Under

review as a conference paper at ICLR 2026

BENCHMARKING LLILM TooL-UsE IN THE WILD

Anonymous authors
Paper under double-blind review

ABSTRACT

Fulfilling user needs through Large Language Model multi-turn, multi-step tool-use
is rarely a straightforward process. Real user interactions are inherently wild,
being intricate, messy, and flexible. We identify three key challenges from user
behaviour: compositional tasks that demand efficient orchestration of tool-call
topologies, implicit intent spread across dialogue turns that require contextual
inference, and instruction transition, which mixes task queries, clarifications, and
casual conversation, forcing LLMs to adjust their policies on the fly. Existing
benchmarks overlook these behaviors, making the apparent progress of LLMs
on tool-use spurious. To address this, we introduce WildToolBench, an LLM
tool-use benchmark grounded in real-world user behavior patterns. Comprehensive
evaluations of 57 LLMs reveal that no model achieves an accuracy of more than 15%,
indicating a substantial gap in the robustness of LLMs’ agentic ability. Controlled
experiments and in-depth analyses further indicate that the real challenge for LLM
tool-use lies not in artificially complex tasks, but in the wild nature of user behavior,
emphasizing the need to reconsider the interactions among LLMs, users, and tools.

1 INTRODUCTION

Accuracy

e A\Claude 4 Opus W (2 Grok 4

A\ Claude 4 Sonnet G Gemini 2.5 pro
mm GGPTS = GGPT 40
- GLM 4.5 @ DeepSeek R1
80%|- W= 14’ Kimi K2 = o DeepSeek V3

Y
8
X

5
]
=

20%|

WildToolBench BFCL-v4 BFCL-v3 BFCL-v2 t-Bench t2-Bench(Telecom)

Figure 1: Session Accuracy comparison among tool-use benchmarks. See details in Appendix

Large
promi
These

language models (LLMs) are evolving rapidly, and agents built on them have become a

sing direction (Google, [2024}; [DeepSeek-AlT et al, 2025} Zeng et al |, 2025}, [Yao et al,[2023).

agents interact with the real world through various tools, opening up new avenues for Al

applications. Developing benchmarks that can evaluate the tool-use capabilities of large language
models in a reliable way has become increasingly important.

Current mainstream LLM tool-use benchmarks follow a multi-turn, multi-step paradigm: LLMs
function as assistants and engage in multi-turn dialogues with users to complete coherent tasks. Each

task typically requires multi-step tool-use. However, existing benchmarks (Huang et al, 2024a};

et all 2024}, Du et al., 2024} [Yao et al.}[2024; [Ji et al., 2024b) are overly idealized and neglect the

compl

exity of multi-turn, multi-step settings in real-world scenarios. From large-scale analysis of

real user logs, we identify three salient properties of how human users employ LLMs to solve tasks
with tools: 1) users tend to deliver Compositional Tasks that contain multiple simple requirements,

Under review as a conference paper at ICLR 2026

ﬂ! But Challenging Tasks for LLM

Switch Among R
Various Policies .
On the Fly ﬁ H g8

I T 11 1

-~ o 2 @

Infer Information
and Intent From
Multi-Turn Dialogue

Find Optimal Tool
Use Orchestration
for Quick Response | R,

Single Weather Parellel Weather Ask for Single Search Answer w/o
Tool Use Tool Use Calrification Tool Use Tool Use

Los Angeles

Nov. 2, 2024 (at): The Eagles will

Sunny. 12°C-19°C. West wind perform on

Nov. 3, 2024 (Sun.): Which city's Saturday (2024~ The Eagles are
alegendary

American rock

e -

Planning a
weekend
getaway. Check
the weather for
Chicago this
weekend.

Itis terrible. Check
the Los Angeles
and Las Vegas.

Sunny. 12°C-22°C. North wind Any special performances Las Vegas 11-02) as part oo
Las Vegas shows there? | are you of their "Long
ow.2, 2023 (Gac) interested in? dbye"
Partly cloudy. 5°C-16°C. East wind Goodbye'

Nov. 3, 2024 (Sun.): farewell tour.
Sunny. 6°C-16°C. Northeast wind

Follow Up Task
Simple Task with Multiple
Requirements

Clarification Start New
on Task Task

=

A

@, Just a Natural Dialogue for User

Figure 2: WildToolBench poses three characteristics that seem easy and natural for the user, but
challenging for the LLM tool-use.

demanding tool orchestration beyond simple chaining to respond on time. 2) Users’ implicit intention
is spread within dialogue, requiring LLMs to infer it from context. 3) In a conversation, users naturally
transition between different types of instructions, such as task-giving, follow-up, explanation, and
casual chatting modes, demanding LL.Ms to adapt their policies on the fly.

These three characteristics embody the design philosophy of WildToolBench, “What truly challenges
LLMSs’ tool-use capabilities is not artificially constructed complex scenarios, but simple yet realistic
user behaviors”, namely, the compositionality, vagueness, and variability of user instructions. In
WildToolBench, through a carefully constructed data pipeline combined with human verification and
annotation, we curate 256 scenarios with 1024 tasks. As shown in Figure[T] while prior tool-use
benchmarks tend to be saturated, WildToolBench remains highly challenging. Our results show that
even the most advanced language models struggle to achieve satisfactory performance, with most
models reaching no more than 15% session accuracy. A further breakdown of experiments on 57
LLMs reveals that in-the-wild task settings severely degrade model performance, underscoring that
the future evaluation of LLMs’ agentic ability cannot rely on simple, idealized benchmarks but must
instead account for the inherent complexity of real-world user behaviours.

2 RELATED WORK

LLM agents have emerged as a prominent research direction, with their core competency rooted in
the ability to utilize external tools. Tool-use benchmarks have, to some extent, shaped the evolution
of LLMs’ agentic ability, from simple QA to multi-turn, multi-step, long-horizon autonomous
tool-use. T-EVAL, UltraTool, and MetaTool(Chen et al., 2024; Huang et al.,|2024afb) assess various
sub-capabilities of tool-use, but treat tool invocation as a simple question-answering task, which fails
to capture the multi-turn interactive nature of the LLM agent loop. WorfBench and TaskBench(Qiao
et al.}[2025}; Shen et al.,|2024) took a step forward by introducing single-turn multi-step tool invocation
and emphasizing planning capabilities, but are constrained by annotating only a single optimal path and
relying on similarity-based metrics, which can be imprecise in evaluation. ToolBench, AnyToolBench,
and StableToolBench(Qin et al., [2024{ |Du et al.| 2024; |Guo et al.| 2024) also focus on single-turn
multi-step tool-use, but their proposed tasks are synthesized by LLMs and generally exhibit a low level
of difficulty. On the other hand, BFCL-V1 and BFCL-V2 (Ji et al.| |2024a)) pioneered the evaluation of
parallel tool-use but were still limited to single-turn scenarios. BECL-V3(Ji et al.,[2024b) introduced
multi-turn evaluation and assessed the sequential multi-step capabilities of LLMs. However, its
tasks lack semantic correlation, with each task being independent and identically distributed, and
provided with complete intention and information, which is unnatural compared with real-world user
behaviours. Therefore, 7-Bench and 72-Bench(Yao et al., 2024} [Barres et al.,2025) introduce the

Under review as a conference paper at ICLR 2026

design of LLM-as-User. To some extent, user simulators better approximate real environments (e.g.,
requiring an LLM agent to proactively ask questions rather than merely execute tool calls reactively).
However, LLM-based simulation still diverges significantly from real user behavior. For instance,
LLMs tend to behave in an unrealistically flawless manner, making tasks too easy to solve. Moreover,
reliance on LLLM simulation also leads to unstable evaluation results. Through a human-in-the-loop
annotation process, WildToolBench explicitly incorporates three real user behaviors (compositional
tasks, implicit intent, and instruction transition), thereby setting a new standard for evaluating LLM
tool-use. A comparison between WildToolBench and previous benchmarks is provided in Table

3 WiLbTooLBENCH

3.1 FORMULATION

We formalize the interaction between a user and an LLM as a multi-turn dialogue, denoted as
D= {ul, ai,u2,a2,...,UnN, (IN}

where u; is the i-th user message and a; is the corresponding LLLM assistant response. Within this
N-turn dialogue, there are M user tasks {g1, ..., g} which are scattered throughout the dialogue.
For each user message u;, there may exist a task g;, and the LLM needs to detect the user’s intention
and solve the task in the response a;. If solving this task requires tool usage, the LLM will first engage
in a process of multi-step tool invocation, which can be regarded as the LLM conducting several
rounds of interaction with the external environment (e.g., a local database or a MCP server), denoted
as TV = {aT,e1,al es,...,ak, es}, where aT is the LLM’s tool call, and e is the corresponding
environment feedback after executing this call. Once this S-step tool invocation 77 is completed, the
LLM gathers information from feedback and generates the user’s response to the task with a;.

In a real scenario, user intentions are varied in one dialogue session, and user messages are mixed
with various types of tasks g, such as asking questions, requesting follow-ups, seeking improvements,
explaining themselves, or just chatting. The LLM needs to apply different policies for correct reactions,
which may include 1) LLM just replies without any tool usage (S = 0), such as in response to a
task that needs clarification gcqrify Or a task that does not require a tool gepqt, 2) LLM adapts
a single-tool invocation policy (S = 1) for a simple task gsingie, or 3) LLM performs multi-step
tool invocations (S > 1) for a hard task g,,,,;¢;. From the LLM’s perspective, the dialogue unfolds
as a Markov Decision Process (MDP), where the state at each step is the full dialogue history
(including u, a, a”, and e), and the actions are the tokens that formulate different policies. Under
this formalization, WildToolBench faithfully reflects the complexities and challenges inherent in
applications for real-world users, where 1) the user task g is compositional, consisting of multiple
sub-requirements, necessitating effective tool orchestration. This implies that 7" may be a tree rather
than a simple chain-like execution. 2) User tasks {g1, . . ., gas } are contextually interrelated, requiring
the LLM to uncover latent context from historical observations, including user messages {u} and
assistant messages {a}. 3) User intentions transition in each message u;, and the LLM must switch
its policies accordingly to give a correct response a.

3.2 Data CURATION

Table 1: Comparative analysis of the WildToolBench against other tool-use benchmarks.

Benchmark Contextual Hidden Info User Instruction Sequential Parallel Mixed
Multi-Task in Context% Transition% Tool-Use Tool-Use Tool-Use
WildToolBench v 100% 100% v v v
BFCL v3 (Patil et al., 2025) v 15.7% 39.7% X v X
BFCL v2 (Patil et al., [2025) X 0.0% 0.0% X v X
BFCL v1 (Patil et al.} 2025) X 0.0% 0.0% X v X
ToolBench (Qin et al.,[2024) X 0.0% 0.0% v X X
AnyToolBench (Du et al.;[2024) X 0.0% 0.0% v X X
72-bench (Barres et al.}|2025) - - v X X
T7-bench (Yao et al.} 2024) - - - v X X
T-EVAL (Chen et al.|[2024) X 0.0% 0.0% v X X
UltraTool (Huang et al.;[2024a) X 0.0% 0.0% v X X

The data curation pipeline of WildToolBench follows three steps. First, we analyzed a large collection
of real user logs to collect suitable seed scenarios and to summarize user behavior patterns. These

Under review as a conference paper at ICLR 2026

patterns are summarized as three challenges, and we uniformly sample from real user logs and use
these samples as few-shot examples together with challenges in the prompts, so that the collected
scenarios follow the same distribution as the real logs and do not leak real user data.

