

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

BENCHMARKING LLM TOOL-USE IN THE WILD

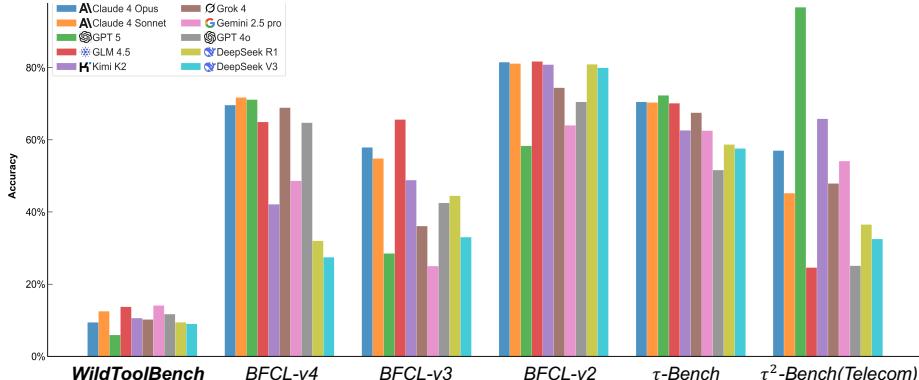
003 **Anonymous authors**

004 Paper under double-blind review

ABSTRACT

010 Fulfilling user needs through Large Language Model multi-turn, multi-step tool-use
011 is rarely a straightforward process. Real user interactions are inherently **wild**,
012 being intricate, messy, and flexible. We identify three key challenges from user
013 behaviour: *compositional tasks* that demand efficient orchestration of tool-call
014 topologies, *implicit intent* spread across dialogue turns that require contextual
015 inference, and *instruction transition*, which mixes task queries, clarifications, and
016 casual conversation, forcing LLMs to adjust their policies on the fly. Existing
017 benchmarks overlook these behaviors, making the apparent progress of LLMs
018 on tool-use spurious. To address this, we introduce **WildToolBench**, an LLM
019 tool-use benchmark grounded in real-world user behavior patterns. Comprehensive
020 evaluations of 57 LLMs reveal that no model achieves an accuracy of more than 15%,
021 indicating a substantial gap in the robustness of LLMs' agentic ability. Controlled
022 experiments and in-depth analyses further indicate that the real challenge for LLM
023 tool-use lies not in artificially complex tasks, but in the wild nature of user behavior,
024 emphasizing the need to reconsider the interactions among *LLMs, users, and tools*.

1 INTRODUCTION



041 Figure 1: Session Accuracy comparison among tool-use benchmarks. See details in Appendix B.
042

043 Large language models (LLMs) are evolving rapidly, and agents built on them have become a
044 promising direction (Google, 2024; DeepSeek-AI et al., 2025; Zeng et al., 2025; Yao et al., 2023).
045 These agents interact with the real world through various tools, opening up new avenues for AI
046 applications. Developing benchmarks that can evaluate the tool-use capabilities of large language
047 models in a reliable way has become increasingly important.

048 Current mainstream LLM tool-use benchmarks follow a multi-turn, multi-step paradigm: LLMs
049 function as assistants and engage in multi-turn dialogues with users to complete coherent tasks. Each
050 task typically requires multi-step tool-use. However, existing benchmarks (Huang et al., 2024a; Qin
051 et al., 2024; Du et al., 2024; Yao et al., 2024; Ji et al., 2024b) are overly idealized and neglect the
052 complexity of multi-turn, multi-step settings in real-world scenarios. From large-scale analysis of
053 real user logs, we identify three salient properties of how human users employ LLMs to solve tasks
with tools: 1) users tend to deliver **Compositional Tasks** that contain multiple simple requirements,

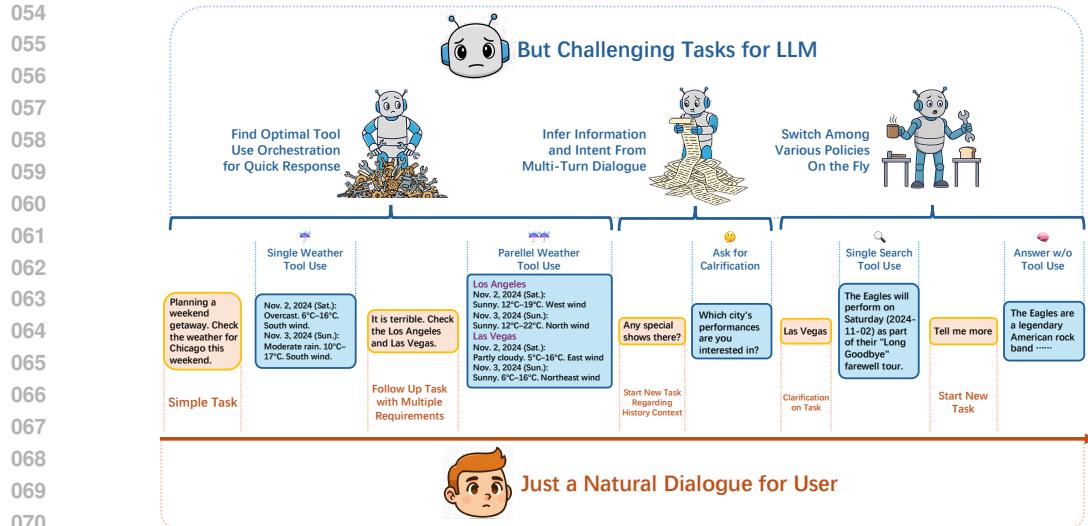


Figure 2: *WildToolBench* poses three characteristics that seem easy and natural for the user, but challenging for the LLM tool-use.

demanding tool orchestration beyond simple chaining to respond on time. 2) Users' **implicit intention** is spread within dialogue, requiring LLMs to infer it from context. 3) In a conversation, users naturally **transition between different types of instructions**, such as task-giving, follow-up, explanation, and casual chatting modes, demanding LLMs to adapt their policies on the fly.

These three characteristics embody the design philosophy of *WildToolBench*, "**What truly challenges LLMs' tool-use capabilities is not artificially constructed complex scenarios, but simple yet realistic user behaviors**", namely, the compositionality, vagueness, and variability of user instructions. In *WildToolBench*, through a carefully constructed data pipeline combined with human verification and annotation, we curate 256 scenarios with 1024 tasks. As shown in Figure 1, while prior tool-use benchmarks tend to be saturated, *WildToolBench* remains highly challenging. Our results show that even the most advanced language models struggle to achieve satisfactory performance, with most models reaching no more than 15% session accuracy. A further breakdown of experiments on 57 LLMs reveals that *in-the-wild* task settings severely degrade model performance, underscoring that the future evaluation of LLMs' agentic ability cannot rely on simple, idealized benchmarks but must instead account for the inherent complexity of real-world user behaviours.

2 RELATED WORK

LLM agents have emerged as a prominent research direction, with their core competency rooted in the ability to utilize external tools. Tool-use benchmarks have, to some extent, shaped the evolution of LLMs' agentic ability, from simple QA to multi-turn, multi-step, long-horizon autonomous tool-use. T-EVAL, UltraTool, and MetaTool(Chen et al., 2024; Huang et al., 2024a;b) assess various sub-capabilities of tool-use, but treat tool invocation as a simple question-answering task, which fails to capture the multi-turn interactive nature of the LLM agent loop. WorfBench and TaskBench(Qiao et al., 2025; Shen et al., 2024) took a step forward by introducing single-turn multi-step tool invocation and emphasizing planning capabilities, but are constrained by annotating only a single optimal path and relying on similarity-based metrics, which can be imprecise in evaluation. ToolBench, AnyToolBench, and StableToolBench(Qin et al., 2024; Du et al., 2024; Guo et al., 2024) also focus on single-turn multi-step tool-use, but their proposed tasks are synthesized by LLMs and generally exhibit a low level of difficulty. On the other hand, BFCL-V1 and BFCL-V2 (Ji et al., 2024a) pioneered the evaluation of parallel tool-use but were still limited to single-turn scenarios. BFCL-V3(Ji et al., 2024b) introduced multi-turn evaluation and assessed the sequential multi-step capabilities of LLMs. However, its tasks lack semantic correlation, with each task being independent and identically distributed, and provided with complete intention and information, which is unnatural compared with real-world user behaviours. Therefore, τ -Bench and τ^2 -Bench(Yao et al., 2024; Barres et al., 2025) introduce the

108 design of LLM-as-User. To some extent, user simulators better approximate real environments (e.g.,
 109 requiring an LLM agent to proactively ask questions rather than merely execute tool calls reactively).
 110 However, LLM-based simulation still diverges significantly from real user behavior. For instance,
 111 LLMs tend to behave in an unrealistically flawless manner, making tasks too easy to solve. Moreover,
 112 reliance on LLM simulation also leads to unstable evaluation results. Through a human-in-the-loop
 113 annotation process, *WildToolBench* explicitly incorporates three real user behaviors (compositional
 114 tasks, implicit intent, and instruction transition), thereby setting a new standard for evaluating LLM
 115 tool-use. A comparison between *WildToolBench* and previous benchmarks is provided in Table 1.
 116

117 3 *WILDTOOLBENCH*

119 3.1 FORMULATION

121 We formalize the interaction between a user and an LLM as a **multi-turn dialogue**, denoted as

$$122 D = \{u_1, a_1, u_2, a_2, \dots, u_N, a_N\}$$

124 where u_i is the i -th user message and a_i is the corresponding LLM assistant response. Within this
 125 N -turn dialogue, there are M user tasks $\{g_1, \dots, g_M\}$ which are scattered throughout the dialogue.
 126 For each user message u_i , there may exist a task g_j , and the LLM needs to detect the user’s intention
 127 and solve the task in the response a_i . If solving this task requires tool usage, the LLM will first engage
 128 in a process of **multi-step tool invocation**, which can be regarded as the LLM conducting several
 129 rounds of interaction with the external environment (e.g., a local database or a MCP server), denoted
 130 as $T^j = \{a_1^T, e_1, a_2^T, e_2, \dots, a_S^T, e_S\}$, where a^T is the LLM’s tool call, and e is the corresponding
 131 environment feedback after executing this call. Once this S -step tool invocation T^j is completed, the
 132 LLM gathers information from feedback and generates the user’s response to the task with a_i .

133 In a real scenario, user intentions are varied in one dialogue session, and user messages are mixed
 134 with various types of tasks g , such as asking questions, requesting follow-ups, seeking improvements,
 135 explaining themselves, or just chatting. The LLM needs to apply different policies for correct reactions,
 136 which may include 1) LLM just replies without any tool usage ($S = 0$), such as in response to a
 137 task that needs clarification $g_{clarify}$ or a task that does not require a tool g_{chat} , 2) LLM adapts
 138 a single-tool invocation policy ($S = 1$) for a simple task g_{single} , or 3) LLM performs multi-step
 139 tool invocations ($S > 1$) for a hard task g_{multi} . From the LLM’s perspective, the dialogue unfolds
 140 as a Markov Decision Process (MDP), where the state at each step is the full dialogue history
 141 (including u , a , a^T , and e), and the actions are the tokens that formulate different policies. Under
 142 this formalization, *WildToolBench* faithfully reflects the complexities and challenges inherent in
 143 applications for real-world users, where 1) the user task g is compositional, consisting of multiple
 144 sub-requirements, necessitating effective tool orchestration. This implies that T may be a tree rather
 145 than a simple chain-like execution. 2) User tasks $\{g_1, \dots, g_M\}$ are contextually interrelated, requiring
 146 the LLM to uncover latent context from historical observations, including user messages $\{u\}$ and
 147 assistant messages $\{a\}$. 3) User intentions transition in each message u_i , and the LLM must switch
 148 its policies accordingly to give a correct response a .
 149

150 3.2 DATA CURATION

151 Table 1: Comparative analysis of the *WildToolBench* against other tool-use benchmarks.

Benchmark	Contextual Multi-Task	Hidden Info in Context %	User Instruction Transition %	Sequential Tool-Use	Parallel Tool-Use	Mixed Tool-Use
WildToolBench	✓	100%	100%	✓	✓	✓
BFCL v3 (Patil et al., 2025)	✓	15.7%	39.7%	✗	✓	✗
BFCL v2 (Patil et al., 2025)	✗	0.0%	0.0%	✗	✓	✗
BFCL v1 (Patil et al., 2025)	✗	0.0%	0.0%	✗	✓	✗
ToolBench (Qin et al., 2024)	✗	0.0%	0.0%	✓	✗	✗
AnyToolBench (Du et al., 2024)	✗	0.0%	0.0%	✓	✗	✗
τ^2 -bench (Barres et al., 2025)	-	-	-	✓	✗	✗
τ -bench (Yao et al., 2024)	-	-	-	✓	✗	✗
T-EVAL (Chen et al., 2024)	✗	0.0%	0.0%	✓	✗	✗
UltraTool (Huang et al., 2024a)	✗	0.0%	0.0%	✓	✗	✗

160 The data curation pipeline of *WildToolBench* follows three steps. First, we analyzed a large collection
 161 of real user logs to collect suitable seed scenarios and to summarize user behavior patterns. These

162 patterns are summarized as three challenges, and we uniformly sample from real user logs and use
 163 these samples as few-shot examples together with challenges in the prompts, so that the collected
 164 scenarios follow the same distribution as the real logs and do not leak real user data.
 165

166 Then, following ToolAlpaca (Tang et al., 2023), we collected more than 1,600 publicly available APIs
 167 from the internet, carefully verified and cleaned them into a tool set. This publicly available API
 168 GitHub repository¹ is continuously updated and now contains more than 1400 tool lists, but to stay
 169 consistent with ToolAlpaca, we use 400 of these tool lists, covering around 1600 APIs in total. Then,
 170 we selected a corresponding tool subset for each seed scenario and generated four tasks based on it.
 171

172 Finally, we employed GPT-4o (OpenAI, 2024a) to construct a multi-agent system simulating the roles
 173 of user and assistant, generating initial trajectories under the given task and tool subset. Each tool
 174 invocation in the trajectory was manually examined and annotated as ground truth, producing the
 175 final dataset.

