
Representing Rule-based Chatbots with Transformers

Dan Friedman 1 Abhishek Panigrahi 1 Danqi Chen 1

Abstract

Transformer-based chatbots can conduct fluent,
natural-sounding conversations, but we have lim-
ited understanding of the mechanisms underlying
their behavior. Prior work has taken a bottom-up
approach to understanding Transformers by con-
structing Transformers for various synthetic and
formal language tasks, such as regular expressions
and Dyck languages. However, it is not obvious
how to extend this approach to understand more
naturalistic conversational agents. In this work,
we take a step in this direction by constructing
a Transformer that implements the ELIZA pro-
gram, a classic, rule-based chatbot. ELIZA illus-
trates some of the distinctive challenges of the
conversational setting, including both local pat-
tern matching and long-term dialog state tracking.
We build on constructions from prior work—in
particular, for simulating finite-state automata—
showing how simpler constructions can be com-
posed and extended to give rise to more sophis-
ticated behavior. Next, we train Transformers
on a dataset of synthetically generated ELIZA
conversations and investigate the mechanisms the
models learn. Our analysis illustrates the kinds
of mechanisms these models tend to prefer—for
example, models favor an induction head mecha-
nism over a more precise, position based copying
mechanism; and using intermediate generations
to simulate recurrent data structures, like ELIZA’s
memory mechanisms. Overall, by drawing an
explicit connection between neural chatbots and
interpretable, symbolic mechanisms, our results
offer a new setting for mechanistic analysis of
conversational agents.1

1Princeton Language and Intelligence (PLI), Princeton
University. Correspondence to: Dan Friedman <dfried-
man@princeton.edu>.

1Code and data for reproducing the experiments are
available at https://github.com/princeton-nlp/
ELIZA-Transformer.

1 Introduction
State-of-the-art Transformer-based chatbots such as Chat-
GPT have remarkable capability of conducting fluent,
natural-sounding conversations, but we have a limited un-
derstanding of the underlying mechanisms. One approach
to understanding Transformers is to use constructions: iden-
tifying explicit mechanisms that a Transformer could theo-
retically use to solve a particular task. Prior work has con-
structed Transformers for a variety of synthetic and formal
language tasks, including regular languages (Bhattamishra
et al., 2020a; Liu et al., 2023), Dyck languages (Yao et al.,
2021), and PCFGs (Zhao et al., 2023). However, this line
of work has focused mainly on single-sentence tasks, and
how to extend these approaches to more naturalistic con-
versational settings remains as an open question. In this
work, we propose to use rule-based chatbots for formal
and mechanistic analysis of neural conversational agents.
First, we construct a Transformer that implements a classic
rule-based chatbot algorithm, and then we use this construc-
tion to inform a series of empirical investigations into how
Transformers learn conversational tasks.

In particular, we focus on ELIZA (Weizenbaum, 1966), one
of the first artificial chatbots. The ELIZA algorithm is sim-
ple but exhibits a number of sophisticated conversational
behaviors (Fig. 1). The majority of ELIZA’s behavior is
based on local pattern/transformation rules: ELIZA com-
pares the user’s input to an inventory of templates, and
responds by reassembling the input according to an asso-
ciated transformation rule. However, ELIZA also employs
several mechanisms that make use of the full conversational
history, including a mechanism for varying its responses
between successive turns, and a “memory queue” to refer
to turns from the beginning of the conversation. The re-
sulting conversations can be surprisingly naturalistic, with
early users ascribing emotion and understanding to the pro-
gram (Weizenbaum, 1976). ELIZA therefore offers a natural
next step from simpler, sentence-level settings, comprising
both local pattern matching and long-distance dialog state
tracking.

In the first part of the paper (Sec. 3), we describe how
to implement the ELIZA algorithm with a decoder-only
Transformer (Vaswani et al., 2017) (Fig. 2). We start by
showing how we can use constructions from prior work as

1

https://github.com/princeton-nlp/ELIZA-Transformer
https://github.com/princeton-nlp/ELIZA-Transformer

Representing Rule-based Chatbots with Transformers

Figure 1: An example of an ELIZA conversation, adapted from (Weizenbaum, 1966). ELIZA uses both local pattern
matching and two long-term memory mechanisms (cycling through responses, and a memory queue). At each turn, ELIZA
compares the most recent input to an inventory of decomposition templates and applies one of the associated reassembly
rules. If a template is matched more than once in a conversation, ELIZA cycles through a list of possible reassembly rules
before repeating a response. If the input contains a special keyword (“my”), ELIZA stores it in a memory queue. Later, if an
input does not match any of the templates, ELIZA reads the first memory from the queue.

modular building blocks—in particular, by decomposing the
task into a cascade of finite state automata (Liu et al., 2023;
Angluin et al., 2023), along with a copying mechanism
for generating responses. This decomposition attests to
the usefulness of algebraic automata as building blocks for
characterizing complex behavior in Transformers. On the
other hand, we also identify alternative constructions for
key subtasks, including a more robust copying mechanism
(Sec. 3.2) and memory mechanisms (Sec. 3.3) that make use
of intermediate ELIZA outputs—akin to a scratchpad (Nye
et al., 2021) or Chain-of-Thought (Wei et al., 2022b). These
alternative constructions inform our empirical investigations
later on. Incidentally, the ELIZA framework happens to
be Turing complete (Hay & Millican, 2022); our results
therefore lead to a simple, alternative construction for a
Transformer that simulates a Turing machine, which we
discuss in Appendix B.4.

In the second part of the paper, we generate a dataset of
ELIZA transcripts and train Transformers to simulate the
ELIZA algorithm (Sec. 4.1). First we investigate which
aspects of the task are more difficult for the models to learn,
finding that models struggle the most with precise copying
and with the memory queue mechanism—which requires
the composition of several distinct mechanisms (Sec. 4.2).
Next, we investigate which of our hypothesized mechanisms
better match what the models learn, and how the result
varies according to the data distribution (Sec. 4.3). For
copying, we find that models have a strong bias for an
induction head mechanism (Olsson et al., 2022), leading
to worse performance on sequences with a high degree of
internal repetition. For the memory components, we find

that models make use of intermediate outputs to simulate
the relevant data structures, underscoring the importance
of considering intermediate computation in understanding
Transformers, even without an explicit scratchpad or Chain-
of-Thought. Together, our results illustrate that ELIZA
offers a rich setting for mechanistic analysis of learning
dynamics, allowing us to decompose the task into subtasks,
conduct fine-grained behavioral analysis, and connect this
analysis to predictions about the model’s mechanisms.

Overall, by drawing an explicit connection between neu-
ral chatbots and interpretable, symbolic mechanisms, our
results offer a new setting for algorithm-level understand-
ing of conversational agents. We conclude by discussing
the broader implications of our results for future work on
interpretability and the science of large language models.

2 Background: ELIZA
We start by describing the ELIZA algorithm (Weizenbaum,
1966), following the presentation of Jurafsky & Martin
(2020). The ELIZA algorithm can be decomposed into
two types of behavior: local pattern matching and long-term
memory, illustrated in Fig. 1. We discuss ELIZA in more
detail in Appendix A.

2.1 Local Pattern Matching

First, ELIZA compares the most recent user input to an
inventory of pattern/transformation rules, such as the fol-
lowing:

0 YOU 0 ME → What makes you think I 3 you?

2

Representing Rule-based Chatbots with Transformers

The left-hand side of the rule is called a decomposition
template and corresponds to a simple regular expression,
where the 0 symbol is a wildcard that matches 0 or more
occurrences of any word. If an input matches a template, it is
partitioned into a set of decomposition groups corresponding
to the wildcards. For example, the input “It seems like you
hate me” would be decomposed into four groups: (1) It
seems like (2) you (3) hate (4) me. The right-hand side of the
rule is called a reassembly rule, and a response is generated
by replacing any number in the reassembly rule with the
content of the corresponding decomposition group. In this
case, ELIZA will respond, “What makes you think I hate
you?” An ELIZA chatbot is defined by an inventory of these
rules, which are organized into a configuration file known as
the script. Each decomposition template is assigned a rank
and associated with one or more reassembly rules. Given an
input, ELIZA finds the highest ranked template that matches
the sentence and applies one of the associated reassembly
rules. The script also must assign some reassembly rules
to a null template, which is used when none of the other
templates matches.

2.2 Long-Term Memory

While most responses consider only the previous utterance,
ELIZA also includes two mechanisms for referring to infor-
mation from earlier in the conversation.

Cycling through reassembly rules First, each template
in a script can be associated with a list of reassembly rules.
If the template is matched multiple times in a conversation,
ELIZA will cycle through all of the reassembly rules in
the list before returning to the first item. For example, in
Weizenbaum’s ELIZA script, if the input contains the word
“sorry,” ELIZA will initially respond with “Please don’t
apologize.” If the user says “sorry” a second time, ELIZA
will say “Apologies aren’t necessary.” If the user contains to
say “sorry”, ELIZA will eventually say “I’ve told you that
apologies are not required,” and then cycle back to the first
rule in the list.

Memory queue Second, if an utterance contains a partic-
ular keyword (by default, the word “my”), ELIZA stores it
in a queue, referred to as the memory queue. Later in the
conversation, if the user’s input does not match any of the
templates, ELIZA will output the first item in the queue,
applying one of a set of memory reassembly rules. For ex-
ample, at the beginning of the conversation in Fig. 1, the
user states “My boyfriend made me come here.” Many turns
later, the user enters a sentence that does not match any of
the patterns, and ELIZA replies, “Does that have anything to
do with the fact that your boyfriend made you come here?”

3 Constructions
Now we present our constructions for implementing the
ELIZA program with a Transformer decoder. We divide the
constructions into four subtasks, illustrated in Fig. 2. We
describe the constructions at a high-level in this section and
defer the details to Appendix B.

