.5 9.2 41.0 15.1
PRM+SCDPO 33.8 98.4 50.3 22.4 70.7 34.0 8.6 40.1 14.2 10.3 42.3 16.5
PRM+KEEP 43.5 96.4 59.9 22.4 79.8 35.0 8.8 63.1 15.4 10.4 54.4 17.5

5 RELATED WORK

5.1 MATHEMATICAL REASONING

Large language models (LLMs) have demonstrated significant potential in mathematical reasoning.
One major line of work leverages the chain-of-thought (CoT) reasoning framework and its extensions
to elicit multi-step reasoning capabilities (Yao et al., 2024; Chen et al., 2024a; Tong et al., 2024;
Yoran et al., 2023; Li et al., 2023). Another direction focuses on improving the supervised fine-tuning
(SFT) process by curating higher quality or larger quantities of mathematical data (Yu et al., 2023;
Yue et al., 2023; Liu & Yao, 2024; Lu et al., 2024b; Xu et al., 2024b; Li et al., 2024; Xin et al.,
2024; Ying et al., 2024; Yue et al., 2024b; Tang et al., 2024; Mitra et al., 2024). Furthermore, to
ensure the accuracy of calculations, many methods incorporate external tools like calculators and
code interpreters (Cobbe et al., 2021; Shao et al., 2022; Gao et al., 2023).

5.2 PREFERENCE OPTIMIZATION

Preference optimization aims to improve the reasoning ability of LLMs by enabling them to generate
higher-quality responses. For instance, methods based on Proximal Policy Optimization (PPO) (Light-
man et al., 2024; Luo et al., 2023; Shao et al., 2024c) provide reward signals for entire generated
outputs. However, these methods often involve complex training pipelines and depend heavily
on the quality of a process supervision reward model (PRM). To simplify this, Direct Preference
Optimization (DPO) (Rafailov et al., 2024) was proposed to learn directly from pairs of correct and
incorrect responses. Building on this, several important works have extended DPO to a step-wise
learning paradigm (Lai et al., 2024; Lu et al., 2024d; Xie et al., 2024; Setlur et al., 2024; Xu et al.,
2024a). This approach enables LLMs to learn from fine-grained, step-level feedback, which is more
effective for improving multi-step mathematical reasoning.

6 CONCLUSION

In this paper, we introduced KEEP, a novel framework to enhance LLM reasoning by efficiently
generating high-quality, step-level preference data. Departing from expensive sampling, KEEP uses a
lightweight process to identify critical reasoning steps, proactively explore targeted errors, and filter
for the most valuable examples. Experiments demonstrate that this strategy significantly improves
mathematical reasoning and generalizes robustly to diverse domains like code and logic. We conclude
that KEEP offers a scalable and practical data generation paradigm, paving a more efficient path
toward building reliable and capable reasoning models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.5 Sonnet. https://anthropic.com/news/claude-3-5-sonnet,
2024. URL https://anthropic.com/news/claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Matej Rosca, David Krueger, Ilya Sutskever, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=4WnqRR915j.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv:2405.03553, 2024a.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization for
mathematical reasoning, 2024b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
Long form question answering. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 3558–3567. Association for Computational Linguistics, 2019.
URL https://aclanthology.org/P19-1346.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
Ep0TtjVoap.

Frederick Jelinek. Statistical methods for speech recognition. MIT press, 1998.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo:
Step-wise preference optimization for long-chain reasoning of llms, 2024.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang,
and Houwen Peng. Common 7b language models already possess strong math capabilities.
arXiv:2403.04706, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Commu-
nicative agents for" mind" exploration of large language model society. NeurIPS, 2023.

10

https://anthropic.com/news/claude-3-5-sonnet
https://anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://aclanthology.org/P19-1346
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. arXiv:1705.04146, 2017.

Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan,
Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, and Meng Cao. Tis-dpo: Token-
level importance sampling for direct preference optimization with estimated weights, 2024a.

Haoxiong Liu and Andrew Chi-Chih Yao. Augmenting math word problems via iterative question
composing. arXiv:2401.09003, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024b.

Xiaoxuan Lou, Chaojie Wang, and Bo An. Mars-po: Multi-agent reasoning system preference
optimization, 2024.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36, 2024a.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of llms. arXiv:2402.16352, 2024b.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 2732–2747. Association
for Computational Linguistics, 2024c. doi: 10.18653/V1/2024.ACL-LONG.151. URL https:
//doi.org/10.18653/v1/2024.acl-long.151.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Step-controlled dpo: Leveraging stepwise error for enhanced mathematical
reasoning, 2024d.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv:2308.09583, 2023.

MAA. American invitational mathematics examination, 2024. URL https:
//artofproblemsolving.com/wiki/index.php/American_Invitational_
Mathematics_Examination.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Alex Mallen, Alexandru Tifrea, and Chitta Baral. The zebra puzzle: A benchmark for structured
logical reasoning. arXiv preprint arXiv:2305.17631, 2023.

Meta AI. Meta Llama 3-1. https://ai.meta.com/blog/meta-llama-3-1/, 2024. URL
https://ai.meta.com/blog/meta-llama-3-1/.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv:2402.14830, 2024.

11

https://arxiv.org/abs/2305.20050
https://doi.org/10.18653/v1/2024.acl-long.151
https://doi.org/10.18653/v1/2024.acl-long.151
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Netmind.AI. Odyssey-math. https://github.com/protagolabs/odyssey-math/
tree/main, 2024. URL https://github.com/protagolabs/odyssey-math/
tree/main.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024. URL
https://openai.com/index/hello-gpt-4o/.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math
word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür,
Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pp. 2080–
2094. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.NAACL-MAIN.
168. URL https://doi.org/10.18653/v1/2021.naacl-main.168.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. CoRR,
abs/2406.14532, 2024. doi: 10.48550/ARXIV.2406.14532. URL https://doi.org/10.
48550/arXiv.2406.14532.

Burr Settles. Active learning literature survey. 2009.

Zhihong Shao, Fei Huang, and Minlie Huang. Chaining simultaneous thoughts for numerical reason-
ing. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2022, pp. 2533–2547, Abu Dhabi, United Arab Emirates, De-
cember 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.
187. URL https://aclanthology.org/2022.findings-emnlp.187.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024b. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv:2402.03300, 2024c.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

12

https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://github.com/protagolabs/odyssey-math/tree/main
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.48550/arXiv.2406.14532
https://doi.org/10.48550/arXiv.2406.14532
https://aclanthology.org/2022.findings-emnlp.187
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/arXiv.2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv:2403.02884, 2024.

Yongqi Tong, Dawei Li, Sizhe Wang, Yujia Wang, Fei Teng, and Jingbo Shang. Can llms learn from
previous mistakes? investigating llms’ errors to boost for reasoning. arXiv:2403.20046, 2024.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
CoRR, abs/2405.00451, 2024. doi: 10.48550/ARXIV.2405.00451. URL https://doi.org/
10.48550/arXiv.2405.00451.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv:2405.14333, 2024.

