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Abstract

Fulfilling user needs through Large Language Model multi-turn, multi-step tool-use
is rarely a straightforward process. Real user interactions are inherently wild,
being intricate, messy, and flexible. We identify three key challenges from user
behaviour: compositional tasks that demand efficient orchestration of tool-call
topologies, implicit intent spread across dialogue turns that require contextual
inference, and instruction transition, which mixes task queries, clarifications, and
casual conversation, forcing LLMs to adjust their policies on the fly. Existing
benchmarks overlook these behaviors, making the apparent progress of LLMs
on tool-use spurious. To address this, we introduce WildToolBench, an LLM
tool-use benchmark grounded in real-world user behavior patterns. Comprehensive
evaluations of 57 LLMs reveal that no model achieves an accuracy of more than 15%,
indicating a substantial gap in the robustness of LLMs’ agentic ability. Controlled
experiments and in-depth analyses further indicate that the real challenge for LLM
tool-use lies not in artificially complex tasks, but in the wild nature of user behavior,
emphasizing the need to reconsider the interactions among LLMs, users, and tools.

1 Introduction

WildToolBench        BFCL-v4            BFCL-v3              BFCL-v2           𝜏-Bench        𝜏!-Bench(Telecom)

Figure 1: Session Accuracy comparison among tool-use benchmarks. See details in Appendix B.

Large language models (LLMs) are evolving rapidly, and agents built on them have become a
promising direction (Google, 2024; DeepSeek-AI et al., 2025; Zeng et al., 2025; Yao et al., 2023).
These agents interact with the real world through various tools, opening up new avenues for AI
applications. Developing benchmarks that can evaluate the tool-use capabilities of large language
models in a reliable way has become increasingly important.

Current mainstream LLM tool-use benchmarks follow a multi-turn, multi-step paradigm: LLMs
function as assistants and engage in multi-turn dialogues with users to complete coherent tasks. Each
task typically requires multi-step tool-use. However, existing benchmarks (Huang et al., 2024a; Qin
et al., 2024; Du et al., 2024; Yao et al., 2024; Ji et al., 2024b) are overly idealized and neglect the
complexity of multi-turn, multi-step settings in real-world scenarios. From large-scale analysis of
real user logs, we identify three salient properties of how human users employ LLMs to solve tasks
with tools: 1) users tend to deliver Compositional Tasks that contain multiple simple requirements,
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Planning a 
weekend 
getaway. Check 
the weather for 
Chicago this 
weekend. 

Nov. 2, 2024 (Sat.):
Overcast. 6°C–16°C. 
South wind.
Nov. 3, 2024 (Sun.):
Moderate rain. 10°C–
17°C. South wind.

It is terrible. Check 
the Los Angeles 
and Las Vegas.

Los Angeles
Nov. 2, 2024 (Sat.): 
Sunny. 12°C–19°C. West wind
Nov. 3, 2024 (Sun.): 
Sunny. 12°C–22°C. North wind
Las Vegas
Nov. 2, 2024 (Sat.): 
Partly cloudy. 5°C–16°C. East wind
Nov. 3, 2024 (Sun.): 
Sunny. 6°C–16°C. Northeast wind

Which city's 
performances 
are you 
interested in?

Las Vegas

The Eagles will 
perform on 
Saturday (2024-
11-02) as part 
of their "Long 
Goodbye" 
farewell tour. 

The Eagles are 
a legendary 
American rock 
band ……

Any special 
shows there? Tell me more

Find Optimal Tool 
Use Orchestration 

for Quick Response

Infer Information 
and Intent From 

Multi-Turn Dialogue

Switch Among
Various Policies 

On the Fly

Simple Task
Follow Up Task 
with Multiple 
Requirements

Start New Task 
Regarding 

History Context

Clarification 
on Task

Start New 
Task

☔

Single Weather 
Tool Use

🤔

Ask for 
Calrification

☔☔

Parellel Weather 
Tool Use

🔍

Single Search 
Tool Use

🧠

Answer w/o 
Tool Use

Just a Natural Dialogue for User

But Challenging Tasks for LLM 

Figure 2: WildToolBench poses three characteristics that seem easy and natural for the user, but
challenging for the LLM tool-use.

demanding tool orchestration beyond simple chaining to respond on time. 2) Users’ implicit intention
is spread within dialogue, requiring LLMs to infer it from context. 3) In a conversation, users naturally
transition between different types of instructions, such as task-giving, follow-up, explanation, and
casual chatting modes, demanding LLMs to adapt their policies on the fly.

These three characteristics embody the design philosophy of WildToolBench, “What truly challenges
LLMs’ tool-use capabilities is not artificially constructed complex scenarios, but simple yet realistic
user behaviors”, namely, the compositionality, vagueness, and variability of user instructions. In
WildToolBench, through a carefully constructed data pipeline combined with human verification and
annotation, we curate 256 scenarios with 1024 tasks. As shown in Figure 1, while prior tool-use
benchmarks tend to be saturated, WildToolBench remains highly challenging. Our results show that
even the most advanced language models struggle to achieve satisfactory performance, with most
models reaching no more than 15% session accuracy. A further breakdown of experiments on 57
LLMs reveals that in-the-wild task settings severely degrade model performance, underscoring that
the future evaluation of LLMs’ agentic ability cannot rely on simple, idealized benchmarks but must
instead account for the inherent complexity of real-world user behaviours.

2 Related Work

LLM agents have emerged as a prominent research direction, with their core competency rooted in
the ability to utilize external tools. Tool-use benchmarks have, to some extent, shaped the evolution
of LLMs’ agentic ability, from simple QA to multi-turn, multi-step, long-horizon autonomous
tool-use. T-EVAL, UltraTool, and MetaTool(Chen et al., 2024; Huang et al., 2024a;b) assess various
sub-capabilities of tool-use, but treat tool invocation as a simple question-answering task, which fails
to capture the multi-turn interactive nature of the LLM agent loop. WorfBench and TaskBench(Qiao
et al., 2025; Shen et al., 2024) took a step forward by introducing single-turn multi-step tool invocation
and emphasizing planning capabilities, but are constrained by annotating only a single optimal path and
relying on similarity-based metrics, which can be imprecise in evaluation. ToolBench, AnyToolBench,
and StableToolBench(Qin et al., 2024; Du et al., 2024; Guo et al., 2024) also focus on single-turn
multi-step tool-use, but their proposed tasks are synthesized by LLMs and generally exhibit a low level
of difficulty. On the other hand, BFCL-V1 and BFCL-V2 (Ji et al., 2024a) pioneered the evaluation of
parallel tool-use but were still limited to single-turn scenarios. BFCL-V3(Ji et al., 2024b) introduced
multi-turn evaluation and assessed the sequential multi-step capabilities of LLMs. However, its
tasks lack semantic correlation, with each task being independent and identically distributed, and
provided with complete intention and information, which is unnatural compared with real-world user
behaviours. Therefore, τ -Bench and τ2-Bench(Yao et al., 2024; Barres et al., 2025) introduce the
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design of LLM-as-User. To some extent, user simulators better approximate real environments (e.g.,
requiring an LLM agent to proactively ask questions rather than merely execute tool calls reactively).
However, LLM-based simulation still diverges significantly from real user behavior. For instance,
LLMs tend to behave in an unrealistically flawless manner, making tasks too easy to solve. Moreover,
reliance on LLM simulation also leads to unstable evaluation results. Through a human-in-the-loop
annotation process, WildToolBench explicitly incorporates three real user behaviors (compositional
tasks, implicit intent, and instruction transition), thereby setting a new standard for evaluating LLM
tool-use. A comparison between WildToolBench and previous benchmarks is provided in Table 5.

3 WildToolBench

3.1 Formulation

We formalize the interaction between a user and an LLM as a multi-turn dialogue, denoted as
D = {u1, a1, u2, a2, . . . , uN , aN}

where ui is the i-th user message and ai is the corresponding LLM assistant response. Within this
N -turn dialogue, there are M user tasks {g1, . . . , gM} which are scattered throughout the dialogue.
For each user message ui, there may exist a task gj , and the LLM needs to detect the user’s intention
and solve the task in the response ai. If solving this task requires tool usage, the LLM will first engage
in a process of multi-step tool invocation, which can be regarded as the LLM conducting several
rounds of interaction with the external environment (e.g., a local database or a MCP server), denoted
as T j = {aT1 , e1, aT2 , e2, ..., aTS , eS}, where aT is the LLM’s tool call, and e is the corresponding
environment feedback after executing this call. Once this S-step tool invocation T j is completed, the
LLM gathers information from feedback and generates the user’s response to the task with ai.

In a real scenario, user intentions are varied in one dialogue session, and user messages are mixed
with various types of tasks g, such as asking questions, requesting follow-ups, seeking improvements,
explaining themselves, or just chatting. The LLM needs to apply different policies for correct reactions,
which may include 1) LLM just replies without any tool usage (S = 0), such as in response to a
task that needs clarification gclarify or a task that does not require a tool gchat, 2) LLM adapts
a single-tool invocation policy (S = 1) for a simple task gsingle, or 3) LLM performs multi-step
tool invocations (S > 1) for a hard task gmulti. From the LLM’s perspective, the dialogue unfolds
as a Markov Decision Process (MDP), where the state at each step is the full dialogue history
(including u, a, aT , and e), and the actions are the tokens that formulate different policies. Under
this formalization, WildToolBench faithfully reflects the complexities and challenges inherent in
applications for real-world users, where 1) the user task g is compositional, consisting of multiple
sub-requirements, necessitating effective tool orchestration. This implies that T may be a tree rather
than a simple chain-like execution. 2) User tasks {g1, . . . , gM} are contextually interrelated, requiring
the LLM to uncover latent context from historical observations, including user messages {u} and
assistant messages {a}. 3) User intentions transition in each message ui, and the LLM must switch
its policies accordingly to give a correct response a.

