
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Benchmarking LLM Tool-Use in the Wild

Anonymous authors
Paper under double-blind review

Abstract

Fulfilling user needs through Large Language Model multi-turn, multi-step tool-use
is rarely a straightforward process. Real user interactions are inherently wild,
being intricate, messy, and flexible. We identify three key challenges from user
behaviour: compositional tasks that demand efficient orchestration of tool-call
topologies, implicit intent spread across dialogue turns that require contextual
inference, and instruction transition, which mixes task queries, clarifications, and
casual conversation, forcing LLMs to adjust their policies on the fly. Existing
benchmarks overlook these behaviors, making the apparent progress of LLMs
on tool-use spurious. To address this, we introduce WildToolBench, an LLM
tool-use benchmark grounded in real-world user behavior patterns. Comprehensive
evaluations of 57 LLMs reveal that no model achieves an accuracy of more than 15%,
indicating a substantial gap in the robustness of LLMs’ agentic ability. Controlled
experiments and in-depth analyses further indicate that the real challenge for LLM
tool-use lies not in artificially complex tasks, but in the wild nature of user behavior,
emphasizing the need to reconsider the interactions among LLMs, users, and tools.

1 Introduction

WildToolBench BFCL-v4 BFCL-v3 BFCL-v2 𝜏-Bench 𝜏!-Bench(Telecom)

Figure 1: Session Accuracy comparison among tool-use benchmarks. See details in Appendix B.

Large language models (LLMs) are evolving rapidly, and agents built on them have become a
promising direction (Google, 2024; DeepSeek-AI et al., 2025; Zeng et al., 2025; Yao et al., 2023).
These agents interact with the real world through various tools, opening up new avenues for AI
applications. Developing benchmarks that can evaluate the tool-use capabilities of large language
models in a reliable way has become increasingly important.

Current mainstream LLM tool-use benchmarks follow a multi-turn, multi-step paradigm: LLMs
function as assistants and engage in multi-turn dialogues with users to complete coherent tasks. Each
task typically requires multi-step tool-use. However, existing benchmarks (Huang et al., 2024a; Qin
et al., 2024; Du et al., 2024; Yao et al., 2024; Ji et al., 2024b) are overly idealized and neglect the
complexity of multi-turn, multi-step settings in real-world scenarios. From large-scale analysis of
real user logs, we identify three salient properties of how human users employ LLMs to solve tasks
with tools: 1) users tend to deliver Compositional Tasks that contain multiple simple requirements,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Planning a
weekend
getaway. Check
the weather for
Chicago this
weekend.

Nov. 2, 2024 (Sat.):
Overcast. 6°C–16°C.
South wind.
Nov. 3, 2024 (Sun.):
Moderate rain. 10°C–
17°C. South wind.

It is terrible. Check
the Los Angeles
and Las Vegas.

Los Angeles
Nov. 2, 2024 (Sat.):
Sunny. 12°C–19°C. West wind
Nov. 3, 2024 (Sun.):
Sunny. 12°C–22°C. North wind
Las Vegas
Nov. 2, 2024 (Sat.):
Partly cloudy. 5°C–16°C. East wind
Nov. 3, 2024 (Sun.):
Sunny. 6°C–16°C. Northeast wind

Which city's
performances
are you
interested in?

Las Vegas

The Eagles will
perform on
Saturday (2024-
11-02) as part
of their "Long
Goodbye"
farewell tour.

The Eagles are
a legendary
American rock
band ……

Any special
shows there? Tell me more

Find Optimal Tool
Use Orchestration

for Quick Response

Infer Information
and Intent From

Multi-Turn Dialogue

Switch Among
Various Policies

On the Fly

Simple Task
Follow Up Task
with Multiple
Requirements

Start New Task
Regarding

History Context

Clarification
on Task

Start New
Task

☔

Single Weather
Tool Use

🤔

Ask for
Calrification

☔☔

Parellel Weather
Tool Use

🔍

Single Search
Tool Use

🧠

Answer w/o
Tool Use

Just a Natural Dialogue for User

But Challenging Tasks for LLM

Figure 2: WildToolBench poses three characteristics that seem easy and natural for the user, but
challenging for the LLM tool-use.

demanding tool orchestration beyond simple chaining to respond on time. 2) Users’ implicit intention
is spread within dialogue, requiring LLMs to infer it from context. 3) In a conversation, users naturally
transition between different types of instructions, such as task-giving, follow-up, explanation, and
casual chatting modes, demanding LLMs to adapt their policies on the fly.

These three characteristics embody the design philosophy of WildToolBench, “What truly challenges
LLMs’ tool-use capabilities is not artificially constructed complex scenarios, but simple yet realistic
user behaviors”, namely, the compositionality, vagueness, and variability of user instructions. In
WildToolBench, through a carefully constructed data pipeline combined with human verification and
annotation, we curate 256 scenarios with 1024 tasks. As shown in Figure 1, while prior tool-use
benchmarks tend to be saturated, WildToolBench remains highly challenging. Our results show that
even the most advanced language models struggle to achieve satisfactory performance, with most
models reaching no more than 15% session accuracy. A further breakdown of experiments on 57
LLMs reveals that in-the-wild task settings severely degrade model performance, underscoring that
the future evaluation of LLMs’ agentic ability cannot rely on simple, idealized benchmarks but must
instead account for the inherent complexity of real-world user behaviours.

2 Related Work

LLM agents have emerged as a prominent research direction, with their core competency rooted in
the ability to utilize external tools. Tool-use benchmarks have, to some extent, shaped the evolution
of LLMs’ agentic ability, from simple QA to multi-turn, multi-step, long-horizon autonomous
tool-use. T-EVAL, UltraTool, and MetaTool(Chen et al., 2024; Huang et al., 2024a;b) assess various
sub-capabilities of tool-use, but treat tool invocation as a simple question-answering task, which fails
to capture the multi-turn interactive nature of the LLM agent loop. WorfBench and TaskBench(Qiao
et al., 2025; Shen et al., 2024) took a step forward by introducing single-turn multi-step tool invocation
and emphasizing planning capabilities, but are constrained by annotating only a single optimal path and
relying on similarity-based metrics, which can be imprecise in evaluation. ToolBench, AnyToolBench,
and StableToolBench(Qin et al., 2024; Du et al., 2024; Guo et al., 2024) also focus on single-turn
multi-step tool-use, but their proposed tasks are synthesized by LLMs and generally exhibit a low level
of difficulty. On the other hand, BFCL-V1 and BFCL-V2 (Ji et al., 2024a) pioneered the evaluation of
parallel tool-use but were still limited to single-turn scenarios. BFCL-V3(Ji et al., 2024b) introduced
multi-turn evaluation and assessed the sequential multi-step capabilities of LLMs. However, its
tasks lack semantic correlation, with each task being independent and identically distributed, and
provided with complete intention and information, which is unnatural compared with real-world user
behaviours. Therefore, τ -Bench and τ2-Bench(Yao et al., 2024; Barres et al., 2025) introduce the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

design of LLM-as-User. To some extent, user simulators better approximate real environments (e.g.,
requiring an LLM agent to proactively ask questions rather than merely execute tool calls reactively).
However, LLM-based simulation still diverges significantly from real user behavior. For instance,
LLMs tend to behave in an unrealistically flawless manner, making tasks too easy to solve. Moreover,
reliance on LLM simulation also leads to unstable evaluation results. Through a human-in-the-loop
annotation process, WildToolBench explicitly incorporates three real user behaviors (compositional
tasks, implicit intent, and instruction transition), thereby setting a new standard for evaluating LLM
tool-use. A comparison between WildToolBench and previous benchmarks is provided in Table 1.

3 WildToolBench

3.1 Formulation

We formalize the interaction between a user and an LLM as a multi-turn dialogue, denoted as

D = {u1, a1, u2, a2, . . . , uN , aN}
where ui is the i-th user message and ai is the corresponding LLM assistant response. Within this
N -turn dialogue, there are M user tasks {g1, . . . , gM} which are scattered throughout the dialogue.
For each user message ui, there may exist a task gj , and the LLM needs to detect the user’s intention
and solve the task in the response ai. If solving this task requires tool usage, the LLM will first engage
in a process of multi-step tool invocation, which can be regarded as the LLM conducting several
rounds of interaction with the external environment (e.g., a local database or a MCP server), denoted
as T j = {aT1 , e1, aT2 , e2, ..., aTS , eS}, where aT is the LLM’s tool call, and e is the corresponding
environment feedback after executing this call. Once this S-step tool invocation T j is completed, the
LLM gathers information from feedback and generates the user’s response to the task with ai.

In a real scenario, user intentions are varied in one dialogue session, and user messages are mixed
with various types of tasks g, such as asking questions, requesting follow-ups, seeking improvements,
explaining themselves, or just chatting. The LLM needs to apply different policies for correct reactions,
which may include 1) LLM just replies without any tool usage (S = 0), such as in response to a
task that needs clarification gclarify or a task that does not require a tool gchat, 2) LLM adapts
a single-tool invocation policy (S = 1) for a simple task gsingle, or 3) LLM performs multi-step
tool invocations (S > 1) for a hard task gmulti. From the LLM’s perspective, the dialogue unfolds
as a Markov Decision Process (MDP), where the state at each step is the full dialogue history
(including u, a, aT , and e), and the actions are the tokens that formulate different policies. Under
this formalization, WildToolBench faithfully reflects the complexities and challenges inherent in
applications for real-world users, where 1) the user task g is compositional, consisting of multiple
sub-requirements, necessitating effective tool orchestration. This implies that T may be a tree rather
than a simple chain-like execution. 2) User tasks {g1, . . . , gM} are contextually interrelated, requiring
the LLM to uncover latent context from historical observations, including user messages {u} and
assistant messages {a}. 3) User intentions transition in each message ui, and the LLM must switch
its policies accordingly to give a correct response a.

3.2 Data Curation

Table 1: Comparative analysis of the WildToolBench against other tool-use benchmarks.