Kaishuai Xu, Tiezheng Yu, Wenjun Hou, Yi Cheng, Chak Tou Leong, Liangyou Li, Xin Jiang,
Lifeng Shang, Qun Liu, and Wenjie Li. Subtle errors matter: Preference learning via error-injected
self-editing, 2024a.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan
Zeng, Zhengxiao Du, Wenyi Zhao, et al. Chatglm-math: Improving math problem-solving in large
language models with a self-critique pipeline. arXiv:2404.02893, 2024b.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen,
Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men,
Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yun-
fei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2
technical report. CoRR, abs/2407.10671, 2024. doi: 10.48550/ARXIV.2407.10671. URL
https://doi.org/10.48550/arXiv.2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. NeurIPS, 2024.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv:2402.06332, 2024.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan Berant. Answering
questions by meta-reasoning over multiple chains of thought. arXiv:2304.13007, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv:2309.12284, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv:2309.05653,
2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. In The Twelfth In-
ternational Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024a. URL https://openreview.net/forum?id=yLClGs770I.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv:2405.03548, 2024b.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
2024.

13

https://doi.org/10.48550/arXiv.2405.00451
https://doi.org/10.48550/arXiv.2405.00451
https://doi.org/10.48550/arXiv.2407.10671
https://openreview.net/forum?id=yLClGs770I

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

To ensure a fair comparison, we follow the training protocol used in Step-DPO, where mathematical
problems are used for preference learning. The training dataset consists of approximately 10,000
problems, each paired with their corresponding step-by-step correct solutions. We use open-source
models such as Qwen-2 (Yang et al., 2024) and Llama-3.1 (Meta AI, 2024) as the base LLMs and
employ techniques like key step identification and error data filtering. Additionally, GPT-4o is used
as the default draft model to generate more realistic incorrect steps for training.
The training process follows the standard Step-DPO methodology. 7B/8B models are trained for 4
epochs with a global batch size of 64. The parameter β is set to 0.4. For 70B/72B models, we train for
4 epochs with LoRA and global batch size is set to 256, setting parameter β to 0.5.We use DeepSpeed
ZeRO3 with CPU offload to optimizes memory usage, enabling efficient training of massive models.
The learning rate for all model training is set to 5e-7. AdamW optimizer and a cosine learning rate
scheduler are used with warmup ratio set to 0.1.

A.2 DETAILS OF PROMPTS

Table 12: The prompt for Proactive Error Exploration.

Prompt for Proactive Error Exploration:

Please read the following question, answer, and the key steps of the answer. Generate steps that
appear possible correct but are actually incorrect for the keystep. The underlying incorrect steps
should be derived from the context by altering the content to make it wrong. Note that you need to
explore 3 incorrect steps for the keystep, each representing a different level of error: simple, medium,
and complex.
* Simple represents minor errors: altering or disrupting a few characters compared to the correct step.
* Complex represents major errors: involving significant modifications and disruptions to the problem-
solving thought process, logic, or reasoning.
* Medium falls between the two.
Question:
{question}
Answer:
{full answer}
key_step:
{index of key step}
Generate the final incorrect steps according to the error tags, and make sure not to explain how the
step is incorrect within the step itself. Please output in JSON format, strictly following the sequence,
without omitting any part of the content, including descriptions and formulas.
Format:
{“error_1_tag’“:“Simple“,“error_1_“+str(key_step_x)+“’“:“...“,“error_2_tag’“:“Medium“,“error_2_“
+str(key_step_x)+“’“:“...“, “error_3_tag’“:“Complex“, “error_3_“+str(key_step_x)+“’“:“...“}
Not include extra characters in the output.

B ANALYSIS OF COMPUTATIONAL COSTS

In this section we discuss the cost of KEEP and the sota method, i.e., StepDPO, and try to explain
our conclusion from a perspective of the average consumption of tokens. Before the detailed proof,
we introduce the two language models involved in the two methods: the teacher model and the target
model. The teacher model is a model that has hundreds of billions of parameters such as GPT-4o and
we utilize it for automatic error correction of data. The target model is the model we aim to train and
its number of parameters can range from 0.5 billion to 70 billion or even bigger. Thus the average
consumption of tokens of the two models should be considered separately. Then we introduce the
notations in this section. Both KEEP and StepDPO involve a existing Q-A dataset Q = {qi,a

c
i}Ni ,

where N is the number of Q-A pairs in this dataset. Operation | · | represents the length of a sentence,
which can be a question in Q or output of a model. In the followings, we show that our method
reduces token consumption for both the target model and the teacher model.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.1 ANALYSIS OF STEPDPO

We first analyze the three stages of StepDPO: Sampling of Incorrect Answers, Error Step Lo-
calization, and Sampling of Correct Answers. Sampling of Incorrect Answers and Sampling of
Correct Answers involve the target model while Error Step Localization asks the teacher model to
localize the error step. In the process of Sampling of Incorrect Answers, for a given question qi in Q,
we input qi and ask the model to answer the question step by step. Then, answers with a correct final
result are collected. Suppose that the model has the probability pw of giving an incorrect answer of
ni steps: ai = {si1, si2, ..., sini

}, where sik denotes the k-th step of the answer. Thus, in this process,
the number of input tokens consumed is

N∑
i=1

|qi|, (1)

while the number of output tokens consumed is
N∑
i=1

|ai| =
N∑
i=1

ni∑
k=1

|sik|. (2)

And pwN answers are collected. We denote I = {i : the answer of qi is collected}. Then in the
process of Error Step Localization, for each answer in the collected pwN incorrect answers, the
teacher model is asked to analyze the correctness of the answer step by step until it finds the first
specific incorrect step. Since the question of the answer is also provided, the number of input tokens
consumed is ∑

i∈I
|qi|+ |ai| =

∑
i∈I

|qi|+
∑
i∈I

ni∑
k=1

|sik|. (3)

Suppose that the first ri − 1 steps are correct and the ri-th step is incorrect. Thus, the number of
output tokens consumed is ∑

i∈I

ri∑
k=1

mi
k, (4)

where mi
k is the length of the analysis of k-th step of answer ai. Thus, in this process, we get a

set of questions, correct steps, and incorrect steps D = {qi, s
i
1∼ri−1, s

i
ri}i. Finally, in the process

of Sampling of Correct Answers, for each sample di = (qi, s
i
1∼ri−1, s

i
ri) from D, we prompt

the target model with the question qi and the correct steps si1∼ri−1 to complete the answer. The
completed answer can be expressed as âi = {si1∼ri−1, s

i
ri , ŝri+1∼n′

i
} = {ŝ1, ŝ2, ..., ŝn′

i
}, where n′

i is
the number of steps of the completed answer. Then we select the answers by checking the final result
of the completed answer âi. If correct, we construct a preference pair (qi, s1∼ri−1, sri , ŝri). Suppose
that the model has the probability pr of giving a correct answer. Consequently, approximately pwprN
preference pairs are collected. Thus, in this process, the number of input tokens is∑

i∈I
|qi|+

ri−1∑
k=1

|sik|, (5)

where ti is number of trials to get a correct answer. Clearly, the number of output tokens is∑
i∈I

n′
i∑

k=ri

|ŝik|, (6)