3.2 Data Curation

The data curation pipeline of WildToolBench follows three steps. First, we summarized seed application
scenarios and user behavior patterns from large-scale real user logs, and iteratively rewrote and
expanded them into 256 scenarios. Then, following ToolAlpaca (Tang et al., 2023), we collected
more than 1,600 publicly available APIs from the internet, carefully verified and cleaned them into
a tool set. For each scenario, we picked a reasonable tool subset and generated 4 tasks based on it.
Finally, we employed GPT-4o (OpenAI, 2024a) to construct a multi-agent system simulating the roles
of user and assistant, generating initial trajectories under the given task and tool subset. Each tool
invocation in the trajectory was manually examined and annotated as ground truth, producing the final
dataset. The detailed process is described in Appendix §C. Each stage of the data curation pipeline
involved manual annotation and validation to ensure accuracy and diversity. Furthermore, in the
manual inspection of tasks, we emphasized three aspects: task compositionality (§3.3), contextualized
intention (§3.4), and instruction transition (§3.5), reflecting the inherent complexity of real user
behaviors. Finally, we present comprehensive statistics of WildToolBench in §3.6. The unique design
of WildToolBench is highlighted in Table 5.
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Search and
List Movies

Investigate
Each Movie

Create Slides and 
Draw Layout

Finish Slide

a) Tool dependency for creating a movie survey slide 

Step 1

Step 2

Step 3

Step 4

Step 1

Step 2

Step 3

Step 4

b) Enumerate all possible tool execution trajectory c) Match LLM’s tool execuation trajectory d) Score LLM’s trajectory with AP and OP

❌Failed

Step 1

Step 2

Step 3

Step 4 ❌Failed

AP : 3 out of 4 steps were successful, 75%
OP : Not the optimal 3-steps trajectory, False

Figure 3: Visualization of the enumerate-match-score pipeline for evaluating the LLMs’ tool
orchestration ability in WildToolBench.

3.3 Challenge 1: Tool Orchestration for Compositional Task

Real-world user instructions do not always present very hard tasks, but multiple simple requirements
are combined into a single instruction. We meticulously constructed tasks under common scenarios
(e.g., document operations or weather inquiries), but with compositional forms that better reflect
real user instructions (e.g., searching for popular movies to generate a survey slide, or multi-city
weather inquiries intertwined with travel planning). Compared with simple and well-defined tasks
found in previous benchmarks, these are "in-the-wild" tasks that require an LLM to possess strong
planning capabilities to identify tool dependencies and construct an efficient tool-calling topological
graph, thereby improving TTFT (Time to First Token). To accurately measure whether an LLM can
effectively construct an efficient tool-calling topology, WildToolBench measures not only the final task
accuracy but also more fine-grained metrics such as the optimal path rate and task accomplishment
progress, in a simple three-stage manner: enumerate, match, and score.

Enumerate First, the adjacent tool dependencies are manually labeled by human experts. Then, we
apply a depth-first topological sorting algorithm (see Appendix D for details) to generate all possible
legal tool execution paths that obey the adjacent dependencies. Our approach enumerates all possible
tool execution paths, rather than restricting to limited suboptimal paths (Qiao et al., 2025; Shen et al.,
2024). Such an enumeration generates a decision tree set that considers all branching and parallel
scenarios. For example, in Figure 3 a), the search-then-investigate branch and the slide branch can be
executed in parallel, leading to five possible paths as shown in Figure 3 b).

Match Every time the LLM executes a tool, we use an incremental path matching strategy to locate
this tool call in the previously enumerated decision tree set. Each tool call either terminates the path
if mismatched or takes a step into the corresponding sub-tree.

Score By matching and locating the LLM’s tool call in the enumerated decision tree set, we can
evaluate the quality of the LLM’s current tool execution topology. Whenever the tool executed by
the LLM terminates or completes a path, we calculate whether this path has the minimum depth
among all enumerated decision trees. If so, it indicates that this decision tree is not only valid but also
possesses optimal efficiency, and we can calculate the Optimal Path Rate (OP Rate). Furthermore,
the LLM often fails on many tasks, with tool-calling nodes generated midway that do not fall within
the valid decision tree set. We calculate the Accomplish Progress Rate (AP Rate) based on the
proportion of its successful nodes. These two fine-grained metrics, OP and AP , are used to measure
tool orchestration.

3.4 Challenge 2: Infer Hidden Intention Through Dialogue

Previous research (Chiang et al., 2023; Su et al., 2019) reveals that in sequential tasks, 80% of users
follow up with additional questions and may modify or omit contextual information, which aligns with
our observations. The LLM must infer the user’s latent intentions from the multi-turn conversation,
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Help me check the news from BBC the day before yesterday.

Yesterday ESPN

News from BBC (December 22, 2024)
1. The Global Climate Change Conference(https://www.bbc.com/news/38614725)
2. Tech giant releases the new smartphone(https://www.bbc.com/news/25814736)

I want to obtain the metadata of one of them

The last one in the first round of results

Get the metadata of all the rest articles for me. Also, I want to know about other 
articles by the authors of these rest articles.

Action:
- name: "filterArticlesBySource"
- args: {"fromDate": "2024-12-22", "source": "BBC”}

Observations: 
- The Global Climate Change Conference is held in Paris
- Tech giant releases the latest smartphone

Action:
- name: "filterArticlesBySource"
- args: {"fromDate": "2024-12-23", "source": " ESPN”}

Observations: 
- The NBA Christmas Day games are approaching
- Analysis of the NFL playoff situation

News from ESPN(December 23, 2024)
1. The NBA Christmas Day games are 
approaching(https://www.espn.com/nba/96385217)
2. Analysis of the NFL playoff situation(https://www.espn.com/nfl/41728365)

Could you please provide the URL or title of the specific article you are interested 
in so that I can retrieve the metadata of the article for you?

- Author: John Doe
- Publication Date: December 22, 2024
- Content Type: Sports event situation analysis

Action:
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/25814736"}

Observations: 
{“author”: “John Doe”, “date”: “December 22, 2024”,
“type”: “sports event situation analysis”}

Sure, Here is the metadata of all the articles remain:
……
and here are complete article list from Jane Smith and Emily Johnson:
……

Action:
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/38614725"}
- name: "getArticleMetadata"
- args: {"url": "https://www.bbc.com/news/96385217"}

Observations: 
{“author”: “Jane Smith”,
“date”: “December 22, 2024”}

{“author”: “Emily Johnson”,
“date”: “December 23, 2024”}

{“author”: “Jane Smith”,
“article_list”: [“The Global Climate Change 
Conference”, ……]}

……

Action:
- name: "getArticleByAuthor"
- args: {"author": "Jane Smith"}
- name: "getArticleByAuthor"
- args: {"author": "Emily Johnson"}

Turn 1
Single-Tool

Turn 2
Single-Tool

Turn 3
Clarification

Turn 4
Parallel Multi-Tool

Turn 5
Mixed Multi-Tool

Task 1
Single-Tool

Task 2
Single-Tool

Task 3
Clarify then Parallel Multi-Tool

Task 4
Mixed Multi-Tool

No Transition Transition Transition

1

1

2

2

3

Partial Information

The complete query
should be “Check the news
from ESPN yesterday”

2
Coreferential Reference

The “one of them” in the
third turn user message
can not be determined.

After clarification, it refers
to the article with BBC
article id 25814736.

3

Long-Range Dependency

User ask for all the rest 
articles, which denotes 
article 38614725 in the first 
turn, and article 96385217 
in the second turn.

Figure 4: Examples for Challenges on Hidden Intention §3.4 and Instruction Transition §3.5. These
challenges arise from the very nature of real user behavior: from the user’s perspective, the interaction
is a coherent dialogue rather than a series of isolated task submissions.

gather the necessary information and even proactively request clarifications. In WildToolBench,
we utilize three strategies to construct tasks that demand multi-turn context inference, as shown
in Figure 4: 1) Partial Information: The current user message ui contains only a subset of the
information required to complete the task, while the omitted information is present in previous user or
assistant messages {u1, a1, . . . , ui−1, ai−1}. 2) Coreferential Reference: The current user message
contains the full information, but the subject is expressed only via pronouns or ellipsis, referring back
to entities mentioned in earlier user or assistant messages. 3) Long-Range Dependency: Similar to
partial information, except that the missing information is located in distant dependencies; that is, ui

depends on {u1, a1, . . . , uj , aj} with i− j > 2.