Benchmark Contextual
Multi-Task

Hidden Info
in Context%

User Instruction
Transition%

Sequential
Tool-Use

Parallel
Tool-Use

Mixed
Tool-Use

WildToolBench ✓ 100% 100% ✓ ✓ ✓
BFCL v3 (Patil et al., 2025) ✓ 15.7% 39.7% × ✓ ×
BFCL v2 (Patil et al., 2025) × 0.0% 0.0% × ✓ ×
BFCL v1 (Patil et al., 2025) × 0.0% 0.0% × ✓ ×
ToolBench (Qin et al., 2024) × 0.0% 0.0% ✓ × ×
AnyToolBench (Du et al., 2024) × 0.0% 0.0% ✓ × ×
τ2-bench (Barres et al., 2025) - - - ✓ × ×
τ -bench (Yao et al., 2024) - - - ✓ × ×
T-EVAL (Chen et al., 2024) × 0.0% 0.0% ✓ × ×
UltraTool (Huang et al., 2024a) × 0.0% 0.0% ✓ × ×

The data curation pipeline of WildToolBench follows three steps. First, we analyzed a large collection
of real user logs to collect suitable seed scenarios and to summarize user behavior patterns. These

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

patterns are summarized as three challenges, and we uniformly sample from real user logs and use
these samples as few-shot examples together with challenges in the prompts, so that the collected
scenarios follow the same distribution as the real logs and do not leak real user data.

Then, following ToolAlpaca (Tang et al., 2023), we collected more than 1,600 publicly available APIs
from the internet, carefully verified and cleaned them into a tool set. This publicly available API
GitHub repository 1 is continuously updated and now contains more than 1400 tool lists, but to stay
consistent with ToolAlpaca, we use 400 of these tool lists, covering around 1600 APIs in total. Then,
we selected a corresponding tool subset for each seed scenario and generated four tasks based on it.

Finally, we employed GPT-4o (OpenAI, 2024a) to construct a multi-agent system simulating the roles
of user and assistant, generating initial trajectories under the given task and tool subset. Each tool
invocation in the trajectory was manually examined and annotated as ground truth, producing the
final dataset.

The detailed process is described in Appendix §C. Each stage of the data curation pipeline involved
manual annotation and validation to ensure accuracy and diversity. Furthermore, in the manual
inspection of tasks, we emphasized three aspects: task compositionality (§3.3), contextualized
intention (§3.4), and instruction transition (§3.5), reflecting the inherent complexity of real user
behaviors. Finally, we present comprehensive statistics of WildToolBench in §3.6. The unique design
of WildToolBench is highlighted in Table 1.

Search and
List Movies

Investigate
Each Movie

Create Slides and
Draw Layout

Finish Slide

a) Tool dependency for creating a movie survey slide

Step 1

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 4

b) Enumerate all possible tool execution trajectory c) Match LLM’s tool execuation trajectory d) Score LLM’s trajectory with AP and OP

❌Failed

Step 1

Step 2

Step 3

Step 4 ❌Failed

AP : 3 out of 4 steps were successful, 75%
OP : Not the optimal 3-steps trajectory, False

Figure 3: Visualization of the enumerate-match-score pipeline for evaluating the LLMs’ tool
orchestration ability in WildToolBench.

3.3 Challenge 1: Tool Orchestration for Compositional Task

Real-world user instructions do not always present very hard tasks, but multiple simple requirements
are combined into a single instruction. We meticulously constructed tasks under common scenarios
(e.g., document operations or weather inquiries), but with compositional forms that better reflect
real user instructions (e.g., searching for popular movies to generate a survey slide, or multi-city
weather inquiries intertwined with travel planning). Compared with simple and well-defined tasks
found in previous benchmarks, these are "in-the-wild" tasks that require an LLM to possess strong
planning capabilities to identify tool dependencies and construct an efficient tool-calling topological
graph, thereby improving TTFT (Time to First Token). To accurately measure whether an LLM can
effectively construct an efficient tool-calling topology, WildToolBench measures not only the final task
accuracy but also more fine-grained metrics such as the optimal path rate and task accomplishment
progress, in a simple three-stage manner: enumerate, match, and score.

Enumerate First, the adjacent tool dependencies are manually labeled by human experts. Then, we
apply a depth-first topological sorting algorithm (see Appendix D for details) to generate all possible
legal tool execution paths that obey the adjacent dependencies. Our approach enumerates all possible
tool execution paths, rather than restricting to limited suboptimal paths (Qiao et al., 2025; Shen et al.,

1https://github.com/public-apis/public-apis

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2024). Such an enumeration generates a decision tree set that considers all branching and parallel
scenarios. For example, in Figure 3 a), the search-then-investigate branch and the slide branch can be
executed in parallel, leading to five possible paths as shown in Figure 3 b).

Match Every time the LLM executes a tool, we use an incremental path matching strategy to locate
this tool call in the previously enumerated decision tree set. Each tool call either terminates the path
if mismatched or takes a step into the corresponding sub-tree.

Score By matching and locating the LLM’s tool call in the enumerated decision tree set, we can
evaluate the quality of the LLM’s current tool execution topology. Whenever the tool executed by
the LLM terminates or completes a path, we calculate whether this path has the minimum depth
among all enumerated decision trees. If so, it indicates that this decision tree is not only valid but also
possesses optimal efficiency, and we can calculate the Optimal Path Rate (OP Rate). Furthermore,
the LLM often fails on many tasks, with tool-calling nodes generated midway that do not fall within
the valid decision tree set. We calculate the Accomplish Progress Rate (AP Rate) based on the
proportion of its successful nodes. These two fine-grained metrics, OP and AP , are used to measure
tool orchestration.

Help me check the news from BBC the day before yesterday.

Yesterday ESPN

News from BBC (December 22, 2024)
1. The Global Climate Change Conference(https://www.bbc.com/news/38614725)
2. Tech giant releases the new smartphone(https://www.bbc.com/news/25814736)

I want to obtain the metadata of one of them

The last one in the first round of results

Get the metadata of all the rest articles for me. Also, I want to know about other
articles by the authors of these rest articles.

Action:
- name: "filterArticlesBySource"
- args: {"fromDate": "2024-12-22", "source": "BBC”}

Observations:
- The Global Climate Change Conference is held in Paris
- Tech giant releases the latest smartphone

Action:
- name: "filterArticlesBySource"
- args: {"fromDate": "2024-12-23", "source": " ESPN”}

Observations:
- The NBA Christmas Day games are approaching
- Analysis of the NFL playoff situation

News from ESPN(December 23, 2024)
1. The NBA Christmas Day games are
approaching(https://www.espn.com/nba/96385217)
2. Analysis of the NFL playoff situation(https://www.espn.com/nfl/41728365)

Could you please provide the URL or title of the specific article you are interested
in so that I can retrieve the metadata of the article for you?

- Author: John Doe
- Publication Date: December 22, 2024
- Content Type: Sports event situation analysis

Action:
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/25814736"}

Observations:
{“author”: “John Doe”, “date”: “December 22, 2024”,
“type”: “sports event situation analysis”}

Sure, Here is the metadata of all the articles remain:
……
and here are complete article list from Jane Smith and Emily Johnson:
……

Action:
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/38614725"}
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/96385217"}

Observations:
{“author”: “Jane Smith”,
 “date”: “December 22, 2024”}

{“author”: “Emily Johnson”,
 “date”: “December 23, 2024”}

{“author”: “Jane Smith”,
 “article_list”: [“The Global Climate Change
Conference”, ……]}

……

Action:
- name: "getArticleByAuthor"
- args: {"author": "Jane Smith"}
- name: "getArticleByAuthor"
- args: {"author": "Emily Johnson"}

Turn 1
Single-Tool

Turn 2
Single-Tool

Turn 3
Clarification

Turn 4
Parallel Multi-Tool

Turn 5
Mixed Multi-Tool

Task 1
Single-Tool

Task 2
Single-Tool

Task 3
Clarify then Parallel Multi-Tool

Task 4
Mixed Multi-Tool

No Transition Transition Transition

1

1

2

2

3

Partial Information

The complete query
should be “Check the news
from ESPN yesterday”

2
Coreferential Reference

The “one of them” in the
third turn user message
can not be determined.

After clarification, it refers
to the article with BBC
article id 25814736.

3

Long-Range Dependency

User ask for all the rest
articles, which denotes
article 38614725 in the first
turn, and article 96385217
in the second turn.

Figure 4: Examples for Challenges on Hidden Intention §3.4 and Instruction Transition §3.5. These
challenges arise from the very nature of real user behavior: from the user’s perspective, the interaction
is a coherent dialogue rather than a series of isolated task submissions.

3.4 Challenge 2: Infer Hidden Intention Through Dialogue

Previous research (Chiang et al., 2023; Su et al., 2019) reveals that in sequential tasks, 80% of users
follow up with additional questions and may modify or omit contextual information, which aligns with
our observations. The LLM must infer the user’s latent intentions from the multi-turn conversation,
gather the necessary information and even proactively request clarifications. In WildToolBench,
we utilize three strategies to construct tasks that demand multi-turn context inference, as shown
in Figure 4: 1) Partial Information: The current user message ui contains only a subset of the
information required to complete the task, while the omitted information is present in previous user or
assistant messages {u1, a1, . . . , ui−1, ai−1}. 2) Coreferential Reference: The current user message
contains the full information, but the subject is expressed only via pronouns or ellipsis, referring back
to entities mentioned in earlier user or assistant messages. 3) Long-Range Dependency: Similar to
partial information, except that the missing information is located in distant dependencies; that is, ui

depends on {u1, a1, . . . , uj , aj} with i− j > 2.

3.5 Challenge 3: Adaptable Policy Switch for Instruction transition

When interacting with an LLM assistant, most users treat the interaction as a natural conversation
rather than a series of independent task submissions. Users frequently initiate tasks across multiple
turns, ask follow-up questions, provide explanations, engage in casual dialogue, and interrupt or
resume tasks at will, continuously transition among different instruction types. As illustrated in
Figure 2 and Figure 4, what appears to users as an ordinary conversation in fact involves multiple
transitions. Such flexible and frequent instruction transitions require the LLM to adapt its policy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

appropriately, making suitable choices among strategies such as tool-use, direct question answering,
or proactive inquiry.

In constructing WildToolBench, we categorize all tasks into four types: tasks solvable with a single
tool call (gsingle), tasks requiring multiple tools and multi-step calls (gmulti), conversational or tool-free
queries (gchat), and tasks that require the assistant to ask for clarification (gclarify). For each scenario,
we carefully curated the proportions of these four task types as well as their switching frequency,
ensuring that WildToolBench faithfully reflects the phenomenon of instruction transition observed in
real user behavior. This setup benchmarks LLMs’ ability to accurately track evolving user intentions
in natural dialogue and generate appropriate responses.