Therefore, we have discussed the tokens consumption of the three stages of StepDPO. Now we
analyze the number of overall tokens consumption of the target model and the teacher model. With
(1), (2), (5), and (6), noticing that sik = ŝik, i < ri, the overall tokens consumed of the target model is

T s
1 =

N∑
i=1

|qi|+
N∑
i=1

ni∑
k=1

|sik|+
∑
i∈I

(|qi|+
n′
i∑

k=1

|ŝik|). (7)

With (3) and (4), the overall tokens consumed of teacher model is

T s
2 =

∑
i∈I

|qi|+
∑
i∈I

ni∑
k=1

|sik|+
∑
i∈I

ri∑
k=1

mi
k. (8)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 ANALYSIS OF KEEP

Next we analyze the three stages of KEEP: Key Step Identification, Proactive Error Exploration,
and Speculative Filtering. In the process of Key Step Identification, we take full advantage of Q.
For given question qi and answer aci , which usually consists of several steps, we first select key steps
of high perplexity and high information entropy. Only a single forward pass is required throughout
the computational process. Let ni be the number of steps of aci and aci = {li1, li2, ..., lini

}. In this
process, the number of tokens consumed is

N∑
i=1

|qi|+ |aci | =
N∑
i=1

|qi|+
N∑
i=1

ni∑
k=1

|lik|, (9)

and for each Q-A pair (qi,a
c
i), n

c
i key steps are selected. Then in Proactive Error Exploration,

for each collected key step across all samples, we prompt the teacher model, called Draft Model
in KEEP actually, to output lots of incorrect answers corresponding to each key step. Specifically,
taking the answers of key steps and the question as reference, the Draft LLM is asked to output M
incorrect answers for correct reference answer of each key step at a time. Therefore we have got lots
of preference pairs. The number of answers we asked the Draft LLM to output, M , is a little bigger
fixed number like 3. Let Ic

i = {k : lik is a key step in aci}. Clearly, Ic
i has nc

i elements. Thus, in this
process, the number of input tokens is

N∑
i=1

|qi|+
N∑
i=1

∑
k∈Ic

i

|lik|, (10)

and the number of output tokens is
N∑
i=1

M∑
m=1

∑
k∈Ic

i

|likm|, (11)

where likm one of the M incorrect step output by the Draft Model. And we get nearly NM preference
pairs in this process. Notice that not all preference pairs we collect are proper because they are some
kind of out-of-distribution data. Thus we need to conduct rejection sampling to select the high quality
preference pairs in Speculative Filtering. Specifically, for the positive and negative instances within a
preference pair, we calculate the probability that the LLM to be trained outputs the instance (correct
or incorrect), respectively. Only those preference pairs for which the model demonstrates marginal
probability differentials between positive and negative instances are considered high-quality and
subsequently selected. Suppose the rejection rate 1− pa, which is decided by the Draft LLM ’s and
LLM to be trained ’s distributions. With the rejection rate 1− pa considered, the actual consumption
of tokens is:

N∑
i=1

M∑
m=1

∑
k∈Ic

i

(|qi|+ |likm|), (12)

and we eventually collected paM
∑N

i=1 n
c
i preference pairs.

Therefore, in KEEP, the consumed tokens of target model is, with (9) and (12),

T k
1 =

N∑
i=1

(1 +Mnc
i)|qi|+

N∑
i=1

ni∑
k=1

|lik|+
N∑
i=1

M∑
m=1

∑
k∈Ic

i

|likm|, (13)

and the consumed tokens of draft model is, with (10) and (11),

T k
2 =

N∑
i=1

|qi|+
N∑
i=1

∑
k∈Ic

i

|lik|+
N∑
i=1

M∑
m=1

∑
k∈Ic

i

|likm|. (14)

B.3 COMPARISON OF AVERAGE CONSUMPTION

Now we compare StepDPO with KEEP. Consider the difference of average of consumed tokens. We
introduce the assumption that the expectation of sik or lik exhibits independence from the question and
index of the step, that is E[sik] = E[likm] = E[s]. And in StepDPO, the expectation of the number of
steps of an answer (no matter it is correct or not) is a constant, that is E[ni] = E[n′

i] = E[n].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3.1 AVERAGE CONSUMPTION OF THE TARGET MODEL

Thus, with (7), we have the average tokens consumption of target model in StepDPO:

Es,n,n′,I [
T s
1

pwprN
]

=
1

pwprN
(

N∑
i=1

|qi|+
N∑
i=1

Esik,ni
[

ni∑
k=1

|sik|] + pw

N∑
i=1

(|qi|+ Eŝik,n
′
i
[

n′
i∑

k=1

|ŝik|]))

=
1

pwprN
(

N∑
i=1

|qi|+
N∑
i=1

Eni
[

ni∑
k=1

E[|sik|]] + pw

N∑
i=1

(|qi|+ En′
i
[

n′
i∑

k=1

E[|ŝik|]]))

=
1 + pw
pwprN

N∑
i=1

|qi|+
1 + pw
pwpr

E[n]E[s]. (15)

In KEEP, experiments demonstrate that the number of key steps is typically half of the number of all
steps, i.e., E[nc

i] =
1
2E[n]. With (13), we have:

El,n,nc [
T k
1

paM
∑N

i=1 n
c
i

]

=
2

paNME[n]
((1 +

1

2
ME[n])

N∑
i

|qi|+NE[n]E[s] +
1

2
MNE[n]E[s]),

where nc
i is the number of key steps of the answer of qi. In practice, M is set 3, which means 3

different kinds of errors. Consequently,

El,n,nc [
T k
1

paM
∑N

i=1 n
c
i

] =
2
3 + E[n]
paE[n]N

N∑
i

|qi|+
5

3paE[n]
E[n]E[s]. (16)

Clearly, the comparative magnitude between (15) and (16) is contingent upon the parameters pr,
pw, and pa. Notice that pw is the probability of the target model giving an incorrect answer, while
pr is that of giving a correct answer. In practice we find that for a easy dataset like GSM-8K, pr
is approximately 40% while pw is rather low——it takes average 20 times to collect an incorrect
answer. The situation is opposite for a difficult dataset like MATH. In both situations we find that
pw + pr < 1. However, in KEEP, since key steps have been selected, pa is rather high and usually
over 50%, which is higher than both pr and pw. Thus, we have

2pwpr < 2pw(1− pw) <
1

2
< pa.