3.5 Challenge 3: Adaptable Policy Switch for Instruction transition

When interacting with an LLM assistant, most users treat the interaction as a natural conversation
rather than a series of independent task submissions. Users frequently initiate tasks across multiple
turns, ask follow-up questions, provide explanations, engage in casual dialogue, and interrupt or
resume tasks at will, continuously transition among different instruction types. As illustrated in
Figure 2 and Figure 4, what appears to users as an ordinary conversation in fact involves multiple
transitions. Such flexible and frequent instruction transitions require the LLM to adapt its policy
appropriately, making suitable choices among strategies such as tool-use, direct question answering,
or proactive inquiry.

In constructing WildToolBench, we categorize all tasks into four types: tasks solvable with a single
tool call (gsingle), tasks requiring multiple tools and multi-step calls (gmulti), conversational or tool-free
queries (gchat), and tasks that require the assistant to ask for clarification (gclarify). For each scenario,
we carefully curated the proportions of these four task types as well as their switching frequency,
ensuring that WildToolBench faithfully reflects the phenomenon of instruction transition observed in
real user behavior. This setup benchmarks LLMs’ ability to accurately track evolving user intentions
in natural dialogue and generate appropriate responses.

3.6 Statistics

Figure 5 presents detailed statistics of WildToolBench. We constructed 256 scenarios, each consisting
of a multi-turn dialogue with four user tasks, resulting in a total of 1,024 tasks. We evaluate whether
the LLM generates the ground-truth tool calls within the dialogue, measuring both task-level accuracy
and session accuracy, i.e., whether all four tasks in a dialogue are correctly completed.

The key observations from these statistics are as follows: 1) the four task types (gsingle, gmulti, gchat,
gclarify) and various forms of hidden user intention are well balanced, ensuring diversity and challenge
within each dialogue; 2) tool parameter types are highly diverse, and the tool type covers 8 major
categories and 24 subcategories, all of which correspond to commonly encountered real scenarios; 3)
the average dialogue length is 5.27 turns and the average number of tool-call steps is 1.92, which is
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e) Distribution of Tool Call Counts Per Task

a) Distribution of User Message Types

d) Distribution of Dialogue Turns f) Distribution of Tool Types

b) Distribution of Contextual Chanllenges

ChatClarify

Single
Tool

Parallel
Multi-Tool

Sequential
Multi-Tool Mixed

Multi-Tool Long-Range 
Dependency

Integer

Coreferential 
Reference

String

Partial 
Information

StringEnum

Boolean

Array

Others

Object

Float

Nested
Object

Integer
Enum

c) Distribution of Tool Parameters

Financial
4.6%

Coding
9.2%

Game
6.7%

Media
5.8%

Geographic
12.2%

Weather
3.9%

News
5.3%

Social
4.1%

Business
5.3%

Finance
4.4%Health

4.8%

Figure 5: Key statistics for WildToolBench.

significantly higher than BFCL (3.75 turns, 1.68 steps). In the appendix, we highlight the wild nature
of WildToolBench in Table 5.

4 Experiments

We present a detailed experiment by benchmarking 57 mainstream LLMs on WildToolBench, ranging
from proprietary to open-source LLMs, from general to specialized models, and from instruction-tuned
to large reasoning models. The experiments and analysis are organized as follows: §4.1 gives an
overview of benchmarking results and key takeaways, §4.2 investigates how well LLMs can orchestrate
tool calls to handle the compositional user instructions in WildToolBench, §4.3 examines the inference
ability of LLMs when users omit or hide their intentions and information across multiple turns in
dialogue, and §4.4 presents how frequent instruction transitions affect the LLM’s ability to make
correct decisions. Finally, in §4.5 we provide an empirical analysis of the errors that LLMs made in
WildToolBench.

Table 1: WildToolBench Results.

Models Categorized by Task Type g Categorized by Task Order M Overall
gsingle gmulti gclarify gchat 1 2 3 4 Task Session

Proprietary General Models
Gemini-2.0-Thinking 56.64 40.23 52.34 94.92 78.13 63.67 51.95 50.39 61.04 14.45
Gemini-2.5-Pro 55.08 36.33 46.88 86.72 70.31 56.64 53.52 44.53 56.25 14.06
Claude-4-Sonnet 60.16 43.75 41.80 80.47 71.09 57.81 52.73 44.53 56.54 12.50
o1 54.30 39.06 48.05 93.75 69.53 60.94 55.86 48.83 58.79 12.11
GPT-4o 60.16 41.80 39.45 78.13 72.66 55.08 46.09 45.70 54.88 11.72
Grok-4 59.38 41.41 33.59 66.02 63.67 52.34 42.97 41.41 50.10 10.16
GPT-5 46.09 34.38 31.64 84.38 62.11 50.00 45.31 39.06 49.12 5.86

Open-Source General Models
GLM-4.5 57.81 40.63 44.53 81.25 70.70 60.16 50.78 42.58 56.05 12.11
Kimi-K2 54.30 33.98 39.84 86.72 68.75 57.03 48.83 40.23 53.71 10.55
DeepSeek-R1 56.25 41.02 43.75 80.08 74.22 54.30 48.83 43.75 55.27 9.38
DeepSeek-V3 58.98 38.67 33.59 79.30 75.39 53.91 41.02 40.23 52.64 9.38
Qwen3-32B-Thinking 53.52 28.91 37.11 80.86 62.50 52.73 46.48 38.67 50.10 7.81

Open-Source Specialized Models
xLAM-2-70B 64.45 36.72 28.91 64.84 64.06 51.56 42.58 36.72 48.73 7.81
ToolACE2-8B 62.11 37.89 33.98 84.38 72.27 59.38 46.88 39.84 54.59 7.42
Watt-8B 61.72 28.13 22.66 78.13 68.75 47.27 39.06 35.55 47.66 4.69
Hammer2.1-7B 40.23 21.88 30.47 94.92 61.72 46.88 40.63 38.28 46.88 4.69

4.1 Overall Performance

We evaluate three categories of models, including Proprietary General Models (OpenAI, 2025;
Anthropic, 2025; Mistral, 2024; Doubao, 2025; OpenAI, 2024b; Google, 2024; Seed, 2025), Open-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Source General Models (Qwen, 2025; DeepSeek-AI et al., 2024; Yang et al., 2024; DeepSeek-AI
et al., 2025), and Open-Source Specialized Models (Zeng et al., 2025; Liu et al., 2024; Lin et al.,
2024; Shi et al., 2024). We employ each model’s native Function Call format to achieve optimal
performance. Table 1 presents the overall performance of top-performing models. Full results on 57
models are provided in Appendix E.2.

In terms of overall performance, none of the mainstream LLMs achieve a session accuracy higher than
15%, and most models fall below 60% in task accuracy, highlighting the difficulty of WildToolBench.
Proprietary LLMs generally outperform open-source ones, and reasoning-oriented models consistently
surpass non-reasoning models. The best-performing open-source models, such as GLM4.5 and
Kimi K2, achieve performance comparable to the top three proprietary models, while the remaining
open-source models still lag considerably behind.

We further conducted a drill-down analysis of task accuracy along two dimensions: task type and task
order. For task type, when the user’s intention is casual chat or tool-free answering, most LLMs can
reliably recognize the intention and respond appropriately. However, when the intention involves
clarification or eliciting task details through counter-questions, LLMs frequently misfire by executing
a function call. Moreover, multi-step tool-use exhibits substantially lower accuracy than single-step
tool invocation. For task order, within a dialogue, tasks appearing later exhibit greater dependence on
preceding information, and model performance deteriorates accordingly.

4.2 LLMs Perform Pool on Tool Orchestration

Table 2: WildToolBench tool orchestration evaluation result.

Models Task Accuracy AP Rate OP Rate

gPmulti gSmulti gS+P
multi Overall gSmulti gS+P

multi Overall gPmulti gS+P
multi Overall

Proprietary General Models
Gemini-2.0-Thinking 54.14 25.00 16.67 40.23 45.28 39.89 40.37 53.50 16.67 40.66
Gemini-2.5-pro 49.04 25.00 14.29 36.33 47.17 39.15 39.87 43.31 11.90 32.37
Claude-4-Sonnet 54.78 31.25 25.00 43.75 60.38 46.32 47.57 52.87 23.81 42.74
o1 50.96 12.50 21.43 39.06 35.85 37.50 37.35 50.32 20.24 39.83
GPT-4o 53.50 31.25 21.43 41.80 41.51 45.40 45.06 51.59 21.43 41.08
Grok-4 54.14 18.75 21.43 41.41 41.51 46.51 46.06 53.50 21.43 42.32
GPT-5 43.31 37.50 16.67 34.38 49.06 38.42 39.36 42.68 13.10 32.37

Open-Source General Models
GLM-4.5 51.59 31.25 21.43 40.63 67.92 48.90 50.59 49.68 20.24 39.42
Kimi-K2 45.86 12.50 15.48 33.98 52.83 34.93 36.52 43.95 15.48 34.02
DeepSeek-R1 53.50 18.75 21.43 41.02 41.51 44.12 43.89 52.87 20.24 41.49
DeepSeek-V3 52.87 25.00 14.29 38.67 43.40 32.54 33.50 51.59 14.29 38.59
Qwen3-32B-Thinking 42.04 12.50 7.14 28.91 41.51 28.31 29.48 40.13 7.14 28.63