176 The detailed process is described in Appendix §C. Each stage of the data curation pipeline involved
 177 manual annotation and validation to ensure accuracy and diversity. Furthermore, in the manual
 178 inspection of tasks, we emphasized three aspects: task compositionality (§3.3), contextualized
 179 intention (§3.4), and instruction transition (§3.5), reflecting the inherent complexity of real user
 180 behaviors. Finally, we present comprehensive statistics of *WildToolBench* in §3.6. The unique design
 181 of *WildToolBench* is highlighted in Table 1.

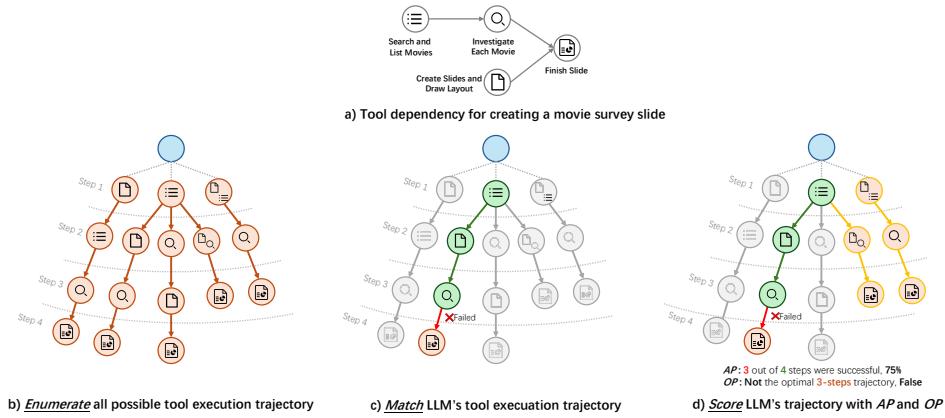


Figure 3: Visualization of the enumerate-match-score pipeline for evaluating the LLMs’ tool orchestration ability in *WildToolBench*.

3.3 CHALLENGE 1: TOOL ORCHESTRATION FOR COMPOSITIONAL TASK

Real-world user instructions do not always present very hard tasks, but multiple simple requirements are combined into a single instruction. We meticulously constructed tasks under common scenarios (e.g., document operations or weather inquiries), but with compositional forms that better reflect real user instructions (e.g., searching for popular movies to generate a survey slide, or multi-city weather inquiries intertwined with travel planning). Compared with simple and well-defined tasks found in previous benchmarks, these are “in-the-wild” tasks that require an LLM to possess strong planning capabilities to identify tool dependencies and construct an efficient tool-calling topological graph, thereby improving TTFT (Time to First Token). To accurately measure whether an LLM can effectively construct an efficient tool-calling topology, *WildToolBench* measures not only the final task accuracy but also more fine-grained metrics such as the optimal path rate and task accomplishment progress, in a simple three-stage manner: enumerate, match, and score.

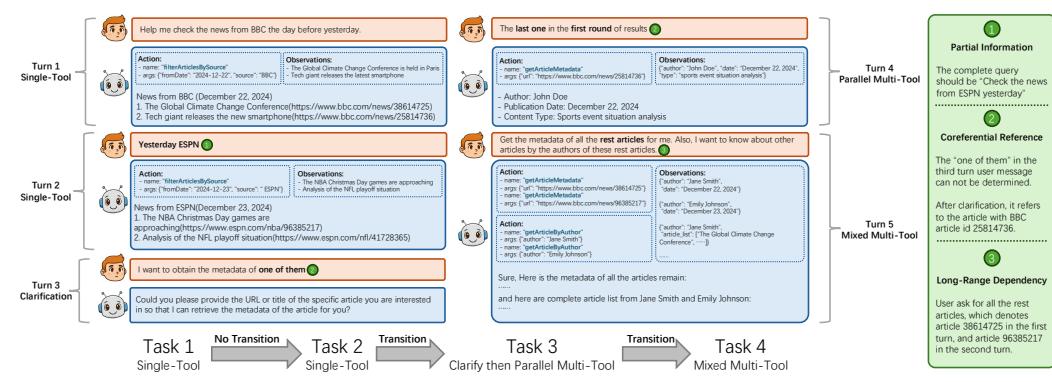
Enumerate First, the adjacent tool dependencies are manually labeled by human experts. Then, we apply a depth-first topological sorting algorithm (see Appendix D for details) to generate all possible legal tool execution paths that obey the adjacent dependencies. Our approach enumerates all possible tool execution paths, rather than restricting to limited suboptimal paths (Qiao et al., 2025; Shen et al.,

¹<https://github.com/public-apis/public-apis>

216 2024). Such an enumeration generates a decision tree set that considers all branching and parallel
 217 scenarios. For example, in Figure 3 a), the search-then-investigate branch and the slide branch can be
 218 executed in parallel, leading to five possible paths as shown in Figure 3 b).

219 **Match** Every time the LLM executes a tool, we use an incremental path matching strategy to locate
 220 this tool call in the previously enumerated decision tree set. Each tool call either terminates the path
 221 if mismatched or takes a step into the corresponding sub-tree.

223 **Score** By matching and locating the LLM’s tool call in the enumerated decision tree set, we can
 224 evaluate the quality of the LLM’s current tool execution topology. Whenever the tool executed by
 225 the LLM terminates or completes a path, we calculate whether this path has the minimum depth
 226 among all enumerated decision trees. If so, it indicates that this decision tree is not only valid but also
 227 possesses optimal efficiency, and we can calculate the *Optimal Path Rate* (*OP* Rate). Furthermore,
 228 the LLM often fails on many tasks, with tool-calling nodes generated midway that do not fall within
 229 the valid decision tree set. We calculate the *Accomplish Progress Rate* (*AP* Rate) based on the
 230 proportion of its successful nodes. These two fine-grained metrics, *OP* and *AP*, are used to measure
 231 tool orchestration.



244 Figure 4: Examples for Challenges on Hidden Intention §3.4 and Instruction Transition §3.5. These
 245 challenges arise from the very nature of real user behavior: from the user’s perspective, the interaction
 246 is **a coherent dialogue rather than a series of isolated task submissions**.

249 3.4 CHALLENGE 2: INFER HIDDEN INTENTION THROUGH DIALOGUE

251 Previous research (Chiang et al., 2023; Su et al., 2019) reveals that in sequential tasks, 80% of users
 252 follow up with additional questions and may modify or omit contextual information, which aligns with
 253 our observations. The LLM must infer the user’s latent intentions from the multi-turn conversation,
 254 gather the necessary information and even proactively request clarifications. In *WildToolBench*,
 255 we utilize three strategies to construct tasks that demand multi-turn context inference, as shown
 256 in Figure 4: 1) **Partial Information**: The current user message u_i contains only a subset of the
 257 information required to complete the task, while the omitted information is present in previous user or
 258 assistant messages $\{u_1, a_1, \dots, u_{i-1}, a_{i-1}\}$. 2) **Coreferential Reference**: The current user message
 259 contains the full information, but the subject is expressed only via pronouns or ellipsis, referring back
 260 to entities mentioned in earlier user or assistant messages. 3) **Long-Range Dependency**: Similar to
 261 partial information, except that the missing information is located in distant dependencies; that is, u_i
 262 depends on $\{u_1, a_1, \dots, u_j, a_j\}$ with $i - j > 2$.

263 3.5 CHALLENGE 3: ADAPTABLE POLICY SWITCH FOR INSTRUCTION TRANSITION

265 When interacting with an LLM assistant, most users treat the interaction as a natural conversation
 266 rather than a series of independent task submissions. Users frequently initiate tasks across multiple
 267 turns, ask follow-up questions, provide explanations, engage in casual dialogue, and interrupt or
 268 resume tasks at will, continuously transitioning among different instruction types. As illustrated in
 269 Figure 2 and Figure 4, what appears to users as an ordinary conversation in fact involves multiple
 transitions. Such flexible and frequent instruction transitions require the LLM to adapt its policy

appropriately, making suitable choices among strategies such as tool-use, direct question answering, or proactive inquiry.

In constructing *WildToolBench*, we categorize all tasks into four types: tasks solvable with a single tool call (g_{single}), tasks requiring multiple tools and multi-step calls (g_{multi}), conversational or tool-free queries (g_{chat}), and tasks that require the assistant to ask for clarification (g_{clarify}). For each scenario, we carefully curated the proportions of these four task types as well as their switching frequency, ensuring that *WildToolBench* faithfully reflects the phenomenon of instruction transition observed in real user behavior. This setup benchmarks LLMs’ ability to accurately track evolving user intentions in natural dialogue and generate appropriate responses.

3.6 STATISTICS

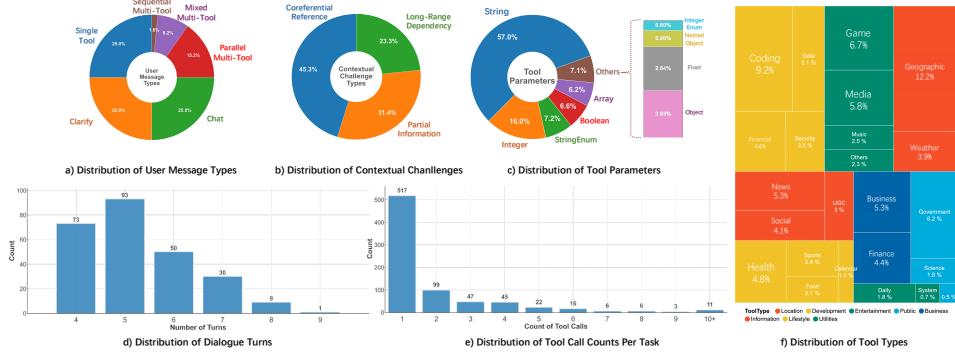


Figure 5: Key statistics for *WildToolBench*.

Figure 5 presents detailed statistics of *WildToolBench*. We constructed 256 scenarios, each consisting of a multi-turn dialogue with four user tasks, resulting in a total of 1,024 tasks. We evaluate whether the LLM generates the ground-truth tool calls within the dialogue, measuring both task-level accuracy and session accuracy, i.e., whether all four tasks in a dialogue are correctly completed.

The key observations from these statistics are as follows: 1) the four task types (g_{single} , g_{multi} , g_{chat} , g_{clarify}) and various forms of hidden user intention are well balanced, ensuring diversity and challenge within each dialogue; 2) tool parameter types are highly diverse, and the tool type covers 8 major categories and 24 subcategories, all of which correspond to commonly encountered real scenarios; 3) the average dialogue length is 5.27 turns and the average number of tool-call steps is 1.92, which is significantly higher than BFCL (3.75 turns, 1.68 steps). In the appendix, we highlight the wild nature of *WildToolBench* in Table 1.

4 EXPERIMENTS

We present a detailed experiment by benchmarking **57** mainstream LLMs on *WildToolBench*, ranging from proprietary to open-source LLMs, from general to specialized models, and from instruction-tuned to large reasoning models. The experiments and analysis are organized as follows: §4.1 gives an overview of benchmarking results and key takeaways, §4.2 investigates how well LLMs can orchestrate tool calls to handle the compositional user instructions in *WildToolBench*, §4.3 examines the inference ability of LLMs when users omit or hide their intentions and information across multiple turns in dialogue, and §4.4 presents how frequent instruction transitions affect the LLM’s ability to make correct decisions. Finally, in §4.5 we provide an empirical analysis of the errors that LLMs made in *WildToolBench*.

4.1 OVERALL PERFORMANCE

We evaluate three categories of models, including **Proprietary General Models** (OpenAI, 2025; Anthropic, 2025; Mistral, 2024; Doubao, 2025; OpenAI, 2024b; Google, 2024; Seed, 2025), **Open-Source General Models** (Qwen, 2025; DeepSeek-AI et al., 2024; Yang et al., 2024; DeepSeek-AI

Table 2: WildToolBench Results.