Then, following ToolAlpaca (Tang et al., | 2023)), we collected more than 1,600 publicly available APIs
from the internet, carefully verified and cleaned them into a tool set. This publicly available API
GitHub repositoryElis continuously updated and now contains more than 1400 tool lists, but to stay
consistent with ToolAlpaca, we use 400 of these tool lists, covering around 1600 APIs in total. Then,
we selected a corresponding tool subset for each seed scenario and generated four tasks based on it.

Finally, we employed GPT-40 (OpenAlL 2024a) to construct a multi-agent system simulating the roles
of user and assistant, generating initial trajectories under the given task and tool subset. Each tool
invocation in the trajectory was manually examined and annotated as ground truth, producing the
final dataset.

The detailed process is described in Appendix Each stage of the data curation pipeline involved
manual annotation and validation to ensure accuracy and diversity. Furthermore, in the manual
inspection of tasks, we emphasized three aspects: task compositionality (§3.3)), contextualized
intention (§3.4), and instruction transition (§3.3), reflecting the inherent complexity of real user
behaviors. Finally, we present comprehensive statistics of WildToolBench in The unique design
of WildToolBench is highlighted in Table[I]

AP: 3 out of 4 steps were successful, 75%
0OP: Not the optimal 3-steps trajectory, False

b) Enumerate all possible tool execution trajectory ¢) Match LLM’s tool execuation trajectory d) Score LLM’s trajectory with APand OP

Figure 3: Visualization of the enumerate-match-score pipeline for evaluating the LLMs’ tool
orchestration ability in WildToolBench.

3.3 CHALLENGE 1: TooL ORCHESTRATION FOR COMPOSITIONAL TASK

Real-world user instructions do not always present very hard tasks, but multiple simple requirements
are combined into a single instruction. We meticulously constructed tasks under common scenarios
(e.g., document operations or weather inquiries), but with compositional forms that better reflect
real user instructions (e.g., searching for popular movies to generate a survey slide, or multi-city
weather inquiries intertwined with travel planning). Compared with simple and well-defined tasks
found in previous benchmarks, these are "in-the-wild" tasks that require an LLM to possess strong
planning capabilities to identify tool dependencies and construct an efficient tool-calling topological
graph, thereby improving TTFT (Time to First Token). To accurately measure whether an LLM can
effectively construct an efficient tool-calling topology, WildToolBench measures not only the final task
accuracy but also more fine-grained metrics such as the optimal path rate and task accomplishment
progress, in a simple three-stage manner: enumerate, match, and score.

Enumerate First, the adjacent tool dependencies are manually labeled by human experts. Then, we
apply a depth-first topological sorting algorithm (see Appendix [D]for details) to generate all possible
legal tool execution paths that obey the adjacent dependencies. Our approach enumerates all possible
tool execution paths, rather than restricting to limited suboptimal paths (Qiao et al.,[2025}; |Shen et al.|

'https://github.com/public-apis/public-apis

Under review as a conference paper at ICLR 2026

2024). Such an enumeration generates a decision tree set that considers all branching and parallel
scenarios. For example, in Figure[3|a), the search-then-investigate branch and the slide branch can be
executed in parallel, leading to five possible paths as shown in Figure [3]b).

Match Every time the LLM executes a tool, we use an incremental path matching strategy to locate
this tool call in the previously enumerated decision tree set. Each tool call either terminates the path
if mismatched or takes a step into the corresponding sub-tree.

Score By matching and locating the LLM’s tool call in the enumerated decision tree set, we can
evaluate the quality of the LLM’s current tool execution topology. Whenever the tool executed by
the LLM terminates or completes a path, we calculate whether this path has the minimum depth
among all enumerated decision trees. If so, it indicates that this decision tree is not only valid but also
possesses optimal efficiency, and we can calculate the Optimal Path Rate (O P Rate). Furthermore,
the LLM often fails on many tasks, with tool-calling nodes generated midway that do not fall within
the valid decision tree set. We calculate the Accomplish Progress Rate (AP Rate) based on the
proportion of its successful nodes. These two fine-grained metrics, OP and AP, are used to measure
tool orchestration.

Partial Information

@ | Help me check the news from BBC the day before yesterday. I @ | ‘The last one in the first round of results @)
{ o

Turn 1
Single-Tool

Action:
e poote & The complete query

e the st smartphane Parallel Multi-Tool | should be “Check the news

&) :)
News from BBC (December 22, 2024) =" | - Author: John Doe
1. The Global Climate Change Conferencel{https://www.bbc.com/news/38614725) - Publication Date: December 22, 2024
2. Tech giant releases the new smartphonei{https.//www.bbe.com/news/25814736) - Content Type: Sports event situation analysis
Get the metadata of all the rest articles for me. Also, | want to know about other Coreferential Reference
The “one of them” in the
et third turn user message
Tum2 N o can not be determined
single-Tool G o
P | News from Esp(December 23, 2024) After clarification, it refers
1. The NBA Christmas Day games are to the article with BBC
approachinghttps://www.espn com/nba/96385217) bt Turn 5 article id 25814736
2. Analysis of the NFL playoff situation(https://www espn.com/nfl/41728365) o 8 Mixed Multi-Tool | =" s
G [mnte e o 9@ | o
Sure, Here s the metadata of al the articles remain TR D BT Sy

Tun 3

Clarification ¢
6.9

u i i and here are complete articlelst from Jane Smith and Emily Johnson
Could you please provide the URL o title of the specific article you are interested p ly User ask for all the rest
in 50 that | can retrieve the metadata of the article for you?

articles, which denotes

article 38614725 in the first
turn, and article 96385217

No Transition Transition Transition
Task 1 |:> Task 2 Task 3 |:> Task 4 in the second turn.
Single-Tool Single-Tool Clarify then Parallel Multi-Tool Mixed Multi-Tool —————

Figure 4: Examples for Challenges on Hidden Intention [§3.4{and Instruction Transition [§3.5} These
challenges arise from the very nature of real user behavior: from the user’s perspective, the interaction
is a coherent dialogue rather than a series of isolated task submissions.

3.4 CHALLENGE 2: INFER HIDDEN INTENTION THROUGH DIALOGUE

Previous research (Chiang et al., 2023 |Su et al., |2019) reveals that in sequential tasks, 80% of users
follow up with additional questions and may modify or omit contextual information, which aligns with
our observations. The LLM must infer the user’s latent intentions from the multi-turn conversation,
gather the necessary information and even proactively request clarifications. In WildToolBench,
we utilize three strategies to construct tasks that demand multi-turn context inference, as shown
in Figure [d} 1) Partial Information: The current user message u; contains only a subset of the
information required to complete the task, while the omitted information is present in previous user or
assistant messages {u1, ay,...,u;_1,a;_1}. 2) Coreferential Reference: The current user message
contains the full information, but the subject is expressed only via pronouns or ellipsis, referring back
to entities mentioned in earlier user or assistant messages. 3) Long-Range Dependency: Similar to
partial information, except that the missing information is located in distant dependencies; that is, u;
depends on {u1,a1,...,uj,a;} withi — j > 2.

3.5 CHALLENGE 3: ADAPTABLE PoLicY SWITCH FOR INSTRUCTION TRANSITION

When interacting with an LLM assistant, most users treat the interaction as a natural conversation
rather than a series of independent task submissions. Users frequently initiate tasks across multiple
turns, ask follow-up questions, provide explanations, engage in casual dialogue, and interrupt or
resume tasks at will, continuously transition among different instruction types. As illustrated in
Figure [2]and Figure [what appears to users as an ordinary conversation in fact involves multiple
transitions. Such flexible and frequent instruction transitions require the LLM to adapt its policy

Under review as a conference paper at ICLR 2026

appropriately, making suitable choices among strategies such as tool-use, direct question answering,
or proactive inquiry.

In constructing WildToolBench, we categorize all tasks into four types: tasks solvable with a single
tool call (gsingle), tasks requiring multiple tools and multi-step calls (gmuiti), conversational or tool-free
queries (gehar), and tasks that require the assistant to ask for clarification (gcraity). For each scenario,
we carefully curated the proportions of these four task types as well as their switching frequency,
ensuring that WildToolBench faithfully reflects the phenomenon of instruction transition observed in
real user behavior. This setup benchmarks LLMs’ ability to accurately track evolving user intentions
in natural dialogue and generate appropriate responses.

3.6 STATISTICS

a) Distribution of User Message Types

5 8

6 7
Number of Turns

d) Distribution of Dialogue Turns e) Distribution of Tool Call Counts Per Task f) Distribution of Tool Types

Figure 5: Key statistics for WildToolBench.

Figure 5] presents detailed statistics of WildToolBench. We constructed 256 scenarios, each consisting
of a multi-turn dialogue with four user tasks, resulting in a total of 1,024 tasks. We evaluate whether
the LLM generates the ground-truth tool calls within the dialogue, measuring both task-level accuracy
and session accuracy, i.e., whether all four tasks in a dialogue are correctly completed.

The key observations from these statistics are as follows: 1) the four task types (gsingles Jmulti> Gchats
Jelarity) and various forms of hidden user intention are well balanced, ensuring diversity and challenge
within each dialogue; 2) tool parameter types are highly diverse, and the tool type covers 8 major
categories and 24 subcategories, all of which correspond to commonly encountered real scenarios; 3)
the average dialogue length is 5.27 turns and the average number of tool-call steps is 1.92, which is
significantly higher than BFCL (3.75 turns, 1.68 steps). In the appendix, we highlight the wild nature
of WildToolBench in Table[1l

4 EXPERIMENTS

We present a detailed experiment by benchmarking 57 mainstream LLMs on WildToolBench, ranging
from proprietary to open-source LLMs, from general to specialized models, and from instruction-tuned
to large reasoning models. The experiments and analysis are organized as follows: gives an
overview of benchmarking results and key takeaways, [§4.2]investigates how well LLMs can orchestrate
tool calls to handle the compositional user instructions in WildToolBench,[§4.3]examines the inference
ability of LLMs when users omit or hide their intentions and information across multiple turns in
dialogue, and [§4.4] presents how frequent instruction transitions affect the LLM’s ability to make
correct decisions. Finally, in[§4.5] we provide an empirical analysis of the errors that LLMs made in
WildToolBench.

4.1 OVERALL PERFORMANCE

We evaluate three categories of models, including Proprietary General Models (OpenAlL

|Anthropic] 2025}, Mistral, 2024} [Doubaol 2025}, (OpenAL, 2024b} |Google| 2024} [Seed, 2025)), Open-
Source General Models (Qwen|, [2025} DeepSeek-Al et al., 2024; |Yang et al.,[2024; |[DeepSeek-All

Under review as a conference paper at ICLR 2026

Table 2: WildToolBench Results.