Open-Source Specialized Models
xLAM-2-70B 49.68 12.50 16.67 36.72 43.40 44.85 44.72 26.75 7.14 19.92
ToolACE2-8B 47.77 31.25 20.24 37.89 50.94 43.01 43.72 26.11 14.29 21.99
Watt-8B 44.59 6.25 1.19 28.13 22.64 21.87 21.94 44.59 1.19 29.46
Hammer2.1-7B 33.12 12.50 2.38 21.88 24.53 13.24 14.24 31.85 2.38 21.58

We further analyzed whether LLMs can correctly orchestrate tool-call topologies to handle com-
positional tasks. We divided compositional tasks into three categories according to their required
tool topology: sequential multi-step tool-use (gSmulti), parallel multi-step tool-use (gPmulti), and mixed
tool-use combining both sequential and parallel structures (gS+P

multi ). As shown in Table 2, the highest
task accuracy is merely 43.75%, falling to just 25% for gS+P

multi tasks, indicating that compositional tasks
with multi-turn interactions remain a significant challenge for LLMs. Similarly, the peak optimal path
(OP) rate reaches only 42.74%, suggesting that current LLMs have substantial room for improvement
in tool execution efficiency. See full results of 57 LLMs in Appendix E.3. Specialized tool-use
models perform significantly worse than general-purpose models, indicating limited generalization
despite their intended focus. Claude-4-Sonnet shows a clear advantage in complex reasoning for
tool orchestration, outperforming other proprietary models. The Gemini series reveals a strong bias,
excelling in parallel but dropping sharply in mixed one. Among open-source models, GLM-4.5 excels
in sequential and mixed tasks, even surpassing leading proprietary models. Furthermore, we observe
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that reasoning-enabled model variants outperform their non-reasoning counterparts within the same
series, indicating that additional reasoning leads to better tool-call orchestration for compositional
tasks. These results refute the conclusion in previous work Zhou et al. (2025) that a reasoning
model does not outperform a non-reasoning model on tool-use, highlighting limitations in previous
evaluations.

4.3 LLMs Struggle to Infer intention Across Dialogue

Figure 6: LLM’s performance under different hid-
den information strategies.

Figure 7: LLM’s performance goes down as
the instruction transition goes more frequently.

Figure 6 reports the accuracy of LLMs on three types of user tasks, in which user intention and
information are partially hidden or omitted across multi-turn contexts. We find that long-range
dependency tasks are the most challenging, with no model achieving accuracy above 50%. By
contrast, tasks involving partial information or coreference are relatively easier. The results reveal
clear specialization across models: reasoning models such as o1 and gemini-2.0-thinking excel at
inferring omitted information and intent in partial information tasks, while Claude-4-Sonnet leads on
coreferential reference tasks, indicating that no single model outperforms others across all aspects.
Long-range dependency tasks remain the weakest dimension overall, with scores clustered between
30 and 45, while also exhibiting the largest performance gap (17.3), making them a key differentiator
among models. Mid-tier models demonstrate notable strengths despite lower overall averages; for
instance, ToolACE2-8B (Ref 56.2) and GLM-4.5 (Ref 57.9) approach top-tier performance. Model
capability generally correlates positively with model size, as illustrated by the Qwen2.5 series results
in Table 6. In general, reasoning models demonstrate stronger capabilities in inferring hidden intent
and retrieving omitted information within multi-turn contexts.

4.4 User Instructions Change, and LLMs Lag Behind

To further investigate the impact of user instruction transitions on LLM decision-making, we analyzed
the performance of all models on tasks in WildToolBench with varying transition frequencies. As stated
in Section §3.1, we categorize the tasks into four types: gsingle, gmulti, gchat, and gclarify, corresponding
to tasks solvable with a single tool call, multi-step tool calls, direct question answering, and tasks
requiring clarification, respectively. An instruction transition is defined as a change in task type
between two consecutive tasks within a dialogue. Given that each scenario contains up to four
tasks, at most three transitions can occur. As shown in Figure 7, across open-source and proprietary
models, general-purpose and specialized models, as well as reasoning and non-reasoning models, task
accuracy decreases as the number of transitions increases. In some cases, the drop reaches as much as
30% in accuracy. Our analysis indicates two main factors underlying this trend. First, tasks with
frequent transitions reflect more flexible and in-depth user demands (e.g., a task requiring clarification
followed by a follow-up query for further information). Such tasks more closely resemble real user
scenarios and are inherently more difficult. Second, LLMs exhibit self-conditioning (Sinha et al.,
2025), whereby previous responses bias subsequent decisions. For example, if a model previously
used a tool call, it tends to continue using tool calls; if it previously executed parallel tool calls, it is
biased toward repeating them. This interference prevents the model from selecting the appropriate
response. Essentially, this arises because the long conversational context dilutes the model’s attention
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to the current task, as historical user and assistant messages accumulate. This problem is particularly
pronounced when the current task requires recalling past interactions (as noted in Section §3.4),
further exacerbating the interference from historical context.

4.5 Error Analysis

Table 3: Error Analysis in WildToolBench.

Models Action Errors Parameter Errors

Refusal Wrong Name
Missing Info

Wrong
Refusal

Redundant
Call

Call
Error

Early
Termination

Param
Type Error

Param
Hallucination

Param
Value Error

Proprietary General Models
Gemini-2.0-Thinking 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.80% 8.09% 14.83%
o1 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
GPT-4o 5.41% 21.65% 12.12% 14.50% 11.47% 7.58% 3.46% 9.96% 13.85%
Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.34% 10.75% 6.53%

Open-Source General Models
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.33% 4.67% 12.89%
Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.74% 6.75% 14.14%
DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.53% 8.52% 11.79%
DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.65% 7.42% 10.31%
Qwen3-32B-Thinking 9.20% 20.35% 9.20% 19.18% 19.18% 4.31% 1.96% 7.83% 8.81%

Open-Source Specialized Models
xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 1.71% 5.14% 12.57%
ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 3.23% 3.66% 14.84%
Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.87% 5.78% 10.45%
Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 3.49% 1.47% 8.82%

Table 3 reveals that the primary challenge in LLM tool-use has shifted from syntactic correctness to
semantic and logical reasoning. The data indicates two divergent failure philosophies: a “cautious”
profile, exemplified by Gemini-2.0-Thinking, which prefers to refuse a task (24.56% Refusal rate)
rather than risk an incorrect action (8.02% Wrong Name error), and an “eager” profile, seen in models
like Grok-4, which minimizes refusals (3.72%) at the cost of a significantly higher propensity to select
the wrong tool (24.07% Wrong Name error). Across the spectrum, “Wrong Name / Missing Info” and
“Redundant Call” (23.06% in Gemini-2.0-Thinking) emerge as the most prevalent errors, highlighting
systemic deficits in intent understanding and context management. This problem is particularly
pronounced in specialized open-source models like xLAM-2-70B and Watt-8B, where “Wrong Name”
errors exceed 30%, suggesting that specialization can lead to brittleness. Conversely, parameter-level
errors such as “Param Type Error” or “Param Hallucination” are consistently lower across all models.
This suggests that the frontier of agentic AI development now lies in improving higher-order planning
and reasoning rather than basic syntactic generation. The prevalence of “Redundant Call” errors
reveals a widespread deficiency in long-range planning for most capable models, indicating that they
struggle with context management over time. However, the deceptively low rates of this error in some
specialized models can be misleading, as this “pseudo-capability” often masks a more fundamental
failure to initiate tasks correctly, evidenced by catastrophic “Wrong Name” error rates.

5 Conclusion

WildToolBench, grounded in real user behavior patterns, identifies three major challenges for LLMs
performing multi-turn, multi-step tool-use: compositional instructions, hidden intent, and instruction
transitions. Unlike prior evaluations that focus solely on increasing the complexity of tool-call
procedures, WildToolBench emphasizes assessing LLM tool-use capabilities in the context of realistic
user scenarios. Benchmarking nearly all mainstream models, WildToolBench reveals a fundamental
limitation in current LLM development: for effective tool-use, a model cannot merely function as a
tool executor; it must also possess the capacity to understand users. This capability depends on deeper
foundational skills of large models, including instruction following, long-context comprehension,
and theory of mind—essential abilities for future agentic models. Beyond serving as a leaderboard,
WildToolBench provides structured rubrics that guide model developers in interpreting user behaviors
from multiple perspectives, facilitating more effective model iteration.
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6 Reproducibility statement

WildToolBench provides all the datasets, evaluation scripts, and all 57 LLMs evaluated trajectories to
support 100% reproducibility. See these materials in the submitted “Supplementary Material” zip file.

7 Limitations

WildToolBench uses human annotations to ensure data quality, diversity, and alignment with real user
behaviour distribution. However, this limits the scaling potential of the data size. What’s more, the
dual objectives of maintaining data quality and traversing all policy transition types concurrently
limit the feasible length of tasks. Despite this, experimental results reveal significant trends in model
performance, leading to robust conclusions on the gap in current LLMs’ tool-use ability. We are also
working on combining human-annotated rubrics with a fully automated synthetic environment scaling
pipeline for both training and evaluation of the Agentic Model, which is the foundation for the next
scaling trend in the AI era.
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A The Use of Large Language Models (LLMs)

For the paper writing, we employed LLMs solely for grammatical correction at the writing stage. The
LLM itself did not contribute to experimental design, idea development, or manuscript writing.

Other uses of LLMs (such as benchmark construction) have been clearly stated in §3.2 and §C.