Setup We consider a decoder-only Transformer with soft-
max attention. At each turn in the conversation, the input
will be the concatenation of the conversation so far, with
each user input and each ELIZA response preceded by a spe-
cial delimiter character, either u: or e:, respectively. The
constructions use no positional encodings, as we can use the
self-attention mask to infer positional information (Haviv
et al., 2022; Kazemnejad et al., 2023), and to segment the
input into turns, in order to restrict attention to a particular
utterance. See Appendix B.1 for more details.

3.1 Local Pattern Matching

We start by considering a single turn in the conversation,
which involves first finding a template that matches the
input, and then generating a response using the associated
transformation rule.

Matching templates For template matching, we make use
of the fact that ELIZA templates are equivalent to star-free
regular expressions; these can be recognized by simulating
a corresponding finite-state automaton. We build on the
constructions of Liu et al. (2023); Angluin et al. (2023). At
a high level, we can recognize a template with L symbols
using a Transformer with L layers. At each layer ℓ and
position i, the Transformer determines whether the input
matches the first ℓ symbols of the template at position i. The
final output can be used to both (a) determine if an input
matches a template, and (b) decompose the input according
to the template’s decomposition groups. Our constructions
recognize multiple templates in parallel using two attention
heads per layer—one attending uniformly to the full pre-
fix, and one attending to the previous position. The depth
of the Transformer therefore scales with the length of the
longest template in the configuration script, and the width
scales with the total number of templates in the script. See
Appendix B.2 for more details.

Generating a response Now we assume that we have
identified a matching template and that the embedding
for each input token identifies the decomposition group
to which that token belongs. The next step is now to ap-
ply the chosen reassembly rule to the input to generate a
response. At each generation step, the model needs to either
generate a constant word (defined by the reassembly rule),
or copy a word from one of the decomposition groups of
the user’s input. We focus here on two high-level copying

3

Representing Rule-based Chatbots with Transformers

Figure 2: The input to the Transformer is the conversation history, consisting of user inputs (beginning with u:) followed by
ELIZA’s responses (e:). The constructions then have four parts. First, the input is divided into segments, each corresponding
to a user input or ELIZA response. Second, the model attempts to match each user input to a decomposition template; this
step is executed in parallel, with each input compared to every possible decomposition template. The model then identifies
the highest scoring template and selects a transformation rule, taking into account the number of times this template has
been matched earlier in the conversation. Finally, the model generates an answer, either by applying a transformation rule
to the most recent user input (4a) or by transforming an input from earlier in the conversation, using the “memory queue”
mechanism (4b).

mechanisms, deferring the precise details to Appendix B.3.

Option 1: Content-based attention (induction head)
The first possible approach is based on the induction
head (Olsson et al., 2022). This mechanism has been widely
studied in prior work and is considered a key primitive
in Transformers (e.g. Reddy, 2024; Singh et al., 2024;
Akyürek et al., 2024; Edelman et al., 2024). In our setting,
we define an induction head as follows: Given an input
sequence w, at each output position i, an induction head
attends to an input position j such that wi−n, . . . , wi =
wj−n−1, . . . , wj−1, and copies the token value wj (where n
is some context size). This mechanism has a key drawback:
as noted by Zhou et al. (2023), this mechanism assumes that
each word has a unique n-gram prefix, so it can fail if the
same n-gram appears more than once in the input sequence.

Option 2: Position-based attention To avoid these short-
comings, we propose a second option that uses position
rather than content to identify the next word to copy. Ob-
serve that, at each step, we can identify the position to copy
next as a function of the reassembly rule; the number of
tokens generated so far; and the number of tokens in each
decomposition group. This can be accomplished using an
attention layer to obtain the relevant counts, and a feedfor-
ward layer to calculate the target position. (See Appendix
Fig. 10 for details.) Compared to the induction head, this
mechanism works equally well regardless of the content of
the copying segment. The drawback of this approach is that
it relies on precise position arithmetic. This type of position

arithmetic might not generalize to longer positions, which
is why Zhou et al. (2023) do not allow it in RASP-L, their
easily-learnable subset of RASP.

3.2 Cycling through Reassembly Rules

Now we turn to the first subtask that makes use of informa-
tion from earlier in the conversation: cycling through re-
assembly rules. Specifically, we allow each template t to be
associated with a sequence of reassembly rules r1, . . . , rM .
When template t appears in a conversation for the ith time,
the model should respond with rule ri%M . We consider two
mechanisms, illustrated in Fig. 11.

Option 1: Modular prefix sum One natural option is to
use the modular prefix sum mechanism described by Liu
et al. (2023): an attention head counts the number of times
t has been matched, and an MLP outputs the result modulo
M . We anticipate that such a mechanism might perform
worse as the sequence grows longer, as the model must
attend over a longer sequence and process a larger count.
Additionally, different templates can have a different num-
bers of reassembly rules, so the model must learn a separate
modulus for each template.

Option 2: Intermediate outputs The model can avoid
modular arithmetic by making use of its earlier outputs.
Specifically, the model can reuse the template matching
mechanism to identify outputs where it responded to tem-
plate t with any of r1, . . . , rM . The model can then attend

4

Representing Rule-based Chatbots with Transformers

to the most recent of these responses ri, and respond with
r(i+1)%M . This mechanism works regardless of the cycle
number. However, it would fail if the same reassembly rule
appears more than once in the list, or if the reassembly rules
are difficult to identify.

3.3 Memory Queue

Finally, we incorporate the memory queue component. Re-
call that ELIZA adds a user input to the memory queue
if it contains a special memory keyword (e.g. “my”) and
matches an associated template. ELIZA reads an item from
the memory queue if (a) the most recent input does not
match any templates and (b) the queue is not empty. Given
the output of the template-matching stage, is simple to de-
termine whether an input represents an enqueue event or
a no_match event. The main challenge is to determine
whether there are any items in the queue, and so whether a
given no_match input should trigger a dequeue. Again,
we present two mechanisms, illustrated in Fig. 11

Option 1: Gridworld automaton The first approach we
consider is to use the construction from Liu et al. (2023)
for simulating a one-dimensional “gridworld” automaton,
which has S numbered states and two actions: “increment
the state if possible” and “decrement the state if possible.”
At each enqueue event, the automaton increments the
state if possible, and at each no_match event, the model
decrements the state if possible. If the state is decremented,
we can conclude that this input should trigger a dequeue.
We can then calculate the number of dequeues in the se-
quence, d, and read the dth memory in the queue. Liu et al.
(2023) present a gridworld construction with two Trans-
former layers and 2S attention heads, which would allow us
to implement a memory queue with a maximum size of S.

Option 2: Intermediate outputs Alternatively, as above,
we can instead identify dequeue operations by examining
earlier ELIZA outputs. By reusing the template match-
ing mechanism, we can check whether an ELIZA response
matches one of reassembly rules associated with the de-
queue operation. Then, letting d denote the number of
dequeue operations, if d is less than the number of en-
queue operations, we read the dth memory from the queue.
Compared to the gridworld approach, this construction uses
fewer attention heads and does not limit the size of the
memory queue, but it does impose a limit on the total num-
ber of enqueues (because we need to embed the number of
enqueues to attend to the right memory).

4 Experiments
Now we investigate how Transformers learn this ELIZA
program in practice when we train them on conversation

transcripts. First, we study how well the models perform,
with the goal of understanding which aspects of the task are
more difficult. In the second part of the section, we examine
the internal properties of the model to understand how the
learned solutions compare to our construction.

4.1 Experiment Setup

Generating data For these experiments, we generate syn-
thetic ELIZA data. For our main experiments, we first sam-
ple a configuration script consisting of 32 templates, each
containing 2-4 wildcard symbols, with up to five reassembly
rules per template. We ensure that each reassembly rule be-
gins with a unique two-letter prefix; this will provide a proxy
for distinguishing rule recognition errors from copying er-
rors. Given a script, we sample multi-turn conversations
with up to 512 words. At each turn, we sample a template,
and then sample a sentence that matches that template by
replacing each wildcard with 0-10 words sampled uniformly
from the vocabulary, and then generating a response accord-
ing to the ELIZA rules. The vocabulary consists of the 26
lowercase letters. Details about data generation are provided
in Appendix C.1.

Model and training We train Transformers with eight
layers, twelve attention heads per-layer, and a hidden size of
768. We use the GPT-2 architecture but remove the position
embeddings and train all models from scratch. The models
are trained to predict the ELIZA responses (and not the user
inputs). See Appendix C.2 for more details.

4.2 Which Aspects are Harder to Learn?

We start by training Transformers on ELIZA data and mea-
suring how well they perform on the different subtasks.
Here we fix the script parameters to the values described
in Appendix C.1. In Figure 3, we plot the accuracy over
the course of training and at the final checkpoint. The Full
response accuracy is the per-turn exact match accuracy. The
Prefix only accuracy is the accuracy on the two-word prefix
of the response, which we ensure is unique for each reassem-
bly rule. This metric provides a proxy for distinguishing
whether errors are due to either (a) failure to identify the cor-
rect rule, or (b) failure to implement the rule correctly. We
additionally break down the results by turn type, defined as
follows: Single-turn: The first response in the conversation.
Multi-turn (no cycling): The response for the first instance
of a template in the conversation. Multi-turn (cycling): The
response for a template that has already appeared at least
once in the conversation. Memory queue: Responses that
read from the memory queue. Null template: Responses to
inputs that do not match any templates, when the memory
queue is empty.

5

Representing Rule-based Chatbots with Transformers

0 50000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)
Full response

0 50000 100000
Step

Prefix only

Turn type
Single turn
Multi-turn (no cycling)
Multi-turn (cycling)
Memory queue
Null template

(a) Accuracy (training curve).

Full response Prefix only
0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

Turn type
Single turn
Multi-turn (no cycling)
Multi-turn (cycling)
Memory queue
Null template

(b) Accuracy (end of training).