Models | Categorized by Task Type g | Categorized by Task Order M | Overall

Gsingle 9multi YGelarify Ychat ‘ 1 2 3 4 ‘ Task Session

Proprietary General Models

G Gemini-2.0-Thinking | 56.64 40.23 5234 9492 | 78.13 63.67 5195 50.39 | 61.04 14.45
G Gemini-2.5-Pro 55.08 36.33 46.88 86.72 | 70.31 56.64 53.52 44.53 | 56.25 14.06
A\ Claude-4-Sonnet 60.16 43.75 41.80 8047 | 71.09 57.81 5273 44.53 | 56.54 12.50
®ol 54.30 39.06 48.05 9375 | 69.53 60.94 55.86 48.83 | 58.79 12.11
® GPT-40 60.16 41.80 3945 7813 | 72.66 55.08 46.09 4570 | 54.88 11.72
4 Grok-4 59.38 4141 3359 66.02 | 63.67 5234 4297 4141 | 50.10 10.16
©® GPT-5 46.09 34.38 31.64 8438 | 62.11 50.00 4531 39.06 | 49.12 5.86
Open-Source General Models
GLM-4.5 57.81 40.63 44.53 8125 | 70.70 60.16 50.78 42.58 | 56.05 12.11
H Kimi-K2 5430 33.98 39.84 86.72 | 68.75 57.03 48.83 40.23 | 53.71 10.55
& DeepSeek-R1 56.25 41.02 4375 80.08 | 74.22 5430 48.83 43.75 | 55.27 9.38
& DeepSeek-V3 58.98 38.67 3359 7930 | 75.39 5391 41.02 40.23 | 52.64 9.38
7 Qwen3-32B-Thinking | 53.52 2891 37.11 80.86 | 62.50 52.73 46.48 38.67 | 50.10 7.81
Open-Source Specialized Models
® xLAM-2-70B 6445 36.72 2891 64.84 | 64.06 51.56 42.58 36.72 | 48.73 7.81
H ToolACE2-8B 62.11 37.89 33.98 8438 | 72.27 59.38 46.88 39.84 | 54.59 7.42
@ Watt-8B 61.72 28.13 22,66 7813 | 68.75 4727 39.06 3555 | 47.66 4.69
B Hammer2.1-7B 40.23 21.88 3047 9492 | 61.72 46.88 40.63 38.28 | 46.88 4.69

et al.,[2025)), and Open-Source Specialized Models (Zeng et al., [2025; [Liu et al., [2024} |Lin et al.|
2024; |Shi et al.| [2024). We employ each model’s native Function Call format to achieve optimal
performance. Table 2] presents the overall performance of top-performing models. Full results on 57
models are provided in Appendix [E.2]

In terms of overall performance, none of the mainstream LLMs achieve a session accuracy higher than
15%, and most models fall below 60% in task accuracy, highlighting the difficulty of WildToolBench.
Proprietary LLMs generally outperform open-source ones, and reasoning-oriented models consistently
surpass non-reasoning models. The best-performing open-source models, such as GLM4.5 and
Kimi K2, achieve performance comparable to the top three proprietary models, while the remaining
open-source models still lag considerably behind.

We further conducted a drill-down analysis of task accuracy along two dimensions: task type and task
order. For task type, when the user’s intention is casual chat or tool-free answering, most LLMs can
reliably recognize the intention and respond appropriately. However, when the intention involves
clarification or eliciting task details through counter-questions, LLMs frequently misfire by executing
a function call. Moreover, multi-step tool-use exhibits substantially lower accuracy than single-step
tool invocation. For task order, within a dialogue, tasks appearing later exhibit greater dependence on
preceding information, and model performance deteriorates accordingly.

4.2 LLMs PerrorM PooRrRLY ON TooL ORCHESTRATION

We further analyzed whether LLMs can correctly orchestrate tool-call topologies to handle com-
positional tasks. We divided compositional tasks into three categories according to their required
tool topology: sequential multi-step tool-use (g2), parallel multi-step tool-use (g~ ..), and mixed

tool-use combining both sequential and parallel structures (gﬁj}f). As shown in Table the highest

task accuracy is merely 43.75%, falling to just 25% for gﬁj{f tasks, indicating that compositional tasks
with multi-turn interactions remain a significant challenge for LLMs. Similarly, the peak optimal path
(OP) rate reaches only 42.74%, suggesting that current LLMs have substantial room for improvement
in tool execution efficiency. See full results of 57 LLMs in Appendix Specialized tool-use
models perform significantly worse than general-purpose models, indicating limited generalization
despite their intended focus. Claude-4-Sonnet shows a clear advantage in complex reasoning for
tool orchestration, outperforming other proprietary models. The Gemini series reveals a strong bias,
excelling in parallel but dropping sharply in mixed one. Among open-source models, GLM-4.5 excels
in sequential and mixed tasks, even surpassing leading proprietary models. Furthermore, we observe
that reasoning-enabled model variants outperform their non-reasoning counterparts within the same

Under review as a conference paper at ICLR 2026

Table 3: WildToolBench tool orchestration evaluation result.

| Task Accuracy | AP Rate | OP Rate

P S S+P S S+P P S+P
‘ Imulti Imulti Imulti Overall ‘ Imulti Imulti Overall ‘ YImulti Imulti Overall

Models

Proprietary General Models
G Gemini-2.0-Thinking | 54.14 25.00 16.67 4023 | 4528 39.89 40.37 | 53.50 16.67 40.66

G Gemini-2.5-pro 49.04 2500 1429 3633 | 47.17 39.15 39.87 | 4331 1190 3237
A Claude-4-Sonnet 5478 31.25 25.00 43.75 | 60.38 4632 47.57 | 52.87 23.81 42.74
G ol 50.96 1250 2143 39.06 | 3585 37.50 3735 | 50.32 20.24 39.83
® GPT-40 53.50 3125 2143 41.80 | 41.51 4540 4506 | 5159 2143 41.08
7 Grok-4 54.14 1875 2143 4141 41.51 46.51 46.06 53.50 21.43 42.32
® GPT-5 4331 3750 16.67 3438 | 49.06 3842 3936 | 42.68 13.10 3237
Open-Source General Models
GLM-4.5 51.59 3125 2143 40.63 | 67.92 48.90 50.59 | 49.68 20.24 39.42
K Kimi-K2 4586 1250 1548 3398 | 52.83 3493 3652 | 4395 1548 34.02
& DeepSeek-R1 53.50 18.75 21.43 41.02 | 41.51 44.12 4389 | 52.87 2024 4149
& DeepSeek-V3 52.87 25.00 1429 38.67 | 4340 32.54 33,50 | 51.59 1429 38.59

7 Qwen3-32B-Thinking | 42.04 1250 7.14 2891 | 41.51 2831 2948 | 40.13 7.14 28.63
Open-Source Specialized Models

= xLAM-2-70B 49.68 12.50 16.67 3672 | 4340 4485 44.72 | 2675 7.14 19.92
B ToolACE2-8B 4777 3125 2024 37.89 | 5094 43.01 4372 | 26.11 1429 21.99
® Watt-8B 4459 625 1.19 28.13 | 22.64 21.87 2194 | 4459 1.19 29.46
Hammer2.1-7B 3312 1250 238 21.88 | 2453 1324 1424 | 31.85 238 21.58

series, indicating that additional reasoning leads to better tool-call orchestration for compositional
tasks. These results refute the conclusion in previous work |Zhou et al.| (2025)) that a reasoning
model does not outperform a non-reasoning model on tool-use, highlighting limitations in previous
evaluations.

4.3 LLMs STRUGGLE TO INFER INTENTION ACROSS DIALOGUE

G Gemini-2.0-Thinking ‘m 46.4 : o1
G Gemini-2.5-pro | 51.6 40.8
A\ Claude-4-Sonnet{ 517 52.4 58.3 413 Gemini-2.0-Thinking G
[©) ol 59.6 45.8 Gemini-2.5-Pro G
v —i— Claude-4.0-Sonnet ~ A\
6] GPT-40 1 49.0 47.3 42.5 . ol)
o] Grok-4 45.6 44.4 52.1 39.1 e GPT-40 ®
® 4a.8 46.1 49.6 - Grok-4 9
TS - - . . z GPT-5 ®
R GLM-4.5 - 51.2 51.6 41.3 i] . GLM4S ”
9 H 3os . .
K Kimi-k2{ 487 48.4 39.7 g Kimi-k2 K
< -+ DeepSeek-R1 N4
& DeepSeek-R1 - 49.0 49.3 41.3 DeepSeek-V3 &
¥ DeepSeekv3{ 45.0 45.0 Qwen3-32B-Thinking v
n ot — xLAM2-70B »
% Qwen3-32BThinking{ 46.0 49.3 49.2 ‘ . e bt a
& XLAM-2-70B 43.6 40.1 52.9 38.0 N Watt-88 [~]
B ToolACE2-8B - 48.7 49.9 Hammer2.1-78 B
] Watt-88 - 40.6 41.3 48.3
1] Hammer2.1-784 41.9 45.3 43.8 .
- - - » : i H H
Overall Partial Ref Long Transition Count

Figure 6: LLM’s performance under different hid- Figure 7: LLM’s performance goes down as
den information strategies. the instruction transition goes more frequently.

Figure [6] reports the accuracy of LLMs on three types of user tasks, in which user intention and
information are partially hidden or omitted across multi-turn contexts. We find that long-range
dependency tasks are the most challenging, with no model achieving accuracy above 50%. By
contrast, tasks involving partial information or coreference are relatively easier. The results reveal
clear specialization across models: reasoning models such as ol and gemini-2.0-thinking excel at
inferring omitted information and intent in partial information tasks, while Claude-4-Sonnet leads on
coreferential reference tasks, indicating that no single model outperforms others across all aspects.
Long-range dependency tasks remain the weakest dimension overall, with scores clustered between
30 and 45, while also exhibiting the largest performance gap (17.3), making them a key differentiator
among models. Mid-tier models demonstrate notable strengths despite lower overall averages; for
instance, ToolACE2-8B (Ref 56.2) and GLM-4.5 (Ref 57.9) approach top-tier performance. Model

Under review as a conference paper at ICLR 2026

capability generally correlates positively with model size, as illustrated by the Qwen2.5 series results
in Table[6] In general, reasoning models demonstrate stronger capabilities in inferring hidden intent
and retrieving omitted information within multi-turn contexts.

4.4 UsEer InsTRUCTIONS CHANGE, AND LLMs LaG BEHIND

To further investigate the impact of user instruction transitions on LLM decision-making, we analyzed
the performance of all models on tasks in WildToolBench with varying transition frequencies. As stated
in Section@ we categorize the tasks into four types: Gsingle> gmulti> Gehat» ANd Gelarity, corresponding
to tasks solvable with a single tool call, multi-step tool calls, direct question answering, and tasks
requiring clarification, respectively. An instruction transition is defined as a change in task type
between two consecutive tasks within a dialogue. Given that each scenario contains up to four
tasks, at most three transitions can occur. As shown in Figure[7] across open-source and proprietary
models, general-purpose and specialized models, as well as reasoning and non-reasoning models, task
accuracy decreases as the number of transitions increases. In some cases, the drop reaches as much as
30% in accuracy. Our analysis indicates two main factors underlying this trend. First, tasks with
frequent transitions reflect more flexible and in-depth user demands (e.g., a task requiring clarification
followed by a follow-up query for further information). Such tasks more closely resemble real user
scenarios and are inherently more difficult. Second, LLMs exhibit self-conditioning (Sinha et al.,
2025)), whereby previous responses bias subsequent decisions. For example, if a model previously
used a tool call, it tends to continue using tool calls; if it previously executed parallel tool calls, it is
biased toward repeating them. This interference prevents the model from selecting the appropriate
response. Essentially, this arises because the long conversational context dilutes the model’s attention
to the current task, as historical user and assistant messages accumulate. This problem is particularly
pronounced when the current task requires recalling past interactions (as noted in Section [§3.4),
further exacerbating the interference from historical context.