Notice that a proper answer has at least 2 steps on multi-step mathematical reasoning tasks, which
means E[n] ≥ 2. Thus, 3E[n]

5 > 1. This leads to

Es,n,n′ [
T s
1

pwprN
]

=
1 + pw
pwprN

N∑
i=1

|qi|+
1 + pw
pwpr

E[n]E[s]

>
2

paN

N∑
i=1

|qi|+
2

pa
E[n]E[s]

≥ 3

2

1

paN
·
E[n] + 2

3

E[n]

N∑
i=1

|qi|+
2

pa
E[n]E[s]

>
3

2

1

paN
·
E[n] + 2

3

E[n]

N∑
i=1

|qi|+ 2 · 5

3paE[n]
E[n]E[s]

>
3

2
El,n,nc [

T k
1

paM
∑N

i nc
i

].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, we show that the number of average tokens consumed of target model in KEEP is less than
that in StepDPO. In addition, we can also see that the number of average tokens consumed of target
model in StepDPO is at least 3

2 times greater than that in KEEP. In practical multi-step mathematical
reasoning scenarios, E[n] is often greater than 2, even up to tens of steps, which results in much more
tokens consumed in StepDPO.

B.3.2 AVERAGE CONSUMPTION OF THE TEACHER MODEL

Next we give the number of tokens consumed of the teacher model. For StepDPO, in practice, we
find E[ri] = 1

2E[n]. Consequently,

En,r,m,I [
T s
2

pwprN
] =

1

pwprN
(pw

N∑
i=1

|qi|+
∑
i∈I

Eni,sik
[

ni∑
k=1

|sik|] +
∑
i∈I

Eri,mi
k
[

ri∑
k=1

mi
k])

=
1

prN

N∑
i=1

|qi|+
1

pr
E[n]E[s] +

1

2pr
E[n]E[m],

and for KEEP,

El[
T k
2

paM
∑N

i=1 n
c
i

] =
2

paMNE[n]
(

N∑
i

|qi|+
1

2
(M + 1)NE[n]E[s])

=
2

3paNE[n]

N∑
i

|qi|+
4

3paE[n]
E[n]E[s].

Since E[m] > E[s], and pa > pr

1

pr
E[n]E[s] +

1

2pr
E[n]E[m] >

3

2pr
E[n]E[s] >

9E[n]
8

4

3paE[n]
E[n]E[s].

Thus,

En,r,m,I [
T s
2

pwpr
∑N

i nc
i

]

=
3

3prN

N∑
i=1

|qi|+
1

pr
E[n]E[s] +

1

2pr
E[n]E[m]

>
3

3paN

N∑
i

|qi|+
1

pr
E[n]E[s] +

1

2pr
E[n]E[m]

>
3

3paN

N∑
i

|qi|+
9

8
E[n]

4

3paE[n]
E[n]E[s])

>
9

8
E[n]El[

T k
2

paM
∑N

i=1 n
c
i

]

≥ 9

4
El[

T k
2

paM
∑N

i=1 n
c
i

],

which shows that the number of average tokens consumed of the target model in KEEP is also less
than that in StepDPO. Furthermore, we can also see that the number of average tokens consumed by
the target model in StepDPO is at least 9

4 times greater than in KEEP.
The analysis above demonstrates that our framework achieves superior performance with lower
computational cost.

B.4 STATISTICAL ANALYSIS OF SAMPLING RESPONSES

We evaluate the cost of sampling and uncontrollability of generation using a sampling-based method
by setting the temperature of the LLM (Qwen2-7B-Instruct) to 1.0. We conduct 100 sampling

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

iterations for questions from the GSM8K and MATH datasets, recording the minimum number of
samples required to generate correct and incorrect responses. The results are shown in Figures 2 and
3. For the GSM8K dataset, the average number of samples needed to generate a correct answer is
2.32, while incorrect answers require 33.33 samples. Notably, 1% of the questions fail to produce a
correct answer after 100 samples, and 16% fail to produce an incorrect answer. In the MATH dataset,
generating a correct answer requires an average of 21.52 samples, and an incorrect answer requires
6.75 samples, with 16% of questions failing to produce a correct answer. (Some methods also require
sampling to generate correct answers)
These findings underscore the limitations of sampling-based methods for error exploration. Despite
extensive sampling, certain errors remain elusive, suggesting that these approaches may overlook
small-probability yet high-impact errors. In large-scale applications, even rare errors can accumulate,
posing significant risks. The inherent uncontrollability and high cost of sampling make it inefficient
for comprehensive error discovery, highlighting the importance of active error exploration.

0 20 40 60 80 100

GSM8K Questions
0

20

40

60

80

100

Sa
m

pl
in

g
Ti

m
es

Correct Response

0 20 40 60 80 100

GSM8K Questions
0

20

40

60

80

100

Sa
m

pl
in

g
Ti

m
es

Incorrect Response

Figure 2: Statistics of sampling response based on GSM8K. The average sampling of correct answers
is 2.32 times. The average sampling of incorrect answers is 33.33 times. 1% of questions cannot
sample correct answers. 16% of questions cannot sample incorrect answers.

0 20 40 60 80 100

MATH Questions
0

20

40

60

80

100

Sa
m

pl
in

g
Ti

m
es

Correct Response

0 20 40 60 80 100

MATH Questions
0

20

40

60

80

Sa
m

pl
in

g
Ti

m
es

Incorrect Response

Figure 3: Statistics of sampling response based on MATH. The average sampling of correct answers
is 21.52 times. The average sampling of incorrect answers is 6.75 times. 16% of questions cannot
sample correct answers.

B.5 EXPERIMENTAL RESULTS

We have conducted in-depth theoretical analysis and sampling experiments in the previous section.
In order to more intuitively demonstrate the cost difference between our method (KEEP) and the
sampling-based method (Step DPO), we conduct detailed experimental statistics based on the number
of tokens input and output. As shown in Table 13. Results demonstrate that KEEP achieves
significantly lower computational costs across all key processes. Specifically, Step DPO incurs
high token costs primarily during incorrect answer sampling (4,329.08 tokens) and correct answer
sampling (3,876.72 tokens). In contrast, KEEP’s key step identification requires only 284.07 tokens,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: The results of computational costs based on the number of input and output tokens,
assuming that one QA pair needs to generate one preference pair data, the following is the average
results for one QA pair. But for KEEP, please note that our experiment assumes that we only need
one keystep to generate one preference pair, so we need to divide the original cost by the number of
keysteps to obtain the final results

Step DPO

Process Model Description Token Costs in practice

Sampling of Incorrect Answers target LLM Input Q multiple times to sample A
and obtain incorrect responses. 4,329.08

Error Step Localization GPT - 4o
Input Q along with the incorrect A
to output step - by - step analysis

and the indices of error steps.
566.94

Sampling of Correct Answers target LLM

Input Q along with the A up to the
step before the error step multiple

times, and sample to output the
subsequent A to obtain the correct

steps.

3,876.72

KEEP

Process Model Description Token Costs in practice

Key Step Identification target LLM

Input Q and compute the PPL and
Entropy of the output A (PPL and
Entropy can be computed in one

output).

284.07

Proactive Error Exploration GPT - 4o

Input the QA pair along with the
indices of key steps (selecting 50%

of the steps as keysteps), and
output the 3 types error steps

corresponding to the key steps.