3.6 Statistics

e) Distribution of Tool Call Counts Per Task

a) Distribution of User Message Types

d) Distribution of Dialogue Turns f) Distribution of Tool Types

b) Distribution of Contextual Chanllenges

ChatClarify

Single
Tool

Parallel
Multi-Tool

Sequential
Multi-Tool Mixed

Multi-Tool Long-Range
Dependency

Integer

Coreferential
Reference

String

Partial
Information

StringEnum

Boolean

Array

Others

Object

Float

Nested
Object

Integer
Enum

c) Distribution of Tool Parameters

Financial
4.6%

Coding
9.2%

Game
6.7%

Media
5.8%

Geographic
12.2%

Weather
3.9%

News
5.3%

Social
4.1%

Business
5.3%

Finance
4.4%Health

4.8%

Figure 5: Key statistics for WildToolBench.

Figure 5 presents detailed statistics of WildToolBench. We constructed 256 scenarios, each consisting
of a multi-turn dialogue with four user tasks, resulting in a total of 1,024 tasks. We evaluate whether
the LLM generates the ground-truth tool calls within the dialogue, measuring both task-level accuracy
and session accuracy, i.e., whether all four tasks in a dialogue are correctly completed.

The key observations from these statistics are as follows: 1) the four task types (gsingle, gmulti, gchat,
gclarify) and various forms of hidden user intention are well balanced, ensuring diversity and challenge
within each dialogue; 2) tool parameter types are highly diverse, and the tool type covers 8 major
categories and 24 subcategories, all of which correspond to commonly encountered real scenarios; 3)
the average dialogue length is 5.27 turns and the average number of tool-call steps is 1.92, which is
significantly higher than BFCL (3.75 turns, 1.68 steps). In the appendix, we highlight the wild nature
of WildToolBench in Table 1.

4 Experiments

We present a detailed experiment by benchmarking 57 mainstream LLMs on WildToolBench, ranging
from proprietary to open-source LLMs, from general to specialized models, and from instruction-tuned
to large reasoning models. The experiments and analysis are organized as follows: §4.1 gives an
overview of benchmarking results and key takeaways, §4.2 investigates how well LLMs can orchestrate
tool calls to handle the compositional user instructions in WildToolBench, §4.3 examines the inference
ability of LLMs when users omit or hide their intentions and information across multiple turns in
dialogue, and §4.4 presents how frequent instruction transitions affect the LLM’s ability to make
correct decisions. Finally, in §4.5 we provide an empirical analysis of the errors that LLMs made in
WildToolBench.

4.1 Overall Performance

We evaluate three categories of models, including Proprietary General Models (OpenAI, 2025;
Anthropic, 2025; Mistral, 2024; Doubao, 2025; OpenAI, 2024b; Google, 2024; Seed, 2025), Open-
Source General Models (Qwen, 2025; DeepSeek-AI et al., 2024; Yang et al., 2024; DeepSeek-AI

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: WildToolBench Results.

Models Categorized by Task Type g Categorized by Task Order M Overall
gsingle gmulti gclarify gchat 1 2 3 4 Task Session

Proprietary General Models
Gemini-2.0-Thinking 56.64 40.23 52.34 94.92 78.13 63.67 51.95 50.39 61.04 14.45
Gemini-2.5-Pro 55.08 36.33 46.88 86.72 70.31 56.64 53.52 44.53 56.25 14.06
Claude-4-Sonnet 60.16 43.75 41.80 80.47 71.09 57.81 52.73 44.53 56.54 12.50
o1 54.30 39.06 48.05 93.75 69.53 60.94 55.86 48.83 58.79 12.11
GPT-4o 60.16 41.80 39.45 78.13 72.66 55.08 46.09 45.70 54.88 11.72
Grok-4 59.38 41.41 33.59 66.02 63.67 52.34 42.97 41.41 50.10 10.16
GPT-5 46.09 34.38 31.64 84.38 62.11 50.00 45.31 39.06 49.12 5.86

Open-Source General Models
GLM-4.5 57.81 40.63 44.53 81.25 70.70 60.16 50.78 42.58 56.05 12.11
Kimi-K2 54.30 33.98 39.84 86.72 68.75 57.03 48.83 40.23 53.71 10.55
DeepSeek-R1 56.25 41.02 43.75 80.08 74.22 54.30 48.83 43.75 55.27 9.38
DeepSeek-V3 58.98 38.67 33.59 79.30 75.39 53.91 41.02 40.23 52.64 9.38
Qwen3-32B-Thinking 53.52 28.91 37.11 80.86 62.50 52.73 46.48 38.67 50.10 7.81

Open-Source Specialized Models
xLAM-2-70B 64.45 36.72 28.91 64.84 64.06 51.56 42.58 36.72 48.73 7.81
ToolACE2-8B 62.11 37.89 33.98 84.38 72.27 59.38 46.88 39.84 54.59 7.42
Watt-8B 61.72 28.13 22.66 78.13 68.75 47.27 39.06 35.55 47.66 4.69
Hammer2.1-7B 40.23 21.88 30.47 94.92 61.72 46.88 40.63 38.28 46.88 4.69

et al., 2025), and Open-Source Specialized Models (Zeng et al., 2025; Liu et al., 2024; Lin et al.,
2024; Shi et al., 2024). We employ each model’s native Function Call format to achieve optimal
performance. Table 2 presents the overall performance of top-performing models. Full results on 57
models are provided in Appendix E.2.

In terms of overall performance, none of the mainstream LLMs achieve a session accuracy higher than
15%, and most models fall below 60% in task accuracy, highlighting the difficulty of WildToolBench.
Proprietary LLMs generally outperform open-source ones, and reasoning-oriented models consistently
surpass non-reasoning models. The best-performing open-source models, such as GLM4.5 and
Kimi K2, achieve performance comparable to the top three proprietary models, while the remaining
open-source models still lag considerably behind.

We further conducted a drill-down analysis of task accuracy along two dimensions: task type and task
order. For task type, when the user’s intention is casual chat or tool-free answering, most LLMs can
reliably recognize the intention and respond appropriately. However, when the intention involves
clarification or eliciting task details through counter-questions, LLMs frequently misfire by executing
a function call. Moreover, multi-step tool-use exhibits substantially lower accuracy than single-step
tool invocation. For task order, within a dialogue, tasks appearing later exhibit greater dependence on
preceding information, and model performance deteriorates accordingly.

4.2 LLMs Perform Poorly on Tool Orchestration

We further analyzed whether LLMs can correctly orchestrate tool-call topologies to handle com-
positional tasks. We divided compositional tasks into three categories according to their required
tool topology: sequential multi-step tool-use (gSmulti), parallel multi-step tool-use (gPmulti), and mixed
tool-use combining both sequential and parallel structures (gS+P

multi). As shown in Table 3, the highest
task accuracy is merely 43.75%, falling to just 25% for gS+P

multi tasks, indicating that compositional tasks
with multi-turn interactions remain a significant challenge for LLMs. Similarly, the peak optimal path
(OP) rate reaches only 42.74%, suggesting that current LLMs have substantial room for improvement
in tool execution efficiency. See full results of 57 LLMs in Appendix E.3. Specialized tool-use
models perform significantly worse than general-purpose models, indicating limited generalization
despite their intended focus. Claude-4-Sonnet shows a clear advantage in complex reasoning for
tool orchestration, outperforming other proprietary models. The Gemini series reveals a strong bias,
excelling in parallel but dropping sharply in mixed one. Among open-source models, GLM-4.5 excels
in sequential and mixed tasks, even surpassing leading proprietary models. Furthermore, we observe
that reasoning-enabled model variants outperform their non-reasoning counterparts within the same

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: WildToolBench tool orchestration evaluation result.

Models Task Accuracy AP Rate OP Rate

gPmulti gSmulti gS+P
multi Overall gSmulti gS+P

multi Overall gPmulti gS+P
multi Overall

Proprietary General Models
Gemini-2.0-Thinking 54.14 25.00 16.67 40.23 45.28 39.89 40.37 53.50 16.67 40.66
Gemini-2.5-pro 49.04 25.00 14.29 36.33 47.17 39.15 39.87 43.31 11.90 32.37
Claude-4-Sonnet 54.78 31.25 25.00 43.75 60.38 46.32 47.57 52.87 23.81 42.74
o1 50.96 12.50 21.43 39.06 35.85 37.50 37.35 50.32 20.24 39.83
GPT-4o 53.50 31.25 21.43 41.80 41.51 45.40 45.06 51.59 21.43 41.08
Grok-4 54.14 18.75 21.43 41.41 41.51 46.51 46.06 53.50 21.43 42.32
GPT-5 43.31 37.50 16.67 34.38 49.06 38.42 39.36 42.68 13.10 32.37

Open-Source General Models
GLM-4.5 51.59 31.25 21.43 40.63 67.92 48.90 50.59 49.68 20.24 39.42
Kimi-K2 45.86 12.50 15.48 33.98 52.83 34.93 36.52 43.95 15.48 34.02
DeepSeek-R1 53.50 18.75 21.43 41.02 41.51 44.12 43.89 52.87 20.24 41.49
DeepSeek-V3 52.87 25.00 14.29 38.67 43.40 32.54 33.50 51.59 14.29 38.59
Qwen3-32B-Thinking 42.04 12.50 7.14 28.91 41.51 28.31 29.48 40.13 7.14 28.63

Open-Source Specialized Models
xLAM-2-70B 49.68 12.50 16.67 36.72 43.40 44.85 44.72 26.75 7.14 19.92
ToolACE2-8B 47.77 31.25 20.24 37.89 50.94 43.01 43.72 26.11 14.29 21.99
Watt-8B 44.59 6.25 1.19 28.13 22.64 21.87 21.94 44.59 1.19 29.46
Hammer2.1-7B 33.12 12.50 2.38 21.88 24.53 13.24 14.24 31.85 2.38 21.58

series, indicating that additional reasoning leads to better tool-call orchestration for compositional
tasks. These results refute the conclusion in previous work Zhou et al. (2025) that a reasoning
model does not outperform a non-reasoning model on tool-use, highlighting limitations in previous
evaluations.