4.5 ERROR ANALYSIS

Table 4: Error Analysis in WildToolBench.

| Action Errors | Parameter Errors
Models

Refusal Wrong Name Wrong Redundant Call Early Param Param Param

Missing Info Refusal Call Error Termination | Type Error Hallucination Value Error
Proprietary General Models
G Gemini-2.0-Thinking | 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
G Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
A Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.80% 8.09% 14.83%
® ol 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
© GPT-40 5.41% 21.65% 12.12% 14.50% 11.47% 7.58% 3.46% 9.96% 13.85%
I Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
© GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.34% 10.75% 6.53%
Open-Source General Models
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.33% 4.67% 12.89%
W Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.74% 6.75% 14.14%
& DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.53% 8.52% 11.79%
& DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.65% 7.42% 10.31%
37 Qwen3-32B-Thinking | 9.20% 20.35% 9.20% 19.18% 19.18% 4.31% 1.96% 7.83% 8.81%
Open-Source Specialized Models

® xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 1.71% 5.14% 12.57%
H ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 3.23% 3.66% 14.84%
@ Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.87% 5.78% 10.45%
B Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 3.49% 1.47% 8.82%

Table A reveals that the primary challenge in LLM tool-use has shifted from syntactic correctness to
semantic and logical reasoning. The data indicates two divergent failure philosophies: a “cautious”
profile, exemplified by Gemini-2.0-Thinking, which prefers to refuse a task (24.56% Refusal rate)
rather than risk an incorrect action (8.02% Wrong Name error), and an “eager” profile, seen in models
like Grok-4, which minimizes refusals (3.72%) at the cost of a significantly higher propensity to select
the wrong tool (24.07% Wrong Name error). Across the spectrum, “Wrong Name / Missing Info” and
“Redundant Call” (23.06% in Gemini-2.0-Thinking) emerge as the most prevalent errors, highlighting
systemic deficits in intent understanding and context management. This problem is particularly
pronounced in specialized open-source models like xXLAM-2-70B and Watt-8B, where “Wrong Name”
errors exceed 30%, suggesting that specialization can lead to brittleness. Conversely, parameter-level

Under review as a conference paper at ICLR 2026

errors such as “Param Type Error” or “Param Hallucination” are consistently lower across all models.
This suggests that the frontier of agentic Al development now lies in improving higher-order planning
and reasoning rather than basic syntactic generation. The prevalence of “Redundant Call” errors
reveals a widespread deficiency in long-range planning for most capable models, indicating that they
struggle with context management over time. However, the deceptively low rates of this error in some
specialized models can be misleading, as this “pseudo-capability” often masks a more fundamental
failure to initiate tasks correctly, evidenced by catastrophic “Wrong Name” error rates.

5 CONCLUSION

WildToolBench, grounded in real user behavior patterns, identifies three major challenges for LLMs
performing multi-turn, multi-step tool-use: compositional instructions, hidden intent, and instruction
transitions. Unlike prior evaluations that focus solely on increasing the complexity of tool-call
procedures, WildToolBench emphasizes assessing LLM tool-use capabilities in the context of realistic
user scenarios. Benchmarking nearly all mainstream models, WildToolBench reveals a fundamental
limitation in current LLM development: for effective tool-use, a model cannot merely function as a
tool executor; it must also possess the capacity to understand users. This capability depends on deeper
foundational skills of large models, including instruction following, long-context comprehension,
and theory of mind—essential abilities for future agentic models. Beyond serving as a leaderboard,
WildToolBench provides structured rubrics that guide model developers in interpreting user behaviors
from multiple perspectives, facilitating more effective model iteration.

10

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

WildToolBench provides all the datasets, evaluation scripts, and all 57 LLMs evaluated trajectories to
support 100% reproducibility. See these materials in the submitted “Supplementary Material” zip file.

7 LIMITATIONS

WildToolBench uses human annotations to ensure data quality, diversity, and alignment with real user
behaviour distribution. However, this limits the scaling potential of the data size. What’s more, the
dual objectives of maintaining data quality and traversing all policy transition types concurrently
limit the feasible length of tasks. Despite this, experimental results reveal significant trends in model
performance, leading to robust conclusions on the gap in current LLMs’ tool-use ability. We are also
working on combining human-annotated rubrics with a fully automated synthetic environment scaling
pipeline for both training and evaluation of the Agentic Model, which is the foundation for the next
scaling trend in the Al era.

REFERENCES

Anthropic. claude-3.7. https://www.anthropic.com/news/claude—-3-7—-sonnet,
2025.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-Bench: Evaluating
Conversational Agents in a Dual-control Environment. arXiv preprint arXiv:2506.07982, 2025.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-Eval: Evaluating the Tool Utilization
Capability of Large Language Models Step by Step. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 9510—
9529. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.515.
URLhttps://doi.org/10.18653/v1/2024.acl-1long.515.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An Open-source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong
Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li,
Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu
Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. DeepSeek-V3
Technical Report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wau, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting

11

https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.18653/v1/2024.acl-long.515
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/arXiv.2412.19437

Under review as a conference paper at ICLR 2026

Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang
Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqgi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao,
Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue
Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi
Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning. CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
https://doi.org/10.48550/arXiv.2501.12948.

Doubao. Doubao 1.5pro. https://team.doubao.com/zh/special/doubao_1_5_pro,
2025.

Yu Du, Fangyun Wei, and Hongyang Zhang. AnyTool: Self-Reflective, Hierarchical Agents for
Large-scale API Calls. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=gFILbkTQWw.

Google. Gemini. https://deepmind.google/technologies/gemini/} 2024.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun,
and Yang Liu. StableToolBench: Towards Stable Large-scale Benchmarking on Tool Learning of
Large Language Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pp. 11143-11156. Association for Computational Linguistics, 2024. doi:
10.18653/V1/2024 . FINDINGS-ACL.664. URL https://doi.org/10.18653/v1/2024,
findings—acl.664.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng Xu, and Qun Liu. Planning, Creation, Usage:
Benchmarking LLMs for Comprehensive Tool Utilization in Real-world Complex Scenarios. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 4363—4400.
Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024. FINDINGS-ACL.259.
URLhttps://doi.org/10.18653/v1/2024.findings-acl.259.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao
Wan, Neil Zhengiang Gong, and Lichao Sun. MetaTool Benchmark for Large Language Models:
Deciding Whether to Use Tools and Which to Use. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024b.
URLhttps://openreview.net/forum?id=R0c2qtalgGl

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica, and
Joseph E. Gonzalez. Gorilla OpenFunctions v2. https://gorilla.cs.berkeley.edu/
/blogs/7_open_functions_v2.html, 2024a.

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, Shishir G. Patil, Tianjun Zhang, Ion Stoica,
and Joseph E. Gonzalez. Gorilla BFVL V3. https://gorilla.cs.berkeley.edu/
leaderboard.html, 2024b.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang. Hammer: Robust Function-calling
for On-device Language Models via Function Masking. CoRR, abs/2410.04587, 2024. doi: 10.
48550/ARXIV.2410.04587. URL |https://doi.org/10.48550/arXiv.2410.04587.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh R. N., Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated Plpeline
for Generating Verifiable and Diverse Function-calling Datasets. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng

12

https://doi.org/10.48550/arXiv.2501.12948
https://team.doubao.com/zh/special/doubao_1_5_pro
https://openreview.net/forum?id=qFILbkTQWw
https://openreview.net/forum?id=qFILbkTQWw
https://deepmind.google/technologies/gemini/
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.259
https://openreview.net/forum?id=R0c2qtalgG
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://doi.org/10.48550/arXiv.2410.04587

Under review as a conference paper at ICLR 2026

Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024,2024. URL |http://papers.nips.cc/paper_files/paper/
2024/hash/61cce86d180b1184949e58939c4f983d-Abstract—-Datasets__
and_Benchmarks_Track.html,

Mistral. Au Large. https://mistral.ai/en/news/mistral-largel 2024.

OpenAl. GPT-40. https://openai.com/index/hello—gpt—40/} 2024a.

OpenAl ol and ol-mini. https://platform.openai.com/docs/models#oll 2024b.
OpenAl. GPT-4.1. https://openai.com/index/gpt-4-1/,2025.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The Berkeley Function Calling Leaderboard (BFCL): From Tool Use to
Agentic Evaluation of Large Language Models. In Forty-second International Conference on
Machine Learning, 2025.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun Xie,
Fei Huang, and Huajun Chen. Benchmarking Agentic Workflow Generation. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=vunPXOFmoi.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language
Models to Master 16000+ Real-world APIs. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=dHng200Jjrl

Qwen. gwen-3. https://qwenlm.github.io/blog/qwen3/, 2025.
Seed. doubao-think. https://seed.bytedance.com/en/blog/, 2025.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation.
In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/
2024/hash/085185ea97db31laebdcac7497616fd3e-Abstract-Datasets_
and_Benchmarks_Track.html,

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct Multi-turn Preference
Optimization for Language Agents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pp. 2312-2324. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024. EMNLP-MAIN.138. URL https://doi.org/10.
18653/v1/2024.emnlp—main.138.

Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The Illusion of Dimin-

ishing Returns: Measuring Long Horizon Execution in LLMs. arXiv preprint arXiv:2509.09677,
2025.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, and Jie Zhou. Improving
Multi-turn Dialogue Modelling with Utterance ReWriter. In Anna Korhonen, David R. Traum, and
Lluis Marquez (eds.), Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
22-31. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1003. URL
https://doi.org/10.18653/v1/p19-1003.

13

http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/61cce86d180b1184949e58939c4f983d-Abstract-Datasets_and_Benchmarks_Track.html
https://mistral.ai/en/news/mistral-large
https://openai.com/index/hello-gpt-4o/
https://platform.openai.com/docs/models#o1
https://openai.com/index/gpt-4-1/
https://openreview.net/forum?id=vunPXOFmoi
https://openreview.net/forum?id=dHng2O0Jjr
https://qwenlm.github.io/blog/qwen3/
https://seed.bytedance.com/en/blog/
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/085185ea97db31ae6dcac7497616fd3e-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.18653/v1/2024.emnlp-main.138
https://doi.org/10.18653/v1/2024.emnlp-main.138
https://doi.org/10.18653/v1/p19-1003

Under review as a conference paper at ICLR 2026

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. ToolAlpaca: Gener-
alized Tool Learning for Language Models with 3000 Simulated Cases. CoRR, abs/2306.05301,
2023. doi: 10.48550/ARXIV.2306.05301. URL https://doi.org/10.48550/arXiv,
2306.05301.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report. CoRR, abs/2412.15115, 2024.
doi: 10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412,
15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh Inter-
national Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/forum?id=WE_v1uYUL-X.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A Benchmark
for Tool-Agent-user Interaction in Real-world Domains. International Conference on Learning
Representations, 2024.

Xingshan Zeng, Weiwen Liu, Xu Huang, Zezhong Wang, Lingzhi Wang, Liangyou Li, Yasheng
Wang, Lifeng Shang, Xin Jiang, Ruiming Tang, and Qun Liu. ToolACE-R: Tool Learning with
Adaptive Self-refinement. CoRR, abs/2504.01400, 2025. doi: 10.48550/ARXIV.2504.01400. URL
https://doi.org/10.48550/arXiv.2504.01400.

Xueyang Zhou, Guiyao Tie, Guowen Zhang, Weidong Wang, Zhigang Zuo, Di Wu, Duanfeng Chu,
Pan Zhou, Neil Zhenqgiang Gong, and Lichao Sun. Exploring the necessity of reasoning in llm-based
agent scenarios. arXiv preprint arXiv:2503.11074, 2025.

14

https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2306.05301
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2412.15115
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2504.01400

Under review as a conference paper at ICLR 2026

1. Scenario Curation . .) m gl

(.0 o1
= 40D
Seed Scenarios ‘[LE‘ _— — g’ %
a_nd ey Scenario
Behaviour Patterns LLM Human - <
2

Generate Check and Refine

256 scenarios

Identify

Real User Logs User Agent Q Assistant Agent

[Raw Trajectory }

2. Task Curation

.