157.85

Speculative Filtering target LLM Input Q and compute the output
probabilities of the error steps in A. 467.88

proactive error exploration uses 157.85 tokens, and speculative filtering consumes 467.88 tokens.
Notably, KEEP’s total token costs represent approximately 1/10 of Step DPO on the target
LLM, validating its superior computational efficiency. This substantial reduction in token usage
highlights KEEP’s practical advantages for scalable implementation while maintaining data quality,
as it minimizes reliance on expensive repeated sampling by focusing on critical step analysis and
targeted error exploration.

C FURTHER ABLATION STUDY

C.1 ABLATION ON MODEL ARCHITECTURE

To provide further insights, we conduct additional ablation experiments: SVPO + Speculative Filtering
and SCDPO + Speculative Filtering, which involved adding our speculative filtering to the existing
sampling based method for data construction. As shown in Table 14, the results demonstrate that
existing methods generally achieve performance improvements on the GSM8K and MATH datasets
when augmented with Speculative Filtering, with particularly significant gains observed on the
MATH dataset. This highlights the effectiveness of our Speculative Filtering approach based on
generation probabilities during the data construction phase. Moreover, these enhanced methods still
underperform compared to KEEP, further underscoring the superiority of the KEEP framework.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 14: More results of ablation study on method combination

Base model Method GSM8K MATH

Qwen2-7B-instruct

SVPO 86.7 52.2
SVPO+Speculative Filtering 87.6 57.2

SCDPO 86.8 51.6
SCDPO+Speculative Filtering 87.3 55.3

KEEP 89.1 59.5

Meta-Llama-3.1-8B-Instruct

SVPO 84.8 48.7
SVPO+Speculative Filtering 84.7 51.0

SCDPO 84.4 48.8
SCDPO+Speculative Filtering 84.8 49.5

KEEP 88.3 52.0

D THEORETICAL MOTIVATION FOR KEY-STEP IDENTIFICATION

In this section, we provide a theoretical justification for our PPL–Entropy scoring criterion. We
start from a multiplicative approximation of final correctness, then connect step-wise uncertainty
to expected log-likelihood improvement and conditional mutual information. This motivates our
practical heuristic that combines step perplexity and entropy as a tractable proxy for information gain.

Theorem D.1 (Step-level contribution to final correctness). Let a problem instance x with its gold
step sequence s1, . . . , sN be given. Denote by pk = πθ(sk | x, s1:k−1) the probability that the
model πθ generates the correct k-th step given context. Under the multiplicative approximation
Pcorr(θ) ≈

∏N
k=1 pk, a small increment ∆pj on step j yields a change in log-correctness probability:

∆ logPcorr = log(pj +∆pj)− log pj = log
(
1 +

∆pj

pj

)
≈ ∆pj

pj
,

where the last step holds for sufficiently small ∆pj . Thus, steps with smaller pj (i.e., higher
perplexity / lower model confidence) yield larger potential log-likelihood improvement when corrected,
highlighting them as natural optimization targets.

Proof. The result follows from the definition of logarithm. For ϵ = ∆pj/pj , one has log(1 + ϵ) =
ϵ− ϵ2/2 +O(ϵ3). Therefore log(1 + ϵ) ≈ ϵ for small ϵ, proving the claim.

Theorem D.2 (Information gain of a step and entropy upper bound). Let Sk be the random variable
representing the token sequence at step k, and Y ∈ {0, 1} the correctness of the final answer,
conditioned on context C = (x, s1:k−1). The conditional mutual information between Sk and Y is

IGk := I(Y ;Sk | C) = H(Y | C)−H(Y | Sk, C) = Esk∼P (Sk|C)

[
KL
(
P (Y | sk, C) ∥P (Y | C)

)]
.

Moreover,
IGk ≤ min

(
H(Y | C), H(Sk | C)

)
.

Thus, a step with higher conditional entropy H(Sk | C) has a greater potential upper bound on
information gain, suggesting stronger influence on final correctness (Cover, 1999).

Proof. The equalities follow from the chain rule for mutual information and the KL divergence
representation. The inequality follows from the standard property I(A;B) ≤ min(H(A), H(B)),
applied to the conditional setting (Cover, 1999).

Practical Scoring Criterion. Since computing IGk directly is expensive, we use its entropy upper
bound H(Sk | C) as a tractable proxy. Our linear fusion α · norm(PPL) + β · norm(Entropy) is a
stable numerical relaxation of the multiplicative form suggested by the theory. This is consistent
with prior uses of information gain in feature selection (Quinlan, 1986) and active learning (Settles,
2009), where entropy-based proxies have proven effective. Perplexity, as a classical measure of model
uncertainty in language modeling (Jelinek, 1998), complements entropy by capturing step-level
surprise.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Monte-Carlo Verification Protocol. We empirically validate the correlation between our proxy
score and true expected improvement using the following Monte-Carlo estimation procedure (with
M = 5 perturbations and L = 10 rollouts per step, random seeds fixed for reproducibility):

Algorithm 1 Monte-Carlo estimation of step information gain

1: for each sample (x, s1, . . . , sN) do
2: for each step k do
3: Compute pk = πθ(sk | x, s1:k−1) and step entropy Hk = Entropy(Sk | C).
4: Compute proxy score Scorek using our PPL-Entropy heuristic.
5: Sample M alternative realizations {s(m)

k } from a draft model given context C.
6: for each s

(m)
k do

7: Estimate P (Y = 1 | s(m)
k , C) via L rollouts to full solution.

8: end for
9: Estimate empirical distribution P (Y | Sk, C) and compute IGMC

k .
10: Compute empirical expected improvement EIMC

k = (1/pk) · IGMC
k .

11: end for
12: end for
13: Compute Spearman correlation between the proxy Scorek and the empirical EIMC

k .

Verification Results. To empirically validate our theoretical motivation, we conducted the Monte-
Carlo estimation procedure outlined in Algorithm 1. The analysis was performed on 342 steps derived
from 100 random samples of the GSM8K dataset. The results confirm a statistically significant
positive correlation between our PPL–Entropy proxy score and the empirically estimated expected
improvement (EI). We report a Spearman’s rank correlation coefficient of ρ = 0.488 with a p-value
of 7.79× 10−22, indicating a strong monotonic relationship. For completeness, Pearson correlation
was r = 0.314 (p < 10−8), which is weaker due to non-linear effects but still highly significant.
This is appropriate as we care about rank-order for selecting key steps, not necessarily a linear fit.
The scatter plot in Figure 4 visually corroborates this trend. This provides a principled, data-driven
foundation for our key-step identification heuristic.