Figure 3: Turn-level accuracy of Transformers trained on ELIZA conversations over the course of training (Fig. 3a) and at
the final checkpoint (Fig. 3b), for models trained with three random seeds. Transformers quickly learn to identify the correct
reassembly rule (measured by Prefix only accuracy), and take longer to learn to implement the transformation correctly (Full
response). Accuracy is slightly worse on multi-turn and memory queue examples; see §4.2.

Accuracy by subtask In Figure 3a, we see that the models
quickly learn to identify the correct action (as measured
by prefix accuracy), achieving near-perfect accuracy on
almost all categories. Interestingly, the exception is the null
template, which is used when the input does not match any
other pattern and the memory queue is empty. Looking
at the final checkpoint (Fig. 3b), we see that accuracy is
high, but still imperfect, with slightly worse performance
in the multi-turn setting. In the remainder of the section,
we examine these errors in more detail to better understand
which aspects of the task are more difficult to learn.

Error analysis In Figure 4, we test whether the model’s
errors are correlated with various properties of the input.
We identify two main issues. First, the models seem to
struggle with precise copying. In Fig. 4a, we see that accu-
racy is strongly correlated with the total number of tokens
the model has to copy, and only slightly correlated with
the complexity of the decomposition rule (defined as the
number of distinct copying segments in the transformation).
Similarly, Fig. 4b (left) shows that memory queue accuracy
decreases with the distance between the current turn and the
target memory, perhaps indicating issues with long-distance
copying. Second, some errors seem to be related to tracking
the state of the memory queue. Fig. 4b (right) shows that
accuracy is negatively correlated with the total number of
enqueue and dequeue operations in the sequence. Fig. 4c
shows that the model performs perfectly on null inputs,
provided that there have been no memory turns; accuracy
decreases with the number of enqueues, indicating that the
models struggle when the queue has been used but is now
empty.

4.3 Which Mechanisms Do Transformers Learn?

Now we turn to the internal properties of the model to try
to understand what mechanisms they learn and how they
compare to our construction.

Comparing copying mechanisms In Section 3.1, we
identified two possible mechanisms for copying: an in-
duction head, which attends based on the content of the
input, and a counting-based mechanisms that attends based
on position. We predicted that the induction head will fail
when the same n-gram appears more than once in the input,
while the counting mechanism will generalize. To explore
which mechanism the models seem to learn, we generate
(single-turn) datasets that vary in how likely it is for the
same n-gram to appear multiple times in a sequence. This
property is controlled by a parameter α, with α < 1 corre-
sponding to more repetition of n-grams and α > 1 making
it more likely that most n-grams are unique.2 See Fig. 5a
for examples.

We start by training models on the four different datasets and
evaluating how well they generalize to datasets with more
or less repetition. This result is plotted in Figure 5b. The
model trained with the least amount of repetition (α = 100)
performs well in-domain but suffers severe degradation on
data with more repetition; this provides preliminary evi-
dence that, in our default setting, models learn an induction

2Specifically, given a template, we generate a sentence as fol-
lows: For each wildcard in the sentence, we sample a vector
p ∼ Dirichlet(α1), where 1 is a 26-dimensional vector of all
1’s and α is the concentration parameter. With α < 1, p is more
likely to concentrate most probability on a small number of items,
meaning each segment is more likely to contain repeated n-grams.
With α > 1, p is more likely to be close to the uniform distribu-
tion (corresponding to our setting in the previous section). See
Appendix C.1 for more details.

6

Representing Rule-based Chatbots with Transformers

0 10 20 30
Copy length (tokens)

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

Copy segments
1
2
3

(a) Copying.

5 10
Distance (turns)

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

5 10 15
Queue operations

(b) Dequeues.

0 2 4 6 8
Number of enqueues

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

(c) Null inputs.

Figure 4: Which aspects of the task are most difficult for Transformers to learn? Copying (Fig. 4a): Accuracy decreases
considerably with the total number of tokens to copy, and decreases slightly with the number of distinct copying segments.
Memory queue (Fig. 4b): The dequeue accuracy decreases when there is a greater distance to the target memory and when
there have been more total queue operations earlier in the sequence. Null template (Fig. 4c): The models do perfectly on
null inputs provided there have been no memory turns in the sequence; accuracy decreases with the number of enqueues,
indicating that the models struggle when the queue has been used but is now empty.

α Example sentence

c b we e e e p p f z f z z p

c b w p x p p r r r r d r n r

c b wy k g p f x j c j d h c

c b wr o k s r y u j s a p g

0.01

0.1

1

100

(a) Examples.

0.01 0.1 1.0 100.0
train

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

test
0.01
0.1
1.0
100.0

(b) Comparing generalization.

0.01 0.1 1.0 100.0
train

150

100

50

0

50

n-
gr

am
 sc

or
e

- p
os

iti
on

 sc
or

e
n-gram

1
2
3
4
5

(c) Comparing mechanisms.

Figure 5: We train and test models on datasets that vary in whether copying segments are more or less likely to contain the
same n-gram multiple times (Fig. 5a). Models generalize poorly to data with significantly more or less repetition compared
to the training distribution (Fig. 5b). Fig. 5c suggests that models trained on less repetitive data assign higher attention
scores to tokens with matching contexts, rather than calculating the correct target position. See §4.3.

head mechanism that does not generalize when n-grams can
repeat. On the other hand, models trained on the most repeti-
tive data (α = 0.01) generalize poorly to higher values of α.
The best-generalizing model is trained with a α = 0.1, sug-
gesting that some moderate amount of repetition is needed
to learn a robust mechanism. In Appendix Fig. 13, we plot
these results over the course of training, indicating that the
most repetitive data also takes longer to learn.

To get a sense of what mechanism these models actually
learn, we examine the final layer attention heads. Specifi-
cally, given an ELIZA response, for each output position
i, we calculate the position j of the input token that should
be copied next. Then we calculate the average pre-softmax
attention score between the query embedding at position i
and key embeddings drawn from other validation examples
that satisfy one of two conditions: either the key has same

n-gram prefix as the query i, but appears at a position k ̸= j;
or the key appears at position j but has a different n-gram
prefix (wi−n:i ̸= wj−n−1:j−1). In Figure 5c, we plot the
difference between these scores for different n-gram win-
dows, averaging over attention heads, with positive values
indicating that the model assigns higher scores to content
than position. (We plot the results for each attention head in
Appendix Fig. 14.) When α ≥ 1, the models prefer content
to position once there is a prefix match of at least three
tokens in length. For all models, the content score increases
with the length of the matching n-gram, with a steeper in-
crease when α < 1. The model trained with a moderate
amount of repetition (α = 0.1) generalizes the best and is
also the only model that prefers position to content even at
the longest context window. While all models are sensitive
to content to some extent, the results illustrate how chang-

7

Representing Rule-based Chatbots with Transformers

ing the data distribution can influence which mechanism the
model uses, and how well they generalize as a result.

Comparing memory mechanisms Finally, we examine
which mechanism the models learn for the two subtasks
that rely on information from earlier in the conversation:
cycling through reassembly rules, and the memory queue.
In Section 3.2 and 3.3, we offered two possible construc-
tions for each subtask: one construction based on simulat-
ing an automaton and one based on processing previously
generated outputs. Here, we designed counter-factual ex-
periments to test whether the model is sensitive to previous
intermediate responses. For each mechanism, we edited the
model’s response to an intermediate turn in the sequence
and then tested the model’s response at a subsequent turn.
(See Appendix C.3 for details.) In Figure 6, we test whether
the response is consistent with the automaton construction,
which predicts that the reponse will be unchanged (Same);
the intermediate-output construction, which predicts that
the response will change in a specific way—either incre-
menting the cycle counter or reading a memory from earlier
in the clue; or whether it matches neither prediction. In
both cases, the model’s behavior is most consistent with
the intermediate-output hypothesis, either incrementing the
cycle counter or decrementing the memory queue counter
as predicted. This result illustrates the importance of con-
sidering intermediate outputs in understanding Transformer
behavior, even without an explicit scratchpad or chain-of-
thought.

5 Discussion and Related Work
Expressivity with formal languages Numerous works
have formalized the expressive power of Transformers on
formal languages. Pérez et al. (2021); Pérez et al. (2019);
Bhattamishra et al. (2020b) show that Transformers with
hard attention are Turing complete, and Wei et al. (2022a)
study their statistical learnability. Merrill et al. (2022); Mer-
rill & Sabharwal (2023); Hao et al. (2022); Hahn (2020)
further distinguish the expressivity of transformers with
different hard attention patterns. Other works have inves-
tigated encoding specific algorithms in smaller simulators,
e.g. bounded-depth Dyck languages (Yao et al., 2021), mod-
ular prefix sums (Anil et al., 2022), adders (Nanda et al.,
2023), regular languages (Bhattamishra et al., 2020a), and
sparse logical predicates (Edelman et al., 2022). Liu et al.
(2023) propose a unified theory for expressivity of different
automata with transformers. We refer the readers to Strobl
et al. (2024) for a more comprehensive survey. However,
the relation between the constructions and the performance
of Transformers on real world datasets has been largely
unclear. Our framework is the first to show that these con-
structions can be non-trivially extended to show capabilities
of language models as general conversational agents. We

hope that ELIZA inspires future works to connect existing
constructions to the emergent abilities Transformers show
at scale.

Challenges for mechanistic interpretability One direc-
tion for future work is to consider our ELIZA construction
as a test bed for automatic interpretability methods—for ex-
ample, compiling the construction into Transformer weights
using Tracr (Lindner et al., 2023). Specifically, given a com-
piled Transformer corresponding to an ELIZA chatbot, to
what extent could we recover the program using existing
interpretability techniques, such as circuit finding (Conmy
et al., 2023; Syed et al., 2023) and dictionary learning (Cun-
ningham et al., 2023; Gurnee et al., 2024)? Possible diffi-
culties include sharing of attention heads across different
ELIZA operations like parsing and copying, and sharing of
mechanisms for different ELIZA operations like cycling and
memory queues. As such, our framework might encourage
more sophisticated interpretable techniques in the future.