B & B (D) P

@oPiag Collaborate : \Jgﬂ\k Check and Refine i

Public = f £ ‘m : 3
APIs Human & LLM \ : i
Co Q :

-Check and Co-Refine [M/i/drao/Bench }

1600+ Tools 1024 Tasks

(o)

Human

Human & LLM

Figure 8: The data curation pipeline of WildToolBench.

A THE Usk oF LARGE LANGUAGE MoDELS (LLMs)

For the paper writing, we employed LLMs solely for grammatical correction at the writing stage. The
LLM itself did not contribute to experimental design, idea development, or manuscript writing.

Other uses of LLMs (such as benchmark construction) have been clearly stated in and

B BenNcHMARK COMPARISON

Since the representative benchmarks we compiled span multiple time periods, not all models reported
results for every benchmark in their original papers. Therefore, we collected evaluation results from
multiple sources. Figure[I]primarily demonstrates that previous LLM tool benchmarks have tended
toward saturation, while WildToolBench remains challenging. The information we compiled is
mainly drawn from official reports of GLM4.5, Kimi K2, GPTS5, and BFCL leaderboanﬂ as well as
a report by an independent third-party organization, Artificial Analysis’} The differences between
WildToolBench and previous tool-use benchmarks are listed in Table[I} The detail of Figure [I]is
shown as below:

Table 5: Performance Comparison across Different Benchmarks

Models | WildToolBench | BFCL-v4 BFCL-v3 BFCL-v2 7-Bench 72-Bench (telecom)
G Gemini2.5 pro 14.1 48.6 25.0 64.0 62.5 54.1
® GPT4o 11.7 64.7 425 70.5 51.6 25.1
A\ Claude-Sonnet 4 12.5 71.7 54.8 81.1 70.3 45.2
A\ Claude-Opus 4 9.4 69.6 57.9 81.5 70.5 57.0
® GPT5 5.9 71.1 285 58.3 72.3 96.7
& Grok 4 10.2 68.9 36.1 74.4 67.5 47.9
GLM4.5 12.1 64.9 65.6 81.7 70.1 24.6
H K2 10.6 42.1 48.8 80.8 62.6 65.8
& DeepSeek R1 9.4 32.0 445 80.9 58.7 36.5
& DeepSeek V3 9.0 27.4 33.0 79.9 57.6 325

C DatA CURATION

Figure[§] gives an overall preview of the data curation for WildToolBench. First, we analyzed a large
collection of real user logs to extract suitable seed scenarios and to summarize user behavior patterns.

*https://gorilla.cs.berkeley.edu/leaderboard.html
3https://artificialanalysis.ai/

15

Under review as a conference paper at ICLR 2026

These patterns are summarized as three challenges, and we uniformly sample from real user logs and
use these samples as few-shot examples together with challenges in the prompts, so that the collected
scenarios follow the same distribution as the real logs and do not leak real user data. Second, we build
our toolset by leveraging tool descriptions from public APIsﬂ, following the approach introduced
by ToolAlpaca. This publicly available API GitHub repository is continuously updated and now
contains more than 1400 tool lists, but to stay consistent with ToolAlpaca, we use 400 of these tool
lists, covering around 1600 APIs in total. Then, we selected a corresponding tool subset for each
seed scenario. In particular, we enumerated all possible simple and complex parameter types (String,
Integer, Float, Boolean, Enum, Array, Object, Nested) to enhance the diversity and complexity of
tool parameters. Third, five human experts specializing in LLLM agents inspected and refined these
tool sets, mainly by correcting unreasonable tool combinations and parameter specifications, thereby
improving the logical coherence and interoperability of tools. This process yielded 256 realistic
scenarios, and for each scenario, we get a diverse and reasonable tool subset.

After obtaining the scenarios, we prompted a User Agent to generate initial first-round user tasks
based on the scenario and tool subset. Based on the four task types defined in this paper (gsingie,
Imulti> Jelarifys Yehat), We used controlled generation to produce the first-round tasks for each
type. To enhance diversity, we varied across five dimensions: sentence structure, linguistic style,
task background, task length, and task difficulty. We then used the three omission types defined
in Challenge 2 (User Hidden Intent), including Partial Information, Coreferential Reference, and
Long-Range Dependence, together with real user questions as few-shot examples, to guide the User
Agent in generating the subsequent three tasks. For each step, multiple candidate tasks were generated,
from which human experts selected the highest-quality ones and refined them to better match human
distributions, resulting in the final user tasks.

Once the expert-refined user tasks were obtained, the Assistant Agent executed the Agent Loop for
tool calls until producing a summary. Each tool call in the trajectory was then automatically checked
for issues such as function hallucination, parameter hallucination, type errors, and redundant calls.
Subsequently, five human experts inspected the full trajectory, corrected errors (e.g., in tool planning
or parameter values), and annotated tool-call dependencies (used to construct DAGs for calculating
optimal path rates in Challenge 1). This process was repeated until all task trajectories were generated.

Finally, to ensure data quality, we conducted multiple rounds of discussion-based optimization.
Several human experts randomly sampled 20% of the data, annotated potential errors, and initiated a
review session where annotators collectively resolved issues. The main issue is that the synthetic
dialogue is too well-organised, which does not resemble natural human dialogue, so we ask human
experts to rewrite the user utterance. For example, the synthetic dialogue is: Turn 1 Question: “What
is the weather like in Beijing today?” — Turn 1 Answer: “Sunny, twenty five degrees” — Turn 2
Question: “What is the weather like in Shanghai today?”. After manual rewriting, it becomes: Turn I
Question: “What is the weather like in Beijing today?” — Turn I Answer...... — Turn 2 Question:
“How about Shanghai?”. Other issues include enriching the policy switch types and fixing minor
function call errors. This process was repeated with different pairs of experts and different 20%
samples each round, continuing until the detected error rate dropped to zero and every data point had
been checked at least once with no conflict. After four such iterations, the data quality improved from
62%, 78%, 86%, and 94% to a final 100%, yielding the completed WildToolBench. 9 human experts
took one month to finish the whole data curation process.

D DeraiLs orF TooL ORCHESTRATION EVALUATION

Algorithm [T]shows the pseudo code for enumerating all possible tool orchestration paths. The main
design idea of this algorithm is to enumerate all possible tool execution paths in a directed acyclic
graph (DAG) using depth-first search with backtracking. At each step, it identifies the set of nodes
with zero indegree, generates all non-empty subsets to simulate parallel execution, appends the
selected nodes to the current path, and updates the indegrees of their successors. The algorithm
recursively explores all possible paths and finally classifies them into optimal and suboptimal sets

*https://github.com/public-apis/public-apis

16

Under review as a conference paper at ICLR 2026

based on path length, systematically accounting for both serial and parallel execution combinations
(mixed multi-tool).

Algorithm 1 Enumeration of All Serial and Parallel Execution Paths

Require: Directed acyclic graph G = (V, E); annotated length L
Ensure: All paths P, divided into optimal and suboptimal sets
1: Compute indegree[v] forall v € V
2: Initialize visited[v] <— false for allv € V/
3: CurrentPath < (), P < 0
4: function ZEroINDEGREE(indegree, visited)
5: return {v € V | indegree[v] = 0 A —visited[v]}
6: end function
7: function COMBINATIONS(Z)
8: return all non-empty subsets of Z
9: end function
10: procedure DFS(indegree, visited, CurrentPath)

11: 7 <+ ZEROINDEGREE(indegree, visited)
12: if Z = () then

13: if |CurrentPath| = |V| V |CurrentPath| = L then
14: Add copy of CurrentPath to P

15: end if

16: return

17: end if

18: for all C' € ComBINATIONS(Z) do

19: Backup indegree, visited, CurrentPath
20: Append C' to CurrentPath

21: Mark all v € C as visited

22: for all edges (v, u) withv € C do
23: indegree[u] + indegree[u] — 1
24: end for

25: DFS(indegree, visited, CurrentPath)
26: Restore backup

27: end for

28: end procedure

29: DFS(indegree, visited, CurrentPath)
30: L* + min{|p|: p € P}

31: Popt < {peP:|p|=L"}

32: Pyup < P\ Popt

33: return P, Popi, Pous

E CompLETE EXPERIMENTAL RESULTS

E.1 HYPERPARAMETER SETTINGS

To further enhance the reproducibility of our dataset, we hereby introduce the hyperparameter settings
used during model inference. Specifically:

For Proprietary Models, we adopted the default hyperparameters from the official website without
making any changes to hyperparameters such as temperature, top-p, and top-k.

For Open-Source Models, If an official API is available, we utilize it with its default hyperparameters.
Otherwise, the model is deployed via the Hugging Face library, where tool-calling functionality is
implemented according to its chat template. For generation, we use the model.generate method with
its default hyperparameters, setting only max_new_tokens to 512. The version of Hugging Face used
was 4.51.0, and no other modifications were made.

17

Under review as a conference paper at ICLR 2026

E.2 WiLpToorLBenca FUuLL RESULTS

We provide all the benchmarking results of 57 models as shown in Table[f] including 16 Proprietary
General Models, 30 Open-Source General Models, and 11 Open-Source Specialized Models trained
for tool-use.

Table 6: WildToolBench Full Results.