4.3 LLMs Struggle to Infer intention Across Dialogue

Figure 6: LLM’s performance under different hid-
den information strategies.

Figure 7: LLM’s performance goes down as
the instruction transition goes more frequently.

Figure 6 reports the accuracy of LLMs on three types of user tasks, in which user intention and
information are partially hidden or omitted across multi-turn contexts. We find that long-range
dependency tasks are the most challenging, with no model achieving accuracy above 50%. By
contrast, tasks involving partial information or coreference are relatively easier. The results reveal
clear specialization across models: reasoning models such as o1 and gemini-2.0-thinking excel at
inferring omitted information and intent in partial information tasks, while Claude-4-Sonnet leads on
coreferential reference tasks, indicating that no single model outperforms others across all aspects.
Long-range dependency tasks remain the weakest dimension overall, with scores clustered between
30 and 45, while also exhibiting the largest performance gap (17.3), making them a key differentiator
among models. Mid-tier models demonstrate notable strengths despite lower overall averages; for
instance, ToolACE2-8B (Ref 56.2) and GLM-4.5 (Ref 57.9) approach top-tier performance. Model

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

capability generally correlates positively with model size, as illustrated by the Qwen2.5 series results
in Table 6. In general, reasoning models demonstrate stronger capabilities in inferring hidden intent
and retrieving omitted information within multi-turn contexts.

4.4 User Instructions Change, and LLMs Lag Behind

To further investigate the impact of user instruction transitions on LLM decision-making, we analyzed
the performance of all models on tasks in WildToolBench with varying transition frequencies. As stated
in Section §3.1, we categorize the tasks into four types: gsingle, gmulti, gchat, and gclarify, corresponding
to tasks solvable with a single tool call, multi-step tool calls, direct question answering, and tasks
requiring clarification, respectively. An instruction transition is defined as a change in task type
between two consecutive tasks within a dialogue. Given that each scenario contains up to four
tasks, at most three transitions can occur. As shown in Figure 7, across open-source and proprietary
models, general-purpose and specialized models, as well as reasoning and non-reasoning models, task
accuracy decreases as the number of transitions increases. In some cases, the drop reaches as much as
30% in accuracy. Our analysis indicates two main factors underlying this trend. First, tasks with
frequent transitions reflect more flexible and in-depth user demands (e.g., a task requiring clarification
followed by a follow-up query for further information). Such tasks more closely resemble real user
scenarios and are inherently more difficult. Second, LLMs exhibit self-conditioning (Sinha et al.,
2025), whereby previous responses bias subsequent decisions. For example, if a model previously
used a tool call, it tends to continue using tool calls; if it previously executed parallel tool calls, it is
biased toward repeating them. This interference prevents the model from selecting the appropriate
response. Essentially, this arises because the long conversational context dilutes the model’s attention
to the current task, as historical user and assistant messages accumulate. This problem is particularly
pronounced when the current task requires recalling past interactions (as noted in Section §3.4),
further exacerbating the interference from historical context.

4.5 Error Analysis

Table 4: Error Analysis in WildToolBench.

Models Action Errors Parameter Errors

Refusal Wrong Name
Missing Info

Wrong
Refusal

Redundant
Call

Call
Error

Early
Termination

Param
Type Error

Param
Hallucination

Param
Value Error

Proprietary General Models
Gemini-2.0-Thinking 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.80% 8.09% 14.83%
o1 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
GPT-4o 5.41% 21.65% 12.12% 14.50% 11.47% 7.58% 3.46% 9.96% 13.85%
Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.34% 10.75% 6.53%

Open-Source General Models
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.33% 4.67% 12.89%
Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.74% 6.75% 14.14%
DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.53% 8.52% 11.79%
DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.65% 7.42% 10.31%
Qwen3-32B-Thinking 9.20% 20.35% 9.20% 19.18% 19.18% 4.31% 1.96% 7.83% 8.81%

Open-Source Specialized Models
xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 1.71% 5.14% 12.57%
ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 3.23% 3.66% 14.84%
Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.87% 5.78% 10.45%
Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 3.49% 1.47% 8.82%

Table 4 reveals that the primary challenge in LLM tool-use has shifted from syntactic correctness to
semantic and logical reasoning. The data indicates two divergent failure philosophies: a “cautious”
profile, exemplified by Gemini-2.0-Thinking, which prefers to refuse a task (24.56% Refusal rate)
rather than risk an incorrect action (8.02% Wrong Name error), and an “eager” profile, seen in models
like Grok-4, which minimizes refusals (3.72%) at the cost of a significantly higher propensity to select
the wrong tool (24.07% Wrong Name error). Across the spectrum, “Wrong Name / Missing Info” and
“Redundant Call” (23.06% in Gemini-2.0-Thinking) emerge as the most prevalent errors, highlighting
systemic deficits in intent understanding and context management. This problem is particularly
pronounced in specialized open-source models like xLAM-2-70B and Watt-8B, where “Wrong Name”
errors exceed 30%, suggesting that specialization can lead to brittleness. Conversely, parameter-level

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

errors such as “Param Type Error” or “Param Hallucination” are consistently lower across all models.
This suggests that the frontier of agentic AI development now lies in improving higher-order planning
and reasoning rather than basic syntactic generation. The prevalence of “Redundant Call” errors
reveals a widespread deficiency in long-range planning for most capable models, indicating that they
struggle with context management over time. However, the deceptively low rates of this error in some
specialized models can be misleading, as this “pseudo-capability” often masks a more fundamental
failure to initiate tasks correctly, evidenced by catastrophic “Wrong Name” error rates.

5 Conclusion

WildToolBench, grounded in real user behavior patterns, identifies three major challenges for LLMs
performing multi-turn, multi-step tool-use: compositional instructions, hidden intent, and instruction
transitions. Unlike prior evaluations that focus solely on increasing the complexity of tool-call
procedures, WildToolBench emphasizes assessing LLM tool-use capabilities in the context of realistic
user scenarios. Benchmarking nearly all mainstream models, WildToolBench reveals a fundamental
limitation in current LLM development: for effective tool-use, a model cannot merely function as a
tool executor; it must also possess the capacity to understand users. This capability depends on deeper
foundational skills of large models, including instruction following, long-context comprehension,
and theory of mind—essential abilities for future agentic models. Beyond serving as a leaderboard,
WildToolBench provides structured rubrics that guide model developers in interpreting user behaviors
from multiple perspectives, facilitating more effective model iteration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 Reproducibility statement

WildToolBench provides all the datasets, evaluation scripts, and all 57 LLMs evaluated trajectories to
support 100% reproducibility. See these materials in the submitted “Supplementary Material” zip file.

7 Limitations

WildToolBench uses human annotations to ensure data quality, diversity, and alignment with real user
behaviour distribution. However, this limits the scaling potential of the data size. What’s more, the
dual objectives of maintaining data quality and traversing all policy transition types concurrently
limit the feasible length of tasks. Despite this, experimental results reveal significant trends in model
performance, leading to robust conclusions on the gap in current LLMs’ tool-use ability. We are also
working on combining human-annotated rubrics with a fully automated synthetic environment scaling
pipeline for both training and evaluation of the Agentic Model, which is the foundation for the next
scaling trend in the AI era.

References
Anthropic. claude-3.7. https://www.anthropic.com/news/claude-3-7-sonnet,

2025.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-Bench: Evaluating
Conversational Agents in a Dual-control Environment. arXiv preprint arXiv:2506.07982, 2025.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-Eval: Evaluating the Tool Utilization
Capability of Large Language Models Step by Step. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 9510–
9529. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.515.
URL https://doi.org/10.18653/v1/2024.acl-long.515.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An Open-source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. DeepSeek-V3
Technical Report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.18653/v1/2024.acl-long.515
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/arXiv.2412.19437

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue
Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi
Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
https://doi.org/10.48550/arXiv.2501.12948.

Doubao. Doubao 1.5pro. https://team.doubao.com/zh/special/doubao_1_5_pro,
2025.

Yu Du, Fangyun Wei, and Hongyang Zhang. AnyTool: Self-Reflective, Hierarchical Agents for
Large-scale API Calls. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=qFILbkTQWw.

Google. Gemini. https://deepmind.google/technologies/gemini/, 2024.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun,
and Yang Liu. StableToolBench: Towards Stable Large-scale Benchmarking on Tool Learning of
Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pp. 11143–11156. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024.FINDINGS-ACL.664. URL https://doi.org/10.18653/v1/2024.
findings-acl.664.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning, Creation, Usage:
Benchmarking LLMs for Comprehensive Tool Utilization in Real-world Complex Scenarios. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 4363–4400.
Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.259.
URL https://doi.org/10.18653/v1/2024.findings-acl.259.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhenqiang Gong, and Lichao Sun. MetaTool Benchmark for Large Language Models:
Deciding Whether to Use Tools and Which to Use. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.
URL https://openreview.net/forum?id=R0c2qtalgG.

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica, and
Joseph E. Gonzalez. Gorilla OpenFunctions v2. https://gorilla.cs.berkeley.edu/
/blogs/7_open_functions_v2.html, 2024a.

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica,
and Joseph E. Gonzalez. Gorilla BFVL V3. https://gorilla.cs.berkeley.edu/
leaderboard.html, 2024b.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust Function-calling
for On-device Language Models via Function Masking. CoRR, abs/2410.04587, 2024. doi: 10.
48550/ARXIV.2410.04587. URL https://doi.org/10.48550/arXiv.2410.04587.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated PIpeline
for Generating Verifiable and Diverse Function-calling Datasets. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng

12

https://doi.org/10.48550/arXiv.2501.12948
https://team.doubao.com/zh/special/doubao_1_5_pro
https://openreview.net/forum?id=qFILbkTQWw
https://openreview.net/forum?id=qFILbkTQWw
https://deepmind.google/technologies/gemini/
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.259
https://openreview.net/forum?id=R0c2qtalgG
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://doi.org/10.48550/arXiv.2410.04587

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_
and_Benchmarks_Track.html.

Mistral. Au Large. https://mistral.ai/en/news/mistral-large, 2024.

OpenAI. GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024a.

OpenAI. o1 and o1-mini. https://platform.openai.com/docs/models#o1, 2024b.