Figure 4: Monte Carlo validation of proxy score. Each point corresponds to a reasoning step. Higher
proxy scores correlate with higher empirical error informativeness (EIMC).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Theoretical Assumptions and Practical Implementation Our practical PPL-Entropy scoring rule
is derived from our theoretical analysis by introducing several well-motivated assumptions to ensure
computational tractability. We outline these key connections between theory and practice below:

• Approximation of Correctness: The multiplicative approximation in Theorem D.1 is a
standard approach for modeling complex sequences, providing a tractable way to analyze
step-wise contributions. While it simplifies the modeling of long-range dependencies, it
effectively captures the local impact of step-level probabilities.

• Entropy as an Information Gain Proxy: Following established principles from information
theory, we use conditional entropy as a computationally efficient proxy for information gain.
Theorem D.2 confirms that entropy serves as a tight upper bound on the true information
gain (IGk), making it a standard and effective heuristic for identifying steps with high
informational potential.

• Principled Fusion of Metrics: The linear fusion of PPL and entropy is a deliberate design
choice to synthesize the insights from both theorems into a single, robust score. The theory
validates the inclusion of both signals—model uncertainty (PPL) and information potential
(entropy)—and our linear combination provides a simple yet effective method for balancing
their contributions.

The empirical success of this design, validated by our Monte-Carlo verification, confirms that these
principled approximations lead to a highly effective method for identifying high-impact reasoning
steps for preference optimization.

E ANALYSIS OF PPL AND ENTROPY

To explore the role of Perplexity (PPL) and Entropy in identifying key steps, we conduct experiments
on the GSM8k, MATH, and AQuA datasets. We randomly sample 1000 QA pairs and compute the
PPL and Entropy for each step in the answers. We then calculate the percentage position of the
steps with the highest PPL and Entropy in the answer (step index / total number of steps × 100%).
As shown in Figure 5a, the results indicate that steps with higher PPL are concentrated in the latter
parts of the answers, particularly between the 85% and 90% positions. This suggests that the model
becomes more confused at critical steps near the conclusion. In contrast, Entropy is higher at the
beginning, especially in the first sentence, likely due to its greater information content or prediction
difficulty.
To more accurately identify key steps, we normalize and combine PPL and Entropy scores, then
rank the results. As shown in Figure 5b, the combined Top 1 curve highlights the importance of
both the beginning and the end. By selecting steps ranked in the Top 50% as key steps, we ensure
a comprehensive coverage across different types of problems and step sequences. This analysis
confirms the rationale and effectiveness of KEEP for identifying key steps.

0.0 0.2 0.4 0.6 0.8 1.0
Position (as % of sequence)

0

10

20

30

40

Pe
rc

en
ta

ge

Distribution of Top 1 Positions based on PPL and Entropy
PPL Top 1 Positions
Entropy Top 1 Positions

(a) Distribution of top 1 positions.

0.0 0.2 0.4 0.6 0.8 1.0
Position (as % of sequence)

0

10

20

30

40

Pe
rc

en
ta

ge

Distribution of Positions based on Combined with PPL and Entropy
Top 1
Top 50%

(b) Distribution of positions based on combined values.

Figure 5: Comparison of position distributions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.1 MANUAL AND STATISTICAL ANALYSES

We conduct both manual and statistical analyses to provide further insights. As shown in Figure 6,
Figure 7, and Figure 8, Entropy focuses on the importance of the current step within the context,
while PPL emphasizes the complexity or importance of the step itself. The two have complementary
characteristics. Therefore, we combine PPL and Entropy as indicators to identify key steps, defining
them as either complex steps the model struggles with or core contextual steps. Further statistical
analysis (see Figures 9 and 10) reveals that existing sampling methods tend to over-sample high-
entropy steps while neglecting high-PPL steps. High-PPL steps may indicate higher complexity or
model comprehension difficulties. Our method addresses this limitation by combining entropy and
PPL to identify key steps.

Figure 6: Case Study for Entropy and PPL

Figure 7: Case Study for Entropy and PPL

We include the changes in the model’s average log probabilities for positive and negative examples
(using 1000 responses generated by the initial model) during training. As shown in Figure 11, the
gap in log probabilities between positive and negative examples widens during training, increasing
from 0.59 to 1.03. This indicates that the model’s ability to distinguish between examples improves
significantly as training progresses.

F QUALITY ANALYSIS OF GENERATED PREFERENCE DATA

To provide a deep validation of the data quality produced by our pipeline, we conducted a series
of quantitative and qualitative analyses. These analyses confirm that our Speculative Filtering is
effective and that the generated errors are both high-purity and pedagogically valuable.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Case Study for Entropy and PPL

Figure 9: We analyze the data generated by the StepDPO method by randomly sampling 1,000 data
points. The x-axis of the graph represents the index of the sampled error steps within the entire
response, where 0-10% indicates the first 10% of the response, and 90-100% indicates the later
parts. The y-axis represents the number of samples and the average Entropy. From the figure, it can
be observed that nearly half of the samples are located in the later parts of the response and have
relatively high Entropy values.

F.1 EFFECTIVENESS OF SPECULATIVE FILTERING

To quantitatively measure the impact of our Speculative Filtering module, we analyzed the generation
probabilities of preference pairs before and after filtering. The core motivation of this module is to
mitigate distribution shift from the external draft model by retaining "hard" negative samples that are

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: We analyze the data generated by the StepDPO method by randomly sampling 1,000
data points. The x-axis of the graph represents the index of the sampled error steps within the entire
response, where 0-10% indicates the first 10% of the response, and 90-100% indicates the later parts.
The y-axis represents the number of samples and the average PPL. From the figure, it can be observed
that nearly half of the samples are located in the later parts of the response and have relatively low
PPL values.

Figure 11: The gap in log probabilities between positive and negative examples

closer to the target model’s ability frontier. As shown in Table 15, the module successfully reduces
the probability ratio between chosen and rejected steps from 1.95 to 1.34. This confirms that we

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

are selecting more challenging and relevant negative examples, ensuring a more stable and effective
preference tuning process.

Table 15: Quantitative impact of the Speculative Filtering module.

Metric (Mean) Before Filtering After Filtering

Chosen Step Probability 0.7273 0.7149
Rejected Step Probability 0.4281 0.5423
Ratio (Chosen / Rejected) 1.9578 1.3432

F.2 GRADIENT-BASED ATTRIBUTION OF ERROR IMPACT

To analyze which types of errors are most beneficial for preference learning, we conducted a
detailed gradient-based attribution analysis. We annotated 1,000 samples with fine-grained error
types and computed the gradient norm and cosine similarity during KEEP training to estimate
each type’s contribution to learning. As shown in Table 16, semantically meaningful errors (e.g.,
misunderstanding conditions, counting errors) lead to stronger learning signals (higher gradient norm
and cosine similarity), while surface-level errors (e.g., substitution mistakes) contribute less. This
confirms that KEEP’s proactive exploration process naturally generates pedagogically high-impact
training signals.

Table 16: Gradient-based attribution analysis of error types.

Error Type #Samples ↑ Grad Norm ↑ Cosine Sim.