Models	Categorized by Task Type g				Categorized by Task Order M				Overall	
	g_{single}	g_{multi}	g_{clarify}	g_{chat}	1	2	3	4	Task	Session
<i>Proprietary General Models</i>										
G Gemini-2.0-Thinking	56.64	40.23	52.34	94.92	78.13	63.67	51.95	50.39	61.04	14.45
G Gemini-2.5-Pro	55.08	36.33	46.88	86.72	70.31	56.64	53.52	44.53	56.25	14.06
A Claude-4-Sonnet	60.16	43.75	41.80	80.47	71.09	57.81	52.73	44.53	56.54	12.50
🔗 01	54.30	39.06	48.05	93.75	69.53	60.94	55.86	48.83	58.79	12.11
🔗 GPT-4o	60.16	41.80	39.45	78.13	72.66	55.08	46.09	45.70	54.88	11.72
🔗 Grok-4	59.38	41.41	33.59	66.02	63.67	52.34	42.97	41.41	50.10	10.16
🔗 GPT-5	46.09	34.38	31.64	84.38	62.11	50.00	45.31	39.06	49.12	5.86
<i>Open-Source General Models</i>										
✳️ GLM-4.5	57.81	40.63	44.53	81.25	70.70	60.16	50.78	42.58	56.05	12.11
✳️ Kimi-K2	54.30	33.98	39.84	86.72	68.75	57.03	48.83	40.23	53.71	10.55
✳️ DeepSeek-R1	56.25	41.02	43.75	80.08	74.22	54.30	48.83	43.75	55.27	9.38
✳️ DeepSeek-V3	58.98	38.67	33.59	79.30	75.39	53.91	41.02	40.23	52.64	9.38
✳️ Qwen3-32B-Thinking	53.52	28.91	37.11	80.86	62.50	52.73	46.48	38.67	50.10	7.81
<i>Open-Source Specialized Models</i>										
👉 xLAM-2-70B	64.45	36.72	28.91	64.84	64.06	51.56	42.58	36.72	48.73	7.81
➡️ ToolACE2-8B	62.11	37.89	33.98	84.38	72.27	59.38	46.88	39.84	54.59	7.42
🕒 Watt-8B	61.72	28.13	22.66	78.13	68.75	47.27	39.06	35.55	47.66	4.69
🔨 Hammer2.1-7B	40.23	21.88	30.47	94.92	61.72	46.88	40.63	38.28	46.88	4.69

et al., 2025), and Open-Source **Specialized Models** (Zeng et al., 2025; Liu et al., 2024; Lin et al., 2024; Shi et al., 2024). We employ each model’s native Function Call format to achieve optimal performance. Table 2 presents the overall performance of top-performing models. Full results on 57 models are provided in Appendix E.2.

In terms of overall performance, none of the mainstream LLMs achieve a session accuracy higher than 15%, and most models fall below 60% in task accuracy, highlighting the difficulty of *WildToolBench*. Proprietary LLMs generally outperform open-source ones, and reasoning-oriented models consistently surpass non-reasoning models. The best-performing open-source models, such as GLM4.5 and Kimi K2, achieve performance comparable to the top three proprietary models, while the remaining open-source models still lag considerably behind.

We further conducted a drill-down analysis of task accuracy along two dimensions: task type and task order. For task type, when the user’s intention is casual chat or tool-free answering, most LLMs can reliably recognize the intention and respond appropriately. However, when the intention involves clarification or eliciting task details through counter-questions, LLMs frequently misfire by executing a function call. Moreover, multi-step tool-use exhibits substantially lower accuracy than single-step tool invocation. For task order, within a dialogue, tasks appearing later exhibit greater dependence on preceding information, and model performance deteriorates accordingly.

4.2 LLMs PERFORM POORLY ON TOOL ORCHESTRATION

We further analyzed whether LLMs can correctly orchestrate tool-call topologies to handle compositional tasks. We divided compositional tasks into three categories according to their required tool topology: sequential multi-step tool-use (g_{multi}^S), parallel multi-step tool-use (g_{multi}^P), and mixed tool-use combining both sequential and parallel structures (g_{multi}^{S+P}). As shown in Table 3, the highest task accuracy is merely 43.75%, falling to just 25% for g_{multi}^{S+P} tasks, indicating that compositional tasks with multi-turn interactions remain a significant challenge for LLMs. Similarly, the peak optimal path (OP) rate reaches only 42.74%, suggesting that current LLMs have substantial room for improvement in tool execution efficiency. See full results of 57 LLMs in Appendix E.3. Specialized tool-use models perform significantly worse than general-purpose models, indicating limited generalization despite their intended focus. Claude-4-Sonnet shows a clear advantage in complex reasoning for tool orchestration, outperforming other proprietary models. The Gemini series reveals a strong bias, excelling in parallel but dropping sharply in mixed one. Among open-source models, GLM-4.5 excels in sequential and mixed tasks, even surpassing leading proprietary models. Furthermore, we observe that reasoning-enabled model variants outperform their non-reasoning counterparts within the same

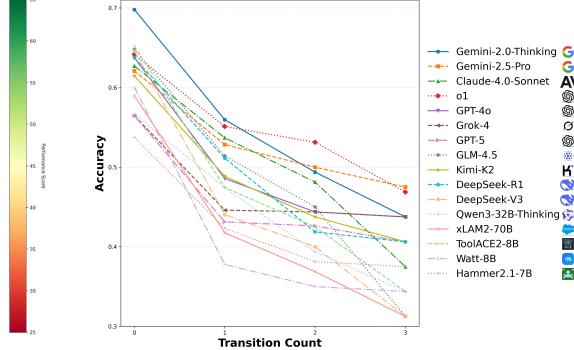
378
379
380 Table 3: *WildToolBench* tool orchestration evaluation result.
381
382
383
384
385
386
387
388

Models	Task Accuracy				AP Rate			OP Rate		
	g_{multi}^P	g_{multi}^S	g_{multi}^{S+P}	Overall	g_{multi}^S	g_{multi}^{S+P}	Overall	g_{multi}^P	g_{multi}^{S+P}	Overall
<i>Proprietary General Models</i>										
Gemini-2.0-Thinking	54.14	25.00	16.67	40.23	45.28	39.89	40.37	53.50	16.67	40.66
Gemini-2.5-pro	49.04	25.00	14.29	36.33	47.17	39.15	39.87	43.31	11.90	32.37
Claude-4-Sonnet	54.78	31.25	25.00	43.75	60.38	46.32	47.57	52.87	23.81	42.74
o1	50.96	12.50	21.43	39.06	35.85	37.50	37.35	50.32	20.24	39.83
GPT-4o	53.50	31.25	21.43	41.80	41.51	45.40	45.06	51.59	21.43	41.08
Grok-4	54.14	18.75	21.43	41.41	41.51	46.51	46.06	53.50	21.43	42.32
GPT-5	43.31	37.50	16.67	34.38	49.06	38.42	39.36	42.68	13.10	32.37
<i>Open-Source General Models</i>										
GLM-4.5	51.59	31.25	21.43	40.63	67.92	48.90	50.59	49.68	20.24	39.42
Kimi-K2	45.86	12.50	15.48	33.98	52.83	34.93	36.52	43.95	15.48	34.02
DeepSeek-R1	53.50	18.75	21.43	41.02	41.51	44.12	43.89	52.87	20.24	41.49
DeepSeek-V3	52.87	25.00	14.29	38.67	43.40	32.54	33.50	51.59	14.29	38.59
Qwen3-32B-Thinking	42.04	12.50	7.14	28.91	41.51	28.31	29.48	40.13	7.14	28.63
<i>Open-Source Specialized Models</i>										
xLAM-2-70B	49.68	12.50	16.67	36.72	43.40	44.85	44.72	26.75	7.14	19.92
ToolACE2-8B	47.77	31.25	20.24	37.89	50.94	43.01	43.72	26.11	14.29	21.99
Watt-8B	44.59	6.25	1.19	28.13	22.64	21.87	21.94	44.59	1.19	29.46
Hammer2.1-7B	33.12	12.50	2.38	21.88	24.53	13.24	14.24	31.85	2.38	21.58

400 series, indicating that additional reasoning leads to better tool-call orchestration for compositional
401 tasks. These results refute the conclusion in previous work Zhou et al. (2025) that a reasoning
402 model does not outperform a non-reasoning model on tool-use, highlighting limitations in previous
403 evaluations.

404 4.3 LLMs STRUGGLE TO INFER INTENTION ACROSS DIALOGUE

	Overall	Partial	Ref	Long
Gemini-2.0-Thinking	55.3	58.7	57.1	46.4
Gemini-2.5-pro	51.6	55.3	54.2	40.8
Claude-4-Sonnet	51.7	52.4	58.3	41.3
o1	55.2	59.6	55.8	45.8
GPT-4o	49.0	47.3	56.2	42.5
Grok-4	45.6	44.4	52.1	39.1
GPT-5	44.8	46.1	49.6	35.8
GLM-4.5	51.2	51.6	57.9	41.3
Kimi-K2	48.7	48.4	55.8	39.7
DeepSeek-R1	49.0	49.3	54.2	41.3
DeepSeek-V3	45.0	45.0	53.3	34.1
Qwen3-32B-Thinking	46.0	49.3	49.2	35.2
xLAM-2-70B	43.6	40.1	52.9	38.0
ToolACE2-8B	48.7	49.9	56.2	36.3
Watt-8B	40.6	41.3	48.3	29.1
Hammer2.1-7B	41.9	45.3	43.8	33.0



419 Figure 6: LLM’s performance under different hid-
420 den information strategies.
421

422 Figure 7: LLM’s performance goes down as
423 the instruction transition goes more frequently.
424

425 Figure 6 reports the accuracy of LLMs on three types of user tasks, in which user intention and
426 information are partially hidden or omitted across multi-turn contexts. We find that long-range
427 dependency tasks are the most challenging, with no model achieving accuracy above 50%. By
428 contrast, tasks involving partial information or coreference are relatively easier. The results reveal
429 clear specialization across models: reasoning models such as o1 and gemini-2.0-thinking excel at
430 inferring omitted information and intent in partial information tasks, while Claude-4-Sonnet leads on
431 coreferential reference tasks, indicating that no single model outperforms others across all aspects.
432 Long-range dependency tasks remain the weakest dimension overall, with scores clustered between
433 30 and 45, while also exhibiting the largest performance gap (17.3), making them a key differentiator
434 among models. Mid-tier models demonstrate notable strengths despite lower overall averages; for
435 instance, ToolACE2-8B (Ref 56.2) and GLM-4.5 (Ref 57.9) approach top-tier performance. Model
436

432 capability generally correlates positively with model size, as illustrated by the Qwen2.5 series results
 433 in Table 6. In general, reasoning models demonstrate stronger capabilities in inferring hidden intent
 434 and retrieving omitted information within multi-turn contexts.

436 4.4 USER INSTRUCTIONS CHANGE, AND LLMs LAG BEHIND

438 To further investigate the impact of user instruction transitions on LLM decision-making, we analyzed
 439 the performance of all models on tasks in *WildToolBench* with varying transition frequencies. As stated
 440 in Section §3.1, we categorize the tasks into four types: g_{single} , g_{multi} , g_{chat} , and g_{clarify} , corresponding
 441 to tasks solvable with a single tool call, multi-step tool calls, direct question answering, and tasks
 442 requiring clarification, respectively. An instruction transition is defined as a change in task type
 443 between two consecutive tasks within a dialogue. Given that each scenario contains up to four
 444 tasks, at most three transitions can occur. As shown in Figure 7, across open-source and proprietary
 445 models, general-purpose and specialized models, as well as reasoning and non-reasoning models, task
 446 accuracy decreases as the number of transitions increases. In some cases, the drop reaches as much as
 447 **30%** in accuracy. Our analysis indicates two main factors underlying this trend. First, tasks with
 448 frequent transitions reflect more flexible and in-depth user demands (e.g., a task requiring clarification
 449 followed by a follow-up query for further information). Such tasks more closely resemble real user
 450 scenarios and are inherently more difficult. Second, LLMs exhibit self-conditioning (Sinha et al.,
 451 2025), whereby previous responses bias subsequent decisions. For example, if a model previously
 452 used a tool call, it tends to continue using tool calls; if it previously executed parallel tool calls, it is
 453 biased toward repeating them. This interference prevents the model from selecting the appropriate
 454 response. Essentially, this arises because the long conversational context dilutes the model’s attention
 455 to the current task, as historical user and assistant messages accumulate. This problem is particularly
 456 pronounced when the current task requires recalling past interactions (as noted in Section §3.4),
 457 further exacerbating the interference from historical context.