OpenAI. GPT-4.1. https://openai.com/index/gpt-4-1/, 2025.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to
Agentic Evaluation of Large Language Models. In Forty-second International Conference on
Machine Learning, 2025.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. Benchmarking Agentic Workflow Generation. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=vunPXOFmoi.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language
Models to Master 16000+ Real-world APIs. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=dHng2O0Jjr.

Qwen. qwen-3. https://qwenlm.github.io/blog/qwen3/, 2025.

Seed. doubao-think. https://seed.bytedance.com/en/blog/, 2025.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_
and_Benchmarks_Track.html.

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct Multi-turn Preference
Optimization for Language Agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pp. 2312–2324. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.EMNLP-MAIN.138. URL https://doi.org/10.
18653/v1/2024.emnlp-main.138.

Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The Illusion of Dimin-
ishing Returns: Measuring Long Horizon Execution in LLMs. arXiv preprint arXiv:2509.09677,
2025.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, and Jie Zhou. Improving
Multi-turn Dialogue Modelling with Utterance ReWriter. In Anna Korhonen, David R. Traum, and
Lluís Màrquez (eds.), Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
22–31. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1003. URL
https://doi.org/10.18653/v1/p19-1003.

13

http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
https://mistral.ai/en/news/mistral-large
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/models#o1
https://openai.com/index/gpt-4-1/
https://openreview.net/forum?id=vunPXOFmoi
https://openreview.net/forum?id=dHng2O0Jjr
https://qwenlm.github.io/blog/qwen3/
https://seed.bytedance.com/en/blog/
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.18653/v1/2024.emnlp-main.138
https://doi.org/10.18653/v1/2024.emnlp-main.138
https://doi.org/10.18653/v1/p19-1003

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. ToolAlpaca: Gener-
alized Tool Learning for Language Models with 3000 Simulated Cases. CoRR, abs/2306.05301,
2023. doi: 10.48550/ARXIV.2306.05301. URL https://doi.org/10.48550/arXiv.
2306.05301.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report. CoRR, abs/2412.15115, 2024.
doi: 10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.
15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A Benchmark
for Tool-Agent-user Interaction in Real-world Domains. International Conference on Learning
Representations, 2024.

Xingshan Zeng, Weiwen Liu, Xu Huang, Zezhong Wang, Lingzhi Wang, Liangyou Li, Yasheng
Wang, Lifeng Shang, Xin Jiang, Ruiming Tang, and Qun Liu. ToolACE-R: Tool Learning with
Adaptive Self-refinement. CoRR, abs/2504.01400, 2025. doi: 10.48550/ARXIV.2504.01400. URL
https://doi.org/10.48550/arXiv.2504.01400.

Xueyang Zhou, Guiyao Tie, Guowen Zhang, Weidong Wang, Zhigang Zuo, Di Wu, Duanfeng Chu,
Pan Zhou, Neil Zhenqiang Gong, and Lichao Sun. Exploring the necessity of reasoning in llm-based
agent scenarios. arXiv preprint arXiv:2503.11074, 2025.

14

https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2504.01400

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Public
APIs Human & LLM

Co-Check and Co-Refine

Human
Check and Refine

3. Multi-Agent Simulation

Human
Check and Refine

1600+ Tools

256 scenarios

LLM
Generate

Real User Logs

Identify

Seed Scenarios
and User

Behaviour Patterns

Raw
Scenario

User Agent Assistant Agent

Raw Trajectory

WildToolBench

1. Scenario Curation

2. Task Curation

Human & LLM
Collaborate

1024 Tasks

Figure 8: The data curation pipeline of WildToolBench.

A The Use of Large Language Models (LLMs)

For the paper writing, we employed LLMs solely for grammatical correction at the writing stage. The
LLM itself did not contribute to experimental design, idea development, or manuscript writing.

Other uses of LLMs (such as benchmark construction) have been clearly stated in §3.2 and §C.

B Benchmark Comparison

Since the representative benchmarks we compiled span multiple time periods, not all models reported
results for every benchmark in their original papers. Therefore, we collected evaluation results from
multiple sources. Figure 1 primarily demonstrates that previous LLM tool benchmarks have tended
toward saturation, while WildToolBench remains challenging. The information we compiled is
mainly drawn from official reports of GLM4.5, Kimi K2, GPT5, and BFCL leaderboard2, as well as
a report by an independent third-party organization, Artificial Analysis3. The differences between
WildToolBench and previous tool-use benchmarks are listed in Table 1. The detail of Figure 1 is
shown as below:

Table 5: Performance Comparison across Different Benchmarks

Models WildToolBench BFCL-v4 BFCL-v3 BFCL-v2 τ -Bench τ2-Bench (telecom)
Gemini2.5 pro 14.1 48.6 25.0 64.0 62.5 54.1
GPT4o 11.7 64.7 42.5 70.5 51.6 25.1
Claude-Sonnet 4 12.5 71.7 54.8 81.1 70.3 45.2
Claude-Opus 4 9.4 69.6 57.9 81.5 70.5 57.0
GPT5 5.9 71.1 28.5 58.3 72.3 96.7
Grok 4 10.2 68.9 36.1 74.4 67.5 47.9
GLM4.5 12.1 64.9 65.6 81.7 70.1 24.6
K2 10.6 42.1 48.8 80.8 62.6 65.8
DeepSeek R1 9.4 32.0 44.5 80.9 58.7 36.5
DeepSeek V3 9.0 27.4 33.0 79.9 57.6 32.5

C Data Curation

Figure 8 gives an overall preview of the data curation for WildToolBench. First, we analyzed a large
collection of real user logs to extract suitable seed scenarios and to summarize user behavior patterns.

2https://gorilla.cs.berkeley.edu/leaderboard.html
3https://artificialanalysis.ai/

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

These patterns are summarized as three challenges, and we uniformly sample from real user logs and
use these samples as few-shot examples together with challenges in the prompts, so that the collected
scenarios follow the same distribution as the real logs and do not leak real user data. Second, we build
our toolset by leveraging tool descriptions from public APIs4, following the approach introduced
by ToolAlpaca. This publicly available API GitHub repository is continuously updated and now
contains more than 1400 tool lists, but to stay consistent with ToolAlpaca, we use 400 of these tool
lists, covering around 1600 APIs in total. Then, we selected a corresponding tool subset for each
seed scenario. In particular, we enumerated all possible simple and complex parameter types (String,
Integer, Float, Boolean, Enum, Array, Object, Nested) to enhance the diversity and complexity of
tool parameters. Third, five human experts specializing in LLM agents inspected and refined these
tool sets, mainly by correcting unreasonable tool combinations and parameter specifications, thereby
improving the logical coherence and interoperability of tools. This process yielded 256 realistic
scenarios, and for each scenario, we get a diverse and reasonable tool subset.

After obtaining the scenarios, we prompted a User Agent to generate initial first-round user tasks
based on the scenario and tool subset. Based on the four task types defined in this paper (gsingle,
gmulti, gclarify, gchat), we used controlled generation to produce the first-round tasks for each
type. To enhance diversity, we varied across five dimensions: sentence structure, linguistic style,
task background, task length, and task difficulty. We then used the three omission types defined
in Challenge 2 (User Hidden Intent), including Partial Information, Coreferential Reference, and
Long-Range Dependence, together with real user questions as few-shot examples, to guide the User
Agent in generating the subsequent three tasks. For each step, multiple candidate tasks were generated,
from which human experts selected the highest-quality ones and refined them to better match human
distributions, resulting in the final user tasks.

Once the expert-refined user tasks were obtained, the Assistant Agent executed the Agent Loop for
tool calls until producing a summary. Each tool call in the trajectory was then automatically checked
for issues such as function hallucination, parameter hallucination, type errors, and redundant calls.
Subsequently, five human experts inspected the full trajectory, corrected errors (e.g., in tool planning
or parameter values), and annotated tool-call dependencies (used to construct DAGs for calculating
optimal path rates in Challenge 1). This process was repeated until all task trajectories were generated.

Finally, to ensure data quality, we conducted multiple rounds of discussion-based optimization.
Several human experts randomly sampled 20% of the data, annotated potential errors, and initiated a
review session where annotators collectively resolved issues. The main issue is that the synthetic
dialogue is too well-organised, which does not resemble natural human dialogue, so we ask human
experts to rewrite the user utterance. For example, the synthetic dialogue is: Turn 1 Question: “What
is the weather like in Beijing today?” → Turn 1 Answer: “Sunny, twenty five degrees” → Turn 2
Question: “What is the weather like in Shanghai today?”. After manual rewriting, it becomes: Turn 1
Question: “What is the weather like in Beijing today?” → Turn 1 Answer...... → Turn 2 Question:
“How about Shanghai?”. Other issues include enriching the policy switch types and fixing minor
function call errors. This process was repeated with different pairs of experts and different 20%
samples each round, continuing until the detected error rate dropped to zero and every data point had
been checked at least once with no conflict. After four such iterations, the data quality improved from
62%, 78%, 86%, and 94% to a final 100%, yielding the completed WildToolBench. 9 human experts
took one month to finish the whole data curation process.

D Details of Tool Orchestration Evaluation

Algorithm 1 shows the pseudo code for enumerating all possible tool orchestration paths. The main
design idea of this algorithm is to enumerate all possible tool execution paths in a directed acyclic
graph (DAG) using depth-first search with backtracking. At each step, it identifies the set of nodes
with zero indegree, generates all non-empty subsets to simulate parallel execution, appends the
selected nodes to the current path, and updates the indegrees of their successors. The algorithm
recursively explores all possible paths and finally classifies them into optimal and suboptimal sets

4https://github.com/public-apis/public-apis

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

based on path length, systematically accounting for both serial and parallel execution combinations
(mixed multi-tool).