B Benchmark Comparison

Since the representative benchmarks we compiled span multiple time periods, not all models reported
results for every benchmark in their original papers. Therefore, we collected evaluation results from
multiple sources. Figure 1 primarily demonstrates that previous LLM tool benchmarks have tended
toward saturation, while WildToolBench remains challenging. The information we compiled is
mainly drawn from official reports of GLM4.5, Kimi K2, GPT5, and BFCL leaderboard1, as well as
a report by an independent third-party organization, Artificial Analysis2. The differences between
WildToolBench and previous tool-use benchmarks are listed in Table 5. The detail of Figure 1 is
shown as below:

Table 4: Performance Comparison across Different Benchmarks

Models WildToolBench BFCL-v4 BFCL-v3 BFCL-v2 τ -Bench τ2-Bench (telecom)
Gemini2.5 pro 14.1 48.6 25.0 64.0 62.5 54.1
GPT4o 11.7 64.7 42.5 70.5 51.6 25.1
Claude-Sonnet 4 12.5 71.7 54.8 81.1 70.3 45.2
Claude-Opus 4 9.4 69.6 57.9 81.5 70.5 57.0
GPT5 5.9 71.1 28.5 58.3 72.3 96.7
Grok 4 10.2 68.9 36.1 74.4 67.5 47.9
GLM4.5 12.1 64.9 65.6 81.7 70.1 24.6
K2 10.6 42.1 48.8 80.8 62.6 65.8
DeepSeek R1 9.4 32.0 44.5 80.9 58.7 36.5
DeepSeek V3 9.0 27.4 33.0 79.9 57.6 32.5

Table 5: Comparative analysis of the WildToolBench against other tool-use benchmarks.

Benchmark Contextual
Multi-Task

Hidden Info
in Context%

User Instruction
Transition%

Sequential
Tool-Use

Parallel
Tool-Use

Mixed
Tool-Use

WildToolBench ✓ 100% 100% ✓ ✓ ✓
BFCL v3 (Patil et al., 2025) ✓ 15.7% 39.7% × ✓ ×
BFCL v2 (Patil et al., 2025) × 0.0% 0.0% × ✓ ×
BFCL v1 (Patil et al., 2025) × 0.0% 0.0% × ✓ ×
ToolBench (Qin et al., 2024) × 0.0% 0.0% ✓ × ×
AnyToolBench (Du et al., 2024) × 0.0% 0.0% ✓ × ×
τ2-bench (Barres et al., 2025) - - - ✓ × ×
τ -bench (Yao et al., 2024) - - - ✓ × ×
T-EVAL (Chen et al., 2024) × 0.0% 0.0% ✓ × ×
UltraTool (Huang et al., 2024a) × 0.0% 0.0% ✓ × ×

C Data Curation

Figure 8 gives an overall preview of the data curation for WildToolBench. First, we analyzed a large
collection of real user logs to extract suitable seed scenarios and to summarize user behavior patterns.
Second, following the ToolAlpaca approach, we constructed a large tool set from public APIs and
selected a corresponding tool subset for each seed scenario. In particular, we enumerated all possible
simple and complex parameter types (String, Integer, Float, Boolean, Enum, Array, Object, Nested)
to enhance the diversity and complexity of tool parameters. Third, five human experts specializing in
LLM agents inspected and refined these tool sets, mainly by correcting unreasonable tool combinations
and parameter specifications, thereby improving the logical coherence and interoperability of tools.
This process yielded 256 realistic scenarios, and for each scenario, we get a diverse and reasonable
tool subset.

1https://gorilla.cs.berkeley.edu/leaderboard.html
2https://artificialanalysis.ai/

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Public 
APIs Human & LLM

Co-Check and Co-Refine

Human
Check and Refine

3. Multi-Agent Simulation

Human 
Check and Refine

1600+ Tools

256 scenarios

LLM
Generate

Real User Logs

Identify

Seed Scenarios 
and User 

Behaviour Patterns

Raw 
Scenario

User Agent Assistant Agent

Raw Trajectory

WildToolBench

1. Scenario Curation

2. Task Curation

Human & LLM
Collaborate

1024 Tasks

Figure 8: The data curation pipeline of WildToolBench.

After obtaining the scenarios, we prompted a User Agent to generate initial first-round user tasks
based on the scenario and tool subset. Based on the four task types defined in this paper (gsingle,
gmulti, gclarify, gchat), we used controlled generation to produce the first-round tasks for each
type. To enhance diversity, we varied across five dimensions: sentence structure, linguistic style,
task background, task length, and task difficulty. We then used the three omission types defined
in Challenge 2 (User Hidden Intent), including Partial Information, Coreferential Reference, and
Long-Range Dependence, together with real user questions as few-shot examples, to guide the User
Agent in generating the subsequent three tasks. For each step, multiple candidate tasks were generated,
from which human experts selected the highest-quality ones and refined them to better match human
distributions, resulting in the final user tasks.

Once the expert-refined user tasks were obtained, the Assistant Agent executed the Agent Loop for
tool calls until producing a summary. Each tool call in the trajectory was then automatically checked
for issues such as function hallucination, parameter hallucination, type errors, and redundant calls.
Subsequently, five human experts inspected the full trajectory, corrected errors (e.g., in tool planning
or parameter values), and annotated tool-call dependencies (used to construct DAGs for calculating
optimal path rates in Challenge 1). This process was repeated until all task trajectories were generated.

Finally, to ensure data quality, we conducted multiple rounds of discussion-based optimization.
Several human experts randomly sampled 20% of the data, annotated potential errors, and initiated a
review session where annotators collectively resolved issues. This process was repeated with different
pairs of experts and different 20% samples each round, continuing until the detected error rate dropped
to zero and every data point had been checked at least once with no conflict. After four such iterations,
the data quality improved from 62%, 78%, 86%, and 94% to a final 100%, yielding the completed
WildToolBench. 9 human experts took one month to finish the whole data curation process.

D Details of Tool Orchestration Evaluation

Algorithm 1 shows the pseudo code for enumerating all possible tool orchestration paths. The main
design idea of this algorithm is to enumerate all possible tool execution paths in a directed acyclic
graph (DAG) using depth-first search with backtracking. At each step, it identifies the set of nodes
with zero indegree, generates all non-empty subsets to simulate parallel execution, appends the
selected nodes to the current path, and updates the indegrees of their successors. The algorithm
recursively explores all possible paths and finally classifies them into optimal and suboptimal sets
based on path length, systematically accounting for both serial and parallel execution combinations
(mixed multi-tool).
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Algorithm 1 Enumeration of All Serial and Parallel Execution Paths
Require: Directed acyclic graph G = (V,E); annotated length L
Ensure: All paths P , divided into optimal and suboptimal sets
1: Compute indegree[v] for all v ∈ V
2: Initialize visited[v]← false for all v ∈ V
3: CurrentPath← ∅, P ← ∅
4: function ZeroIndegree(indegree, visited)
5: return {v ∈ V | indegree[v] = 0 ∧ ¬visited[v]}
6: end function
7: function Combinations(Z)
8: return all non-empty subsets of Z
9: end function

10: procedure DFS(indegree, visited,CurrentPath)
11: Z ← ZeroIndegree(indegree, visited)
12: if Z = ∅ then
13: if |CurrentPath| = |V | ∨ |CurrentPath| = L then
14: Add copy of CurrentPath to P
15: end if
16: return
17: end if
18: for all C ∈ Combinations(Z) do
19: Backup indegree, visited,CurrentPath
20: Append C to CurrentPath
21: Mark all v ∈ C as visited
22: for all edges (v, u) with v ∈ C do
23: indegree[u]← indegree[u]− 1
24: end for
25: DFS(indegree, visited,CurrentPath)
26: Restore backup
27: end for
28: end procedure
29: DFS(indegree, visited,CurrentPath)
30: L∗ ← min{|p| : p ∈ P}
31: Popt ← {p ∈ P : |p| = L∗}
32: Psub ← P \ Popt

33: return P,Popt,Psub

E Complete Experimental Results

E.1 Hyperparameter Settings

To further enhance the reproducibility of our dataset, we hereby introduce the hyperparameter settings
used during model inference. Specifically:

For Proprietary Models, we adopted the default hyperparameters from the official website without
making any changes to hyperparameters such as temperature, top-p, and top-k.

For Open-Source Models, If an official API is available, we utilize it with its default hyperparameters.
Otherwise, the model is deployed via the Hugging Face library, where tool-calling functionality is
implemented according to its chat template. For generation, we use the model.generate method with
its default hyperparameters, setting only max_new_tokens to 512. The version of Hugging Face used
was 4.51.0, and no other modifications were made.

E.2 WildToolBench Full Results

We provide all the benchmarking results of 57 models as shown in Table 6, including 16 Proprietary
General Models, 30 Open-Source General Models, and 11 Open-Source Specialized Models trained
for tool-use.
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Table 6: WildToolBench Full Results.