458 4.5 ERROR ANALYSIS

459 Table 4: Error Analysis in *WildToolBench*.

461 Models	462 Action Errors						463 Parameter Errors		
	464 Refusal	465 Wrong Name	466 Missing Info	467 Wrong Refusal	468 Redundant Call	469 Call Error	470 Early Termination	471 Param Type Error	472 Param Hallucination
<i>Proprietary General Models</i>									
G Gemini-2.0-Thinking	24.56%	8.02%	3.26%	23.06%	18.05%	4.76%	1.50%	4.51%	12.28%
G Gemini-2.5-Pro	33.93%	7.81%	3.79%	16.74%	14.51%	5.13%	1.12%	6.47%	10.49%
A Claude-4-Sonnet	9.44%	19.55%	11.24%	16.40%	12.13%	6.52%	1.80%	8.09%	14.83%
o1	30.57%	8.53%	3.55%	21.33%	8.77%	8.06%	1.42%	6.40%	11.37%
o GPT-4o	5.41%	21.65%	12.12%	14.50%	11.47%	7.58%	3.46%	9.96%	13.85%
o Grok-4	3.72%	24.07%	17.03%	17.81%	10.18%	5.68%	2.94%	6.46%	12.13%
o GPT-5	15.93%	13.05%	6.91%	31.67%	10.17%	3.65%	1.34%	10.75%	6.53%
<i>Open-Source General Models</i>									
* GLM-4.5	10.89%	19.33%	10.67%	18.89%	15.33%	6.00%	1.33%	4.67%	12.89%
K Kimi-K2	21.31%	13.50%	7.17%	16.24%	11.60%	6.54%	2.74%	6.75%	14.14%
DeepSeek-R1	13.54%	14.41%	11.14%	20.96%	11.79%	6.33%	1.53%	8.52%	11.79%
DeepSeek-V3	10.52%	21.65%	10.93%	15.88%	16.49%	5.15%	1.65%	7.42%	10.31%
Q Qwen3-32B-Thinking	9.20%	20.35%	9.20%	19.18%	19.18%	4.31%	1.96%	7.83%	8.81%
<i>Open-Source Specialized Models</i>									
xLAM-2-70B	6.48%	30.67%	17.14%	4.38%	16.19%	5.71%	1.71%	5.14%	12.57%
ToolACE2-8B	10.11%	28.60%	8.60%	6.67%	18.28%	6.02%	3.23%	3.66%	14.84%
Watt-8B	5.97%	30.97%	10.45%	7.09%	23.13%	4.29%	1.87%	5.78%	10.45%
Hammer2.1-7B	38.24%	15.81%	2.39%	12.68%	15.26%	1.84%	3.49%	1.47%	8.82%

474 Table 4 reveals that the primary challenge in LLM tool-use has shifted from syntactic correctness to
 475 semantic and logical reasoning. The data indicates two divergent failure philosophies: a “cautious”
 476 profile, exemplified by Gemini-2.0-Thinking, which prefers to refuse a task (24.56% Refusal rate)
 477 rather than risk an incorrect action (8.02% Wrong Name error), and an “eager” profile, seen in models
 478 like Grok-4, which minimizes refusals (3.72%) at the cost of a significantly higher propensity to select
 479 the wrong tool (24.07% Wrong Name error). Across the spectrum, “Wrong Name / Missing Info” and
 480 “Redundant Call” (23.06% in Gemini-2.0-Thinking) emerge as the most prevalent errors, highlighting
 481 systemic deficits in intent understanding and context management. This problem is particularly
 482 pronounced in specialized open-source models like xLAM-2-70B and Watt-8B, where “Wrong Name”
 483 errors exceed 30%, suggesting that specialization can lead to brittleness. Conversely, parameter-level
 484 errors

486 errors such as “Param Type Error” or “Param Hallucination” are consistently lower across all models.
487 This suggests that the frontier of agentic AI development now lies in improving higher-order planning
488 and reasoning rather than basic syntactic generation. The prevalence of “Redundant Call” errors
489 reveals a widespread deficiency in long-range planning for most capable models, indicating that they
490 struggle with context management over time. However, the deceptively low rates of this error in some
491 specialized models can be misleading, as this “pseudo-capability” often masks a more fundamental
492 failure to initiate tasks correctly, evidenced by catastrophic “Wrong Name” error rates.

493

494 5 CONCLUSION

495

496 *WildToolBench*, grounded in real user behavior patterns, identifies three major challenges for LLMs
497 performing multi-turn, multi-step tool-use: compositional instructions, hidden intent, and instruction
498 transitions. Unlike prior evaluations that focus solely on increasing the complexity of tool-call
499 procedures, *WildToolBench* emphasizes assessing LLM tool-use capabilities in the context of realistic
500 user scenarios. Benchmarking nearly all mainstream models, *WildToolBench* reveals a fundamental
501 limitation in current LLM development: for effective tool-use, a model cannot merely function as a
502 tool executor; it must also possess the capacity to understand users. This capability depends on deeper
503 foundational skills of large models, including instruction following, long-context comprehension,
504 and theory of mind—essential abilities for future agentic models. Beyond serving as a leaderboard,
505 *WildToolBench* provides structured rubrics that guide model developers in interpreting user behaviors
506 from multiple perspectives, facilitating more effective model iteration.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 **6 REPRODUCIBILITY STATEMENT**
541542 *WildToolBench* provides all the datasets, evaluation scripts, and all 57 LLMs evaluated trajectories to
543 support 100% reproducibility. See these materials in the submitted “Supplementary Material” zip file.
544545 **7 LIMITATIONS**
546547 *WildToolBench* uses human annotations to ensure data quality, diversity, and alignment with real user
548 behaviour distribution. However, this limits the scaling potential of the data size. What’s more, the
549 dual objectives of maintaining data quality and traversing all policy transition types concurrently
550 limit the feasible length of tasks. Despite this, experimental results reveal significant trends in model
551 performance, leading to robust conclusions on the gap in current LLMs’ tool-use ability. We are also
552 working on combining human-annotated rubrics with a fully automated synthetic environment scaling
553 pipeline for both training and evaluation of the Agentic Model, which is the foundation for the next
554 scaling trend in the AI era.
555556 **REFERENCES**
557558 Anthropic. claude-3.7. <https://www.anthropic.com/news/claude-3-7-sonnet>,
559 2025.560 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ^2 -Bench: Evaluating
561 Conversational Agents in a Dual-control Environment. *arXiv preprint arXiv:2506.07982*, 2025.563 Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
564 Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-Eval: Evaluating the Tool Utilization
565 Capability of Large Language Models Step by Step. In Lun-Wei Ku, Andre Martins, and Vivek
566 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational
567 Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 9510–
568 9529. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.515.
569 URL <https://doi.org/10.18653/v1/2024.acl-long.515>.570 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
571 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
572 An Open-source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023. URL
573 <https://lmsys.org/blog/2023-03-30-vicuna/>.574 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
575 Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
576 Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
577 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
578 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
579 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
580 Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
581 Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
582 Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
583 Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
584 R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
585 Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
586 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
587 Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. DeepSeek-V3
588 Technical Report. *CorR*, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
589 <https://doi.org/10.48550/arXiv.2412.19437>.590 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
591 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
592 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
593 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting

594 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
 595 Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
 596 Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao,
 597 Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue
 598 Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
 599 Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi
 600 Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
 601 Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
 602 Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
 603 Reinforcement Learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
 604 <https://doi.org/10.48550/arXiv.2501.12948>.

605 Doubao. Doubao 1.5pro. https://team.doubao.com/zh/special/doubao_1_5_pro,
 606 2025.

607 Yu Du, Fangyun Wei, and Hongyang Zhang. AnyTool: Self-Reflective, Hierarchical Agents for
 608 Large-scale API Calls. In *Forty-first International Conference on Machine Learning, ICML 2024,*
 609 Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=qFILbkTQWw>.

610 Google. Gemini. <https://deepmind.google/technologies/gemini/>, 2024.

611 Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun,
 612 and Yang Liu. StableToolBench: Towards Stable Large-scale Benchmarking on Tool Learning of
 613 Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of*
 614 *the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,*
 615 *August 11-16, 2024*, pp. 11143–11156. Association for Computational Linguistics, 2024. doi:
 616 10.18653/V1/2024.FINDINGS-ACL.664. URL <https://doi.org/10.18653/v1/2024.findings-acl.664>.

617 Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
 618 Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Rui Feng Xu, and Qun Liu. Planning, Creation, Usage:
 619 Benchmarking LLMs for Comprehensive Tool Utilization in Real-world Complex Scenarios. In Lun-
 620 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational*
 621 *Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 4363–4400.
 622 Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.259.
 623 URL <https://doi.org/10.18653/v1/2024.findings-acl.259>.

624 Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
 625 Wan, Neil Zhenqiang Gong, and Lichao Sun. MetaTool Benchmark for Large Language Models:
 626 Deciding Whether to Use Tools and Which to Use. In *The Twelfth International Conference on*
 627 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024b.
 628 URL <https://openreview.net/forum?id=R0c2qta1gG>.

629 Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica, and
 630 Joseph E. Gonzalez. Gorilla OpenFunctions v2. https://gorilla.cs.berkeley.edu/blogs/7_open_functions_v2.html, 2024a.

631 Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica,
 632 and Joseph E. Gonzalez. Gorilla BFVL V3. <https://gorilla.cs.berkeley.edu/leaderboard.html>, 2024b.

633 Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
 634 Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust Function-calling
 635 for On-device Language Models via Function Masking. *CoRR*, abs/2410.04587, 2024. doi: 10.
 636 48550/ARXIV.2410.04587. URL <https://doi.org/10.48550/arXiv.2410.04587>.

637 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
 638 Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
 639 Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated Pipeline
 640 for Generating Verifiable and Diverse Function-calling Datasets. In Amir Globersons, Lester
 641 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng

648 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference*
 649 *on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,*
 650 *December 10 - 15, 2024, 2024.* URL http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html.

653 Mistral. Au Large. <https://mistral.ai/en/news/mistral-large>, 2024.

655 OpenAI. GPT-4o. <https://openai.com/index/hello-gpt-4o/>, 2024a.

656 OpenAI. o1 and o1-mini. <https://platform.openai.com/docs/models#o1>, 2024b.

658 OpenAI. GPT-4.1. <https://openai.com/index/gpt-4-1/>, 2025.

660 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
 661 Joseph E. Gonzalez. The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to
 662 Agentic Evaluation of Large Language Models. In *Forty-second International Conference on*
 663 *Machine Learning*, 2025.

664 Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
 665 Fei Huang, and Huajun Chen. Benchmarking Agentic Workflow Generation. In *The Thirteenth*
 666 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.*
 667 OpenReview.net, 2025. URL <https://openreview.net/forum?id=vunPXOFmoi>.

669 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
 670 Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
 671 Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language
 672 Models to Master 16000+ Real-world APIs. In *The Twelfth International Conference on Learning*
 673 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024. URL
 674 <https://openreview.net/forum?id=dHng200Jjr>.

675 Qwen. qwen-3. <https://qwenlm.github.io/blog/qwen3/>, 2025.

677 Seed. doubao-think. <https://seed/bytedance.com/en/blog/>, 2025.

678 Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
 679 Li, and Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation.
 680 In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
 681 Tomczak, and Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual*
 682 *Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,*
 683 *December 10 - 15, 2024, 2024.* URL http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html.

687 Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct Multi-turn Preference
 688 Optimization for Language Agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 689 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP*
 690 *2024, Miami, FL, USA, November 12-16, 2024*, pp. 2312–2324. Association for Computational
 691 Linguistics, 2024. doi: 10.18653/V1/2024.EMNLP-MAIN.138. URL <https://doi.org/10.18653/v1/2024.emnlp-main.138>.

693 Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The Illusion of Dimin-
 694 ishing Returns: Measuring Long Horizon Execution in LLMs. *arXiv preprint arXiv:2509.09677*,
 695 2025.

697 Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, and Jie Zhou. Improving
 698 Multi-turn Dialogue Modelling with Utterance ReWriter. In Anna Korhonen, David R. Traum, and
 699 Lluís Màrquez (eds.), *Proceedings of the 57th Conference of the Association for Computational*
 700 *Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers*, pp.
 701 22–31. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1003. URL
<https://doi.org/10.18653/v1/p19-1003>.

702 Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. ToolAlpaca: General-
 703 alized Tool Learning for Language Models with 3000 Simulated Cases. *CoRR*, abs/2306.05301,
 704 2023. doi: 10.48550/ARXIV.2306.05301. URL <https://doi.org/10.48550/arXiv.2306.05301>.

705

706 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 707 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 708 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 709 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 710 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 711 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report. *CoRR*, abs/2412.15115, 2024.
 712 doi: 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.

713

714 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
 715 Cao. ReAct: Synergizing Reasoning and Acting in Language Models. In *The Eleventh Inter-
 716 national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*.
 717 OpenReview.net, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

718

719 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A Benchmark
 720 for Tool-Agent-user Interaction in Real-world Domains. *International Conference on Learning
 721 Representations*, 2024.

722

723 Xingshan Zeng, Weiwen Liu, Xu Huang, Zexhong Wang, Lingzhi Wang, Liangyou Li, Yasheng
 724 Wang, Lifeng Shang, Xin Jiang, Ruiming Tang, and Qun Liu. ToolACE-R: Tool Learning with
 725 Adaptive Self-refinement. *CoRR*, abs/2504.01400, 2025. doi: 10.48550/ARXIV.2504.01400. URL
 726 <https://doi.org/10.48550/arXiv.2504.01400>.