Algorithm 1 Enumeration of All Serial and Parallel Execution Paths
Require: Directed acyclic graph G = (V,E); annotated length L
Ensure: All paths P , divided into optimal and suboptimal sets
1: Compute indegree[v] for all v ∈ V
2: Initialize visited[v]← false for all v ∈ V
3: CurrentPath← ∅, P ← ∅
4: function ZeroIndegree(indegree, visited)
5: return {v ∈ V | indegree[v] = 0 ∧ ¬visited[v]}
6: end function
7: function Combinations(Z)
8: return all non-empty subsets of Z
9: end function

10: procedure DFS(indegree, visited,CurrentPath)
11: Z ← ZeroIndegree(indegree, visited)
12: if Z = ∅ then
13: if |CurrentPath| = |V | ∨ |CurrentPath| = L then
14: Add copy of CurrentPath to P
15: end if
16: return
17: end if
18: for all C ∈ Combinations(Z) do
19: Backup indegree, visited,CurrentPath
20: Append C to CurrentPath
21: Mark all v ∈ C as visited
22: for all edges (v, u) with v ∈ C do
23: indegree[u]← indegree[u]− 1
24: end for
25: DFS(indegree, visited,CurrentPath)
26: Restore backup
27: end for
28: end procedure
29: DFS(indegree, visited,CurrentPath)
30: L∗ ← min{|p| : p ∈ P}
31: Popt ← {p ∈ P : |p| = L∗}
32: Psub ← P \ Popt

33: return P,Popt,Psub

E Complete Experimental Results

E.1 Hyperparameter Settings

To further enhance the reproducibility of our dataset, we hereby introduce the hyperparameter settings
used during model inference. Specifically:

For Proprietary Models, we adopted the default hyperparameters from the official website without
making any changes to hyperparameters such as temperature, top-p, and top-k.

For Open-Source Models, If an official API is available, we utilize it with its default hyperparameters.
Otherwise, the model is deployed via the Hugging Face library, where tool-calling functionality is
implemented according to its chat template. For generation, we use the model.generate method with
its default hyperparameters, setting only max_new_tokens to 512. The version of Hugging Face used
was 4.51.0, and no other modifications were made.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 WildToolBench Full Results

We provide all the benchmarking results of 57 models as shown in Table 6, including 16 Proprietary
General Models, 30 Open-Source General Models, and 11 Open-Source Specialized Models trained
for tool-use.

Table 6: WildToolBench Full Results.

Models Categorized by Task Type g Categorized by Task Order M Overall
gsingle gmulti gclarify gchat 1 2 3 4 Task Session

Proprietary General Models
Gemini-2.0-Thinking 56.64 40.23 52.34 94.92 78.13 63.67 51.95 50.39 61.04 14.45
Gemini-2.5-Pro 55.08 36.33 46.88 86.72 70.31 56.64 53.52 44.53 56.25 14.06
Claude-4-Sonnet 60.16 43.75 41.80 80.47 71.09 57.81 52.73 44.53 56.54 12.50
o1 54.30 39.06 48.05 93.75 69.53 60.94 55.86 48.83 58.79 12.11
GPT-4o 60.16 41.80 39.45 78.13 72.66 55.08 46.09 45.70 54.88 11.72
Claude-3.7-Sonnet 57.81 39.06 41.41 63.28 60.55 50.00 48.05 42.97 50.39 11.33
o3 61.72 39.45 44.92 81.64 73.83 60.94 49.22 43.75 56.93 10.16
Grok-4 59.38 41.41 33.59 66.02 63.67 52.34 42.97 41.41 50.10 10.16
Claude-4.1-Opus 55.86 39.84 41.80 82.42 69.92 55.08 50.39 44.53 54.98 9.38
GPT-4.1 57.42 44.14 34.38 81.25 69.53 58.20 46.88 42.58 54.30 8.98
Mistral-Large 56.25 36.33 37.50 68.75 67.58 48.83 44.14 38.28 49.71 7.03
Doubao-1.6 55.86 40.23 31.25 63.28 69.14 48.83 40.23 32.42 47.66 7.03
Doubao-1.5-Thinking 60.16 22.66 26.95 75.39 65.63 47.66 40.23 31.64 46.29 6.64
GPT-5 46.09 34.38 31.64 84.38 62.11 50.00 45.31 39.06 49.12 5.86
Doubao-1.6-Thinking 57.42 34.38 18.75 47.27 57.03 39.06 31.25 30.47 39.45 3.13
Doubao-1.5 58.59 24.61 9.38 34.38 39.45 28.91 29.30 29.30 31.74 0.78

Open-Source General Models
GLM-4.5 57.81 40.63 44.53 81.25 70.70 60.16 50.78 42.58 56.05 12.11
Kimi-K2 54.30 33.98 39.84 86.72 68.75 57.03 48.83 40.23 53.71 10.55
Qwen3-30B-A3B 48.05 28.13 41.41 89.06 69.92 51.56 48.05 37.11 51.66 9.77
Qwen3-14B-Thinking 56.64 30.47 37.11 88.67 69.53 54.30 50.39 38.67 53.22 9.38
DeepSeek-R1 56.25 41.02 43.75 80.08 74.22 54.30 48.83 43.75 55.27 9.38
DeepSeek-V3 58.98 38.67 33.59 79.30 75.39 53.91 41.02 40.23 52.64 9.38
Qwen3-8B-Thinking 56.64 33.59 39.84 87.11 73.05 55.08 48.83 40.23 54.30 8.98
DeepSeek-V3.1 44.92 40.63 33.98 81.25 61.33 51.56 45.70 42.19 50.20 8.98
Qwen3-32B 57.81 33.20 39.84 79.69 69.53 54.30 46.48 40.23 52.64 8.59
Qwen2.5-14B-Instruct 50.39 27.34 32.81 83.20 66.41 48.44 40.63 38.28 48.44 7.81
Qwen3-14B 56.25 31.25 39.84 89.06 71.09 54.30 50.39 40.63 54.10 7.81
Qwen3-32B-Thinking 53.52 28.91 37.11 80.86 62.50 52.73 46.48 38.67 50.10 7.81
Qwen3-4B-Thinking 60.16 28.91 38.67 87.89 68.75 59.38 44.14 43.36 53.91 7.81
Qwen2.5-72B-Instruct 58.98 32.03 34.38 82.81 70.70 50.00 46.48 41.02 52.05 6.25
Qwen3-8B 60.16 26.17 26.95 79.30 66.02 48.44 39.45 38.67 48.14 6.25
Qwen3-30B-A3B-Thinking 50.39 24.61 38.67 89.45 71.88 49.22 44.14 37.89 50.78 6.25
Qwen3-1.7B-Thinking 49.22 24.61 30.08 84.38 68.75 46.09 41.80 31.64 47.07 6.25
Qwen2.5-32B-Instruct 53.91 38.67 36.72 82.81 69.14 54.30 48.83 39.84 53.03 5.86
Qwen3-4B 51.17 22.66 35.94 86.33 69.14 49.22 39.06 38.67 49.02 5.86
Qwen2.5-7B-Instruct 52.73 25.39 28.91 73.05 64.06 45.31 37.50 33.20 45.02 4.30
Qwen2.5-3B-Instruct 48.83 18.36 20.70 73.83 55.86 41.41 33.59 30.86 40.43 4.30
Qwen3-1.7B 48.05 19.53 26.95 81.64 67.58 44.14 33.98 30.47 44.04 4.30
Qwen2.5-1.5B-Instruct 36.72 13.28 21.48 90.23 60.16 39.06 31.64 30.86 40.43 3.91
Qwen3-0.6B-Thinking 44.92 16.02 23.05 87.11 66.02 40.23 35.55 29.30 42.77 3.91
Qwen3-0.6B 46.09 7.81 12.11 78.13 53.91 34.38 26.56 29.30 36.04 3.52
Qwen2.5-0.5B-Instruct 23.83 4.69 15.23 82.03 43.75 29.69 26.95 25.39 31.45 0.78
Llama-3.3-3B-Instruct 0.00 0.00 0.39 64.84 21.88 17.19 14.45 11.72 16.31 0.39
Llama-3.3-1B-Instruct 0.00 0.00 0.39 61.33 17.58 18.75 14.06 11.33 15.43 0.39
Llama-3.3-70B-Instruct 3.52 0.00 0.00 52.73 17.97 14.06 12.89 11.33 14.06 0.00
Llama-3.3-8B-Instruct 0.39 0.00 0.39 69.14 25.39 19.14 14.06 11.33 17.48 0.00

Open-Source Specialized Models
xLAM-2-32B 60.94 34.77 38.67 69.92 69.53 52.73 43.36 38.67 51.07 8.20
xLAM-2-70B 64.45 36.72 28.91 64.84 64.06 51.56 42.58 36.72 48.73 7.81
ToolACE2-8B 62.11 37.89 33.98 84.38 72.27 59.38 46.88 39.84 54.59 7.42
xLAM-2-8B 62.11 29.30 24.22 54.30 52.73 44.14 39.06 33.98 42.48 5.08
Watt-8B 61.72 28.13 22.66 78.13 68.75 47.27 39.06 35.55 47.66 4.69
Hammer2.1-7B 40.23 21.88 30.47 94.92 61.72 46.88 40.63 38.28 46.88 4.69
xLAM-2-1B 53.13 17.19 15.23 65.23 50.39 40.63 33.98 25.78 37.70 2.34
xLAM-2-3B 52.34 23.44 16.02 57.03 42.97 43.36 34.77 27.73 37.21 1.17
Hammer2.1-3B 32.81 18.36 11.33 91.02 34.77 46.48 40.63 31.64 38.38 0.39
Hammer2.1-1.5B 4.69 1.56 1.17 96.09 26.17 26.17 26.56 24.61 25.88 0.00
Hammer2.1-0.5B 9.77 2.34 3.13 86.72 25.39 29.69 25.39 21.48 25.49 0.00

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.3 WildToolBench Full Tool Orchestration Result

We provide all the detailed results on tool orchestration of 57 models as shown in Table 7, including
16 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

E.4 WildToolBench Full Error Analysis

We provide all the detailed error analysis results of 57 models as shown in Table 8, including 16
Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

F Prompts

F.1 Prompt For Single-Tool Calls Seed Task Generation

We show the role prompt of the single-tool calls task generation in Figure 9.

F.2 Prompt For Sequential Multi-Tool Calls Seed Task Generation

We show the role prompt of sequential multi-tool calls task generation in Figure 10.

F.3 Prompt For Parallel Multi-Tool Calls Seed Task Generation

We show the role prompt of parallel multi-tool calls task generation in Figure 11.

F.4 Prompt For Mixed Multi-Tool Calls Seed Task Generation

We show the role prompt of mixed multi-tool calls task generation in Figure 12.

F.5 Prompt For Clarify Seed Task Generation

We show the role prompt of the clarify task generation in Figure 13.