Mechanistic dependence on data Recent works have
tried to understand the behavior of attention models when
trained with synthetic datasets. Nanda et al. (2023) study
feature formation in 1-layer transformer models on adders
dataset, with Zhong et al. (2023) studying the dependence
on model hyperparameters and initialization. Akyürek et al.
(2024); Quirke et al. (2023) study formation of n-gram in-
duction heads in language models. Allen-Zhu & Li (2023a);
Zhao et al. (2023) study the behavior of language models
when trained with different context-free grammars. Allen-
Zhu & Li (2023b; 2024) further study knowledge manipu-
lation and storage in language models trained on synthetic
datasets. Zhang et al. (2022) propose LEGO synthetic rea-
soning dataset to understand generalization of transformers
with simple boolean circuits. Finally, Zhang et al. (2023);
Edelman et al. (2024); Nichani et al. (2024) give end-to-
end convergence analysis of self-attention models when
trained under simplistic data assumptions. However, such
studies have been generally restricted to settings where the
number of possible mechanisms and/or the number of fea-
tures to learn are restricted. ELIZA provides a general
framework that allows diverse mechanisms and features. To
successfully implement ELIZA, a model has to perform
local pattern matching, cycling through reassembly rules,
and memory queues well. And for each feature, there are
multiple mechansisms that can emerge, with each mecha-
nism having different generalization abilities. As we show
in section 4.3, different data distribution properties can lead
to different mechanisms. With increasing interests to for-
malize relation between data and training behavior Chan
et al. (2022); Hahn & Goyal (2023); Reddy (2024); Xie et al.
(2021), we believe ELIZA can be a useful test bed for future
studies.

8

Representing Rule-based Chatbots with Transformers

Full response Prefix only
0.0

0.2

0.4

0.6

0.8
Pr

op
or

tio
n Transformation

Same
Increment
Neither

(a) Response cycling.

Full response Prefix only
0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

Dequeue
Same
Decrement
Neither

(b) Memory queue.

Figure 6: We design counter-factual experiments to test whether models make use of intermediate generations to keep track
of the response cycle (Fig. 6a) or memory queue (Fig. 6b), or rely only on the user inputs. Error bars show 95% confidence
interval over models trained with three random seeds. Both experiments indicate that the models use their own outputs from
earlier in the sequence. When we edit the model’s earlier output, we can reliably influence it to increment the response cycle
or read a memory from earlier in the queue.

6 Conclusion
In this work, we constructed a Transformer that implements
the classic ELIZA chatbot algorithm. We then trained Trans-
formers on ELIZA conversation transcripts and examined
which aspects of the task were empirically more difficult to
learn, and to what extent to the models matched our con-
struction. Our constructions and dataset raise a number of
possibilities for future research, including as a benchmark
for automated interpretability methods, and as a setting for
mechanistic analysis of learning dynamics.

Limitations Our constructions illustrate one way that
Transformers can implement ELIZA, but they might not
correspond to the solutions that Transformers actually learn.
Characterizing the mechanisms that models learn empiri-
cally is a key challenge for future work on in interpretability.
Second, we conduct some analysis of the mechanisms that
models learn, but we do not conduct an exhaustive mecha-
nistic analysis; future work could conduct further analysis
using other interpretability techniques, such as causal meth-
ods (e.g. Vig et al., 2020; Feder et al., 2021; Geiger et al.,
2021). Finally, while ELIZA offers a setting for investi-
gating a number of aspects of conversations, real-world
chatbots exhibit a number of behaviors that fall outside of
the ELIZA framework. For example, ELIZA is a determin-
istic program, whereas most real-world chatbots are trained
on data with more stochasticity.

Acknowledgments We thank Adithya Bhaskar, Alexan-
der Wettig, Howard Yen, and the members of the Princeton
NLP group for helpful comments and discussion. This
research is funded by the National Science Foundation (IIS-
2211779) and a Sloan Research Fellowship.

References
Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context

language learning: Architectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 1,
Context-free grammar. arXiv preprint arXiv:2305.13673,
2023a.

Allen-Zhu, Z. and Li, Y. Physics of language mod-
els: Part 3.2, Knowledge manipulation. arXiv preprint
arXiv:2309.14402, 2023b.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part
3.3, Knowledge capacity scaling laws. arXiv preprint
arXiv:2404.05405, 2024.

Angluin, D., Chiang, D., and Yang, A. Masked
hard-attention Transformers and Boolean RASP recog-
nize exactly the star-free languages. arXiv preprint
arXiv:2310.13897, 2023.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 35:38546–38556, 2022.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
long-document transformer. arXiv:2004.05150, 2020.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the abil-
ity and limitations of transformers to recognize formal
languages. In Empirical Methods in Natural Language
Processing (EMNLP), pp. 7096–7116, 2020a.

Bhattamishra, S., Patel, A., and Goyal, N. On the compu-
tational power of Transformers and its implications in

9

Representing Rule-based Chatbots with Transformers

sequence modeling. In Computational Natural Language
Learning (CoNLL), pp. 455–475, 2020b.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems (NeurIPS), 35:18878–18891, 2022.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability. arXiv preprint
arXiv:2304.14997, 2023.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

Edelman, B. L., Goel, S., Kakade, S., and Zhang, C. Induc-
tive biases and variable creation in self-attention mecha-
nisms. In International Conference on Machine Learning
(ICML), pp. 5793–5831. PMLR, 2022.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., and
Tsilivis, N. The evolution of statistical induction heads:
In-context learning Markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Feder, A., Oved, N., Shalit, U., and Reichart, R. CausaLM:
Causal model explanation through counterfactual lan-
guage models. Computational Linguistics, 47(2):333–
386, 2021.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal abstrac-
tions of neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 34:9574–9586, 2021.

Gurnee, W., Horsley, T., Guo, Z. C., Kheirkhah, T. R., Sun,
Q., Hathaway, W., Nanda, N., and Bertsimas, D. Univer-
sal neurons in GPT2 language models. arXiv preprint
arXiv:2401.12181, 2024.

Hahn, M. Theoretical limitations of self-attention in neural
sequence models. Transactions of the Association of
Computational Linguistics (TACL), 8:156–171, 2020.

Hahn, M. and Goyal, N. A theory of emergent in-context
learning as implicit structure induction. arXiv preprint
arXiv:2303.07971, 2023.

Hao, Y., Angluin, D., and Frank, R. Formal language recog-
nition by hard attention transformers: Perspectives from
circuit complexity. Transactions of the Association of
Computational Linguistics (TACL), 10:800–810, 2022.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,

Berg, S., Smith, N. J., et al. Array programming with
NumPy. Nature, 585(7825):357–362, 2020.

Haviv, A., Ram, O., Press, O., Izsak, P., and Levy, O. Trans-
former language models without positional encodings
still learn positional information. In Findings of Empiri-
cal Methods in Natural Language Processing (EMNLP),
pp. 1382–1390, 2022.

Hay, A. and Millican, P. ELIZA is Tur-
ing complete. https://sites.google.
com/view/elizagen-org/blog/
eliza-is-turing-complete, 2022. Accessed:
2024-01-09.

Jurafsky, D. and Martin, J. H. Chatbots and dialogue sys-
tems. Speech and Language Processing, 2020.

Kazemnejad, A., Padhi, I., Natesan, K., Das, P., and Reddy,
S. The impact of positional encoding on length generaliza-
tion in Transformers. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lindner, D., Kramár, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 36, 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. In Interna-
tional Conference on Learning Representations (ICLR),
2023.

Merrill, W. and Sabharwal, A. A logic for expressing log-
precision transformers. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2023.

Merrill, W. and Sabharwal, A. The expressive power of
Transformers with chain of thought. In International
Conference on Learning Representations (ICLR), 2024.

Merrill, W., Sabharwal, A., and Smith, N. A. Saturated
Transformers are constant-depth threshold circuits. Trans-
actions of the Association of Computational Linguistics
(TACL), 10:843–856, 2022.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. In International Conference on Learning
Representations (ICLR), 2023.

Nichani, E., Damian, A., and Lee, J. D. How transform-
ers learn causal structure with gradient descent. arXiv
preprint arXiv:2402.14735, 2024.

10

https://sites.google.com/view/elizagen-org/blog/eliza-is-turing-complete
https://sites.google.com/view/elizagen-org/blog/eliza-is-turing-complete
https://sites.google.com/view/elizagen-org/blog/eliza-is-turing-complete

Representing Rule-based Chatbots with Transformers

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems (NeurIPS), 32, 2019.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is Turing-
complete. The Journal of Machine Learning Research
(JMLR), 22(75):1–35, 2021.

Pérez, J., Marinković, J., and Barceló, P. On the Turing
completeness of modern neural network architectures. In
International Conference on Learning Representations
(ICLR), 2019.

Quirke, L., Heindrich, L., Gurnee, W., and Nanda, N. Train-
ing dynamics of contextual n-grams in language models.
arXiv preprint arXiv:2311.00863, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task. In
International Conference on Learning Representations
(ICLR), 2024.

Singh, A. K., Moskovitz, T., Hill, F., Chan, S. C., and Saxe,
A. M. What needs to go right for an induction head? A
mechanistic study of in-context learning circuits and their
formation. arXiv preprint arXiv:2404.07129, 2024.

Strobl, L., Merrill, W., Weiss, G., Chiang, D., and Angluin,
D. What formal languages can Transformers express? A
survey. Transactions of the Association of Computational
Linguistics (TACL), 12:543–561, 2024.

Syed, A., Rager, C., and Conmy, A. Attribution patching
outperforms automated circuit discovery. arXiv preprint
arXiv:2310.10348, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems (NeurIPS), 30, 2017.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal
mediation analysis for interpreting neural NLP: The case
of gender bias. arXiv preprint arXiv:2004.12265, 2020.