727 Xueyang Zhou, Guiyao Tie, Guowen Zhang, Weidong Wang, Zhigang Zuo, Di Wu, Duanfeng Chu,
 728 Pan Zhou, Neil Zhenqiang Gong, and Lichao Sun. Exploring the necessity of reasoning in llm-based
 729 agent scenarios. *arXiv preprint arXiv:2503.11074*, 2025.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

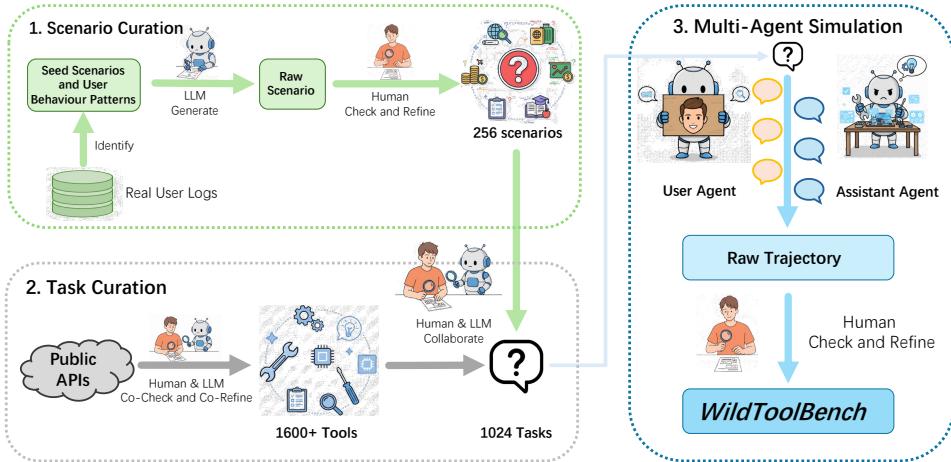


Figure 8: The data curation pipeline of WildToolBench.

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

For the paper writing, we employed LLMs solely for grammatical correction at the writing stage. The LLM itself did not contribute to experimental design, idea development, or manuscript writing.

Other uses of LLMs (such as benchmark construction) have been clearly stated in §3.2 and §C.

B BENCHMARK COMPARISON

Since the representative benchmarks we compiled span multiple time periods, not all models reported results for every benchmark in their original papers. Therefore, we collected evaluation results from multiple sources. Figure 1 primarily demonstrates that previous LLM tool benchmarks have tended toward saturation, while WildToolBench remains challenging. The information we compiled is mainly drawn from official reports of GLM4.5, Kimi K2, GPT5, and BFCL leaderboard², as well as a report by an independent third-party organization, Artificial Analysis³. The differences between WildToolBench and previous tool-use benchmarks are listed in Table 1. The detail of Figure 1 is shown as below:

Table 5: Performance Comparison across Different Benchmarks

Models	WildToolBench	BFCL-v4	BFCL-v3	BFCL-v2	τ -Bench	τ^2 -Bench (telecom)
G Gemini2.5 pro	14.1	48.6	25.0	64.0	62.5	54.1
GPT4o	11.7	64.7	42.5	70.5	51.6	25.1
Claude-Sonnet 4	12.5	71.7	54.8	81.1	70.3	45.2
Claude-Opus 4	9.4	69.6	57.9	81.5	70.5	57.0
GPT5	5.9	71.1	28.5	58.3	72.3	96.7
Grok 4	10.2	68.9	36.1	74.4	67.5	47.9
GLM4.5	12.1	64.9	65.6	81.7	70.1	24.6
K2	10.6	42.1	48.8	80.8	62.6	65.8
DeepSeek R1	9.4	32.0	44.5	80.9	58.7	36.5
DeepSeek V3	9.0	27.4	33.0	79.9	57.6	32.5

C DATA CURATION

Figure 8 gives an overall preview of the data curation for WildToolBench. First, we analyzed a large collection of real user logs to extract suitable seed scenarios and to summarize user behavior patterns.

²<https://gorilla.cs.berkeley.edu/leaderboard.html>

³<https://artificialanalysis.ai/>

810 These patterns are summarized as three challenges, and we uniformly sample from real user logs and
 811 use these samples as few-shot examples together with challenges in the prompts, so that the collected
 812 scenarios follow the same distribution as the real logs and do not leak real user data. Second, we build
 813 our toolset by leveraging tool descriptions from public APIs⁴, following the approach introduced
 814 by ToolAlpaca. This publicly available API GitHub repository is continuously updated and now
 815 contains more than 1400 tool lists, but to stay consistent with ToolAlpaca, we use 400 of these tool
 816 lists, covering around 1600 APIs in total. Then, we selected a corresponding tool subset for each
 817 **seed scenario**. In particular, we enumerated all possible simple and complex parameter types (String,
 818 Integer, Float, Boolean, Enum, Array, Object, Nested) to enhance the diversity and complexity of
 819 tool parameters. Third, five human experts specializing in LLM agents inspected and refined these
 820 tool sets, mainly by correcting unreasonable tool combinations and parameter specifications, thereby
 821 improving the logical coherence and interoperability of tools. This process yielded 256 realistic
 822 scenarios, and for each scenario, we get a diverse and reasonable tool subset.

823 After obtaining the scenarios, we prompted a User Agent to generate initial first-round user tasks
 824 based on the scenario and tool subset. Based on the four task types defined in this paper (g_{single} ,
 825 g_{multi} , $g_{clarify}$, g_{chat}), we used controlled generation to produce the first-round tasks for each
 826 type. To enhance diversity, we varied across five dimensions: sentence structure, linguistic style,
 827 task background, task length, and task difficulty. We then used the three omission types defined
 828 in Challenge 2 (User Hidden Intent), including Partial Information, Coreferential Reference, and
 829 Long-Range Dependence, together with real user questions as few-shot examples, to guide the User
 830 Agent in generating the subsequent three tasks. For each step, multiple candidate tasks were generated,
 831 from which human experts selected the highest-quality ones and refined them to better match human
 832 distributions, resulting in the final user tasks.

833 Once the expert-refined user tasks were obtained, the Assistant Agent executed the Agent Loop for
 834 tool calls until producing a summary. Each tool call in the trajectory was then automatically checked
 835 for issues such as function hallucination, parameter hallucination, type errors, and redundant calls.
 836 Subsequently, five human experts inspected the full trajectory, corrected errors (e.g., in tool planning
 837 or parameter values), and annotated tool-call dependencies (used to construct DAGs for calculating
 838 optimal path rates in Challenge 1). This process was repeated until all task trajectories were generated.

839 Finally, to ensure data quality, we conducted multiple rounds of discussion-based optimization.
 840 Several human experts randomly sampled 20% of the data, annotated potential errors, and initiated a
 841 review session where annotators collectively resolved issues. The main issue is that the synthetic
 842 dialogue is too well-organised, which does not resemble natural human dialogue, so we ask human
 843 experts to rewrite the user utterance. For example, the synthetic dialogue is: *Turn 1 Question: “What*
844 is the weather like in Beijing today?” → Turn 1 Answer: “Sunny, twenty five degrees” → Turn 2
845 Question: “What is the weather like in Shanghai today?”. After manual rewriting, it becomes: *Turn 1*
846 Question: “What is the weather like in Beijing today?” → Turn 1 Answer..... → Turn 2 Question:
847 “How about Shanghai?”. Other issues include enriching the policy switch types and fixing minor
 848 function call errors. This process was repeated with different pairs of experts and different 20%
 849 samples each round, continuing until the detected error rate dropped to zero and every data point had
 850 been checked at least once with no conflict. After four such iterations, the data quality improved from
 851 62%, 78%, 86%, and 94% to a final 100%, yielding the completed *WildToolBench*. 9 human experts
 852 took one month to finish the whole data curation process.

854 D DETAILS OF TOOL ORCHESTRATION EVALUATION

855 Algorithm 1 shows the pseudo code for enumerating all possible tool orchestration paths. The main
 856 design idea of this algorithm is to enumerate all possible tool execution paths in a directed acyclic
 857 graph (DAG) using depth-first search with backtracking. At each step, it identifies the set of nodes
 858 with zero indegree, generates all non-empty subsets to simulate parallel execution, appends the
 859 selected nodes to the current path, and updates the indegrees of their successors. The algorithm
 860 recursively explores all possible paths and finally classifies them into optimal and suboptimal sets

861
 862
 863
 4⁴<https://github.com/public-apis/public-apis>

864 based on path length, systematically accounting for both serial and parallel execution combinations
 865 (mixed multi-tool).
 866

Algorithm 1 Enumeration of All Serial and Parallel Execution Paths

868
 869 **Require:** Directed acyclic graph $G = (V, E)$; annotated length L
 870 **Ensure:** All paths \mathcal{P} , divided into optimal and suboptimal sets
 871 1: Compute $\text{indegree}[v]$ for all $v \in V$
 872 2: Initialize $\text{visited}[v] \leftarrow \text{false}$ for all $v \in V$
 873 3: $\text{CurrentPath} \leftarrow \emptyset, \mathcal{P} \leftarrow \emptyset$
 874 4: **function** $\text{ZEROINDEGREE}(\text{indegree}, \text{visited})$
 875 5: **return** $\{v \in V \mid \text{indegree}[v] = 0 \wedge \neg \text{visited}[v]\}$
 876 6: **end function**
 877 7: **function** $\text{COMBINATIONS}(Z)$
 878 8: **return** all non-empty subsets of Z
 879 9: **end function**
 880 10: **procedure** $\text{DFS}(\text{indegree}, \text{visited}, \text{CurrentPath})$
 881 11: $Z \leftarrow \text{ZEROINDEGREE}(\text{indegree}, \text{visited})$
 882 12: **if** $Z = \emptyset$ **then**
 883 13: **if** $|\text{CurrentPath}| = |V| \vee |\text{CurrentPath}| = L$ **then**
 884 14: Add copy of CurrentPath to \mathcal{P}
 885 15: **end if**
 886 16: **return**
 887 17: **end if**
 888 18: **for all** $C \in \text{COMBINATIONS}(Z)$ **do**
 889 19: Backup indegree , visited , CurrentPath
 890 20: Append C to CurrentPath
 891 21: Mark all $v \in C$ as visited
 892 22: **for all** edges (v, u) with $v \in C$ **do**
 893 23: $\text{indegree}[u] \leftarrow \text{indegree}[u] - 1$
 894 24: **end for**
 895 25: $\text{DFS}(\text{indegree}, \text{visited}, \text{CurrentPath})$
 896 26: Restore backup
 897 27: **end for**
 898 28: **end procedure**
 899 29: $\text{DFS}(\text{indegree}, \text{visited}, \text{CurrentPath})$
 900 30: $L^* \leftarrow \min\{|p| : p \in \mathcal{P}\}$
 901 31: $\mathcal{P}_{\text{opt}} \leftarrow \{p \in \mathcal{P} : |p| = L^*\}$
 32: $\mathcal{P}_{\text{sub}} \leftarrow \mathcal{P} \setminus \mathcal{P}_{\text{opt}}$
 33: **return** $\mathcal{P}, \mathcal{P}_{\text{opt}}, \mathcal{P}_{\text{sub}}$

902
 903
 904
E COMPLETE EXPERIMENTAL RESULTS

905
 906
E.1 HYPERPARAMETER SETTINGS

907 To further enhance the reproducibility of our dataset, we hereby introduce the hyperparameter settings
 908 used during model inference. Specifically:

909
 910 For **Proprietary Models**, we adopted the default hyperparameters from the official website without
 911 making any changes to hyperparameters such as `temperature`, `top-p`, and `top-k`.

912
 913 For **Open-Source Models**, If an official API is available, we utilize it with its default hyperparameters.
 914 Otherwise, the model is deployed via the Hugging Face library, where tool-calling functionality is
 915 implemented according to its chat template. For generation, we use the `model.generate` method with
 916 its default hyperparameters, setting only `max_new_tokens` to 512. The version of Hugging Face used
 917 was 4.51.0, and no other modifications were made.

918
919E.2 *WILDTOOLBENCH* FULL RESULTS920
921
922

We provide all the benchmarking results of 57 models as shown in Table 6, including 16 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized Models trained for tool-use.

923
924

Table 6: WildToolBench Full Results.