Models Categorized by Task Type g Categorized by Task Order M Overall
gsingle gmulti gclarify gchat 1 2 3 4 Task Session

Proprietary General Models
Gemini-2.0-Thinking 56.64 40.23 52.34 94.92 78.13 63.67 51.95 50.39 61.04 14.45
Gemini-2.5-Pro 55.08 36.33 46.88 86.72 70.31 56.64 53.52 44.53 56.25 14.06
Claude-4-Sonnet 60.16 43.75 41.80 80.47 71.09 57.81 52.73 44.53 56.54 12.50
o1 54.30 39.06 48.05 93.75 69.53 60.94 55.86 48.83 58.79 12.11
GPT-4o 60.16 41.80 39.45 78.13 72.66 55.08 46.09 45.70 54.88 11.72
Claude-3.7-Sonnet 57.81 39.06 41.41 63.28 60.55 50.00 48.05 42.97 50.39 11.33
o3 61.72 39.45 44.92 81.64 73.83 60.94 49.22 43.75 56.93 10.16
Grok-4 59.38 41.41 33.59 66.02 63.67 52.34 42.97 41.41 50.10 10.16
Claude-4.1-Opus 55.86 39.84 41.80 82.42 69.92 55.08 50.39 44.53 54.98 9.38
GPT-4.1 57.42 44.14 34.38 81.25 69.53 58.20 46.88 42.58 54.30 8.98
Mistral-Large 56.25 36.33 37.50 68.75 67.58 48.83 44.14 38.28 49.71 7.03
Doubao-1.6 55.86 40.23 31.25 63.28 69.14 48.83 40.23 32.42 47.66 7.03
Doubao-1.5-Thinking 60.16 22.66 26.95 75.39 65.63 47.66 40.23 31.64 46.29 6.64
GPT-5 46.09 34.38 31.64 84.38 62.11 50.00 45.31 39.06 49.12 5.86
Doubao-1.6-Thinking 57.42 34.38 18.75 47.27 57.03 39.06 31.25 30.47 39.45 3.13
Doubao-1.5 58.59 24.61 9.38 34.38 39.45 28.91 29.30 29.30 31.74 0.78

Open-Source General Models
GLM-4.5 57.81 40.63 44.53 81.25 70.70 60.16 50.78 42.58 56.05 12.11
Kimi-K2 54.30 33.98 39.84 86.72 68.75 57.03 48.83 40.23 53.71 10.55
Qwen3-30B-A3B 48.05 28.13 41.41 89.06 69.92 51.56 48.05 37.11 51.66 9.77
Qwen3-14B-Thinking 56.64 30.47 37.11 88.67 69.53 54.30 50.39 38.67 53.22 9.38
DeepSeek-R1 56.25 41.02 43.75 80.08 74.22 54.30 48.83 43.75 55.27 9.38
DeepSeek-V3 58.98 38.67 33.59 79.30 75.39 53.91 41.02 40.23 52.64 9.38
Qwen3-8B-Thinking 56.64 33.59 39.84 87.11 73.05 55.08 48.83 40.23 54.30 8.98
DeepSeek-V3.1 44.92 40.63 33.98 81.25 61.33 51.56 45.70 42.19 50.20 8.98
Qwen3-32B 57.81 33.20 39.84 79.69 69.53 54.30 46.48 40.23 52.64 8.59
Qwen2.5-14B-Instruct 50.39 27.34 32.81 83.20 66.41 48.44 40.63 38.28 48.44 7.81
Qwen3-14B 56.25 31.25 39.84 89.06 71.09 54.30 50.39 40.63 54.10 7.81
Qwen3-32B-Thinking 53.52 28.91 37.11 80.86 62.50 52.73 46.48 38.67 50.10 7.81
Qwen3-4B-Thinking 60.16 28.91 38.67 87.89 68.75 59.38 44.14 43.36 53.91 7.81
Qwen2.5-72B-Instruct 58.98 32.03 34.38 82.81 70.70 50.00 46.48 41.02 52.05 6.25
Qwen3-8B 60.16 26.17 26.95 79.30 66.02 48.44 39.45 38.67 48.14 6.25
Qwen3-30B-A3B-Thinking 50.39 24.61 38.67 89.45 71.88 49.22 44.14 37.89 50.78 6.25
Qwen3-1.7B-Thinking 49.22 24.61 30.08 84.38 68.75 46.09 41.80 31.64 47.07 6.25
Qwen2.5-32B-Instruct 53.91 38.67 36.72 82.81 69.14 54.30 48.83 39.84 53.03 5.86
Qwen3-4B 51.17 22.66 35.94 86.33 69.14 49.22 39.06 38.67 49.02 5.86
Qwen2.5-7B-Instruct 52.73 25.39 28.91 73.05 64.06 45.31 37.50 33.20 45.02 4.30
Qwen2.5-3B-Instruct 48.83 18.36 20.70 73.83 55.86 41.41 33.59 30.86 40.43 4.30
Qwen3-1.7B 48.05 19.53 26.95 81.64 67.58 44.14 33.98 30.47 44.04 4.30
Qwen2.5-1.5B-Instruct 36.72 13.28 21.48 90.23 60.16 39.06 31.64 30.86 40.43 3.91
Qwen3-0.6B-Thinking 44.92 16.02 23.05 87.11 66.02 40.23 35.55 29.30 42.77 3.91
Qwen3-0.6B 46.09 7.81 12.11 78.13 53.91 34.38 26.56 29.30 36.04 3.52
Qwen2.5-0.5B-Instruct 23.83 4.69 15.23 82.03 43.75 29.69 26.95 25.39 31.45 0.78
Llama-3.3-3B-Instruct 0.00 0.00 0.39 64.84 21.88 17.19 14.45 11.72 16.31 0.39
Llama-3.3-1B-Instruct 0.00 0.00 0.39 61.33 17.58 18.75 14.06 11.33 15.43 0.39
Llama-3.3-70B-Instruct 3.52 0.00 0.00 52.73 17.97 14.06 12.89 11.33 14.06 0.00
Llama-3.3-8B-Instruct 0.39 0.00 0.39 69.14 25.39 19.14 14.06 11.33 17.48 0.00

Open-Source Specialized Models
xLAM-2-32B 60.94 34.77 38.67 69.92 69.53 52.73 43.36 38.67 51.07 8.20
xLAM-2-70B 64.45 36.72 28.91 64.84 64.06 51.56 42.58 36.72 48.73 7.81
ToolACE2-8B 62.11 37.89 33.98 84.38 72.27 59.38 46.88 39.84 54.59 7.42
xLAM-2-8B 62.11 29.30 24.22 54.30 52.73 44.14 39.06 33.98 42.48 5.08
Watt-8B 61.72 28.13 22.66 78.13 68.75 47.27 39.06 35.55 47.66 4.69
Hammer2.1-7B 40.23 21.88 30.47 94.92 61.72 46.88 40.63 38.28 46.88 4.69
xLAM-2-1B 53.13 17.19 15.23 65.23 50.39 40.63 33.98 25.78 37.70 2.34
xLAM-2-3B 52.34 23.44 16.02 57.03 42.97 43.36 34.77 27.73 37.21 1.17
Hammer2.1-3B 32.81 18.36 11.33 91.02 34.77 46.48 40.63 31.64 38.38 0.39
Hammer2.1-1.5B 4.69 1.56 1.17 96.09 26.17 26.17 26.56 24.61 25.88 0.00
Hammer2.1-0.5B 9.77 2.34 3.13 86.72 25.39 29.69 25.39 21.48 25.49 0.00
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E.3 WildToolBench Full Tool Orchestration Result

We provide all the detailed results on tool orchestration of 57 models as shown in Table 7, including
16 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

E.4 WildToolBench Full Error Analysis

We provide all the detailed error analysis results of 57 models as shown in Table 8, including 16
Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

F Prompts

F.1 Prompt For Single-Tool Calls Seed Task Generation

We show the role prompt of the single-tool calls task generation in Figure 9.

F.2 Prompt For Sequential Multi-Tool Calls Seed Task Generation

We show the role prompt of sequential multi-tool calls task generation in Figure 10.

F.3 Prompt For Parallel Multi-Tool Calls Seed Task Generation

We show the role prompt of parallel multi-tool calls task generation in Figure 11.

F.4 Prompt For Mixed Multi-Tool Calls Seed Task Generation

We show the role prompt of mixed multi-tool calls task generation in Figure 12.

F.5 Prompt For Clarify Seed Task Generation

We show the role prompt of the clarify task generation in Figure 13.

F.6 Prompt For Chat Seed Task Generation

We show the role prompt of chat task generation in Figure 14.

F.7 Prompt For Context Seed Task Generation

We show the role prompt of context task generation in Figure 15 and Figure 16.

G Error Cases

Figure 17 presents several typical error examples discussed in the main text.
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Table 7: WildToolBench Tool Orchestration Result.