Waskom, M. L. Seaborn: Statistical data visualization.
Journal of Open Source Software, 6(60):3021, 2021.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: A case study on approximating Turing
Machines with Transformers. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 35:12071–12083,
2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-Thought prompt-
ing elicits reasoning in large language models. Advances
in Neural Information Processing Systems (NeurIPS), 35:
24824–24837, 2022b.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like Trans-
formers. In International Conference on Machine Learn-
ing (ICML), pp. 11080–11090. PMLR, 2021.

Weizenbaum, J. ELIZA—A computer program for the
study of natural language communication between man
and machine. Communications of the ACM, 9(1):36–45,
1966.

Weizenbaum, J. Computer power and human reason: From
judgment to calculation. WH Freeman & Co, 1976.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Empirical Methods in Natural Language
Processing (EMNLP): System Demonstrations, pp. 38–45,
2020.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit Bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Yao, S., Peng, B., Papadimitriou, C., and Narasimhan, K.
Self-attention networks can process bounded hierarchical
languages. In Association for Computational Linguistics
and International Joint Conference on Natural Language
Processing (ACL-IJCNLP), pp. 3770–3785, 2021.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling Transformers
with LEGO: A synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022.

11

Representing Rule-based Chatbots with Transformers

Zhao, H., Panigrahi, A., Ge, R., and Arora, S. Do trans-
formers parse while predicting the masked word? In
Bouamor, H., Pino, J., and Bali, K. (eds.), Empirical
Methods in Natural Language Processing (EMNLP), pp.
16513–16542, 2023.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation
of neural networks. Advances in Neural Information
Processing Systems (NeurIPS), 36, 2023.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can Transformers learn? A study in length gener-
alization. arXiv preprint arXiv:2310.16028, 2023.

12

Representing Rule-based Chatbots with Transformers

Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
It’s true. I am unhappy.
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY
My mother takes care of me.
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
My father.
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive, but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

Table 1: An example ELIZA conversation, reproduced from Weizenbaum (1966). Lines with all capital letters are generated
by ELIZA.

A ELIZA Algorithm Details
Here we provide some additional details about the ELIZA algorithm. Our presentation of the ELIZA algorithm in Section 2
omits some details of the original ELIZA algorithm, to improve clarity, so we describe these details here.3

Word-level translation An ELIZA script can include word-level translation rules—for example, I = YOU, YOU = I,
and ME = YOU. These translations are applied to all of the words in the input before trying to match the input to a pattern.
Therefore, in the original ELIZA script, the patterns are written to match inputs after the word-level translations have been
applied. So, for example, the rule

(0 ARE I 0) → Would you prefer if I weren’t 4?

would match the input “Are you laughing at me?” and transform it to “Would you prefer if I weren’t laughing at you?” In
this paper, we write rules to match the input prior to word-level translations—so, for example, we would present the pattern
above as (0 ARE YOU 0). Word-level translation is trivial to incorporate into the Transformer construction, by using the
final linear layer to map each word to its translation.

Keywords Each entry in an ELIZA script consists of a ranked keyword. Each keyword is associated with a list of
decomposition templates, and each decomposition template is associated with one or more transformation rules. See Figure 7
for an example. To select a decomposition template, ELIZA finds the highest ranked keyword that appears in the input, and
then finds the first decomposition template in the associated list that matches the input. If none of the templates matched,
ELIZA checks the next highest-ranked keyword. In this paper, we ignore the role of keywords, and instead define an ELIZA
script by a set of ranked decomposition templates and associated transformation rules.

3For an annotated explanation of an ELIZA script, see https://github.com/jeffshrager/elizagen.org/blob/
master/1965_Weizenbaum_MAD-SLIP/1966_01_CACM_article_Eliza_script.txt.

13

https://github.com/jeffshrager/elizagen.org/blob/master/1965_Weizenbaum_MAD-SLIP/1966_01_CACM_article_Eliza_script.txt
https://github.com/jeffshrager/elizagen.org/blob/master/1965_Weizenbaum_MAD-SLIP/1966_01_CACM_article_Eliza_script.txt

Representing Rule-based Chatbots with Transformers

Figure 7: Part of an ELIZA script, from Weizenbaum (1966). Each entry in the script consists of a ranked keyword and a list
of patterns, with each pattern associated with multiple transformation rules.

Pre-transformation rules The pre-transformation rule is a special rule that applies a transformation to the input, and then
“passes control” to another keyword in the script. There is one use of the pre-transformation rule in Weizenbaum’s ELIZA
script: if the input matches the pattern (0 I’m 0), it is reassembled as “I am 3,” and then matched against templates with
the keyword “am,” such as (0 I am 0). However, the pre-transformation rule is critical to the construction of Hay &
Millican (2022) for embedding a Turing machine in an ELIZA script, which we will discuss in more detail below (App B.4).
In this construction, the input at each step represents the tape of the Turing machine, and keywords in the script correspond
to states. Each pre-transformation rule transforms the input by applying one update to the tape, and then passes control to a
new keyword corresponding to the next state.

B Construction Details
In this section, we provide additional details about our ELIZA constructions, including sample implementations in
RASP (Weiss et al., 2021). The input to a RASP program is a sequence of tokens. The program then consists of
a series of operations that output new sequences of equal length to tokens, corresponding to intermediate embeddings in
the Transformer. The select and aggregate operations correspond to the attention mechanism in the Transformer;
these are the only operations that can combine information from different positions in the sequence. All other operations
must operate independently at each position, corresponding to feedforward layers. Like Weiss et al. (2021), we allow
feedforward layers to implement arbitrary element-wise transformations. We do not provide explicit constructions for
these element-wise transformations; we leave this for future work. Figure 8 shows the RASP (Weiss et al., 2021) attention
primitives we use in our construction, implemented in NumPy (Harris et al., 2020).

B.1 Input Segmentation and Position Encoding

Our first step is to divide the input into segments, corresponding to the turns in the conversation. This is accomplished by
using the special delimiter tokens to count the number of utterances seen so far:

segment_ids = selector_width(select(tokens, tokens, lambda q, k: k in ("u:", "e:"), max_width=max_segments)

We will use these segment_ids throughout the construction to restrict attention to a particular utterance. The
segment_ids are also used to generate local positional encodings:

segment_positions = selector_width(select(segment_ids, segment_ids, ==), max_width=max_segment_length)

This value encodes the position relative to the start of the current segment.

14

Representing Rule-based Chatbots with Transformers

def select(keys, queries, predicate):
Calculate a (binary) attention pattern.
selector = np.array([[predicate(q, k) for k in keys] for q in queries])
return np.tril(selector)

def selector_width(selector, max_width=None):
Count the number of keys attended by each query, up to `max_width`.
width = selector.sum(-1)
if max_width:

return np.minimum(width, max_width)
return width

def aggregate(selector, values, one_hot=False):
Aggregate either a single value vector or a batch of value vectors
stored in a dictionary.
if type(values) == dict:

return {k: aggregate(selector, v, one_hot) for k, v in values.items()}
if one_hot:

return values[selector.argmax(-1)]
attn = selector / np.maximum(selector.sum(-1, keepdims=True), 1e-9)
return values @ attn.T

Figure 8: Code for the primitive RASP operations (Weiss et al., 2021) we use in our construction, using NumPy (Harris et al.,
2020). Each attention head can implement one pair of select and aggregate operations. The selector_width
function corresponds to an attention head followed by a feed-forward layer, which maps the scalar attention output to an
embedding that can be used in subsequent attention layers. Because selector_width maps each possible width to a
unique, orthogonal embedding, the program must specify in advance the maximum width it will handle.

Remark on length generalization While not the focus of our investigation here, our approach to segment and position
encodings has implications for length generalization, similar to the cases studied by Zhou et al. (2023). In particular, we
must specify in advance the maximum number of segments per conversation, as well as the length of each segment. This is
because the selector_width operator is implemented using one attention layer followed by one feed-forward layer. At
each position i, the attention layer outputs 1/c, where c is the number of key positions attended to from position i. The
feed-forward layer then maps each value of 1/c to an orthogonal embedding. In our construction, we implement this second
step as a look-up table, meaning that we must decide in advance on the maximum possible value of c. This means that
our construction sets a limit on the number of segments per conversation, as well as the length within each segment. If a
model learned this mechanism, we would expect it to fail to generalize if the number of segments or the length of a segment
increases beyond the training set. (On the other hand, the construction does not place a direct limit on the total conversation
length.)

B.2 Template Matching

The next step in the construction is to compare the most recent input to the inventory of decomposition templates. Template
matching involves two things: finding a template that matches the input, and decomposing the input according to that
template’s decomposition groups. Our construction makes use of the fact that ELIZA templates are equivalent to star-free
regular expressions. As a result, we can recognize these by simulating the corresponding finite-state automaton, building on
the constructions of Liu et al. (2023) and Angluin et al. (2023), adapted to recognize multiple templates in parallel.

Decomposition templates Given a vocabulary V , a decomposition template is a sequence t = t1, . . . , tL, where each ti is
either a word from V; the wildcard character 0, which matches a sequence of zero or more words from V; or a positive
integer n, which matches a sequence of exactly n words from V .4 We assume that the vocabulary contains two special
beginning- and end-of-sequence delimiters, ˆ and $ respectively, and for every input w1, . . . , wN and template t1, . . . , tL,
w1 = t1 = ˆ and wN = tL = $. We will use t:i to denote the template prefix t1, . . . , ti. As a working example, consider
the vocabulary V = {a,b} and the template t = ˆa0bb0$. This template matches the input ˆaaabbaa$ and decomposes
it into five groups: (1) a (2) aa (3) b (4) b (5) aa. Note that each decomposition group corresponds to a prefix of the
template: word wi is in group ℓ if w:i matches the template prefix t:ℓ.