Models	Categorized by Task Type g				Categorized by Task Order M				Overall	
	g_{single}	g_{multi}	$g_{clarify}$	g_{chat}	1	2	3	4	Task	Session
<i>Proprietary General Models</i>										
Gemini-2.0-Thinking	56.64	40.23	52.34	94.92	78.13	63.67	51.95	50.39	61.04	14.45
Gemini-2.5-Pro	55.08	36.33	46.88	86.72	70.31	56.64	53.52	44.53	56.25	14.06
Claude-4-Sonnet	60.16	43.75	41.80	80.47	71.09	57.81	52.73	44.53	56.54	12.50
o1	54.30	39.06	48.05	93.75	69.53	60.94	55.86	48.83	58.79	12.11
GPT-4o	60.16	41.80	39.45	78.13	72.66	55.08	46.09	45.70	54.88	11.72
Claude-3.7-Sonnet	57.81	39.06	41.41	63.28	60.55	50.00	48.05	42.97	50.39	11.33
o3	61.72	39.45	44.92	81.64	73.83	60.94	49.22	43.75	56.93	10.16
Grok-4	59.38	41.41	33.59	66.02	63.67	52.34	42.97	41.41	50.10	10.16
Claude-4.1-Opus	55.86	39.84	41.80	82.42	69.92	55.08	50.39	44.53	54.98	9.38
GPT-4.1	57.42	44.14	34.38	81.25	69.53	58.20	46.88	42.58	54.30	8.98
Mistral-Large	56.25	36.33	37.50	68.75	67.58	48.83	44.14	38.28	49.71	7.03
Doubao-1.6	55.86	40.23	31.25	63.28	69.14	48.83	40.23	32.42	47.66	7.03
Doubao-1.5-Thinking	60.16	22.66	26.95	75.39	65.63	47.66	40.23	31.64	46.29	6.64
GPT-5	46.09	34.38	31.64	84.38	62.11	50.00	45.31	39.06	49.12	5.86
Doubao-1.6-Thinking	57.42	34.38	18.75	47.27	57.03	39.06	31.25	30.47	39.45	3.13
Doubao-1.5	58.59	24.61	9.38	34.38	39.45	28.91	29.30	29.30	31.74	0.78
<i>Open-Source General Models</i>										
GLM-4.5	57.81	40.63	44.53	81.25	70.70	60.16	50.78	42.58	56.05	12.11
Kimi-K2	54.30	33.98	39.84	86.72	68.75	57.03	48.83	40.23	53.71	10.55
Qwen3-30B-A3B	48.05	28.13	41.41	89.06	69.92	51.56	48.05	37.11	51.66	9.77
Qwen3-14B-Thinking	56.64	30.47	37.11	88.67	69.53	54.30	50.39	38.67	53.22	9.38
DeepSeek-R1	56.25	41.02	43.75	80.08	74.22	54.30	48.83	43.75	55.27	9.38
DeepSeek-V3	58.98	38.67	33.59	79.30	75.39	53.91	41.02	40.23	52.64	9.38
Qwen3-8B-Thinking	56.64	33.59	39.84	87.11	73.05	55.08	48.83	40.23	54.30	8.98
DeepSeek-V3.1	44.92	40.63	33.98	81.25	61.33	51.56	45.70	42.19	50.20	8.98
Qwen3-32B	57.81	33.20	39.84	79.69	69.53	54.30	46.48	40.23	52.64	8.59
Qwen2.5-14B-Instruct	50.39	27.34	32.81	83.20	66.41	48.44	40.63	38.28	48.44	7.81
Qwen3-14B	56.25	31.25	39.84	89.06	71.09	54.30	50.39	40.63	54.10	7.81
Qwen3-32B-Thinking	53.52	28.91	37.11	80.86	62.50	52.73	46.48	38.67	50.10	7.81
Qwen3-4B-Thinking	60.16	28.91	38.67	87.89	68.75	59.38	44.14	43.36	53.91	7.81
Qwen2.5-72B-Instruct	58.98	32.03	34.38	82.81	70.70	50.00	46.48	41.02	52.05	6.25
Qwen3-8B	60.16	26.17	26.95	79.30	66.02	48.44	39.45	38.67	48.14	6.25
Qwen3-30B-A3B-Thinking	50.39	24.61	38.67	89.45	71.88	49.22	44.14	37.89	50.78	6.25
Qwen3-1.7B-Thinking	49.22	24.61	30.08	84.38	68.75	46.09	41.80	31.64	47.07	6.25
Qwen2.5-32B-Instruct	53.91	38.67	36.72	82.81	69.14	54.30	48.83	39.84	53.03	5.86
Qwen3-4B	51.17	22.66	35.94	86.33	69.14	49.22	39.06	38.67	49.02	5.86
Qwen2.5-7B-Instruct	52.73	25.39	28.91	73.05	64.06	45.31	37.50	33.20	45.02	4.30
Qwen2.5-3B-Instruct	48.83	18.36	20.70	73.83	55.86	41.41	33.59	30.86	40.43	4.30
Qwen3-1.7B	48.05	19.53	26.95	81.64	67.58	44.14	33.98	30.47	44.04	4.30
Qwen2.5-1.5B-Instruct	36.72	13.28	21.48	90.23	60.16	39.06	31.64	30.86	40.43	3.91
Qwen3-0.6B-Thinking	44.92	16.02	23.05	87.11	66.02	40.23	35.55	29.30	42.77	3.91
Qwen3-0.6B	46.09	7.81	12.11	78.13	53.91	34.38	26.56	29.30	36.04	3.52
Qwen2.5-0.5B-Instruct	23.83	4.69	15.23	82.03	43.75	29.69	26.95	25.39	31.45	0.78
Llama-3.3-3B-Instruct	0.00	0.00	0.39	64.84	21.88	17.19	14.45	11.72	16.31	0.39
Llama-3.3-1B-Instruct	0.00	0.00	0.39	61.33	17.58	18.75	14.06	11.33	15.43	0.39
Llama-3.3-70B-Instruct	3.52	0.00	0.00	52.73	17.97	14.06	12.89	11.33	14.06	0.00
Llama-3.3-8B-Instruct	0.39	0.00	0.39	69.14	25.39	19.14	14.06	11.33	17.48	0.00
<i>Open-Source Specialized Models</i>										
xLAM-2-32B	60.94	34.77	38.67	69.92	69.53	52.73	43.36	38.67	51.07	8.20
xLAM-2-70B	64.45	36.72	28.91	64.84	64.06	51.56	42.58	36.72	48.73	7.81
ToolACE2-8B	62.11	37.89	33.98	84.38	72.27	59.38	46.88	39.84	54.59	7.42
xLAM-2-8B	62.11	29.30	24.22	54.30	52.73	44.14	39.06	33.98	42.48	5.08
Watt-8B	61.72	28.13	22.66	78.13	68.75	47.27	39.06	35.55	47.66	4.69
Hammer2.1-7B	40.23	21.88	30.47	94.92	61.72	46.88	40.63	38.28	46.88	4.69
xLAM-2-1B	53.13	17.19	15.23	65.23	50.39	40.63	33.98	25.78	37.70	2.34
xLAM-2-3B	52.34	23.44	16.02	57.03	42.97	43.36	34.77	27.73	37.21	1.17
Hammer2.1-3B	32.81	18.36	11.33	91.02	34.77	46.48	40.63	31.64	38.38	0.39
Hammer2.1-1.5B	4.69	1.56	1.17	96.09	26.17	26.17	26.56	24.61	25.88	0.00
Hammer2.1-0.5B	9.77	2.34	3.13	86.72	25.39	29.69	25.39	21.48	25.49	0.00

972 E.3 *WILDTOOLBENCH* FULL TOOL ORCHESTRATION RESULT
973974 We provide all the detailed results on tool orchestration of 57 models as shown in Table 7, including
975 16 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
976 Models trained for tool-use.977 E.4 *WILDTOOLBENCH* FULL ERROR ANALYSIS
978979 We provide all the detailed error analysis results of 57 models as shown in Table 8, including 16
980 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
981 Models trained for tool-use.
982983 F PROMPTS
984985 F.1 PROMPT FOR SINGLE-TOOL CALLS SEED TASK GENERATION
986987 We show the role prompt of the single-tool calls task generation in Figure 9.
988989 F.2 PROMPT FOR SEQUENTIAL MULTI-TOOL CALLS SEED TASK GENERATION
990991 We show the role prompt of sequential multi-tool calls task generation in Figure 10.
992993 F.3 PROMPT FOR PARALLEL MULTI-TOOL CALLS SEED TASK GENERATION
994995 We show the role prompt of parallel multi-tool calls task generation in Figure 11.
996997 F.4 PROMPT FOR MIXED MULTI-TOOL CALLS SEED TASK GENERATION
998999 We show the role prompt of mixed multi-tool calls task generation in Figure 12.
10001001 F.5 PROMPT FOR CLARIFY SEED TASK GENERATION
10021003 We show the role prompt of the clarify task generation in Figure 13.
10041005 F.6 PROMPT FOR CHAT SEED TASK GENERATION
10061007 We show the role prompt of chat task generation in Figure 14.
10081009 F.7 PROMPT FOR CONTEXT SEED TASK GENERATION
10101011 We show the role prompt of context task generation in Figure 15 and Figure 16.
10121013 G ERROR CASES
10141015 Figure 17 presents several typical error examples discussed in the main text.
1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Table 7: WildToolBench Tool Orchestration Result.

Models	Task Accuracy				AP Rate			OP Rate		
	g_{multi}^P	g_{multi}^S	g_{multi}^{S+P}	Overall	g_{multi}^S	g_{multi}^{S+P}	Overall	g_{multi}^P	g_{multi}^{S+P}	Overall
<i>Proprietary General Models</i>										
Gemini-2.0-Thinking	54.14	25.00	16.67	40.23	45.28	39.89	40.37	53.50	16.67	40.66
Gemini-2.5-Pro	49.04	25.00	14.29	36.33	47.17	39.15	39.87	43.31	11.90	32.37
▲ Claude-3.7-Sonnet	43.95	62.50	25.00	39.06	86.79	61.40	63.65	0.00	0.00	0.00
▲ Claude-4-Sonnet	54.78	31.25	25.00	43.75	60.38	46.32	47.57	52.87	23.81	42.74
▲ Claude-4.1-Opus	50.96	43.75	17.86	39.84	62.26	48.35	49.58	50.32	16.67	38.59
◎ o1	50.96	12.50	21.43	39.06	35.85	37.50	37.35	50.32	20.24	39.83
◎ o3	48.41	31.25	23.81	39.45	66.04	54.60	55.61	0.64	0.00	0.41
◎ o4-mini	39.49	31.25	16.67	31.64	52.83	37.68	39.03	0.00	0.00	0.00
◎ GPT-4o	53.50	31.25	21.43	41.80	41.51	45.40	45.06	51.59	21.43	41.08
◎ GPT-4.1	58.60	25.00	20.24	44.14	49.06	45.77	46.06	56.69	19.05	43.57
◎ GPT-5	43.31	37.50	16.67	34.38	49.06	38.42	39.36	42.68	13.10	32.37
○ Grok-4	54.14	18.75	21.43	41.41	41.51	46.51	46.06	53.50	21.43	42.32
▲ Mistral-Large	47.77	25.00	16.67	36.33	45.28	40.44	40.87	45.86	15.48	35.27
○ Doubao-1.5	35.03	12.50	7.14	24.61	37.74	29.41	30.15	9.55	1.19	6.64
○ Doubao-1.5-Thinking	31.21	18.75	7.14	22.66	56.60	23.35	26.30	28.03	7.14	20.75
○ Doubao-1.6	50.96	25.00	22.62	40.23	50.94	47.79	48.07	50.96	22.62	41.08
○ Doubao-1.6-Thinking	46.50	12.50	15.48	34.38	52.83	39.34	40.54	43.95	15.48	34.02
<i>Open-Source General Models</i>										
▲ xLAM-2-70B	49.68	12.50	16.67	36.72	43.40	44.85	44.72	26.75	7.14	19.92
▲ xLAM-2-32B	45.86	25.00	15.48	34.77	58.49	40.26	41.88	25.48	5.95	18.67
▲ xLAM-2-8B	40.76	25.00	8.33	29.30	43.40	27.57	28.98	26.75	3.57	18.67
▲ xLAM-2-3B	33.12	12.50	7.14	23.44	24.53	23.35	23.45	15.92	3.57	11.62
▲ xLAM-2-1B	27.39	0.00	1.19	17.19	22.64	17.46	17.92	10.83	0.00	7.05
■ ToolACE2-8B	47.77	31.25	20.24	37.89	50.94	43.01	43.72	26.11	14.29	21.99
○ Watt-8B	44.59	6.25	1.19	28.13	22.64	21.87	21.94	44.59	1.19	29.46
■ Hammer2.1-7B	33.12	12.50	2.38	21.88	24.53	13.24	14.24	31.85	2.38	21.58
■ Hammer2.1-3B	24.84	12.50	7.14	18.36	32.08	18.01	19.26	24.20	7.14	18.26
■ Hammer2.1-1.5B	2.55	0.00	0.00	1.56	1.89	1.29	1.34	2.55	0.00	1.66
■ Hammer2.1-0.5B	3.18	0.00	1.19	2.34	9.43	10.48	10.39	3.18	0.00	2.07
<i>Open-Source Specialized Models</i>										
○ Llama-3.3-70B-Instruct	0.00	0.00	0.00	0.00	15.09	2.02	3.18	0.00	0.00	0.00
○ Llama-3.3-8B-Instruct	0.00	0.00	0.00	0.00	3.77	0.18	0.50	0.00	0.00	0.00
○ Llama-3.3-3B-Instruct	0.00	0.00	0.00	0.00	3.77	0.18	0.50	0.00	0.00	0.00
○ Llama-3.3-1B-Instruct	0.00	0.00	0.00	0.00	3.77	0.18	0.50	0.00	0.00	0.00
▲ Qwen2.5-72B-Instruct	44.59	25.00	9.52	32.03	41.51	30.33	31.32	42.04	7.14	29.88
▲ Qwen2.5-32B-Instruct	52.87	43.75	10.71	38.67	56.60	24.08	26.97	52.23	10.71	37.76
▲ Qwen2.5-14B-Instruct	39.49	18.75	5.95	27.34	26.42	19.67	20.27	36.31	4.76	25.31
▲ Qwen2.5-7B-Instruct	38.22	6.25	4.76	25.39	28.30	26.29	26.47	33.12	2.38	22.41
▲ Qwen2.5-3B-Instruct	28.66	6.25	1.19	18.36	15.09	12.13	12.40	27.39	0.00	17.84
▲ Qwen2.5-1.5B-Instruct	21.66	0.00	0.00	13.28	9.43	4.96	5.36	21.66	0.00	14.11
▲ Qwen2.5-0.5B-Instruct	7.64	0.00	0.00	4.69	11.32	3.68	4.36	7.64	0.00	4.98
▲ Qwen3-30B-A3B	42.04	6.25	5.95	28.13	26.42	25.00	25.13	40.76	5.95	28.63
▲ Qwen3-32B	46.50	12.50	11.90	33.20	47.17	30.70	32.16	43.95	9.52	31.95
▲ Qwen3-14B	44.59	25.00	7.14	31.25	41.51	28.86	29.98	44.59	7.14	31.54
▲ Qwen3-8B	38.85	0.00	7.14	26.17	15.09	25.18	24.29	38.22	5.95	26.97
▲ Qwen3-4B	35.67	6.25	1.19	22.66	28.30	13.42	14.74	34.39	1.19	22.82
▲ Qwen3-1.7B	31.85	0.00	0.00	19.53	18.87	16.91	17.09	31.85	0.00	20.75
▲ Qwen3-0.6B	12.10	6.25	0.00	7.81	22.64	9.19	10.39	11.47	0.00	7.47
▲ Qwen3-30B-A3B-Thinking	36.94	6.25	4.76	24.61	18.87	22.43	22.11	35.67	3.57	24.48
▲ Qwen3-32B-Thinking	42.04	12.50	7.14	28.91	41.51	28.31	29.48	40.13	7.14	28.63
▲ Qwen3-14B-Thinking	43.95	25.00	5.95	30.47	45.28	31.62	32.83	43.95	5.95	30.71
▲ Qwen3-8B-Thinking	47.13	12.50	11.90	33.59	28.30	31.99	31.66	47.13	10.71	34.44
▲ Qwen3-4B-Thinking	42.68	18.75	4.76	28.91	39.62	23.16	24.62	42.68	4.76	29.46
▲ Qwen3-1.7B-Thinking	38.85	6.25	1.19	24.61	26.42	11.40	12.73	38.85	1.19	25.73
▲ Qwen3-0.6B-Thinking	26.11	0.00	0.00	16.02	18.87	9.74	10.55	25.48	0.00	16.60
* GLM-4.5	51.59	31.25	21.43	40.63	67.92	48.90	50.59	49.68	20.24	39.42
▲ Kimi-K2	45.86	12.50	15.48	33.98	52.83	34.93	36.52	43.95	15.48	34.02
▲ DeepSeek-R1	53.50	18.75	21.43	41.02	41.51	44.12	43.89	52.87	20.24	41.49
▲ DeepSeek-V3	52.87	25.00	14.29	38.67	43.40	32.54	33.50	51.59	14.29	38.59
▲ DeepSeek-V3.1	53.50	25.00	19.05	40.63	52.83	37.68	39.03	47.77	14.29	36.10