Models Task Accuracy AP Rate OP Rate

gPmulti gSmulti gS+P
multi Overall gSmulti gS+P

multi Overall gPmulti gS+P
multi Overall

Proprietary General Models
Gemini-2.0-Thinking 54.14 25.00 16.67 40.23 45.28 39.89 40.37 53.50 16.67 40.66
Gemini-2.5-Pro 49.04 25.00 14.29 36.33 47.17 39.15 39.87 43.31 11.90 32.37
Claude-3.7-Sonnet 43.95 62.50 25.00 39.06 86.79 61.40 63.65 0.00 0.00 0.00
Claude-4-Sonnet 54.78 31.25 25.00 43.75 60.38 46.32 47.57 52.87 23.81 42.74
Claude-4.1-Opus 50.96 43.75 17.86 39.84 62.26 48.35 49.58 50.32 16.67 38.59
o1 50.96 12.50 21.43 39.06 35.85 37.50 37.35 50.32 20.24 39.83
o3 48.41 31.25 23.81 39.45 66.04 54.60 55.61 0.64 0.00 0.41
o4-mini 39.49 31.25 16.67 31.64 52.83 37.68 39.03 0.00 0.00 0.00
GPT-4o 53.50 31.25 21.43 41.80 41.51 45.40 45.06 51.59 21.43 41.08
GPT-4.1 58.60 25.00 20.24 44.14 49.06 45.77 46.06 56.69 19.05 43.57
GPT-5 43.31 37.50 16.67 34.38 49.06 38.42 39.36 42.68 13.10 32.37
Grok-4 54.14 18.75 21.43 41.41 41.51 46.51 46.06 53.50 21.43 42.32
Mistral-Large 47.77 25.00 16.67 36.33 45.28 40.44 40.87 45.86 15.48 35.27
Doubao-1.5 35.03 12.50 7.14 24.61 37.74 29.41 30.15 9.55 1.19 6.64
Doubao-1.5-Thinking 31.21 18.75 7.14 22.66 56.60 23.35 26.30 28.03 7.14 20.75
Doubao-1.6 50.96 25.00 22.62 40.23 50.94 47.79 48.07 50.96 22.62 41.08
Doubao-1.6-Thinking 46.50 12.50 15.48 34.38 52.83 39.34 40.54 43.95 15.48 34.02

Open-Source General Models
xLAM-2-70B 49.68 12.50 16.67 36.72 43.40 44.85 44.72 26.75 7.14 19.92
xLAM-2-32B 45.86 25.00 15.48 34.77 58.49 40.26 41.88 25.48 5.95 18.67
xLAM-2-8B 40.76 25.00 8.33 29.30 43.40 27.57 28.98 26.75 3.57 18.67
xLAM-2-3B 33.12 12.50 7.14 23.44 24.53 23.35 23.45 15.92 3.57 11.62
xLAM-2-1B 27.39 0.00 1.19 17.19 22.64 17.46 17.92 10.83 0.00 7.05
ToolACE2-8B 47.77 31.25 20.24 37.89 50.94 43.01 43.72 26.11 14.29 21.99
Watt-8B 44.59 6.25 1.19 28.13 22.64 21.87 21.94 44.59 1.19 29.46
Hammer2.1-7B 33.12 12.50 2.38 21.88 24.53 13.24 14.24 31.85 2.38 21.58
Hammer2.1-3B 24.84 12.50 7.14 18.36 32.08 18.01 19.26 24.20 7.14 18.26
Hammer2.1-1.5B 2.55 0.00 0.00 1.56 1.89 1.29 1.34 2.55 0.00 1.66
Hammer2.1-0.5B 3.18 0.00 1.19 2.34 9.43 10.48 10.39 3.18 0.00 2.07

Open-Source Specialized Models
Llama-3.3-70B-Instruct 0.00 0.00 0.00 0.00 15.09 2.02 3.18 0.00 0.00 0.00
Llama-3.3-8B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Llama-3.3-3B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Llama-3.3-1B-Instruct 0.00 0.00 0.00 0.00 3.77 0.18 0.50 0.00 0.00 0.00
Qwen2.5-72B-Instruct 44.59 25.00 9.52 32.03 41.51 30.33 31.32 42.04 7.14 29.88
Qwen2.5-32B-Instruct 52.87 43.75 10.71 38.67 56.60 24.08 26.97 52.23 10.71 37.76
Qwen2.5-14B-Instruct 39.49 18.75 5.95 27.34 26.42 19.67 20.27 36.31 4.76 25.31
Qwen2.5-7B-Instruct 38.22 6.25 4.76 25.39 28.30 26.29 26.47 33.12 2.38 22.41
Qwen2.5-3B-Instruct 28.66 6.25 1.19 18.36 15.09 12.13 12.40 27.39 0.00 17.84
Qwen2.5-1.5B-Instruct 21.66 0.00 0.00 13.28 9.43 4.96 5.36 21.66 0.00 14.11
Qwen2.5-0.5B-Instruct 7.64 0.00 0.00 4.69 11.32 3.68 4.36 7.64 0.00 4.98
Qwen3-30B-A3B 42.04 6.25 5.95 28.13 26.42 25.00 25.13 40.76 5.95 28.63
Qwen3-32B 46.50 12.50 11.90 33.20 47.17 30.70 32.16 43.95 9.52 31.95
Qwen3-14B 44.59 25.00 7.14 31.25 41.51 28.86 29.98 44.59 7.14 31.54
Qwen3-8B 38.85 0.00 7.14 26.17 15.09 25.18 24.29 38.22 5.95 26.97
Qwen3-4B 35.67 6.25 1.19 22.66 28.30 13.42 14.74 34.39 1.19 22.82
Qwen3-1.7B 31.85 0.00 0.00 19.53 18.87 16.91 17.09 31.85 0.00 20.75
Qwen3-0.6B 12.10 6.25 0.00 7.81 22.64 9.19 10.39 11.47 0.00 7.47
Qwen3-30B-A3B-Thinking 36.94 6.25 4.76 24.61 18.87 22.43 22.11 35.67 3.57 24.48
Qwen3-32B-Thinking 42.04 12.50 7.14 28.91 41.51 28.31 29.48 40.13 7.14 28.63
Qwen3-14B-Thinking 43.95 25.00 5.95 30.47 45.28 31.62 32.83 43.95 5.95 30.71
Qwen3-8B-Thinking 47.13 12.50 11.90 33.59 28.30 31.99 31.66 47.13 10.71 34.44
Qwen3-4B-Thinking 42.68 18.75 4.76 28.91 39.62 23.16 24.62 42.68 4.76 29.46
Qwen3-1.7B-Thinking 38.85 6.25 1.19 24.61 26.42 11.40 12.73 38.85 1.19 25.73
Qwen3-0.6B-Thinking 26.11 0.00 0.00 16.02 18.87 9.74 10.55 25.48 0.00 16.60
GLM-4.5 51.59 31.25 21.43 40.63 67.92 48.90 50.59 49.68 20.24 39.42
Kimi-K2 45.86 12.50 15.48 33.98 52.83 34.93 36.52 43.95 15.48 34.02
DeepSeek-R1 53.50 18.75 21.43 41.02 41.51 44.12 43.89 52.87 20.24 41.49
DeepSeek-V3 52.87 25.00 14.29 38.67 43.40 32.54 33.50 51.59 14.29 38.59
DeepSeek-V3.1 53.50 25.00 19.05 40.63 52.83 37.68 39.03 47.77 14.29 36.10
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Table 8: WildToolBench Full Error Distribution Analysis.

Models Action Errors Parameter Errors

Refusal Wrong Name
Missing Info

Wrong
Refusal

Redundant
Call

Call
Error

Early
Termination

Param
Type Error

Param
Hallucination

Param
Value Error

Proprietary General Models
Gemini-2.0-Thinking 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
Claude-3.7-Sonnet 11.02% 16.73% 17.91% 16.34% 16.54% 1.57% 1.57% 6.30% 12.01%
Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.57% 8.31% 14.83%
Claude-4.1-Opus 15.18% 17.79% 9.76% 18.22% 12.15% 3.25% 2.17% 8.46% 13.02%
o1 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
o3 10.66% 17.46% 9.98% 13.15% 17.01% 4.31% 1.36% 10.43% 15.65%
o4-mini 18.03% 17.62% 7.99% 16.60% 16.19% 3.89% 1.43% 9.02% 9.22%
GPT-4o 5.41% 21.65% 12.12% 14.50% 11.26% 7.58% 2.60% 10.82% 13.85%
GPT-4.1 11.97% 21.58% 8.55% 18.80% 9.83% 6.41% 1.71% 9.62% 11.54%
GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.15% 10.94% 6.53%
Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
Mistral-Large 8.93% 24.08% 15.34% 8.16% 14.76% 5.05% 1.94% 8.16% 13.40%
Doubao-1.5 15.16% 31.47% 21.32% 2.29% 11.30% 2.72% 1.72% 8.44% 5.58%
Doubao-1.5-Thinking 17.27% 27.64% 11.45% 5.82% 13.09% 4.36% 1.82% 11.45% 7.09%
Doubao-1.6 1.87% 25.37% 17.54% 22.39% 10.07% 5.22% 1.49% 5.78% 10.26%
Doubao-1.6-Thinking 3.87% 30.97% 21.77% 16.77% 8.87% 4.68% 0.97% 6.13% 5.97%