4A template can also include an equivalence class W ⊂ V , which matches one instance of any word in W . For example, the template
1(a|b)1 matches both cab and cbb. This can be addressed at the embedding layer by assigning one dimension to the value of the
indicator 1{w ∈ W} for each word w.

15

Representing Rule-based Chatbots with Transformers

def match_templates(tokens, segment_ids, segment_positions, templates):
L = max(len(t) for t in templates)
prefixes = [{("u:",): tokens == "u:"}]

Each layer l checks if the input matches t[:l+1]
for l in range(1, L):

just_matched = select_prev(prefixes[-1], segment_ids, segment_positions)
ever_matched = frac_prev(prefixes[-1], segment_ids, segment_positions)
new_matches = {}
for t in templates:
if len(t) <= l: continue
if t[l] == "0":

new_matches[t[:l+1]] = ever_matched[t[:l]] > 0
elif t[l-1] == "0" and t[l] == "1":

new_matches[t[:l+1]] = prefixes[-1][t[:l]]
elif t[l-1] == "0":

new_matches[t[:l+1]] = prefixes[-1][t[:l]] & (tokens == t[l])
elif t[l] == "1":

new_matches[t[:l+1]] = just_matched[t[:l]]
else:
new_matches[t[:l+1]] = just_matched[t[:l]] & (tokens == t[l])

prefixes.append(new_matches)

For each template, identify the longest matching prefix at each position.
states = {}
for t in templates:
s = np.stack([m[t[:l+1]] for l, m in zip(range(len(t)), prefixes)])
ind = np.arange(s.shape[0])
states[t] = (ind[:, None] * s).max(0)

return states

Figure 9: Code for matching an input sequence tokens to a set of decomposition templates.

Matching templates Our construction uses L Transformer layers, where L is the maximum number of states in any
template. At each layer ℓ, we calculate whether the input matches the template prefix t:ℓ for each template t and at each
position i. If tℓ is the wildcard character 0, then w:i matches t:ℓ if t:ℓ−1 has been matched at any position j < i. If tℓ is a
vocabulary item w, then w:i matches tℓ if wi = w and w:i−1 matches t:ℓ−1 (or, if tℓ−1 is 0, if w:i matches t:ℓ−1, to account
for the possibility that 0 matches zero words). We check these conditions using two attention heads per layer:

def frac_prev(values, segment_ids, segment_pos):
return aggregate(

(select(segment_ids, segment_ids, eq) &
select(segment_pos, segment_pos, not_eq)),
values)

def select_prev(values, segment_ids, segment_pos):
return aggregate(

(select(segment_ids, segment_ids, eq) &
select(segment_pos, segment_pos, is_prev)),
values)

These attention heads restrict attention to the most recent utterance by taking the logical AND between two selectors; see
Lindner et al., 2023, Appendix F for a discussion of mechanisms for combining selectors. Note that each layer uses two
attention heads, with each attention head calculating frac_prev or select_prev for all templates in parallel.

Templates as finite-state automata While our construction is presented in terms of ELIZA templates, we note that the
ELIZA template language defines a subset of star-free regular languages. As a result, we can formulate this construction
as an approach to simulating a finite-state automaton, building on the constructions of Liu et al. (2023) and Angluin et al.
(2023). In particular, consider again our example template t = ˆa0bb0$. We can recognize this template by simulating the
following finite-state automaton:

1 2 3 4 5 6 7
a a

b

b

a

b

a

a,b

$

$

a,b

Each state in the automaton corresponds to a prefix of the template: if the automaton is in state ℓ after processing words
w1, . . . , wi, then the sequence w:i matches the template prefix t:ℓ. Given a template t1, . . . , tL, we will therefore refer to the

16

Representing Rule-based Chatbots with Transformers

states of the corresponding automaton using the template prefixes t:1, . . . , t:L. Note that some special handling is required
because the automaton states are assigned from left to right with no ability to look ahead in the input. For example, consider
the template 0ab and input bacaab, which should be decomposed as (1) baca (2) a (3) b. Without looking ahead in
the input, we have no way of knowing that the first two a tokens belong in group 1 rather than 2. Our template matching
procedure would assign this sequence the states 121223. A similar issue arises if we have a template such as 01ab, which
should decompose input bacaab as (1) bac (2) a (3) a (4) b. These issues can be addressed by taking some additional
care in the generation stage, discussed in more detail below (App. B.3).

Comparison to existing constructions Our construction differs in some ways from prior work for simulating finite
state automata with Transformers. In particular, the construction of Angluin et al. (2023) uses hard (one-hot) attention to
recognize star-free regular expressions. Our construction uses a frac_prev attention head, which attends uniformly to
all positions in the sequence; this allows us to match multiple templates using one attention head. While the number of
attention heads is constant with respect to the number of templates, the embedding dimension increases linearly with the
number of templates, in order to encode the automaton state for each template in parallel.

Reducing the number of layers For ease of presentation, we described a template matching construction that uses one
Transformer layer for each symbol in the template. Here, we describe two modifications that reduce the number of layers to
the total number of wildcard symbols in the template.

Combining wildcards: First, we can use one layer to match both a wildcard symbol and the symbol that immediately follows.
For example, consider the template a0b0 and input accbabc, which we aim to decompose as (1) a (2) cc (3) b (4) abc.
The computations are as follows:

Input a c c b a b c
Attention 1 a a0 a0 a0 a0 a0 a0
MLP 1 - - - a0b - a0b -
Attention 2 - - - - a0b0 a0b0 a0b0

Output 1 2 2 3 4 4 4

Here, each entry in the table illustrates a value calculated at that layer, corresponding to a template prefix that has been
matched at that point. For example, the first-layer MLP identifies that the prefix a0b has been matched at two positions. We
distinguish between the first and second matches of this prefix by assigning each position to the longest prefix that matches
at that point.

Handling n-gram literals: The second modification pertains to n-gram literals in the template. For example, consider the
template a0bc0. As presented above, our construction uses one layer to match the prefix a0b and another to match the
prefix a0bc. Instead, we can combine these operations into a single layer by using two attention heads. At position i, one
attention head checks whether the previous word wi−1 is b. The second attention head checks whether the prefix a0 has
been matched anywhere to the left of wi−1, attending to all tokens at positions less than i− 1. We can use this approach for
any n-gram up to some maximum n, defined by the number of attention heads per layer.

B.3 Generating a Transformation

Now we assume that we have identified a matching template and that the embedding for each input token identifies the
decomposition group to which that token belongs. The next step is now to apply the chosen reassembly rule to the input to
generate a response.

Reassembly rules Given a template t1, . . . , tL and vocabulary V , a reassembly rule is a sequence r = r1, . . . , rM ,
where each ri is either a word w ∈ V or an integer n ∈ [M] such that tn ∈ {0,1}. Given an input w1, . . . , wN , let
s1, . . . , sN ∈ [L] denote the lengths of the longest matching template prefix at each position—that is, t:si is the longest
prefix matching w:i. We refer to each si as a decomposition group. For each ri, if ri ∈ V , the model outputs ri. If ri ∈ [L],
the model outputs the subsequence of w such that, for each wj , sj = ri. For example, consider the template t = a0bb0 and
example input aaabbab, with automaton states 1223455. The reassembly rule r = c2d5 would generate the response
caadab. We can divide this process into two stages. First, at each step, we need to determine the reassembly state—that is,
which symbol of the reassembly rule are we currently processing. In Fig. 10, we illustrate how we can determine the state as

17

Representing Rule-based Chatbots with Transformers

def get_reassembly_action(group_count, template, rule, step):
For each template t, group_count[t][l] is the number of input tokens with group t[l]
counts = group_count[template]

The position in the input sequence at the start of each group
group_start_positions = np.concatenate([np.array([0]), np.cumsum(counts[:-1])])

The number of tokens in each part of the reassembly rule
rule_part_sizes = np.array([counts[int(r)] if r.isnumeric() else 1 for r in rule])

The length the output will be after applying each part of the reassembly rule
rule_part_end_positions = np.cumsum(rule_part_sizes)

Return to the user if we're done generating.
if step == rule_part_sizes.sum():

return "u:"

Which part of the rule are we in?
i = np.argmax(rule_part_end_positions > step)
r = rule[i]

Return the position of the token to copy:
if r.isnumeric():
num_already_copied = step - (rule_part_end_positions[i - 1] if i > 0 else 0)
target_position = int(group_start_positions[int(r)] + num_already_copied + 1)
return "copy", target_position

Return a constant token to output.
return "print", r

Figure 10: Code for generating an output token at step i given a user input x, the corresponding sequence of automaton
states, and a reassembly rule.

a function of the number of tokens that have been generated so far and the number of tokens in each decomposition group.
Second, if the next token should be copied from the input, we need to identify the exact token in the input that should be
copied. We present two mechanisms for copying, one using content-based attention and one using position-based attention.

Option 1: Content-based attention (induction head) The first possible approach uses content-based attention, akin to an
n-gram level induction head (Olsson et al., 2022; Akyürek et al., 2024). First, at each input position j, the key embedding
encodes the decomposition group to which the token belongs as well as the identity of the previous n tokens, where n is the
maximum context window. Second, at each output position i, the query embedding encodes the decomposition group si
from which we should copy at this step, as well as the identity of the current token and any previous output tokens associated
with this decomposition group. An attention head can then attend to the earliest input position j such that sj = si and, for
all k from 0 to n, if si−k = si then wj−k−1 = wi−k. Note that we must specify a maximum context window, n, which is
constrained by the embedding size. If n is less than the length of a decomposition group, this mechanism can fail if the same
n-gram appears more than once in the decomposition group, as noted by Zhou et al. (2023).