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 8: *WildToolBench* Full Error Distribution Analysis.

Models	Action Errors							Parameter Errors		
	Refusal	Wrong Name Missing Info	Wrong Refusal	Redundant Call	Call Error	Early Termination		Param Type Error	Param Hallucination	Param Value Error
<i>Proprietary General Models</i>										
G Gemini-2.0-Thinking	24.56%	8.02%	3.26%	23.06%	18.05%	4.76%	1.50%	4.51%	12.28%	
G Gemini-2.5-Pro	33.93%	7.81%	3.79%	16.74%	14.51%	5.13%	1.12%	6.47%	10.49%	
A Claude-3.7-Sonnet	11.02%	16.73%	17.91%	16.34%	16.54%	1.57%	1.57%	6.30%	12.01%	
A Claude-4-Sonnet	9.44%	19.55%	11.24%	16.40%	12.13%	6.52%	1.57%	8.31%	14.83%	
A Claude-4.1-Opus	15.18%	17.79%	9.76%	18.22%	12.15%	3.25%	2.17%	8.46%	13.02%	
o o1	30.57%	8.53%	3.55%	21.33%	8.77%	8.06%	1.42%	6.40%	11.37%	
o o3	10.66%	17.46%	9.98%	13.15%	17.01%	4.31%	1.36%	10.43%	15.65%	
o o4-mini	18.03%	17.62%	7.99%	16.60%	16.19%	3.89%	1.43%	9.02%	9.22%	
o GPT-4o	5.41%	21.65%	12.12%	14.50%	11.26%	7.58%	2.60%	10.82%	13.85%	
o GPT-4.1	11.97%	21.58%	8.55%	18.80%	9.83%	6.41%	1.71%	9.62%	11.54%	
o GPT-5	15.93%	13.05%	6.91%	31.67%	10.17%	3.65%	1.15%	10.94%	6.53%	
o Grok-4	3.72%	24.07%	17.03%	17.81%	10.18%	5.68%	2.94%	6.46%	12.13%	
M Mistral-Large	8.93%	24.08%	15.34%	8.16%	14.76%	5.05%	1.94%	8.16%	13.40%	
D Doubao-1.5	15.16%	31.47%	21.32%	2.29%	11.30%	2.72%	1.72%	8.44%	5.58%	
D Doubao-1.5-Thinking	17.27%	27.64%	11.45%	5.82%	13.09%	4.36%	1.82%	11.45%	7.09%	
D Doubao-1.6	1.87%	25.37%	17.54%	22.39%	10.07%	5.22%	1.49%	5.78%	10.26%	
D Doubao-1.6-Thinking	3.87%	30.97%	21.77%	16.77%	8.87%	4.68%	0.97%	6.13%	5.97%	
<i>Open-Source General Models</i>										
o Llama-3.3-70B-Instruct	62.27%	4.32%	5.11%	19.66%	5.91%	1.14%	1.14%	0.11%	0.34%	
o Llama-3.3-8B-Instruct	77.99%	0.00%	0.00%	21.66%	0.00%	0.36%	0.00%	0.00%	0.00%	
o Llama-3.3-3B-Instruct	78.30%	0.00%	0.00%	21.70%	0.00%	0.00%	0.00%	0.00%	0.00%	
o Llama-3.3-1B-Instruct	80.14%	0.00%	0.00%	19.86%	0.00%	0.00%	0.00%	0.00%	0.00%	
o Qwen2.5-72B-Instruct	12.42%	21.59%	8.96%	15.07%	12.02%	8.76%	2.24%	7.54%	11.20%	
o Qwen2.5-32B-Instruct	12.89%	17.88%	9.15%	16.84%	13.72%	7.90%	2.08%	7.90%	11.64%	
o Qwen2.5-14B-Instruct	17.42%	15.91%	8.14%	19.89%	12.50%	8.71%	2.08%	6.25%	9.09%	
o Qwen2.5-7B-Instruct	11.01%	21.49%	12.26%	12.61%	20.96%	5.51%	1.42%	6.75%	7.82%	
o Qwen2.5-3B-Instruct	14.92%	20.66%	10.98%	13.28%	18.36%	6.23%	0.98%	5.25%	9.18%	
o Qwen2.5-1.5B-Instruct	34.10%	13.11%	4.10%	15.57%	16.07%	3.44%	0.98%	4.59%	7.05%	
o Qwen2.5-0.5B-Instruct	27.92%	11.82%	6.55%	20.23%	14.96%	2.99%	1.00%	6.84%	5.70%	
o Qwen3-32B	10.72%	19.59%	10.31%	20.21%	16.91%	5.57%	1.24%	6.80%	8.66%	
o Qwen3-30B-A3B	16.77%	14.95%	5.25%	30.10%	14.34%	4.65%	1.41%	4.65%	7.88%	
o Qwen3-14B	12.55%	18.72%	5.53%	18.51%	14.26%	8.09%	1.70%	11.70%	8.94%	
o Qwen3-8B	8.29%	27.31%	9.60%	6.59%	19.40%	7.53%	1.69%	9.98%	9.42%	
o Qwen3-4B	15.71%	15.13%	6.51%	14.37%	18.01%	6.90%	1.34%	11.69%	10.34%	
o Qwen3-1.7B	14.49%	21.12%	8.03%	9.42%	24.08%	5.24%	1.05%	6.63%	9.95%	
o Qwen3-0.6B	14.05%	25.80%	8.40%	6.56%	29.47%	3.82%	1.07%	3.97%	6.72%	
o Qwen3-30B-A3B-Thinking	18.45%	12.90%	4.96%	29.37%	14.48%	5.16%	1.79%	5.16%	7.74%	
o Qwen3-14B-Thinking	15.03%	17.12%	5.64%	19.83%	13.99%	5.85%	1.88%	10.23%	10.23%	
o Qwen3-8B-Thinking	11.32%	19.44%	6.84%	14.10%	17.52%	6.84%	2.14%	10.47%	11.32%	
o Qwen3-4B-Thinking	12.71%	20.55%	6.14%	14.41%	17.37%	5.72%	3.18%	8.69%	11.23%	
o Qwen3-1.7B-Thinking	15.31%	20.66%	7.20%	12.73%	16.05%	7.01%	2.03%	7.20%	11.44%	
o Qwen3-0.6B-Thinking	18.26%	19.45%	5.63%	15.70%	23.04%	4.78%	1.02%	4.61%	7.51%	
o GLM-4.5	10.89%	19.33%	10.67%	18.89%	15.33%	6.00%	1.11%	4.89%	12.89%	
K Kimi-K2	21.31%	13.50%	7.17%	16.24%	11.60%	6.54%	2.53%	6.96%	14.14%	
D DeepSeek-R1	13.54%	14.41%	11.14%	20.96%	11.79%	6.33%	1.31%	8.73%	11.79%	
D DeepSeek-V3	10.52%	21.65%	10.93%	15.88%	16.49%	5.15%	1.44%	7.63%	10.31%	
D DeepSeek-V3.1	20.00%	11.76%	9.41%	25.29%	13.92%	3.73%	0.98%	5.69%	9.22%	
<i>Open-Source Specialized Models</i>										
o xLAM-2-70B	6.48%	30.67%	17.14%	4.38%	16.19%	5.71%	0.95%	5.90%	12.57%	
o xLAM-2-32B	8.98%	21.76%	15.37%	8.38%	18.56%	4.19%	1.60%	5.39%	15.77%	
o xLAM-2-8B	5.60%	27.33%	19.86%	3.90%	19.52%	5.09%	2.21%	4.92%	11.21%	
o xLAM-2-3B	6.84%	28.30%	17.11%	5.13%	21.00%	4.98%	1.56%	4.82%	9.64%	
o xLAM-2-1B	9.40%	24.61%	13.95%	5.96%	22.57%	4.86%	1.88%	3.61%	10.66%	
o ToolACE2-8B	10.11%	28.60%	8.60%	6.67%	18.28%	6.02%	2.80%	4.09%	14.84%	
o Watt-8B	5.97%	30.97%	10.45%	7.09%	23.13%	4.29%	1.49%	6.16%	10.45%	
o Hammer2.1-7B	38.24%	15.81%	2.39%	12.68%	15.26%	1.84%	0.55%	4.41%	8.82%	
o Hammer2.1-3B	36.13%	19.18%	3.65%	19.81%	8.40%	3.01%	0.95%	2.06%	6.66%	
o Hammer2.1-1.5B	60.47%	3.29%	1.32%	32.15%	1.32%	0.26%	0.00%	0.26%	0.92%	
o Hammer2.1-0.5B	30.80%	17.69%	4.46%	22.15%	13.11%	2.75%	0.13%	6.82%	1.97%	

1134
 1135
 1136
 1137
 1138
 1139 Single-Tool Calls task Generation Prompt.
 1140 Please act as a user interacting with a super intelligent agent.
 1141
 1142 This super intelligent agent has access to a range of external tools and can use these tools to
 1143 solve the tasks you propose.
 1144 Next, please propose 5 tasks that you need the super intelligent agent to solve based on the
 1145 [Requirements].
 1146 All 5 tasks must require the use of `{{{tool}}}` from the [Tool List] to be completed, and each
 1147 task should only require a single call to `{{{tool}}}`.
 1148
 1149 The tasks should be specific and diverse.
 1150 Finally, please output the final result according to the [Format] without generating any extra
 1151 text.
 1152
 1153 The required parameters for tool `{{{tool}}}` are: `{{{tool_required}}}`, and the optional
 1154 parameters are: `{{{tool_no_required}}}`.
 1155
 1156 [Requirements]=
 1157 1. The description of the user's task must include information on all the required parameters
 1158 needed to call `{{{tool}}}`. For other optional parameters, please add them as you see fit,
 1159 using natural language.
 1160 2. The user's tasks should use different types of sentence structures: imperative, declarative,
 1161 interrogative, etc.
 1162 3. The user's tasks should include different tones: colloquial, formal, polite, direct, etc.
 1163 4. Ensure that the length of the user's tasks varies, gradually increasing from short to long.
 1164 5. Ensure that the user's tasks involve different themes/instances, different scenarios, and
 1165 different roles.
 1166 6. Extract common entities that appear in all descriptions from the [Tool List] and ensure that
 1167 these entities appear in the user's tasks.
 1168 7. Do not explicitly specify the tool `{{{tool}}}` in the user's tasks.
 1169
 1170 [Tool List]=
 1171 `{{{tool}}}`
 1172
 1173 [Format]=
 1174 {
 1175 "task 1": "xxx",
 1176 "task 2": "xxx",
 1177 "task 3": "xxx",
 1178 "task 4": "xxx",
 1179 "task 5": "xxx",
 1180 }
 1181
 1182
 1183 Figure 9: Single-Tool Calls task Generation Prompt.
 1184
 1185
 1186
 1187