Open-Source General Models
Llama-3.3-70B-Instruct 62.27% 4.32% 5.11% 19.66% 5.91% 1.14% 1.14% 0.11% 0.34%
Llama-3.3-8B-Instruct 77.99% 0.00% 0.00% 21.66% 0.00% 0.36% 0.00% 0.00% 0.00%
Llama-3.3-3B-Instruct 78.30% 0.00% 0.00% 21.70% 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-3.3-1B-Instruct 80.14% 0.00% 0.00% 19.86% 0.00% 0.00% 0.00% 0.00% 0.00%
Qwen2.5-72B-Instruct 12.42% 21.59% 8.96% 15.07% 12.02% 8.76% 2.24% 7.54% 11.20%
Qwen2.5-32B-Instruct 12.89% 17.88% 9.15% 16.84% 13.72% 7.90% 2.08% 7.90% 11.64%
Qwen2.5-14B-Instruct 17.42% 15.91% 8.14% 19.89% 12.50% 8.71% 2.08% 6.25% 9.09%
Qwen2.5-7B-Instruct 11.01% 21.49% 12.26% 12.61% 20.96% 5.51% 1.42% 6.75% 7.82%
Qwen2.5-3B-Instruct 14.92% 20.66% 10.98% 13.28% 18.36% 6.23% 0.98% 5.25% 9.18%
Qwen2.5-1.5B-Instruct 34.10% 13.11% 4.10% 15.57% 16.07% 3.44% 0.98% 4.59% 7.05%
Qwen2.5-0.5B-Instruct 27.92% 11.82% 6.55% 20.23% 14.96% 2.99% 1.00% 6.84% 5.70%
Qwen3-32B 10.72% 19.59% 10.31% 20.21% 16.91% 5.57% 1.24% 6.80% 8.66%
Qwen3-30B-A3B 16.77% 14.95% 5.25% 30.10% 14.34% 4.65% 1.41% 4.65% 7.88%
Qwen3-14B 12.55% 18.72% 5.53% 18.51% 14.26% 8.09% 1.70% 11.70% 8.94%
Qwen3-8B 8.29% 27.31% 9.60% 6.59% 19.40% 7.53% 1.69% 9.98% 9.42%
Qwen3-4B 15.71% 15.13% 6.51% 14.37% 18.01% 6.90% 1.34% 11.69% 10.34%
Qwen3-1.7B 14.49% 21.12% 8.03% 9.42% 24.08% 5.24% 1.05% 6.63% 9.95%
Qwen3-0.6B 14.05% 25.80% 8.40% 6.56% 29.47% 3.82% 1.07% 3.97% 6.72%
Qwen3-30B-A3B-Thinking 18.45% 12.90% 4.96% 29.37% 14.48% 5.16% 1.79% 5.16% 7.74%
Qwen3-14B-Thinking 15.03% 17.12% 5.64% 19.83% 13.99% 5.85% 1.88% 10.23% 10.23%
Qwen3-8B-Thinking 11.32% 19.44% 6.84% 14.10% 17.52% 6.84% 2.14% 10.47% 11.32%
Qwen3-4B-Thinking 12.71% 20.55% 6.14% 14.41% 17.37% 5.72% 3.18% 8.69% 11.23%
Qwen3-1.7B-Thinking 15.31% 20.66% 7.20% 12.73% 16.05% 7.01% 2.03% 7.20% 11.44%
Qwen3-0.6B-Thinking 18.26% 19.45% 5.63% 15.70% 23.04% 4.78% 1.02% 4.61% 7.51%
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.11% 4.89% 12.89%
Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.53% 6.96% 14.14%
DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.31% 8.73% 11.79%
DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.44% 7.63% 10.31%
DeepSeek-V3.1 20.00% 11.76% 9.41% 25.29% 13.92% 3.73% 0.98% 5.69% 9.22%

Open-Source Specialized Models
xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 0.95% 5.90% 12.57%
xLAM-2-32B 8.98% 21.76% 15.37% 8.38% 18.56% 4.19% 1.60% 5.39% 15.77%
xLAM-2-8B 5.60% 27.33% 19.86% 3.90% 19.52% 5.09% 2.21% 4.92% 11.21%
xLAM-2-3B 6.84% 28.30% 17.11% 5.13% 21.00% 4.98% 1.56% 4.82% 9.64%
xLAM-2-1B 9.40% 24.61% 13.95% 5.96% 22.57% 4.86% 1.88% 3.61% 10.66%
ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 2.80% 4.09% 14.84%
Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.49% 6.16% 10.45%
Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 0.55% 4.41% 8.82%
Hammer2.1-3B 36.13% 19.18% 3.65% 19.81% 8.40% 3.01% 0.95% 2.06% 6.66%
Hammer2.1-1.5B 60.47% 3.29% 1.32% 32.15% 1.32% 0.26% 0.00% 0.26% 0.92%
Hammer2.1-0.5B 30.80% 17.69% 4.46% 22.15% 13.11% 2.75% 0.13% 6.82% 1.97%
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Single-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, please propose 5 tasks that you need the super intelligent agent to solve based on the
[Requirements].

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, and each
task should only require a single call to {{{tool}}}.
The tasks should be specific and diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}.

[Requirements]="""
1. The description of the user’s task must include information on all the required parameters
needed to call {{{tool}}}. For other optional parameters, please add them as you see fit,
using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, gradually increasing from short to long.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Extract common entities that appear in all descriptions from the [Tool List] and ensure that
these entities appear in the user’s tasks.
7. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.
"""

[Tool List]="""
{{{tool}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 9: Single-Tool Calls task Generation Prompt.
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Sequential Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require the sequential invocation of multiple tools
to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There must be dependencies between the multiple tools invoked, meaning that tool A must
be called and completed before tool B can be run, i.e., tool B must be invoked after tool A.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 10: Sequential Multi-Tool Calls task Generation Prompt.
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Parallel Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks need to be specific, diverse, and require parallel invocation of multiple tools to
solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There must be no dependency between the multiple tools invoked. A dependency between
invocations means that tool B can only be run after tool A is completed. No dependency
means that tool A and tool B can be invoked in parallel.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 11: Parallel Multi-Tool Calls task Generation Prompt.
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Mixed Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require both serial and parallel invocation of multiple
tools to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}

[Requirements]="""
1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. There should be dependencies between some of the tools invoked, while others should not
have dependencies. A dependency between invocations means that tool B can only be run
after tool A is completed. No dependency means that tool A and tool B can be invoked in
parallel.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.
9. Do not explicitly specify the names of the tools to be used in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 12: Mixed Multi-Tool Calls task Generation Prompt.
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Clarify task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, but will
leave the super intelligent agent unclear on how to fill in some of the required parameters of
{{{tool}}}, and should be diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""
1. The description of the user’s task must lack all the necessary information for calling
{{{tool}}}, leaving only the optional parameter information, which you can add as you see
fit, using natural language descriptions. Note that tool parameters allow for some parameter
inference, meaning that if the tool parameters can be inferred from the user’s task description,
it does not count as lacking necessary information. Lacking means that even through inference,
the parameter values cannot be obtained.
2. The user’s tasks need to use different types of sentence structures: imperative sentences,
declarative sentences, interrogative sentences, etc.
3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.
6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.
7. Task difficulty is divided into easy, medium, and hard levels. Easy represents simple,
medium represents moderate, and hard represents difficult. More difficult tasks require more
steps to execute. Ensure that the 3 tasks you generate are all of medium difficulty or above.
8. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 13: Clarify task Generation Prompt.
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Chat task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], propose 5 casual conversation tasks that you need the
super-intelligent agent to solve.

These 5 casual conversation tasks should not use any tools from the [Tool List], but should
have some thematic relevance.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""
1. The user task is a casual conversation task, which must be unrelated to the functions of the
[Tool List], but should have some thematic relevance.
2. User tasks need to use different types of sentence structures: imperative, declarative,
interrogative, etc.
3. User tasks should include different tones: colloquial, formal, polite, direct, etc.
4. Ensure that the lengths of the user tasks are different, ranging from short to long, with
gradually increasing length.
5. Ensure that the user tasks involve different themes/examples, different scenarios, and
different role identities.
"""

[Tool List]="""
{{{tools}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 14: Chat task Generation Prompt.
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Context task Generation Prompt, Part 1.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has a Planner, an Agent assistant, and a range of external tools
that can be used to solve the tasks you propose, as detailed in the [Tool List].

Based on the information in [Historical Conversations], you have already proposed your task,
and the super intelligent agent has solved it for you.

Therefore, next, please continue to propose new tasks based on the reply from the Agent
assistant in the last round of [Historical Conversations], referring to the [Turn Type Information]
and [Example], and the new tasks you propose must require the use of {{{tool_number}}}
tool from the [Tool List] to solve.

Finally, output according to the [Format].

{{{all_tool_required_info}}}

[Tool List]="""
{{{tools}}}
"""

[Turn Type Information]="""
{{{turn_type_info}}}
"""

Figure 15: Context task Generation Prompt, Part 1.
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Context task Generation Prompt, Part 2.

When actually generating tasks, one of the following types will be substituted into the prompt
placeholder {{{turn_type_info}}}.
1. Partial Information: The new task generated needs to omit some content from previous
conversations, without having to state the full semantics. The omitted content can be any
sentence component, including: subject, attribute, attribute value, modifier, etc.
2. Coreferential Reference: The new task generated requires reference to some content from
previous conversations, which can be: 1) Ordinal reference, such as: the second point, the
last point, etc. 2) Pronominal reference, such as: he, this sentence, which one, etc. 3) Vague
reference, such as: xxx this model, etc.
3. Long-Range dependency: The new task generated needs to use content from previous
conversations (excluding the last round), for example, something I mentioned in the first
round, something I mentioned before.
"""

[Example]="""
[Historical Conversations]=***
{{{history}}}
***
[Output]=***
{{{continue_task}}}
***
"""

[Historical Conversations]="""
{{{history}}}
"""

[Format]="""
{

"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}
"""

Figure 16: Context task Generation Prompt, Part 2.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 17: Typical error examples discussed in the main text
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