Models | Categorized by Task Type g | Categorized by Task Order M | Overall
‘ Ysingle gmulti YGelarify Yehat ‘ 1 2 3 4 ‘ Task Session
Proprietary General Models
G Gemini-2.0-Thinking 56.64 4023 5234 9492 | 7813 63.67 5195 5039 | 61.04 14.45
G Gemini-2.5-Pro 55.08 3633 46.88 86.72 | 70.31 56.64 53.52 4453 | 56.25 14.06
A Claude-4-Sonnet 60.16 4375 4180 8047 | 71.09 57.81 5273 4453 | 56.54 12.50
G ol 5430 39.06 48.05 93.75 | 69.53 60.94 5586 4883 | 58.79 12.11
© GPT-40 60.16 4180 39.45 7813 | 72.66 55.08 46.09 4570 | 54.88 11.72
A Claude-3.7-Sonnet 57.81 39.06 4141 63.28 | 60.55 50.00 48.05 4297 | 50.39 11.33
© 03 61.72 3945 4492 81.64 | 73.83 60.94 4922 4375 | 5693 10.16
J Grok-4 59.38 41.41 3359 66.02 | 63.67 5234 4297 4141 | 50.10 10.16
A Claude-4.1-Opus 5586 39.84 4180 8242 | 69.92 55.08 5039 4453 | 54.98 9.38
© GPT-4.1 5742 44.14 3438 81.25 | 69.53 5820 46.88 42.58 | 54.30 8.98
2 Mistral-Large 56.25 36.33 37.50 68.75 | 67.58 48.83 44.14 38.28 | 49.71 7.03
0 Doubao-1.6 55.86 40.23 3125 6328 | 69.14 48.83 40.23 3242 | 47.66 7.03
0 Doubao-1.5-Thinking 60.16 2266 2695 7539 | 65.63 47.66 4023 31.64 | 46.29 6.64
© GPT-5 46.09 34.38 31.64 8438 | 62.11 50.00 45.31 39.06 | 49.12 5.86
0 Doubao-1.6-Thinking 5742 3438 1875 47.27 | 57.03 39.06 31.25 30.47 | 39.45 3.13
0 Doubao-1.5 58.59 24.61 9.38 3438 | 3945 2891 2930 2930 | 31.74 0.78
Open-Source General Models
GLM-4.5 5781 40.63 4453 81.25 | 70.70 60.16 50.78 4258 | 56.05 12.11
H Kimi-K2 5430 3398 39.84 86.72 | 68.75 57.03 48.83 40.23 | 53.71 1055
%7 Qwen3-30B-A3B 48.05 28.13 4141 89.06 | 69.92 51.56 48.05 37.11 | 51.66 9.71
%7 Qwen3-14B-Thinking 56.64 3047 37.11 88.67 | 69.53 5430 50.39 38.67 | 53.22 9.38
& DeepSeek-R1 56.25 41.02 4375 80.08 | 74.22 5430 4883 43.75 | 55.27 9.38
& DeepSeek-V3 5898 38.67 3359 7930 | 75.39 5391 41.02 40.23 | 52.64 9.38
%7 Qwen3-8B-Thinking 56.64 3359 3984 87.11 | 73.05 55.08 4883 4023 | 54.30 8.98
& DeepSeek-V3.1 4492 40.63 3398 81.25 | 61.33 51.56 45.70 42.19 | 50.20 8.98
7 Qwen3-32B 57.81 3320 3984 79.69 | 69.53 5430 4648 4023 | 52.64 8.59
%7 Qwen2.5-14B-Instruct 5039 2734 3281 8320 | 6641 4844 40.63 3828 | 48.44 7.81
7 Qwen3-14B 56.25 31.25 39.84 89.06 | 71.09 5430 50.39 40.63 | 54.10 7.81
%7 Qwen3-32B-Thinking 5352 2891 37.11 80.86 | 62.50 52.73 4648 38.67 | 50.10 7.81
%7 Qwen3-4B-Thinking 60.16 28091 38.67 87.89 | 68.75 59.38 44.14 4336 | 5391 7.81
57 Qwen2.5-72B-Instruct 58.98 32.03 3438 82.81 | 70.70 50.00 46.48 41.02 | 52.05 6.25
7 Qwen3-8B 60.16 26.17 2695 7930 | 66.02 4844 3945 38.67 | 48.14 6.25
57 Qwen3-30B-A3B-Thinking | 50.39 24.61 38.67 89.45 | 71.88 49.22 44.14 37.89 | 50.78 6.25
%7 Qwen3-1.7B-Thinking 49.22 24.61 30.08 8438 | 68.75 46.09 41.80 31.64 | 47.07 6.25
57 Qwen2.5-32B-Instruct 5391 38.67 36.72 82.81 | 69.14 5430 48.83 39.84 | 53.03 5.86
7 Qwen3-4B S51.17 2266 3594 8633 | 69.14 4922 39.06 38.67 | 49.02 5.86
%7 Qwen2.5-7B-Instruct 5273 2539 2891 73.05 | 64.06 4531 3750 3320 |45.02 430
%7 Qwen2.5-3B-Instruct 4883 1836 20.70 73.83 | 55.86 41.41 3359 30.86 | 40.43 4.30
7 Qwen3-1.7B 48.05 1953 2695 81.64 | 67.58 44.14 3398 3047 | 44.04 430
%7 Qwen2.5-1.5B-Instruct 36.72 1328 2148 90.23 | 60.16 39.06 31.64 30.86 | 40.43 3.91
57 Qwen3-0.6B-Thinking 4492 16.02 23.05 87.11 | 66.02 4023 3555 29.30 | 42.77 3.91
%7 Qwen3-0.6B 46.09 7.81 12.11 7813 | 5391 3438 26.56 29.30 | 36.04 3.52
57 Qwen2.5-0.5B-Instruct 23.83 4.69 1523 82.03 | 43.75 29.69 2695 2539 | 3145 0.78
o Llama-3.3-3B-Instruct 0.00 0.00 0.39 64.84 | 21.88 17.19 1445 11.72 | 16.31 0.39
o Llama-3.3-1B-Instruct 0.00 0.00 0.39 61.33 | 17.58 1875 14.06 11.33 | 1543 0.39
o Llama-3.3-70B-Instruct 3.52 0.00 0.00 5273 | 1797 14.06 1289 11.33 | 14.06 0.00
o Llama-3.3-8B-Instruct 0.39 0.00 0.39 69.14 | 2539 19.14 14.06 1133 | 1748 0.00
Open-Source Specialized Models

® xLAM-2-32B 60.94 3477 38.67 6992 | 69.53 5273 4336 38.67 | 51.07 8.20
® xLAM-2-70B 6445 3672 2891 6484 | 64.06 51.56 42.58 36.72 | 48.73 7.81
H ToolACE2-8B 62.11 3789 3398 8438 | 72.27 59.38 46.88 39.84 | 54.59 7.42
= xLAM-2-8B 62.11 2930 2422 5430 | 52.73 44.14 39.06 3398 | 4248 5.08
B Watt-8B 61.72 2813 2266 7813 | 68.75 4727 39.06 3555 | 47.66 4.69
E Hammer2.1-7B 4023 21.88 3047 9492 | 61.72 46.88 40.63 38.28 | 46.88 4.69
® xLAM-2-1B 53.13 17.19 1523 6523 | 50.39 40.63 3398 2578 | 37.70 234
® xLAM-2-3B 5234 2344 16.02 57.03 | 4297 4336 3477 27.73 | 37.21 1.17
E Hammer2.1-3B 32.81 18.36 1133 91.02 | 3477 4648 40.63 31.64 | 38.38 0.39
E Hammer2.1-1.5B 4.69 1.56 1.17 96.09 | 26.17 26.17 26.56 24.61 | 25.88 0.00
E Hammer2.1-0.5B 9.77 2.34 3.13 86.72 | 25.39 29.69 2539 2148 | 2549 0.00

18

Under review as a conference paper at ICLR 2026

E.3 WiLpTooLBenca FUuLL TooL ORCHESTRATION RESULT

We provide all the detailed results on tool orchestration of 57 models as shown in Table[/| including
16 Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

E.4 WiLpTooLBencH FULL ERROR ANALYSIS

We provide all the detailed error analysis results of 57 models as shown in Table 8} including 16
Proprietary General Models, 30 Open-Source General Models, and 11 Open-Source Specialized
Models trained for tool-use.

F Prompts

F.1 PrompT For SINGLE-TooL CaLLS SEED TASK GENERATION

We show the role prompt of the single-tool calls task generation in Figure 9}

F.2 PrompT FOorR SEQUENTIAL MULTI-TOOL CALLS SEED TASK GENERATION

We show the role prompt of sequential multi-tool calls task generation in Figure[T0]

F.3 PrompT FOrR PARALLEL MULTI-ToOL CALLS SEED TASK GENERATION

We show the role prompt of parallel multi-tool calls task generation in Figure[TT]

F.4 PrompT For Mixep MuLrti-TooL CaLLs SEED TAsk GENERATION

We show the role prompt of mixed multi-tool calls task generation in Figure

F.5 PrompT FOrR CLARIFY SEED TASK GENERATION

We show the role prompt of the clarify task generation in Figure[T3]

F.6 PrompT FOrR CHAT SEED TASK GENERATION

We show the role prompt of chat task generation in Figure 14}

F.7 PrompPT FOR CONTEXT SEED TASK GENERATION

We show the role prompt of context task generation in Figure[T5]and Figure [T6]

G ERROR CASES

Figure [I7) presents several typical error examples discussed in the main text.

19

Under review as a conference paper at ICLR 2026

Table 7: WildToolBench Tool Orchestration Result.

M \ Task Accuracy \ AP Rate OP Rate
odels

‘ Giatti iwalti G Overall ‘ Joalti it Overall ‘ iatti Gy Overall

Proprietary General Models
G Gemini-2.0-Thinking 54.14 25.00 16.67 40.23 | 4528 39.89 40.37 | 53.50 16.67 40.66
G Gemini-2.5-Pro 49.04 25.00 1429 3633 | 47.17 39.15 39.87 | 4331 1190 32.37
A Claude-3.7-Sonnet 4395 6250 25.00 39.06 | 86.79 6140 63.65 0.00 0.00 0.00
A Claude-4-Sonnet 5478 31.25 25.00 43.75 | 60.38 4632 47.57 | 52.87 23.81 4274
A Claude-4.1-Opus 5096 4375 17.86 39.84 | 62.26 4835 49.58 | 50.32 16.67 38.59
® ol 50.96 12.50 2143 39.06 | 3585 37.50 3735 | 5032 20.24 39.83
® 03 4841 3125 23.81 3945 | 66.04 5460 55.61 0.64 0.00 0.41
© 04-mini 3949 3125 16.67 31.64 | 52.83 37.68 39.03 0.00 0.00 0.00
© GPT-40 5350 31.25 21.43 41.80 | 41.51 4540 4506 | 5159 2143 41.08
© GPT-4.1 58.60 25.00 20.24 44.14 | 49.06 4577 46.06 | 56.69 19.05 43.57
® GPT-5 4331 3750 16.67 3438 | 49.06 38.42 39.36 | 42.68 13.10 32.37
7 Grok-4 54.14 1875 2143 4141 | 41.51 4651 46.06 | 53.50 21.43 4232
2 Mistral-Large 4777 25.00 16.67 3633 | 4528 4044 40.87 | 45.86 1548 3527
0 Doubao-1.5 35.03 1250 7.14 24.61 | 37.74 2941 30.15 9.55 1.19 6.64
0 Doubao-1.5-Thinking 3121 1875 7.14 22.66 | 56.60 2335 2630 | 28.03 7.14 20.75
0 Doubao-1.6 50.96 25.00 22.62 40.23 | 5094 4779 48.07 | 5096 22.62 41.08
0 Doubao-1.6-Thinking 46.50 1250 1548 3438 | 52.83 3934 40.54 | 4395 1548 34.02
Open-Source General Models
® xLAM-2-70B 49.68 1250 16.67 36.72 | 4340 44.85 4472 | 26.75 .14 19.92
® xLAM-2-32B 4586 25.00 1548 3477 | 5849 4026 41.88 | 2548 595 18.67
® xLAM-2-8B 40.76 25.00 8.33 2930 | 43.40 27.57 2898 | 2675 3.57 18.67
® xLAM-2-3B 3312 1250 7.14 2344 | 2453 2335 2345 | 1592 3.57 11.62
® xLAM-2-1B 27.39 0.00 1.19 17.19 | 22.64 1746 1792 | 10.83 0.00 7.05
H ToolACE2-8B 47.77 3125 2024 37.89 | 5094 4301 4372 | 26.11 1429 21.99
B Watt-8B 4459 625 1.19 28.13 | 22.64 21.87 2194 | 4459 1.19 29.46
E Hammer2.1-7B 33.12 1250 2.38 21.88 | 2453 1324 1424 | 3185 2.38 21.58
E Hammer2.1-3B 2484 1250 7.14 18.36 | 32.08 18.01 19.26 | 2420 7.14 18.26
E Hammer2.1-1.5B 2.55 0.00 0.00 1.56 1.89 1.29 1.34 2.55 0.00 1.66
B Hammer2.1-0.5B 318 0.00 1.19 2.34 9.43 1048 10.39 318 0.00 2.07
Open-Source Specialized Models