F.6 Prompt For Chat Seed Task Generation

We show the role prompt of chat task generation in Figure 14.

F.7 Prompt For Context Seed Task Generation

We show the role prompt of context task generation in Figure 15 and Figure 16.

G Error Cases

Figure 17 presents several typical error examples discussed in the main text.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: WildToolBench Tool Orchestration Result.

Models Task Accuracy AP Rate OP Rate

gPmulti gSmulti gS+P
multi Overall gSmulti gS+P

multi Overall gPmulti gS+P
multi Overall

Proprietary General Models
Gemini-2.0-Thinking 54.14 25.00 16.67 40.23 45.28 39.89 40.37 53.50 16.67 40.66
Gemini-2.5-Pro 49.04 25.00 14.29 36.33 47.17 39.15 39.87 43.31 11.90 32.37
Claude-3.7-Sonnet 43.95 62.50 25.00 39.06 86.79 61.40 63.65 0.00 0.00 0.00
Claude-4-Sonnet 54.78 31.25 25.00 43.75 60.38 46.32 47.57 52.87 23.81 42.74
Claude-4.1-Opus 50.96 43.75 17.86 39.84 62.26 48.35 49.58 50.32 16.67 38.59
o1 50.96 12.50 21.43 39.06 35.85 37.50 37.35 50.32 20.24 39.83
o3 48.41 31.25 23.81 39.45 66.04 54.60 55.61 0.64 0.00 0.41
o4-mini 39.49 31.25 16.67 31.64 52.83 37.68 39.03 0.00 0.00 0.00
GPT-4o 53.50 31.25 21.43 41.80 41.51 45.40 45.06 51.59 21.43 41.08
GPT-4.1 58.60 25.00 20.24 44.14 49.06 45.77 46.06 56.69 19.05 43.57
GPT-5 43.31 37.50 16.67 34.38 49.06 38.42 39.36 42.68 13.10 32.37
Grok-4 54.14 18.75 21.43 41.41 41.51 46.51 46.06 53.50 21.43 42.32
Mistral-Large 47.77 25.00 16.67 36.33 45.28 40.44 40.87 45.86 15.48 35.27
Doubao-1.5 35.03 12.50 7.14 24.61 37.74 29.41 30.15 9.55 1.19 6.64
Doubao-1.5-Thinking 31.21 18.75 7.14 22.66 56.60 23.35 26.30 28.03 7.14 20.75
Doubao-1.6 50.96 25.00 22.62 40.23 50.94 47.79 48.07 50.96 22.62 41.08
Doubao-1.6-Thinking 46.50 12.50 15.48 34.38 52.83 39.34 40.54 43.95 15.48 34.02

Open-Source General Models
xLAM-2-70B 49.68 12.50 16.67 36.72 43.40 44.85 44.72 26.75 7.14 19.92
xLAM-2-32B 45.86 25.00 15.48 34.77 58.49 40.26 41.88 25.48 5.95 18.67
xLAM-2-8B 40.76 25.00 8.33 29.30 43.40 27.57 28.98 26.75 3.57 18.67
xLAM-2-3B 33.12 12.50 7.14 23.44 24.53 23.35 23.45 15.92 3.57 11.62
xLAM-2-1B 27.39 0.00 1.19 17.19 22.64 17.46 17.92 10.83 0.00 7.05
ToolACE2-8B 47.77 31.25 20.24 37.89 50.94 43.01 43.72 26.11 14.29 21.99
Watt-8B 44.59 6.25 1.19 28.13 22.64 21.87 21.94 44.59 1.19 29.46
Hammer2.1-7B 33.12 12.50 2.38 21.88 24.53 13.24 14.24 31.85 2.38 21.58
Hammer2.1-3B 24.84 12.50 7.14 18.36 32.08 18.01 19.26 24.20 7.14 18.26
Hammer2.1-1.5B 2.55 0.00 0.00 1.56 1.89 1.29 1.34 2.55 0.00 1.66
Hammer2.1-0.5B 3.18 0.00 1.19 2.34 9.43 10.48 10.39 3.18 0.00 2.07

Open-Source Specialized Models
Llama-3.3-70B-Instruct 0.00 0.00 0.00 0.00 15.09 2.02 3.18 0.00 0.00 0.00
Llama-3.3-8B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Llama-3.3-3B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Llama-3.3-1B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Qwen2.5-72B-Instruct 44.59 25.00 9.52 32.03 41.51 30.33 31.32 42.04 7.14 29.88
Qwen2.5-32B-Instruct 52.87 43.75 10.71 38.67 56.60 24.08 26.97 52.23 10.71 37.76
Qwen2.5-14B-Instruct 39.49 18.75 5.95 27.34 26.42 19.67 20.27 36.31 4.76 25.31
Qwen2.5-7B-Instruct 38.22 6.25 4.76 25.39 28.30 26.29 26.47 33.12 2.38 22.41
Qwen2.5-3B-Instruct 28.66 6.25 1.19 18.36 15.09 12.13 12.40 27.39 0.00 17.84
Qwen2.5-1.5B-Instruct 21.66 0.00 0.00 13.28 9.43 4.96 5.36 21.66 0.00 14.11
Qwen2.5-0.5B-Instruct 7.64 0.00 0.00 4.69 11.32 3.68 4.36 7.64 0.00 4.98
Qwen3-30B-A3B 42.04 6.25 5.95 28.13 26.42 25.00 25.13 40.76 5.95 28.63
Qwen3-32B 46.50 12.50 11.90 33.20 47.17 30.70 32.16 43.95 9.52 31.95
Qwen3-14B 44.59 25.00 7.14 31.25 41.51 28.86 29.98 44.59 7.14 31.54
Qwen3-8B 38.85 0.00 7.14 26.17 15.09 25.18 24.29 38.22 5.95 26.97
Qwen3-4B 35.67 6.25 1.19 22.66 28.30 13.42 14.74 34.39 1.19 22.82
Qwen3-1.7B 31.85 0.00 0.00 19.53 18.87 16.91 17.09 31.85 0.00 20.75
Qwen3-0.6B 12.10 6.25 0.00 7.81 22.64 9.19 10.39 11.47 0.00 7.47
Qwen3-30B-A3B-Thinking 36.94 6.25 4.76 24.61 18.87 22.43 22.11 35.67 3.57 24.48
Qwen3-32B-Thinking 42.04 12.50 7.14 28.91 41.51 28.31 29.48 40.13 7.14 28.63
Qwen3-14B-Thinking 43.95 25.00 5.95 30.47 45.28 31.62 32.83 43.95 5.95 30.71
Qwen3-8B-Thinking 47.13 12.50 11.90 33.59 28.30 31.99 31.66 47.13 10.71 34.44
Qwen3-4B-Thinking 42.68 18.75 4.76 28.91 39.62 23.16 24.62 42.68 4.76 29.46
Qwen3-1.7B-Thinking 38.85 6.25 1.19 24.61 26.42 11.40 12.73 38.85 1.19 25.73
Qwen3-0.6B-Thinking 26.11 0.00 0.00 16.02 18.87 9.74 10.55 25.48 0.00 16.60
GLM-4.5 51.59 31.25 21.43 40.63 67.92 48.90 50.59 49.68 20.24 39.42
Kimi-K2 45.86 12.50 15.48 33.98 52.83 34.93 36.52 43.95 15.48 34.02
DeepSeek-R1 53.50 18.75 21.43 41.02 41.51 44.12 43.89 52.87 20.24 41.49
DeepSeek-V3 52.87 25.00 14.29 38.67 43.40 32.54 33.50 51.59 14.29 38.59
DeepSeek-V3.1 53.50 25.00 19.05 40.63 52.83 37.68 39.03 47.77 14.29 36.10

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: WildToolBench Full Error Distribution Analysis.

Models Action Errors Parameter Errors

Refusal Wrong Name
Missing Info

Wrong
Refusal

Redundant
Call

Call
Error

Early
Termination

Param
Type Error

Param
Hallucination

Param
Value Error

Proprietary General Models
Gemini-2.0-Thinking 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
Claude-3.7-Sonnet 11.02% 16.73% 17.91% 16.34% 16.54% 1.57% 1.57% 6.30% 12.01%
Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.57% 8.31% 14.83%
Claude-4.1-Opus 15.18% 17.79% 9.76% 18.22% 12.15% 3.25% 2.17% 8.46% 13.02%
o1 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
o3 10.66% 17.46% 9.98% 13.15% 17.01% 4.31% 1.36% 10.43% 15.65%
o4-mini 18.03% 17.62% 7.99% 16.60% 16.19% 3.89% 1.43% 9.02% 9.22%
GPT-4o 5.41% 21.65% 12.12% 14.50% 11.26% 7.58% 2.60% 10.82% 13.85%
GPT-4.1 11.97% 21.58% 8.55% 18.80% 9.83% 6.41% 1.71% 9.62% 11.54%
GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.15% 10.94% 6.53%
Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
Mistral-Large 8.93% 24.08% 15.34% 8.16% 14.76% 5.05% 1.94% 8.16% 13.40%
Doubao-1.5 15.16% 31.47% 21.32% 2.29% 11.30% 2.72% 1.72% 8.44% 5.58%
Doubao-1.5-Thinking 17.27% 27.64% 11.45% 5.82% 13.09% 4.36% 1.82% 11.45% 7.09%
Doubao-1.6 1.87% 25.37% 17.54% 22.39% 10.07% 5.22% 1.49% 5.78% 10.26%
Doubao-1.6-Thinking 3.87% 30.97% 21.77% 16.77% 8.87% 4.68% 0.97% 6.13% 5.97%