For example, consider the template t = a0b0 and reassembly rule r = h2. For an input acdecdfbg that matches this
template, the output under the reassembly rule is given by hcdecdf. If the model uses a 2-gram induction head, the
behavior of the model for the same input is given in Tab. 2

Input a c d e c d f b g E h c d e c d

Previous 2-gram 00 0a ac cd de ec cd df fb
Decomposition group 1 2 2 2 2 2 2 3 4
Current 2-gram 00 0c cd de ec cd

Output c d e c d e(×)

Table 2: Behavior of a model that uses 2-gram induction head on input acdecdfbg to match to a template t = a0b0
and respond with reassembly rule r = h2. The response by a 2-gram induction head is to copy the first token from input
that matches the current 2-gram and the previous 2-gram (we break ties by the character that appears earlier in the input
segment). For example, after the model sees · · ·Ehcde, it outputs c. However, as we follow the same rule, the model
mistakes at the second occurrence of cd.

18

Representing Rule-based Chatbots with Transformers

u: e:

Gridworld automaton

u: e:

no
match enq

u:

no
match

u:

no
match

e:

null deq null

u: e:

Gridworld automaton

u: e:

no
match enq

u:

no
match

u:

no
match

e:

null deq null

Intermediate output: Count number of dequeue responses

u: e: u: e:

no
match enq

u:

no
match

u:

no
match

e:

null deq null

u: e: u: e:

no
match enq

u:

no
match

u:

no
match

e:

null

null

deq

deq

null

u: e: u: e:

t1 t1t1

u:

r1 r1r2

Modular prefix sum

u: e: u: e:

t1 t1t1

u:

r1 r2

r1 r1r2

Intermediate output: Get previous response template

Cycling through responses Memory queue

Figure 11: ELIZA includes two components that make use of the long-term conversation history: cycling through response
templates (left), and the memory queue (right). We identify two mechanisms for these components. Top: First, after parsing
the user’s input, we can use existing automaton constructions (Liu et al., 2023) as black box components to simulate the
relevant data structures. Bottom: Alternatively, we can re-use the template matching mechanism to also parse intermediate
ELIZA outputs, resulting in simpler constructions with different generalization tradeoffs.

Option 2: Position-based attention Our second possible approach uses position-based attention and is described in
Fig. 10. Specifically, we can use an attention head to count the number of tokens in each decomposition group, as well as
the position in the input sequence at which that decomposition group begins. A feedforward layer can then calculate the
position of the input token that should be copied at a given generation step. As discussed by Zhou et al. (2023), this form
of position arithmetic might be more difficult for the model to learn. However, if this mechanism is learned correctly, we
predict that it might generalize better than content-based attention in settings where the same n-gram appears multiple times
in the sequence. The behavior of the model for an input is outlined in Tab. 2.

Input a c d e c d f b g E h c d e c d

Position 1 2 3 4 5 6 7 8 9
Decomposition group 1 2 2 2 2 2 2 3 4
Position to copy 2 3 4 5 6 7

Output c d e c d f

Table 3: Behavior of a model uses position-based attention input acdecdfbg to match to a template t = a0b0 and
respond with reassembly rule r = h2. The position-based attention counts number of tokens in each copy group and an
MLP to calculate target position based on current step and number of tokens per group. Finally, an attention is used to copy
the token from the target position.

B.4 Pre-transformation Rules and an ELIZA Transformer Turing Machine

In this section we discuss how to incorporate the special pre-transformation rule into our construction. This rule is used
by Hay & Millican (2022) to prove that ELIZA is Turing-complete, which will allow us to immediately derive a Turing
machine construction for the ELIZA Transformer.

Pre-transformations with the ELIZA Transformer As discussed in Appendix A, a pre-transformation rule consists of
a decomposition template, a transformation rule, and a reference to another keyword in the script. If an input w matches
the template, ELIZA reassembles it according to the transformation rule to get a new input w′, and then reprocesses w′

according to the specified keyword. Pre-transformation rules can trigger an arbitrary number of computational steps (for
example, we can write a script corresponding to a Turing machine that never halts). Therefore, given a Transformer with a
finite number of layers, the only way to incorporate arbitrary pre-transformation rules into our construction is to enable
the Transformer to perform variable computation depending on the input. The most natural way to do this is using a

19

Representing Rule-based Chatbots with Transformers

Chain-of-Thought-style approach (Wei et al., 2022b): if the input matches a pre-transformation rule, the ELIZA Transformer
will output the transformed input (along with some indicator of the new state), and then reprocess the newly generated
output. This approach also follows from Merrill & Sabharwal (2024), who demonstrate that intermediate-decoding steps are
necessary for simulating arbitrary Turing machines with decoder-only Transformers.

ELIZA Transformer Turing Machine Having incorporated pre-transformation rules into the ELIZA Transformer, we
can now use the ELIZA construction from Hay & Millican (2022) to immediately get a new construction for simulating a
Turing machine with an auto-regressive Transformer. In this construction, each action in the Turing machine is expressed as
a pre-transformation rule, and the input at each timestep encodes the tape. Given a Turing machine (TM) that runs in T (n)
steps (where n is the length of the input), this construction uses T (n)2 generation steps: at each step, it finds the pattern that
matches the most recent input, regenerates the tape according to the associated transformation rule, and then reprocesses the
new version of the tape. This resembles existing constructions, but with some differences. For example, Wei et al. (2022a)
give a construction that uses T (n) generation steps: at each step, the model generates one new token, which encodes the
state and action taken at that step. (On the other hand, Wei et al. (2022a) assumes the TM uses a single-directional tape, so
will take T (n)2 steps to simulate a TM with a bi-directional tape running in T (n) steps.) Note that the ELIZA construction
does not use either of the long-term memory mechanisms (response cyling or the memory queue). At each step, the model
needs to attend only to the most recent version of the tape—which has a length of T (n)—rather than the full conversation
history, which has a final length of T (n)2. The construction could therefore use a sliding window attention scheme (e.g.
Beltagy et al., 2020) to reduce the number of attention comparisons at each step.

C Experimental Details
Here we provide more details about how we generate the data and conduct the experiments. Code and data for reproducing
the experiments are available at https://github.com/princeton-nlp/ELIZA-Transformer.

C.1 Data Generation

To generate an ELIZA dataset, we first generate a set of decomposition templates and reassembly rules, and then generate
conversations by generating sentences that match the different decomposition templates and applying the corresponding
rules. For all templates and sentences are drawn from a vocabulary V consisting of the 26 lower-case English letters. Each
turn begins with a special delimiter character—U for user inputs and E for ELIZA inputs—and ends with a period, and each
conversation begins with a special beginning-of-sequence token.

Decomposition templates Our distribution over decomposition templates is defined by the following parameters: the
minimum and maximum number of wildcard symbols per template; and the maximum n-gram length, meaning the maximum
number of contiguous non-wildcard symbols. For example, the template 0a0bc0 has two wildcards and a maximum
n-gram length of two (bc). To generate a template, we first pick the number of wildcards by sampling a number ℓ uniformly
from between the minimum and maximum, and then form a template by interleaving ℓ wildcard symbols with ℓ+1 n-grams.
Each n-grams is sampled by first sampling a length m uniformly from between 0 and the maximum length (for the first
and last n-gram) or between 1 and the maximum length (for any n-gram between two wildcard symbols), and sampling m
words uniformly from V . For our first set of experiments (Section 4.2), we sample 31 templates with between two and four
wildcards and a maximum n-gram length of three. For our second set of experiments (comparing copying mechanisms in
Section 4.3), we sample 15 templates, each with exactly two wildcard characters and a maximum n-gram length of 1. For
all experiments, the final template is the null template. The only wildcard symbol we use is 0, corresponding to zero or
more words, although ELIZA templates can also include symbols that match exactly n wildcard words.

Reassembly rules Given a decomposition templates, a reassembly rule consists of a sequence of words from V and
integers indexing wildcards in the template. We refer to these wildcards as copying segments. Our distribution over
reassembly rules is defined by the minimum and maximum number of copying segments and the maximum n-gram length.
Given the set of integers corresponding to the available copying segments in the template, we generate a transformation rule
by sampling up to ℓ of these numbers without replacement (where ℓ is sampled uniformly for each rule), and then form a
rule by interleaving numbers with randomly sampled n-grams as above. We additionally prepend each reassembly rule
with a unique, constant two-word prefix. For our first set of experiments (Section 4.2), we sample up to five reassembly
rules per templates, each with between one and four copying segments. For our second set of experiments (comparing

20

https://github.com/princeton-nlp/ELIZA-Transformer

Representing Rule-based Chatbots with Transformers

copying mechanisms in Section 4.3), we sample one reassembly rule per template, each with exactly two copying segments
characters.

Single turn To generate a single turn of a conversation, we sample a decomposition template and then sample a sentence
that matches that template. For each wildcard in the template, we pick a segment length m uniformly from between 0
and the maximum segment length, and then sample m words from the vocabulary. For our first set of experiments, the
maximum segment length is 10 and we sample the m words uniformly for each segment. In our second set of experiments,
the maximum segment length is 20, and, for each segment, we first sample a unigram distribution p ∼ Dirichlet(α1), and
then sampling m words from Categorical(p), as described in Section 4.3).

Conversations For our experiments in Section 4.2, we generate conversations by sampling a sequence of turns until
we reach the maximum input length (512 tokens). (For our experiments with copying mechanisms in Section 4.3, each
conversation consists of a single turn.) We take some additional considerations to ensure that the data demonstrates the
cycling behavior—that is, to ensure that each template occasionally appears enough times in a conversation to cycle
through all of the associated reassembly rules. In particular, for each conversation, we sample a distribution over templates
p ∼ Dirichlet(α), and then for each turn sample a template t ∼ Categorical(p). Here, α is a 32-dimensional vector,
corresponding to the 32 templates (including the null template); setting the entries of α to be less than one makes it more
likely that p assigns most probability to a small number of templates. We set the entries to be 1/32, with the exception
of the memory template, which is set to 1/4 (to increase the proportion of examples that demonstrate the memory queue).
Additionally, after sampling p, we ensure that the likelihood assigned to the null template is at least half the likelihood
assigned to the memory template; this is to increase the proportion of examples that contain both enqueue operations
and dequeue operations (which are triggered by the null template). For our first set of experiments, we sample 100,000
conversations for training and 20,000 for testing. For our second set of experiments, we sample 32,000 and 16,000
conversations for training and evaluation, respectively.