1188
 1189
 1190 Sequential Multi-Tool Calls task Generation Prompt.
 1191
 1192 Please act as a user interacting with a super intelligent agent.
 1193
 1194 This super intelligent agent has access to a range of external tools and can use these tools to
 1195 solve the tasks you propose.
 1196
 1197 Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
 1198 agent to solve.
 1199
 1200 These 5 tasks must require the combined use of tools from the [Tool List] (including:
 1201 `{{{all_tool_name}}}) to be completed.`
 1202
 1203 The tasks should be specific, diverse, and require the sequential invocation of multiple tools
 1204 to solve.
 1205
 1206 Finally, please output the final result according to the [Format] without generating any extra
 1207 text.
 1208
 1209 `{{{all_tool_required_info}}}`
 1210
 1211 [Requirements]="""
 1212 1. The description of the user's task must include all the required parameters needed to invoke
 1213 the tools, while other optional parameters can be added as you see fit, using natural language.
 1214 2. The user's tasks should use different types of sentence structures: imperative, declarative,
 1215 interrogative, etc.
 1216 3. The user's tasks should include different tones: colloquial, formal, polite, direct, etc.
 1217 4. Ensure that the length of the user's tasks varies, from short to long, gradually increasing in
 1218 length.
 1219 5. Ensure that the user's tasks involve different themes/instances, different scenarios, and
 1220 different roles.
 1221 6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
 1222 appear in all descriptions and ensure that these entities appear in the user's tasks.
 1223 7. There must be dependencies between the multiple tools invoked, meaning that tool A must
 1224 be called and completed before tool B can be run, i.e., tool B must be invoked after tool A.
 1225 8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
 1226 simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
 1227 you generate are all of medium difficulty or above.
 1228 9. Do not explicitly specify the names of the tools to be used in the user's tasks.
 1229
 1230 [Tool List]="""
 1231 `{{{tools}}}`
 1232
 1233 [Format]="""
 1234 {
 1235 "task 1": "xxx",
 1236 "task 2": "xxx",
 1237 "task 3": "xxx",
 1238 "task 4": "xxx",
 1239 "task 5": "xxx",
 1240 }
 1241

Figure 10: Sequential Multi-Tool Calls task Generation Prompt.

```

1242
1243
1244 Parallel Multi-Tool Calls task Generation Prompt.
1245
1246 Please act as a user interacting with a super intelligent agent.
1247 This super intelligent agent has access to a range of external tools and can use these tools to
1248 solve the tasks you propose.
1249
1250 Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
1251 agent to solve.
1252
1253 These 5 tasks must require the combined use of tools from the [Tool List] (including:
1254 {{ {all_tool_name} }}) to be completed.
1255 The tasks need to be specific, diverse, and require parallel invocation of multiple tools to
1256 solve.
1257 Finally, please output the final result according to the [Format] without generating any extra
1258 text.
1259 {{ {all_tool_required_info} }}
1260
1261 [Requirements]=====
1262 1. The description of the user's task must include all the required parameters needed to invoke
1263 the tools, while other optional parameters can be added as you see fit, using natural language.
1264 2. The user's tasks should use different types of sentence structures: imperative, declarative,
1265 interrogative, etc.
1266 3. The user's tasks should include different tones: colloquial, formal, polite, direct, etc.
1267 4. Ensure that the length of the user's tasks varies, from short to long, gradually increasing in
1268 length.
1269 5. Ensure that the user's tasks involve different themes/instances, different scenarios, and
1270 different roles.
1271 6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
1272 appear in all descriptions and ensure that these entities appear in the user's tasks.
1273 7. There must be no dependency between the multiple tools invoked. A dependency between
1274 invocations means that tool B can only be run after tool A is completed. No dependency
1275 means that tool A and tool B can be invoked in parallel.
1276 8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
1277 simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
1278 you generate are all of medium difficulty or above.
1279 9. Do not explicitly specify the names of the tools to be used in the user's tasks.
1280 =====
1281 [Tool List]=====
1282 {{ {tools} }}
1283
1284 [Format]=====
1285 {
1286     "task 1": "xxx",
1287     "task 2": "xxx",
1288     "task 3": "xxx",
1289     "task 4": "xxx",
1290     "task 5": "xxx",
1291 }
1292 =====
1293
1294
1295

```

Figure 11: Parallel Multi-Tool Calls task Generation Prompt.

1296
 1297
 1298 Mixed Multi-Tool Calls task Generation Prompt.
 1299
 1300 Please act as a user interacting with a super intelligent agent.
 1301 This super intelligent agent has access to a range of external tools and can use these tools to
 1302 solve the tasks you propose.
 1303 Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
 1304 agent to solve.
 1305 These 5 tasks must require the combined use of tools from the [Tool List] (including:
 1306 {{ {all_tool_name} }}) to be completed.
 1307 The tasks should be specific, diverse, and require both serial and parallel invocation of multiple
 1308 tools to solve.
 1309
 1310 Finally, please output the final result according to the [Format] without generating any extra
 1311 text.
 1312 {{ {all_tool_required_info} }}
 1313
 1314 [Requirements]="""
 1315 1. The description of the user's task must include all the required parameters needed to invoke
 1316 the tools, while other optional parameters can be added as you see fit, using natural language.
 1317 2. The user's tasks should use different types of sentence structures: imperative, declarative,
 1318 interrogative, etc.
 1319 3. The user's tasks should include different tones: colloquial, formal, polite, direct, etc.
 1320 4. Ensure that the length of the user's tasks varies, from short to long, gradually increasing in
 1321 length.
 1322 5. Ensure that the user's tasks involve different themes/instances, different scenarios, and
 1323 different roles.
 1324 6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
 1325 appear in all descriptions and ensure that these entities appear in the user's tasks.
 1326 7. There should be dependencies between some of the tools invoked, while others should not
 1327 have dependencies. A dependency between invocations means that tool B can only be run
 1328 after tool A is completed. No dependency means that tool A and tool B can be invoked in
 1329 parallel.
 1330 8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
 1331 simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
 1332 you generate are all of medium difficulty or above.
 1333 9. Do not explicitly specify the names of the tools to be used in the user's tasks.
 1334 """
 1335
 1336 [Tool List]="""
 1337 {{ {tools} }}
 1338 """
 1339
 1340 [Format]="""
 1341 {
 1342 "task 1": "xxx",
 1343 "task 2": "xxx",
 1344 "task 3": "xxx",
 1345 "task 4": "xxx",
 1346 "task 5": "xxx",
 1347 }
 1348 """
 1349

Figure 12: Mixed Multi-Tool Calls task Generation Prompt.

1350 Clarify task Generation Prompt.
 1351
 1352 Please act as a user interacting with a super intelligent agent.
 1353
 1354 This super intelligent agent has access to a range of external tools and can use these tools to
 1355 solve the tasks you propose.
 1356 Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
 1357 agent to solve.
 1358 These 5 tasks must require the combined use of tools from the [Tool List] (including:
 1359 `{{{all_tool_name}}}) to be completed.
 1360
 1361 All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, but will
 1362 leave the super intelligent agent unclear on how to fill in some of the required parameters of
 1363 {{{tool}}}, and should be diverse.
 1364 Finally, please output the final result according to the [Format] without generating any extra
 1365 text.
 1366 The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
 1367 parameters are: {{{tool_no_required}}}
 1368
 1369 [Requirements]="""
 1370 1. The description of the user's task must lack all the necessary information for calling
 1371 {{{tool}}}, leaving only the optional parameter information, which you can add as you see
 1372 fit, using natural language descriptions. Note that tool parameters allow for some parameter
 1373 inference, meaning that if the tool parameters can be inferred from the user's task description,
 1374 it does not count as lacking necessary information. Lacking means that even through inference,
 1375 the parameter values cannot be obtained.
 1376 2. The user's tasks need to use different types of sentence structures: imperative sentences,
 1377 declarative sentences, interrogative sentences, etc.
 1378 3. The user's tasks should include different tones: colloquial, formal, polite, direct, etc.
 1379 4. Ensure that the length of the user's tasks varies, from short to long, gradually increasing in
 1380 length.
 1381 5. Ensure that the user's tasks involve different themes/instances, different scenarios, and
 1382 different roles.
 1383 6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
 1384 appear in all descriptions and ensure that these entities appear in the user's tasks.
 1385 7. Task difficulty is divided into easy, medium, and hard levels. Easy represents simple,
 1386 medium represents moderate, and hard represents difficult. More difficult tasks require more
 1387 steps to execute. Ensure that the 3 tasks you generate are all of medium difficulty or above.
 1388 8. Do not explicitly specify the tool {{{tool}}} in the user's tasks.
 1389 """
 1390
 1391 [Tool List]="""
 1392 {{{tools}}}
 1393 """
 1394
 1395 [Format]="""
 1396 {
 1397 "task 1": "xxx",
 1398 "task 2": "xxx",
 1399 "task 3": "xxx",
 1400 "task 4": "xxx",
 1401 "task 5": "xxx",
 1402 }"""
 1403`

Figure 13: Clarify task Generation Prompt.

```

1404
1405
1406
1407
1408
1409
1410
1411 Chat task Generation Prompt.
1412
1413 Please act as a user interacting with a super intelligent agent.
1414 This super intelligent agent has access to a range of external tools and can use these tools to
1415 solve the tasks you propose.
1416 Next, based on the [Requirements], propose 5 casual conversation tasks that you need the
1417 super-intelligent agent to solve.
1418
1419 These 5 casual conversation tasks should not use any tools from the [Tool List], but should
1420 have some thematic relevance.
1421
1422 Finally, please output the final result according to the [Format] without generating any extra
1423 text.
1424 The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
1425 parameters are: {{{tool_no_required}}}
1426
1427 [Requirements]=""""
1428 1. The user task is a casual conversation task, which must be unrelated to the functions of the
1429 [Tool List], but should have some thematic relevance.
1430 2. User tasks need to use different types of sentence structures: imperative, declarative,
1431 interrogative, etc.
1432 3. User tasks should include different tones: colloquial, formal, polite, direct, etc.
1433 4. Ensure that the lengths of the user tasks are different, ranging from short to long, with
1434 gradually increasing length.
1435 5. Ensure that the user tasks involve different themes/examples, different scenarios, and
1436 different role identities.
1437 """
1438 [Tool List]=""""
1439 {{{tools}}}
1440 """
1441 [Format]=""""
1442 {
1443     "task 1": "xxx",
1444     "task 2": "xxx",
1445     "task 3": "xxx",
1446     "task 4": "xxx",
1447     "task 5": "xxx",
1448 }
1449 """
1450
1451
1452
1453
1454
1455
1456
1457

```

Figure 14: Chat task Generation Prompt.

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473 Context task Generation Prompt, Part 1.
 1474 Please act as a user interacting with a super intelligent agent.
 1475 This super intelligent agent has a Planner, an Agent assistant, and a range of external tools
 1476 that can be used to solve the tasks you propose, as detailed in the [Tool List].
 1477
 1478 Based on the information in [Historical Conversations], you have already proposed your task,
 1479 and the super intelligent agent has solved it for you.
 1480
 1481 Therefore, next, please continue to propose new tasks based on the reply from the Agent
 1482 assistant in the last round of [Historical Conversations], referring to the [Turn Type Information]
 1483 and [Example], and the new tasks you propose must require the use of `{{{tool_number}}}`
 1484 tool from the [Tool List] to solve.
 1485 Finally, output according to the [Format].
 1486
 1487 `{{{all_tool_required_info}}}`
 1488
 1489 [Tool List]=
 1490 `{{{tools}}}`
 1491 `""`
 1492
 1493 [Turn Type Information]=
 1494 `{{{turn_type_info}}}`
 1495
 1496
 1497 Figure 15: Context task Generation Prompt, Part 1.
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

```

1512
1513
1514
1515
1516
1517
1518
1519
1520 Context task Generation Prompt, Part 2.
1521
1522 When actually generating tasks, one of the following types will be substituted into the prompt
1523 placeholder {{ {turn_type_info} }}.
1524 1. Partial Information: The new task generated needs to omit some content from previous
1525 conversations, without having to state the full semantics. The omitted content can be any
1526 sentence component, including: subject, attribute, attribute value, modifier, etc.
1527 2. Coreferential Reference: The new task generated requires reference to some content from
1528 previous conversations, which can be: 1) Ordinal reference, such as: the second point, the
1529 last point, etc. 2) Pronominal reference, such as: he, this sentence, which one, etc. 3) Vague
1530 reference, such as: xxx this model, etc.
1531 3. Long-Range dependency: The new task generated needs to use content from previous
1532 conversations (excluding the last round), for example, something I mentioned in the first
1533 round, something I mentioned before.
1534 """
1535 [Example]=====
1536 [Historical Conversations]=***{ {{history}} }***
1537
1538 [Output]=***{ {{continue_task}} }***
1539
1540 """
1541
1542
1543 [Historical Conversations]=====
1544 { {{history}} }"""
1545
1546
1547 [Format]=====
1548 {
1549     "task 1": "xxx",
1550     "task 2": "xxx",
1551     "task 3": "xxx",
1552     "task 4": "xxx",
1553     "task 5": "xxx",
1554 }
1555 """
1556
1557
1558 Figure 16: Context task Generation Prompt, Part 2.
1559
1560
1561
1562
1563
1564
1565

```

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Figure 17: Typical error examples discussed in the main text

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619