Open-Source General Models
Llama-3.3-70B-Instruct 62.27% 4.32% 5.11% 19.66% 5.91% 1.14% 1.14% 0.11% 0.34%
Llama-3.3-8B-Instruct 77.99% 0.00% 0.00% 21.66% 0.00% 0.36% 0.00% 0.00% 0.00%
Llama-3.3-3B-Instruct 78.30% 0.00% 0.00% 21.70% 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-3.3-1B-Instruct 80.14% 0.00% 0.00% 19.86% 0.00% 0.00% 0.00% 0.00% 0.00%
Qwen2.5-72B-Instruct 12.42% 21.59% 8.96% 15.07% 12.02% 8.76% 2.24% 7.54% 11.20%
Qwen2.5-32B-Instruct 12.89% 17.88% 9.15% 16.84% 13.72% 7.90% 2.08% 7.90% 11.64%
Qwen2.5-14B-Instruct 17.42% 15.91% 8.14% 19.89% 12.50% 8.71% 2.08% 6.25% 9.09%
Qwen2.5-7B-Instruct 11.01% 21.49% 12.26% 12.61% 20.96% 5.51% 1.42% 6.75% 7.82%
Qwen2.5-3B-Instruct 14.92% 20.66% 10.98% 13.28% 18.36% 6.23% 0.98% 5.25% 9.18%
Qwen2.5-1.5B-Instruct 34.10% 13.11% 4.10% 15.57% 16.07% 3.44% 0.98% 4.59% 7.05%
Qwen2.5-0.5B-Instruct 27.92% 11.82% 6.55% 20.23% 14.96% 2.99% 1.00% 6.84% 5.70%
Qwen3-32B 10.72% 19.59% 10.31% 20.21% 16.91% 5.57% 1.24% 6.80% 8.66%
Qwen3-30B-A3B 16.77% 14.95% 5.25% 30.10% 14.34% 4.65% 1.41% 4.65% 7.88%
Qwen3-14B 12.55% 18.72% 5.53% 18.51% 14.26% 8.09% 1.70% 11.70% 8.94%
Qwen3-8B 8.29% 27.31% 9.60% 6.59% 19.40% 7.53% 1.69% 9.98% 9.42%
Qwen3-4B 15.71% 15.13% 6.51% 14.37% 18.01% 6.90% 1.34% 11.69% 10.34%
Qwen3-1.7B 14.49% 21.12% 8.03% 9.42% 24.08% 5.24% 1.05% 6.63% 9.95%
Qwen3-0.6B 14.05% 25.80% 8.40% 6.56% 29.47% 3.82% 1.07% 3.97% 6.72%
Qwen3-30B-A3B-Thinking 18.45% 12.90% 4.96% 29.37% 14.48% 5.16% 1.79% 5.16% 7.74%
Qwen3-14B-Thinking 15.03% 17.12% 5.64% 19.83% 13.99% 5.85% 1.88% 10.23% 10.23%
Qwen3-8B-Thinking 11.32% 19.44% 6.84% 14.10% 17.52% 6.84% 2.14% 10.47% 11.32%
Qwen3-4B-Thinking 12.71% 20.55% 6.14% 14.41% 17.37% 5.72% 3.18% 8.69% 11.23%
Qwen3-1.7B-Thinking 15.31% 20.66% 7.20% 12.73% 16.05% 7.01% 2.03% 7.20% 11.44%
Qwen3-0.6B-Thinking 18.26% 19.45% 5.63% 15.70% 23.04% 4.78% 1.02% 4.61% 7.51%
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.11% 4.89% 12.89%
Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.53% 6.96% 14.14%
DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.31% 8.73% 11.79%
DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.44% 7.63% 10.31%
DeepSeek-V3.1 20.00% 11.76% 9.41% 25.29% 13.92% 3.73% 0.98% 5.69% 9.22%

Open-Source Specialized Models
xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 0.95% 5.90% 12.57%
xLAM-2-32B 8.98% 21.76% 15.37% 8.38% 18.56% 4.19% 1.60% 5.39% 15.77%
xLAM-2-8B 5.60% 27.33% 19.86% 3.90% 19.52% 5.09% 2.21% 4.92% 11.21%
xLAM-2-3B 6.84% 28.30% 17.11% 5.13% 21.00% 4.98% 1.56% 4.82% 9.64%
xLAM-2-1B 9.40% 24.61% 13.95% 5.96% 22.57% 4.86% 1.88% 3.61% 10.66%
ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 2.80% 4.09% 14.84%
Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.49% 6.16% 10.45%
Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 0.55% 4.41% 8.82%
Hammer2.1-3B 36.13% 19.18% 3.65% 19.81% 8.40% 3.01% 0.95% 2.06% 6.66%
Hammer2.1-1.5B 60.47% 3.29% 1.32% 32.15% 1.32% 0.26% 0.00% 0.26% 0.92%
Hammer2.1-0.5B 30.80% 17.69% 4.46% 22.15% 13.11% 2.75% 0.13% 6.82% 1.97%

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Single-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, please propose 5 tasks that you need the super intelligent agent to solve based on the
[Requirements].

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, and each
task should only require a single call to {{{tool}}}.
The tasks should be specific and diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}.

[Requirements]="""
1. The description of the user’s task must include information on all the required parameters
needed to call {{{tool}}}. For other optional parameters, please add them as you see fit,
using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, gradually increasing from short to long.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Extract common entities that appear in all descriptions from the [Tool List] and ensure that
these entities appear in the user’s tasks.
7. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.
"""

[Tool List]="""
{{{tool}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 9: Single-Tool Calls task Generation Prompt.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sequential Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require the sequential invocation of multiple tools
to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There must be dependencies between the multiple tools invoked, meaning that tool A must
be called and completed before tool B can be run, i.e., tool B must be invoked after tool A.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 10: Sequential Multi-Tool Calls task Generation Prompt.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Parallel Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks need to be specific, diverse, and require parallel invocation of multiple tools to
solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There must be no dependency between the multiple tools invoked. A dependency between
invocations means that tool B can only be run after tool A is completed. No dependency
means that tool A and tool B can be invoked in parallel.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 11: Parallel Multi-Tool Calls task Generation Prompt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Mixed Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require both serial and parallel invocation of multiple
tools to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There should be dependencies between some of the tools invoked, while others should not
have dependencies. A dependency between invocations means that tool B can only be run
after tool A is completed. No dependency means that tool A and tool B can be invoked in
parallel.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 12: Mixed Multi-Tool Calls task Generation Prompt.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Clarify task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, but will
leave the super intelligent agent unclear on how to fill in some of the required parameters of
{{{tool}}}, and should be diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""
1. The description of the user’s task must lack all the necessary information for calling
{{{tool}}}, leaving only the optional parameter information, which you can add as you see
fit, using natural language descriptions. Note that tool parameters allow for some parameter
inference, meaning that if the tool parameters can be inferred from the user’s task description,
it does not count as lacking necessary information. Lacking means that even through inference,
the parameter values cannot be obtained.
2. The user’s tasks need to use different types of sentence structures: imperative sentences,
declarative sentences, interrogative sentences, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. Task difficulty is divided into easy, medium, and hard levels. Easy represents simple,
medium represents moderate, and hard represents difficult. More difficult tasks require more
steps to execute. Ensure that the 3 tasks you generate are all of medium difficulty or above.
8. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 13: Clarify task Generation Prompt.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Chat task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], propose 5 casual conversation tasks that you need the
super-intelligent agent to solve.

These 5 casual conversation tasks should not use any tools from the [Tool List], but should
have some thematic relevance.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""
1. The user task is a casual conversation task, which must be unrelated to the functions of the
[Tool List], but should have some thematic relevance.
2. User tasks need to use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. User tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the lengths of the user tasks are different, ranging from short to long, with
gradually increasing length.
5. Ensure that the user tasks involve different themes/examples, different scenarios, and
different role identities.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 14: Chat task Generation Prompt.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Context task Generation Prompt, Part 1.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has a Planner, an Agent assistant, and a range of external tools
that can be used to solve the tasks you propose, as detailed in the [Tool List].

Based on the information in [Historical Conversations], you have already proposed your task,
and the super intelligent agent has solved it for you.

Therefore, next, please continue to propose new tasks based on the reply from the Agent
assistant in the last round of [Historical Conversations], referring to the [Turn Type Information]
and [Example], and the new tasks you propose must require the use of {{{tool_number}}}
tool from the [Tool List] to solve.

Finally, output according to the [Format].

{{{all_tool_required_info}}}

[Tool List]="""
{{{tools}}}
"""

[Turn Type Information]="""
{{{turn_type_info}}}
"""

Figure 15: Context task Generation Prompt, Part 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Context task Generation Prompt, Part 2.

When actually generating tasks, one of the following types will be substituted into the prompt
placeholder {{{turn_type_info}}}.
1. Partial Information: The new task generated needs to omit some content from previous
conversations, without having to state the full semantics. The omitted content can be any
sentence component, including: subject, attribute, attribute value, modifier, etc.
2. Coreferential Reference: The new task generated requires reference to some content from
previous conversations, which can be: 1) Ordinal reference, such as: the second point, the
last point, etc. 2) Pronominal reference, such as: he, this sentence, which one, etc. 3) Vague
reference, such as: xxx this model, etc.
3. Long-Range dependency: The new task generated needs to use content from previous
conversations (excluding the last round), for example, something I mentioned in the first
round, something I mentioned before.
"""

[Example]="""
[Historical Conversations]=***
{{{history}}}

[Output]=***
{{{continue_task}}}

"""

[Historical Conversations]="""
{{{history}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 16: Context task Generation Prompt, Part 2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 17: Typical error examples discussed in the main text

30

	Introduction
	Related Work
	WildToolBench
	Formulation
	Data Curation
	Challenge 1: Tool Orchestration for Compositional Task
	Challenge 2: Infer Hidden Intention Through Dialogue
	Challenge 3: Adaptable Policy Switch for Instruction transition
	Statistics

	Experiments
	Overall Performance
	LLMs Perform Poorly on Tool Orchestration
	LLMs Struggle to Infer intention Across Dialogue
	User Instructions Change, and LLMs Lag Behind
	Error Analysis

	Conclusion
	Reproducibility statement
	Limitations
	The Use of Large Language Models (LLMs)
	Benchmark Comparison
	Data Curation
	Details of Tool Orchestration Evaluation
	Complete Experimental Results
	Hyperparameter Settings
	WildToolBench Full Results
	WildToolBench Full Tool Orchestration Result
	WildToolBench Full Error Analysis

	Prompts
	Prompt For Single-Tool Calls Seed Task Generation
	Prompt For Sequential Multi-Tool Calls Seed Task Generation
	Prompt For Parallel Multi-Tool Calls Seed Task Generation
	Prompt For Mixed Multi-Tool Calls Seed Task Generation
	Prompt For Clarify Seed Task Generation
	Prompt For Chat Seed Task Generation
	Prompt For Context Seed Task Generation

	Error Cases