Memory queue To incorporate the memory queue mechanism, we select one of the 32 templates to serve as the memory
template. This template is associated with two lists of reassembly rules: the first list is used to respond to inputs that match
the template (enqueue reassembly rules), and the second list is used later in the conversation when the memory is read from
the queue (dequeue reassembly rules). In Weizenbaum’s ELIZA program (Weizenbaum, 1966), for each memory, a dequeue
reassembly rule is selected at random from the list. In our experiments, we instead use the cycling mechanism, to ensure that
the behavior is deterministic. That is, given dequeue reassembly rules r1, . . . , rM , at the nth dequeue in the conversation we
use the reassembly rule rn%M . In our dataset, there are four dequeue reassembly rules. We also limit the size of the queue:
when sampling conversations, we ensure that the queue contains at most four memories at any time.

C.2 Models and Training

For all of our experiments, we train 8-layer decoder-only Transformers with 12 attention heads per layer, a hidden dimension
of 768. The models have no position embeddings but are otherwise based on the GPT-2 architecture (Radford et al.,
2019) and are implemented using PyTorch (Paszke et al., 2019) and HuggingFace (Wolf et al., 2020). We use the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 1e-4. For multi-turn experiments (Sec. 4.2), we use a batch size of 8
and train for 10 epochs. For single-turn experiments (Sec. 4.3), we use a batch size of 64 and train for 100 epochs. For each
setting, we train models with three random seeds; plots are generated with Seaborn (Waskom, 2021) and show the 95%
confidence intervals.

C.3 Additional Details: Mechanism Analysis

Cycling through responses Given a template t with reassembly rules r1, . . . , rM , we select conversations in which t
appears n > 1 times. For some i < n, we identify the turn at which t is matched for the ith time in the conversation, and
replace the response with rj for some j ̸= i. Then we evaluate the model’s response at the next occurrence of template t.
If the model used the modular sum, we would expect it to give the Same response as before the intervention (responding
with ri+1%M); if it uses the intermediate output, we would expect it to instead reply with rj+1%M (Increment). Figure 6a
indicates that the model almost always increments its response, indicating that the model relies on previous responses to

21

Representing Rule-based Chatbots with Transformers

Full response Prefix only
0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

Increment on = Null inputs

Full response Prefix only

Increment on = Null responses

Turn type
Single turn
Multi-turn (no cycling)
Multi-turn (cycling)
Memory queue
Null template

(a) Accuracy (end of training).

0 2 4 6 8
Number of enqueues

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

Increment on = Null input

0 2 4 6 8
Number of enqueues

Increment on = Null response

(b) Null inputs.

Figure 12: We recreate our experiments from Sec. 4 using a different version of the cycling mechanism for null templates.
In our original experiments, we incremented the cycle number every time the null input is matched, even if the subsequent
response is to read from the memory queue. Here, we instead increment the cycle number only when the null input is
followed by a null response. While the overall trends are similar, models trained on the second version of the data perform
better overall (Fig. 12a); and accuracy on null inputs does not decrease as dramatically as a function of the number of
enqueues in the conversation (Fig. 12b). This suggests that the task is easier for models to learn when they can keep track of
the cycle number using their previous responses, rather than having to count the number of null inputs. See App D.1 for
more details.

update the response cycle.5

Memory queue We conduct a similar experiment to test the memory queue mechanism. We select conversations containing
n > 1 two dequeue turns. For some i < n, we identify the ith dequeue turn and replace the response with a constant string,
corresponding to a null response, and evaluate the model’s response at dequeue i + 1. If the model used the gridworld
automaton, we would expect it to give the Same response as before, replying with memory i+ 1. If the model relied on
intermediate outputs, we would expect it to instead reply with memory i (Decrement). Figure 6b shows that the model
almost always decrements the memory counter, indicating that it examines its own earlier responses to identify the state of
the memory queue.

D Additional Results

D.1 Errors on null inputs

In Sec. 4, we found that models perform worse on inputs that do not match any of the templates, in situations where the
memory queue is empty. We refer to inputs that do not match any templates as null inputs, and say that they match the null
template. Note that, like the other templates, the null template is associated with multiple reassembly rules, and the model
should cycle through these rules when the null template is matched multiple times. (In our experiment, there are five rules
associated with the null template.) We conjecture that the lower performance on null inputs could be related to difficulty
tracking the cycle number for null templates.

In particular, there is some ambiguity in how to track the cycle number for the null template, because a null input does not
always lead to a null response: if the memory queue is non-empty, the model should respond by reading from the memory
queue. In our experiments, we increment the cycle number every time the null input is matched, even if the subsequent
response is to read from the memory queue. However, we could instead increment the cycle number only when the null input
is followed by a null response. For example, consider a case where the null template is associated with three reassembly
rules (“Response 1”, “Response 2”, “Response 3”). The difference between these two mechanisms is illustrated in the
following conversation:

5The difference between Full response and Prefix only accuracy indicates that the model generally selects the reassembly rule as
predicted by the Increment hypothesis, but does not implementing the copying step correctly, perhaps because different reassembly rules
can use different decomposition groups.

22

Representing Rule-based Chatbots with Transformers

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (e
xa

ct
 m

at
ch

)

Concentration (train) = 0.01

0 20 40 60 80 100
Epoch

Concentration (train) = 0.1

0 20 40 60 80 100
Epoch

Concentration (train) = 1.0

0 20 40 60 80 100
Epoch

Concentration (train) = 100.0

Concentration (eval)
0.01
0.1
1.0
100.0

Figure 13: We train and evaluate models on datasets that vary in how likely it is for an n-gram to appear multiple times
in a sequence. These training curves correspond to the experiments discussed in §4.3. Lower values of the concentration
parameter, α, correspond to higher amounts of repetition. For each setting, we train models with three random seeds and plot
the accuracy (mean and 95% CI) on each of the four test distributions over the course of training. The biggest performance
drop occurs when models trained with αtrain > 0.01 are evaluated on the setting with the most repetition (αtest = 0.01);
accuracy on this data also improves more slowly compared to the other settings, even when αtrain = 0.01.

User Cycling on null inputs Cycling on null responses

U: Null. E: Response 1. E: Response 1.
U: Memory A. E: Enqueue. E: Enqueue.
U: Null. E: Dequeue A. E: Dequeue A.
U: Null. E: Response 3. E: Response 2.

We hypothesize that the first mechanism (Cycling on null inputs) is more difficult for the model to learn; for example,
the model cannot determine the cycle number by using the intermediate output mechanism described in Sec. 3.2. To test
whether this is the case, we create new conversation dataset using the same script as in our original experiments, but using
the second approach to determining the cycle number for null inputs (Cycling on null responses). All other training details
are unchanged. The results of this experiment are plotted in Fig. 12. While the error patterns are broadly similar in both
cases, models trained on this second version of the data perform better overall, and do not suffer as much performance
degradation as a function of the number of enqueues earlier in the conversation. This could suggest that the task is easier for
the models to learn when they can determine the cycle number as a function of previous null outputs, rather than having to
count the number of null inputs.

D.2 Copying mechanisms

In Fig. 13, we plot the training curves corresponding to the experiments described in §4.3. Models generalize the worst to
data with the highest degree of internal repetition (αtest = 0.01); this data also takes models longer to learn. This agrees
with the findings of Zhou et al. (2023) and could suggest that induction-head style mechanisms are easier for Transformers
to learn compared to mechanisms that rely on position arithmetic.

In Fig. 14, we recreate the results from Fig. 5c, but plotting the results separately for each final-layer attention head. As
discussed in § 4.3, in this plot, positive values indicate that the attention head has a preference for attending on the basis of
position rather than content, and negative values indicate a preference for attending based on content (i.e., to tokens that have
the same n-gram prefix as the current token), rather than position. Interestingly, within each model, the majority of attention
heads show broadly similar patterns, perhaps indicating that the models encode the same mechanism redundantly across
multiple heads. This result echoes the findings of Singh et al. (2024), who find that models learn multiple parallel induction
heads. Fig. 14 also illustrates that none of the attention cleanly corresponds to one of our hypothesized mechanisms,
underscoring the challenges of aligning real-world Transformers with interpretable symbolic mechanisms.

23

Representing Rule-based Chatbots with Transformers

0 1 2 3 4 5 6 7 8 9 10 11
head

200

100

0

n-
gr

am
 sc

or
e

- p
os

iti
on

 sc
or

e

Concentration (train) = 0.01

0 1 2 3 4 5 6 7 8 9 10 11
head

Concentration (train) = 0.1

0 1 2 3 4 5 6 7 8 9 10 11
head

Concentration (train) = 1.0

0 1 2 3 4 5 6 7 8 9 10 11
head

Concentration (train) = 100.0

n-gram
1
2
3
4
5

Figure 14: Which mechanism do Transformers use to copy segments of the user’s input? At each copying step, we can
identify the position in the input we should read from next by counting the number of tokens in each decomposition group.
To investigate whether models use this mechanism, we compare the difference in the average attention score between queries
and keys under two conditions: either the key has same n-gram prefix as the current output, but appears at the wrong
position; or the key appears at the target position but has a different n-gram prefix. In Fig. 5c, we averaged this metric over
all 12 attention heads in the final layer; here, we show the results for each final-layer attention head individually. Each
column corresponds to a model trained on data generated with a different concentration parameter α, with lower values
corresponding to sentences that are more likely to repeat the same n-grams multiple times. For each model, the majority of
attention heads show broadly similar patterns, suggesting that similar mechanisms are implemented redundantly by multiple
heads.

24