Multiplication errors 44 0.0575 0.0151
Misunderstanding the question 208 0.0529 0.0139
Counting errors 76 0.0505 0.0132
Improper division 47 0.0457 0.0120
Addition errors 76 0.0452 0.0118
Decimal calculation errors 109 0.0444 0.0116
Subtraction errors 34 0.0443 0.0116
Misunderstanding variable relations 246 0.0427 0.0112
Fraction operation errors 46 0.0385 0.0101
Substitution mistakes 103 0.0310 0.0081
Other 11 0.0062 0.0016

F.3 HUMAN AUDIT OF PREFERENCE PAIR QUALITY

To quantify the quality of the final dataset after speculative filtering, we conducted a manual audit on
1,000 randomly sampled preference pairs. Our analysis, summarized in Table 17, confirms the data is
of high purity, with a total potential noise level under 5%. The minor noise primarily stems from
occasional inaccurate step segmentation or instances where a rejected step represents an alternative
valid solution path. This audit validates that our automated pipeline reliably produces a high-quality
dataset of challenging and informative preference pairs suitable for robust training.

G ANALYSIS OF ERROR TYPES

Using GPT-4o, We analyze the error types in equal amounts of data generated by different methods.
As shown in Figures 12, 13, and 14, existing sampling methods like Step DPO exhibit a clear long-tail
distribution in error types, with most errors concentrated in a few categories. In contrast, KEEP
effectively mitigated this issue and generated more diverse error types, avoiding the "mode collapse"
issue and providing a richer training signal for the model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 17: Analysis of potential noise in post-filter error step (1,000-sample audit).

Noise Type in Error Step Description Percentage

Inaccurate Step Segmentation The content in ’Chosen’ and ’Rejected’ steps is
too short or interrupted.

2.7%

False Generation Error The ’rejected’ step was not factually wrong but
represented a different, valid solution path.

2.1%

Total Potential Noise The final dataset is confirmed to be of high pu-
rity.

< 5.0%

Figure 12: Analysis of error types based on KEEP

Figure 13: Analysis of error types based on StepDPO

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 14: Analysis of error types based on KEEP and StepDPO

H CASE STUDY

H.1 CASE STUDY ON QWEN2-72B SERIES MODELS

Respectively, Table 18 and Table 19 present the different generation solutions of KEEP-QWEN2-
72B and Qwen2-72B-Instruct for the same problem from AIME24. we observe that the solutions
generated by Qwen2-72B-Instruct contain an error. Specifically, Qwen2-72B-Instruct ignored the
condition that the list is composed of integers after calculating the median and adding it to the list.
KEEP-QWEN2-72B, however, did not make such errors.

H.2 CASE STUDY ON LLAMA-3.1-70B SERIES MODELS

Respectively, Table 20 and Table 21 present the different generation solutions of KEEP-LLAMA-
3.1-70B and Llama-3.1-70B-Instruct for the same problem from Odyssey-MATH. we observe that
the solutions generated by Llama-3.1-70B-Instruct contain an error. Specifically, Llama-3.1-70B-
Instruct incorrectly assumes that the given side is the hypotenuse, while in fact, it is the longer leg.
KEEP-LLAMA-3.1-70B, however, did not make such errors.

I USE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) as an
assistive tool in the preparation of this manuscript. The primary application of LLMs was to aid in
improving the clarity and quality of the writing.
Our process involved using an LLM to perform the following specific tasks:

• Grammar and Spelling Correction: Identifying and correcting grammatical errors and
spelling mistakes.

• Clarity and Readability Enhancement: Rephrasing sentences and suggesting alternative
phrasings to improve the overall readability and flow of the text.

• Conciseness: Assisting in shortening sentences and paragraphs to make the writing more
direct and concise.

The core scientific contributions, analyses, and claims presented in this paper are the work of the
human authors. We have ensured that the use of LLMs in the writing process was conducted
responsibly and in line with academic and ethical standards.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 18: An example of the generated solution by KEEP-QWEN2-72B.

Problem 1:
A list of positive integers has the following properties:

• The sum of the items in the list is 30.

• The unique mode of the list is 9.

• The median of the list is a positive integer that does not appear in the list itself.

Find the sum of the squares of all the items in the list.
Reference Answer:
236

KEEP-QWEN2-72B :
To solve this problem, we need to construct a list of positive integers that satisfies the given conditions
and then find the sum of the squares of all the items in the list.
Given conditions:

1. The sum of the items in the list is 30.

2. The unique mode of the list is 9.

3. The median of the list is a positive integer that does not appear in the list itself.

Let’s start by addressing the mode condition. Since 9 is the unique mode, it must appear more
frequently than any other number in the list. To ensure that 9 is the unique mode, we can start by
including 9 twice in the list. This gives us a sum of 18 so far (9 + 9 = 18).
Next, we need to ensure that the sum of the list is 30. This means we need to add numbers to the list
that sum to 12 (30− 18 = 12). To keep 9 as the unique mode, we cannot add any more 9s to the list.
We also need to ensure that the median is a positive integer that does not appear in the list itself.
Let’s consider the median condition. Since the list must have an odd number of elements for there
to be a single median, and we already have 2 elements (9 and 9), we need to add at least 3 more
elements to the list to make the total number of elements odd. To keep the sum at 30, we can add 1, 3,
and 8 to the list. This gives us a list of 9, 9, 1, 3, and 8, which sums to 30.
The median of this list is 8, which does not appear in the list itself, satisfying the third condition. The
list is now 9, 9, 1, 3, and 8.
Finally, we need to find the sum of the squares of all the items in the list. This is calculated as follows:

92 + 92 + 12 + 32 + 82 = 81 + 81 + 1 + 9 + 64 = 236

Therefore, the sum of the squares of all the items in the list is 236 .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 19: An example of the generated solution by the general Qwen2-72B-Instruct. The red box
highlights the error.

Problem 1:
A list of positive integers has the following properties:

• The sum of the items in the list is 30.

• The unique mode of the list is 9.

• The median of the list is a positive integer that does not appear in the list itself.

Reference Answer:
236

Qwen2-72B-Instruct:
To solve this problem, we need to construct a list of positive integers that satisfies the given conditions
and then find the sum of the squares of all the items in the list.
Given conditions:

1. The sum of the items in the list is 30.

2. The unique mode of the list is 9.

3. The median of the list is a positive integer that does not appear in the list itself.

Let’s start by addressing the mode condition. Since 9 is the unique mode, it must appear more
frequently than any other number in the list. To ensure that 9 is the unique mode, we can start by
including 9 twice in the list. This gives us a sum of 18 so far.
Next, we need to ensure that the sum of the list is 30. This means we need to add numbers that sum
up to 12 to the list. We also need to ensure that none of these numbers appear more frequently than 9
to maintain 9 as the unique mode. To achieve this, we can add the numbers 1, 2, and 3 to the list,
which adds up to 6. This gives us a total sum of 24 so far. To reach 30, we need to add another
number, which can be 6.
So, the list so far is 9, 9, 1, 2, 3, 6. This list has a sum of 30 and 9 is the unique mode.
Now, let’s address the median condition. The median of the list is the middle number when the
list is arranged in ascending order. Since we have 6 numbers, the median will be the average
of the 3rd and 4th numbers. To ensure that the median does not appear in the list, we can re-
arrange the list to be 1, 2, 3, 6, 9, 9. The median is then the average of 3 and 6, which is 4.5.
Since 4.5 is not an integer, it cannot appear in the list, satisfying the third condition.