® Llama-3.3-70B-Instruct 0.00 0.00 0.00 0.00 15.09 2.02 3.18 0.00 0.00 0.00
o Llama-3.3-8B-Instruct 0.00 0.00 0.00 0.00 377 0.18 0.50 0.00 0.00 0.00
o Llama-3.3-3B-Instruct 0.00 0.00 0.00 0.00 377 0.18 0.50 0.00 0.00 0.00
o Llama-3.3-1B-Instruct 0.00 0.00 0.00 0.00 377 0.18 0.50 0.00 0.00 0.00
7 Qwen2.5-72B-Instruct 4459 2500 9.52 32.03 | 41.51 30.33 3132 | 42.04 7.14 29.88
%% Qwen2.5-32B-Instruct 52.87 4375 1071 38.67 | 56.60 24.08 2697 | 5223 10.71 37.76
%7 Qwen2.5-14B-Instruct 3949 1875 595 2734 | 2642 19.67 2027 | 3631 476 25.31
%7 Qwen2.5-7B-Instruct 3822 625 476 2539 | 2830 2629 2647 | 33.12 2.38 22.41
%7 Qwen2.5-3B-Instruct 28.66 6.25 1.19 18.36 | 15.09 12.13 1240 | 27.39 0.00 17.84
%7 Qwen2.5-1.5B-Instruct 21.66 0.00 0.00 13.28 943 4.96 5.36 21.66 0.00 14.11
%7 Qwen2.5-0.5B-Instruct 7.64 0.00 0.00 4.69 1132 3.68 4.36 7.64 0.00 4.98
7 Qwen3-30B-A3B 42.04 625 5.95 28.13 | 2642 25.00 25.13 | 40.76 5.95 28.63
7 Qwen3-32B 46.50 1250 11.90 33.20 | 47.17 30.70 32.16 | 4395 9.52 31.95
7 Qwen3-14B 4459 25.00 7.14 31.25 | 41.51 28.86 2998 | 4459 7.14 31.54
7 Qwen3-8B 3885 0.00 7.14 26.17 | 15.09 25.18 2429 | 3822 595 26.97
7 Qwen3-4B 35.67 6.25 1.19 22.66 | 2830 1342 1474 | 3439 1.19 22.82
%7 Qwen3-1.7B 31.85 0.00 0.00 19.53 | 18.87 1691 17.09 | 31.85 0.00 20.75
%7 Qwen3-0.6B 12.10 625 0.00 7.81 22.64 9.19 10.39 | 11.47 0.00 7.47
%7 Qwen3-30B-A3B-Thinking | 36.94 6.25 4.76 2461 | 1887 2243 2211 | 3567 3.57 24.48
%7 Qwen3-32B-Thinking 42.04 1250 7.14 2891 | 41.51 2831 2948 | 40.13 7.14 28.63
%7 Qwen3-14B-Thinking 4395 2500 595 3047 | 4528 31.62 3283 | 4395 595 30.71
%7 Qwen3-8B-Thinking 47.13 1250 11.90 3359 | 2830 3199 31.66 | 47.13 1071 34.44
7 Qwen3-4B-Thinking 42.68 1875 4.6 2891 | 39.62 23.16 24.62 | 42.68 4.6 29.46
%7 Qwen3-1.7B-Thinking 38.85 6.25 1.19 2461 | 2642 1140 1273 | 3885 1.19 25.73
%% Qwen3-0.6B-Thinking 26.11 0.00 0.00 16.02 | 18.87 9.74 10.55 | 2548 0.00 16.60
GLM-4.5 51.59 31.25 2143 40.63 | 67.92 4890 50.59 | 49.68 20.24 39.42
K Kimi-K2 4586 1250 1548 3398 | 52.83 3493 36.52 | 4395 1548 34.02
& DeepSeek-R1 53.50 1875 2143 41.02 | 41.51 44.12 4389 | 52.87 2024 4149
& DeepSeek-V3 52.87 25.00 1429 38.67 | 4340 3254 3350 | 51.59 1429 3859
& DeepSeek-V3.1 53.50 25.00 19.05 40.63 | 52.83 37.68 39.03 | 47.77 1429 36.10

20

Under review as a conference paper at ICLR 2026

Table 8: WildToolBench Full Error Distribution Analysis.

M | Action Errors | Parameter Errors
odels

Refusal Wrong Name Wrong Redundant Call Early Param Param Param

) Missing Info Refusal Call Error Termination | Type Error ~Hallucination Value Error
Proprietary General Models
G Gemini-2.0-Thinking 24.56% 8.02% 3.26% 23.06% 18.05% 4.76% 1.50% 4.51% 12.28%
G Gemini-2.5-Pro 33.93% 7.81% 3.79% 16.74% 14.51% 5.13% 1.12% 6.47% 10.49%
A Claude-3.7-Sonnet 11.02% 16.73% 17.91% 16.34% 16.54% 1.57% 1.57% 6.30% 12.01%
A\ Claude-4-Sonnet 9.44% 19.55% 11.24% 16.40% 12.13% 6.52% 1.57% 8.31% 14.83%
A Claude-4.1-Opus 15.18% 17.79% 9.76% 18.22% 12.15% 3.25% 2.17% 8.46% 13.02%
G ol 30.57% 8.53% 3.55% 21.33% 8.77% 8.06% 1.42% 6.40% 11.37%
© 03 10.66% 17.46% 9.98% 13.15% 17.01% 4.31% 1.36% 10.43% 15.65%
© 04-mini 18.03% 17.62% 7.99% 16.60% 16.19% 3.89% 1.43% 9.02% 9.22%
© GPT-40 5.41% 21.65% 12.12% 14.50% 11.26% 7.58% 2.60% 10.82% 13.85%
© GPT-4.1 11.97% 21.58% 8.55% 18.80% 9.83% 6.41% 1.71% 9.62% 11.54%
® GPT-5 15.93% 13.05% 6.91% 31.67% 10.17% 3.65% 1.15% 10.94% 6.53%
4 Grok-4 3.72% 24.07% 17.03% 17.81% 10.18% 5.68% 2.94% 6.46% 12.13%
4 Mistral-Large 8.93% 24.08% 15.34% 8.16% 14.76% 5.05% 1.94% 8.16% 13.40%
0 Doubao-1.5 15.16% 31.47% 21.32% 2.29% 11.30% 2.72% 1.72% 8.44% 5.58%
0 Doubao-1.5-Thinking 17.27% 27.64% 11.45% 5.82% 13.09% 4.36% 1.82% 11.45% 7.09%
0 Doubao-1.6 1.87% 25.37% 17.54% 22.39% 10.07% 5.22% 1.49% 5.78% 10.26%
0 Doubao-1.6-Thinking 3.87% 30.97% 21.77% 16.77% 8.87% 4.68% 0.97% 6.13% 5.97%
Open-Source General Models
o Llama-3.3-70B-Instruct 62.27% 4.32% 5.11% 19.66% 5.91% 1.14% 1.14% 0.11% 0.34%
o Llama-3.3-8B-Instruct 77.99% 0.00% 0.00% 21.66% 0.00% 0.36% 0.00% 0.00% 0.00%
o Llama-3.3-3B-Instruct 78.30% 0.00% 0.00% 21.70% 0.00% 0.00% 0.00% 0.00% 0.00%
o Llama-3.3-1B-Instruct 80.14% 0.00% 0.00% 19.86% 0.00% 0.00% 0.00% 0.00% 0.00%
7 Qwen2.5-72B-Instruct 12.42% 21.59% 8.96% 15.07% 12.02% 8.76% 2.24% 7.54% 11.20%
7 Qwen2.5-32B-Instruct 12.89% 17.88% 9.15% 16.84% 13.72% 7.90% 2.08% 7.90% 11.64%
37 Qwen2.5-14B-Instruct 17.42% 15.91% 8.14% 19.89% 12.50% 8.71% 2.08% 6.25% 9.09%
7 Qwen2.5-7B-Instruct 11.01% 21.49% 12.26% 12.61% 20.96% 5.51% 1.42% 6.75% 7.82%
% Qwen2.5-3B-Instruct 14.92% 20.66% 10.98% 13.28% 18.36% 6.23% 0.98% 5.25% 9.18%
7 Qwen2.5-1.5B-Instruct 34.10% 13.11% 4.10% 15.57% 16.07% 3.44% 0.98% 4.59% 7.05%
7 Qwen2.5-0.5B-Instruct 27.92% 11.82% 6.55% 20.23% 14.96% 2.99% 1.00% 6.84% 5.70%
37 Qwen3-32B 10.72% 19.59% 10.31% 20.21% 16.91% 5.57% 1.24% 6.80% 8.66%
37 Qwen3-30B-A3B 16.77% 14.95% 5.25% 30.10% 14.34% 4.65% 1.41% 4.65% 7.88%
7 Qwen3-14B 12.55% 18.72% 5.53% 18.51% 14.26% 8.09% 1.70% 11.70% 8.94%
7 Qwen3-8B 8.29% 27.31% 9.60% 6.59% 19.40% 7.53% 1.69% 9.98% 9.42%
37 Qwen3-4B 15.71% 15.13% 6.51% 14.37% 18.01% 6.90% 1.34% 11.69% 10.34%
3% Qwen3-1.7B 14.49% 21.12% 8.03% 9.42% 24.08% 5.24% 1.05% 6.63% 9.95%
7 Qwen3-0.6B 14.05% 25.80% 8.40% 6.56% 29.47% 3.82% 1.07% 3.97% 6.72%
%7 Qwen3-30B-A3B-Thinking | 18.45% 12.90% 4.96% 29.37% 14.48% 5.16% 1.79% 5.16% 7.74%
7 Qwen3-14B-Thinking 15.03% 17.12% 5.64% 19.83% 13.99% 5.85% 1.88% 10.23% 10.23%
7 Qwen3-8B-Thinking 11.32% 19.44% 6.84% 14.10% 17.52% 6.84% 2.14% 10.47% 11.32%
7 Qwen3-4B-Thinking 12.71% 20.55% 6.14% 14.41% 17.37% 5.72% 3.18% 8.69% 11.23%
7 Qwen3-1.7B-Thinking 15.31% 20.66% 7.20% 12.73% 16.05% 7.01% 2.03% 7.20% 11.44%
%7 Qwen3-0.6B-Thinking 18.26% 19.45% 5.63% 15.70% 23.04% 4.78% 1.02% 4.61% 7.51%
GLM-4.5 10.89% 19.33% 10.67% 18.89% 15.33% 6.00% 1.11% 4.89% 12.89%
W Kimi-K2 21.31% 13.50% 7.17% 16.24% 11.60% 6.54% 2.53% 6.96% 14.14%
& DeepSeek-R1 13.54% 14.41% 11.14% 20.96% 11.79% 6.33% 1.31% 8.73% 11.79%
& DeepSeek-V3 10.52% 21.65% 10.93% 15.88% 16.49% 5.15% 1.44% 7.63% 10.31%
& DeepSeek-V3.1 20.00% 11.76% 9.41% 25.29% 13.92% 3.73% 0.98% 5.69% 9.22%
Open-Source Specialized Models

® xLAM-2-70B 6.48% 30.67% 17.14% 4.38% 16.19% 5.71% 0.95% 5.90% 12.57%
® xLAM-2-32B 8.98% 21.76% 15.37% 8.38% 18.56% 4.19% 1.60% 5.39% 15.77%
® xLAM-2-8B 5.60% 27.33% 19.86% 3.90% 19.52% 5.09% 2.21% 4.92% 11.21%
® xLAM-2-3B 6.84% 28.30% 17.11% 5.13% 21.00% 4.98% 1.56% 4.82% 9.64%
® xLAM-2-1B 9.40% 24.61% 13.95% 5.96% 22.57% 4.86% 1.88% 3.61% 10.66%
H ToolACE2-8B 10.11% 28.60% 8.60% 6.67% 18.28% 6.02% 2.80% 4.09% 14.84%
@ Watt-8B 5.97% 30.97% 10.45% 7.09% 23.13% 4.29% 1.49% 6.16% 10.45%
% Hammer2.1-7B 38.24% 15.81% 2.39% 12.68% 15.26% 1.84% 0.55% 4.41% 8.82%
B Hammer2.1-3B 36.13% 19.18% 3.65% 19.81% 8.40% 3.01% 0.95% 2.06% 6.66%
Hammer2.1-1.5B 60.47% 3.29% 1.32% 32.15% 1.32% 0.26% 0.00% 0.26% 0.92%
B4 Hammer2.1-0.5B 30.80% 17.69% 4.46% 22.15% 13.11% 2.75% 0.13% 6.82% 1.97%

21

Under review as a conference paper at ICLR 2026

Single-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, please propose 5 tasks that you need the super intelligent agent to solve based on the
[Requirements].