Finally, we need to find the sum of the squares of all the items in the list. The list is 1, 2, 3, 6, 9, 9.
The sum of the squares is

12 + 22 + 32 + 62 + 92 + 92 = 1 + 4 + 9 + 36 + 81 + 81 = 212

Therefore, the sum of the squares of all the items in the list is 212 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 20: An example of the generated solution by KEEP-LLAMA-3.1-70B.

Problem 2:
In △ABC,AB = 10 cm,∠B = 90◦, and ∠C = 60◦. Determine the length of BC.

A) 10 cm
B) 10

√
3 cm

C) 10
√
3

3
cm

D) 20 cm

Reference Answer:
C

KEEP-LLAMA-3.1-70B:
To find the length of BC in △ABC, we can use trigonometric ratios since we have information
about the angles and one side.
Given:

• AB = 10 cm

• ∠B = 90◦ (right angle)

• ∠C = 60◦

Since ∠B is 90◦, △ABC is a right-angled triangle. We can use the trigonometric ratios for a
30-60-90 triangle, which are in the ratio 1 :

√
3 : 2 for the sides opposite the angles.

In this case, ∠C is 60◦, so the side opposite to it (AB) will be the side multiplied by
√
3 in the ratio.

However, we are given AB, and we need to find BC, which is the side opposite the 30◦ angle. Since
the sum of angles in a triangle is 180◦, we have:

90◦ + 60◦ = 150◦,

and thus the remaining angle A must be 30◦.
In a 30-60-90 triangle, the side opposite the 30◦ angle (BC in this case) is half the hypotenuse (AC)
or the side opposite the 60◦ angle (AB) divided by

√
3.

However, we don’t have the hypotenuse (AC) directly, but we can calculate BC using AB and the
properties of a 30-60-90 triangle. Since AB is the side opposite the 60◦ angle, it’s the side that
would be multiplied by

√
3 in the ratio. To find BC, we need to divide AB by

√
3 to get the side

opposite the 30◦ angle:

BC =
AB√
3

BC =
10√
3

To rationalize the denominator, we multiply the numerator and denominator by
√
3:

BC =
10×

√
3√

3×
√
3

BC =
10

√
3

3
Thus, the final answer is:

C

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 21: An example of the generated solution by the general Llama-3.1-70B-Instruct. The red box
highlights the error.

Problem 2:
In △ABC,AB = 10 cm,∠B = 90◦, and ∠C = 60◦. Determine the length of BC.

A) 10 cm
B) 10

√
3 cm

C) 10
√
3

3
cm

D) 20 cm

Reference Answer:
C

Llama-3.1-70B-Instruct:
To find the length of BC in △ABC, we can use trigonometric ratios since we have information
about the angles and one side.
Given:

• AB = 10 cm

• ∠B = 90◦ (right angle)

• ∠C = 60◦

Since ∠B is 90◦, △ABC is a right-angled triangle. We can use the trigonometric ratios for a
30-60-90 triangle, which are in the ratio 1 :

√
3 : 2 for the sides opposite the angles.

In this case, ∠C is 60◦, so the side opposite to it (AB) will be the side multiplied by
√
3 in the ratio,

and the side adjacent to it (BC) will be the side multiplied by 1 in the ratio.
However, we are given AB, which is the side opposite the 30◦ angle (not directly given, but since
it’s a right triangle with a 60◦ angle, the other acute angle must be 30◦). AB corresponds to the side
multiplied by 1 in the ratio (for the 30◦ angle), but we need to find BC, which corresponds to the
side multiplied by

√
3 in the ratio for the 60◦ angle, but in relation to the side opposite the 30◦ angle.

So, if AB = 10 cm, and considering the 30-60-90 triangle ratio, AB would be the "1" side, and BC
would be the "

√
3" side. However, since AB is given as 10 cm, which aligns with the "2" side in a

standard 30-60-90 triangle (where the ratio is 1 :
√
3 : 2), we need to adjust our calculation.

In a standard 30-60-90 triangle, if the "2" side (hypotenuse) is 10 cm , the "1" side (opposite the

30◦ angle) would be 10/2 = 5 cm, and the "
√
3" side (opposite the 60◦ angle) would be 5

√
3 cm.

However, we are looking for BC, which is opposite the 60◦ angle, and we’ve established that AB
(the side we have) is actually the "2" side in the ratio due to its length and the given angles. So, we
need to find the length of BC based on AB being the hypotenuse of the triangle, which means we
actually look at AB as the "2" side in the ratio, and calculate BC as the "

√
3" side.

Given that AB = 10 cm, and it’s the "2" side, to find the "1" side (which would help us scale the
"
√
3" side correctly), we divide AB by 2 to get the base "1" side, which is 5 cm. Then, we multiply

this by
√
3 to find BC.

BC = 5×
√
3 =

10

2
×

√
3 = 5

√
3 cm.

However, simplifying this with the given options, we see that the correct representation of our
calculation is actually:

BC =
10

√
3

2
= 5

√
3 cm.

Thus, the final answer is:

10
√
3

2
= 5

√
3

33

	Introduction
	Background
	Method
	Key Step Identification
	Proactive Error Exploration
	Speculative Filtering
	Preference Optimization

	Experiments
	Experimental Setup
	Datasets
	Baselines

	Superior Performance on Mathematical Reasoning
	Main Results on Common Benchmarks
	Challenging Results on Large-Scale Models
	Further Comparison with SOTA Methods

	Broad Generality Across Diverse Reasoning Domains
	In-depth Analysis and Ablation Studies
	Ablation on Core Components
	Practicality with Small-scale Draft Models
	Robustness of Design Choices

	Empowering RLVR with High-Quality PRMs

	Related Work
	Mathematical Reasoning
	Preference Optimization

	Conclusion
	Implementation Details
	Training Details
	Details of Prompts

	Analysis of Computational Costs
	Analysis of StepDPO
	Analysis of KEEP
	Comparison of Average Consumption
	Average Consumption of the Target Model
	Average Consumption of the Teacher Model

	Statistical Analysis of Sampling Responses
	Experimental Results

	Further Ablation Study
	Ablation on Model Architecture

	Theoretical Motivation for Key-step Identification
	Analysis of PPL and Entropy
	Manual and Statistical Analyses

	Quality Analysis of Generated Preference Data
	Effectiveness of Speculative Filtering
	Gradient-based Attribution of Error Impact
	Human Audit of Preference Pair Quality

	Analysis of Error Types
	Case Study
	Case Study on Qwen2-72B series models
	Case Study on Llama-3.1-70B series models

	Use of Large Language Models in Manuscript Preparation