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, and each
task should only require a single call to {{{tool}}}.

The tasks should be specific and diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}.

[Requirements]="""

1. The description of the user’s task must include information on all the required parameters
needed to call {{{tool}}}. For other optional parameters, please add them as you see fit,
using natural language.

2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.

3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the length of the user’s tasks varies, gradually increasing from short to long.
5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.

6. Extract common entities that appear in all descriptions from the [Tool List] and ensure that
these entities appear in the user’s tasks.

7. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.

nn

[Tool List]="""
{{{tool}}}

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

}

nn

Figure 9: Single-Tool Calls task Generation Prompt.

22

Under review as a conference paper at ICLR 2026

Sequential Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require the sequential invocation of multiple tools
to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info} } }
[Requirements]="""

1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.

3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.

5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.

6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.

7. There must be dependencies between the multiple tools invoked, meaning that tool A must
be called and completed before tool B can be run, i.e., tool B must be invoked after tool A.
8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.

9. Do not explicitly specify the names of the tools to be used in the user’s tasks.

nn

[Tool List]="""
{{ {tool 5} } }

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

nn

Figure 10: Sequential Multi-Tool Calls task Generation Prompt.

23

Under review as a conference paper at ICLR 2026

Parallel Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks need to be specific, diverse, and require parallel invocation of multiple tools to
solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}
[Requirements]="""

1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.

3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.

5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.

6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.

7. There must be no dependency between the multiple tools invoked. A dependency between
invocations means that tool B can only be run after tool A is completed. No dependency
means that tool A and tool B can be invoked in parallel.

8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.

9. Do not explicitly specify the names of the tools to be used in the user’s tasks.

nn

[Tool List]="""
{{{tools}}}

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

nn

Figure 11: Parallel Multi-Tool Calls task Generation Prompt.

24

Under review as a conference paper at ICLR 2026

Mixed Multi-Tool Calls task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

The tasks should be specific, diverse, and require both serial and parallel invocation of multiple
tools to solve.

Finally, please output the final result according to the [Format] without generating any extra
text.

{{{all_tool_required_info}}}
[Requirements]="""

1. The description of the user’s task must include all the required parameters needed to invoke
the tools, while other optional parameters can be added as you see fit, using natural language.
2. The user’s tasks should use different types of sentence structures: imperative, declarative,
interrogative, etc.

3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.

5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.

6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.

7. There should be dependencies between some of the tools invoked, while others should not
have dependencies. A dependency between invocations means that tool B can only be run
after tool A is completed. No dependency means that tool A and tool B can be invoked in
parallel.

8. The difficulty of the tasks is divided into easy, medium, and hard levels. Easy represents
simple, medium represents moderate, and hard represents difficult. Ensure that the 5 tasks
you generate are all of medium difficulty or above.

9. Do not explicitly specify the names of the tools to be used in the user’s tasks.

nn

[Tool List]="""

{{{tools}}}

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

Figure 12: Mixed Multi-Tool Calls task Generation Prompt.

25

Under review as a conference paper at ICLR 2026

Clarify task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], please propose 5 tasks that you need the super intelligent
agent to solve.

These 5 tasks must require the combined use of tools from the [Tool List] (including:
{{{all_tool_name}}}) to be completed.

All 5 tasks must require the use of {{{tool}}} from the [Tool List] to be completed, but will

leave the super intelligent agent unclear on how to fill in some of the required parameters of
{{{tool}}}, and should be diverse.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""

1. The description of the user’s task must lack all the necessary information for calling
{{{tool}}}, leaving only the optional parameter information, which you can add as you see
fit, using natural language descriptions. Note that tool parameters allow for some parameter
inference, meaning that if the tool parameters can be inferred from the user’s task description,
it does not count as lacking necessary information. Lacking means that even through inference,
the parameter values cannot be obtained.

2. The user’s tasks need to use different types of sentence structures: imperative sentences,
declarative sentences, interrogative sentences, etc.

3. The user’s tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the length of the user’s tasks varies, from short to long, gradually increasing in
length.

5. Ensure that the user’s tasks involve different themes/instances, different scenarios, and
different roles.

6. Based on the descriptions of all tools in the [Tool List], extract the common entities that
appear in all descriptions and ensure that these entities appear in the user’s tasks.

7. Task difficulty is divided into easy, medium, and hard levels. Easy represents simple,
medium represents moderate, and hard represents difficult. More difficult tasks require more
steps to execute. Ensure that the 3 tasks you generate are all of medium difficulty or above.
8. Do not explicitly specify the tool {{{tool}}} in the user’s tasks.

nn

[Tool List]="""
{{{tools}}}

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

nn

Figure 13: Clarify task Generation Prompt.

26

Under review as a conference paper at ICLR 2026

Chat task Generation Prompt.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has access to a range of external tools and can use these tools to
solve the tasks you propose.

Next, based on the [Requirements], propose 5 casual conversation tasks that you need the
super-intelligent agent to solve.

These 5 casual conversation tasks should not use any tools from the [Tool List], but should
have some thematic relevance.

Finally, please output the final result according to the [Format] without generating any extra
text.

The required parameters for tool {{{tool}}} are: {{{tool_required}}}, and the optional
parameters are: {{{tool_no_required}}}

[Requirements]="""

1. The user task is a casual conversation task, which must be unrelated to the functions of the
[Tool List], but should have some thematic relevance.

2. User tasks need to use different types of sentence structures: imperative, declarative,
interrogative, etc.

3. User tasks should include different tones: colloquial, formal, polite, direct, etc.

4. Ensure that the lengths of the user tasks are different, ranging from short to long, with
gradually increasing length.

5. Ensure that the user tasks involve different themes/examples, different scenarios, and
different role identities.

nn

[Tool List]="""
{{ {t00l s} } }

nn

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

nn

Figure 14: Chat task Generation Prompt.

27

Under review as a conference paper at ICLR 2026

Context task Generation Prompt, Part 1.

Please act as a user interacting with a super intelligent agent.

This super intelligent agent has a Planner, an Agent assistant, and a range of external tools
that can be used to solve the tasks you propose, as detailed in the [Tool List].

Based on the information in [Historical Conversations], you have already proposed your task,
and the super intelligent agent has solved it for you.

Therefore, next, please continue to propose new tasks based on the reply from the Agent
assistant in the last round of [Historical Conversations], referring to the [Turn Type Information]
and [Example], and the new tasks you propose must require the use of {{{tool_number}}}
tool from the [Tool List] to solve.

Finally, output according to the [Format].
{{{all_tool_required_info} } }

[Tool List]="""

{{{tools}}}

[Turn Type Information]=
{{{turn_type_info}}}

Figure 15: Context task Generation Prompt, Part 1.

28

Under review as a conference paper at ICLR 2026

Context task Generation Prompt, Part 2.

When actually generating tasks, one of the following types will be substituted into the prompt
placeholder {{{turn_type_info}}}.

1. Partial Information: The new task generated needs to omit some content from previous
conversations, without having to state the full semantics. The omitted content can be any
sentence component, including: subject, attribute, attribute value, modifier, etc.

2. Coreferential Reference: The new task generated requires reference to some content from
previous conversations, which can be: 1) Ordinal reference, such as: the second point, the
last point, etc. 2) Pronominal reference, such as: he, this sentence, which one, etc. 3) Vague
reference, such as: xxx this model, etc.

3. Long-Range dependency: The new task generated needs to use content from previous
conversations (excluding the last round), for example, something I mentioned in the first
round, something I mentioned before.

nn

nn

[Example]=
[Historical Conversations |=***
{{{history}}}

skskok
[Output]==***

{{{continue_task}}}
ok

nn

nn

[Historical Conversations]=
{{{history}} }

nn

[Format]=
{
"task 1": "xxx",
"task 2": "xxx",
"task 3": "xxx",
"task 4": "xxx",
"task 5": "xxx",

nn

Figure 16: Context task Generation Prompt, Part 2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Help me check the news from BBC the day before yesterday. The last one in the first round of results Task 3.2: Coreferential Reference
CEET T A ction: Observations: o | | The URL parameter refrred to by the correct
lterArticlesBySource”” - The Global Climate Change Conference is held in Paris i ion is the last URL of the first round
{*fromDate"; "2024-12-22", "source"; "BBC" - Tech giant relcases the latest smartphone ")

Lo b 4 The URL parameter referred to by the error
o et ity copn.cominfU41 28365y | | identification i the last URL of the second round

Yesterday ESPN

Action: P . F
 name: "flterArticlesBySource® (Y4 Maintained the intention to check the news Get the metadata of all the rest articles for me. Also, Iwantto Task 4: Long-Range
- args: {"fromDate": "2024-12-23", "source”: "ESPN" | | and use the tools correctly know about other articles by the authors of these rest articles. Dependency

Observations:
- Author: Jane Smith
Publication Date: December 22, 2024
- Author: Emily Johnson
- Publication Date: December 23, 2024

Intent drift occurs, incorrectly asking for
intent

Correctly identify the URL parameters of the
: “getArticleByAuthor first and second rounds of articles, and obtain
wuthor': "Jane Smith"} the author's name based on the execution

results, and query their other articles

1 want to obtain the metadata of one of them Task 3.1: Coreferential Reference

Omitting contextual information and repeatedly
asking users for existing content

Figure 17: Typical error examples discussed in the main text

	Introduction
	Related Work
	WildToolBench
	Formulation
	Data Curation
	Challenge 1: Tool Orchestration for Compositional Task
	Challenge 2: Infer Hidden Intention Through Dialogue
	Challenge 3: Adaptable Policy Switch for Instruction transition
	Statistics

	Experiments
	Overall Performance
	LLMs Perform Poorly on Tool Orchestration
	LLMs Struggle to Infer intention Across Dialogue
	User Instructions Change, and LLMs Lag Behind
	Error Analysis

	Conclusion
	Reproducibility statement
	Limitations
	The Use of Large Language Models (LLMs)
	Benchmark Comparison
	Data Curation
	Details of Tool Orchestration Evaluation
	Complete Experimental Results
	Hyperparameter Settings
	WildToolBench Full Results
	WildToolBench Full Tool Orchestration Result
	WildToolBench Full Error Analysis

	Prompts
	Prompt For Single-Tool Calls Seed Task Generation
	Prompt For Sequential Multi-Tool Calls Seed Task Generation
	Prompt For Parallel Multi-Tool Calls Seed Task Generation
	Prompt For Mixed Multi-Tool Calls Seed Task Generation
	Prompt For Clarify Seed Task Generation
	Prompt For Chat Seed Task Generation
	Prompt For Context Seed Task Generation

	Error Cases

