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Abstract

Greybox fuzzing has achieved success in re-001
vealing bugs and vulnerabilities in programs.002
However, bit-level randomized mutation strate-003
gies have limited the fuzzer’s performance on004
structured data. Specialized fuzzers can handle005
specific structured data, but require additional006
efforts in grammar and suffer from low through-007
put. In this paper, we explore the potential of008
utilizing Large Language Models (LLMs) to009
enhance greybox fuzzing for structured data.010
We utilize the pre-trained knowledge of LLM011
about data conversion and format to generate012
new valid inputs. We further enhance the LLM013
on structured formats and mutation strategies014
by fine-tuning with paired mutation seeds. Our015
LLM-enhanced fuzzer, LLAMAFUZZ, inte-016
grates the power of LLM to understand and017
mutate structured data to fuzzing.018

On standard fuzzing benchmarks, LLAMA-019
FUZZ outperformed the top competitor by020
41 bugs on average. LLAMAFUZZ also021
achieved competitive results against specialized022
grammar-based fuzzers. On real-world pro-023
grams, it attained significantly higher branch024
coverage in 11 of 15 targets compared to the025
baseline AFL++. Lastly, we provide case stud-026
ies to illustrate how Large Language Models027
(LLMs) contribute to improving the fuzzing028
process, particularly in enhancing code cover-029
age.030

1 Introduction031

Fuzz testing, also known as fuzzing, is an auto-032

mated software testing technique that generates033

test seeds to discover vulnerabilities in the target034

software applications. In recent years, greybox035

fuzzing has drawn much attention because of its036

effectiveness in discovering new vulnerabilities in037

many programs. As software systems continue to038

grow in complexity and evolve at an accelerated039

pace, the need for adapted test inputs has become040

increasingly important. While bit-level randomized 041

mutation (Zalewski, 2016; Fioraldi et al., 2020b; 042

Swiecki; Lyu et al., 2019; Lemieux and Sen, 2018) 043

has achieved a lot, they reached a bottleneck in 044

which traditional greybox fuzzers struggle to effec- 045

tively generate structured data. 046

General-purpose greybox fuzzers employ high- 047

throughput bit-level mutation. AFL++ (Fioraldi 048

et al., 2020b), one of the state-of-the-art greybox 049

fuzzers, combines multiple mutation strategies and 050

scheduling strategies, leading fuzzing to a new 051

level. However, when fuzzing applications that 052

require structured input, blind random bit-level mu- 053

tation can be problematic. Such mutations often 054

disrupt the integrity of data formats, resulting in 055

inefficient exploration of the input space. As a 056

result, converging to a high and stable coverage 057

and reaching bugs is time-consuming. To acceler- 058

ate this process, honggfuzz (Swiecki) shares the 059

file corpus across multi-process and multi-thread 060

execution to boost throughput. However, the ef- 061

fectiveness of merely increasing throughput and 062

adding new random mutations is limited, since the 063

bottleneck is caused by the complex constraints 064

when handling structured seeds. AFL++ and hong- 065

gfuzz require excessive attempts to generate valid 066

structured inputs. 067

Therefore, structural awareness of the test seeds 068

is the key to success in fuzzing such software. 069

To generate structured binary seeds, specialized 070

fuzzers use predefined grammars. Gramatron (Sri- 071

vastava and Payer, 2021) restructures the gram- 072

mar to enable unbiased sampling from the input 073

state space and permits more aggressive mutation 074

operations. Moreover, it combines search-based 075

testing to co-evolve the test case generation. How- 076

ever, it requires additional specifications in pre- 077

defined Chomsky Normal Form (Chomsky, 1959) 078

and Greibach Normal Form (Greibach, 1965) to 079

construct grammar automata. NAUTILUS (Ascher- 080

mann et al., 2019) employs grammar-aware mu- 081
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(a) The overview of fuzzing with LLAMAFUZZ. Each data in the fine-
tuning dataset is represented as a pair (Si, Si

′), which denotes a seed
before and after a successful mutation. The mutation process within
LLAMAFUZZ is dual-layered, featuring both traditional fuzzing muta-
tions and LLM-enhanced mutations. These two mutation processes are
asynchronous. Four light-blue boxes (Execution, Behavior monitoring,
Mutation, and Seeds queue) on the right represent the fuzzing loop.

(b) The workflow of dataset pre-processing. Each pair
in the binary seed pairs represents the original binary
seed and the mutated binary seed, whereas S1 and S1

′

indicate seed before and after mutation. Pair 1 to Pair
n n on the right represents the data in the fine-tuning
dataset, corresponding to Pair 1 to Pair n in Figure 1a.

Figure 1: Bug triggered by each fuzzer among trials and fuzz targets

tation operators to probe deep program paths and082

reveal complex bugs, while GRIMOIRE (Srivas-083

tava and Payer, 2021) synthesizes input structures084

to discover bugs in grammar-based formats.085

Fuzzer developers face a trade-off between em-086

ploying general-purpose fuzzers and specialized087

ones. General-purpose fuzzers, while versatile,088

often struggle with handling structured seeds ef-089

fectively. Meanwhile, specialized fuzzers can pro-090

duce high-quality structured seeds, but this special-091

ization can limit their flexibility and applicability.092

Moreover, relying on grammar rules for seed gener-093

ation requires extensive domain knowledge, which094

can be a barrier to their widespread use.095

To address the aforementioned challenges, we096

propose an LLM-enhanced mutation strategy ap-097

plicable to both binary and text-based formats098

with minimal fine-tuning. Figure 1a provides099

an overview of LLAMAFUZZ architecture. Pre-100

trained on diverse datasets, LLMs can learn intri-101

cate patterns for data conversion and data format,102

which are crucial for structured data mutation. We103

further fine-tune LLMs to learn specific seed pat-104

terns and mutate structured seeds, aiming for a105

balance between generic and specialized fuzzers.106

We integrate LLMs and fuzzer with a lightweight107

asynchronous job queue, allowing LLAMAFUZZ108

to run efficiently on single or multiple GPUs.109

To assess bug-finding capabilities, we compared110

LLAMAFUZZ against state-of-the-art fuzzers, in-111

cluding AFL++, Moptafl, Honggfuzz, and Fair-112

fuzz on bug-based benchmark Magma (Hazimeh113

et al., 2020). LLAMAFUZZ outperformed its top114

competitors, discovering 41 bugs on average and115

47 unique bugs overall. In addition, we evalu- 116

ated LLAMAFUZZ on real-world programs across 117

various structured data formats to access its ver- 118

satility (Metzman et al., 2021). When tested 119

against specialized grammar-based fuzzers, LLA- 120

MAFUZZ demonstrated competitive performance. 121

In a broader set of programs, LLAMAFUZZ out- 122

performed AFL++ in 11 of 15 fuzzing targets. Last 123

but not least, we present case studies illustrating 124

how LLM-mutated seeds enhance fuzzing. 125

2 Background and related work 126

Greybox coverage-guided fuzzing tools (Zalewski, 127

2016; Fioraldi et al., 2020b; Xu et al., 2024; 128

Pham et al., 2019; Swiecki) employ mutation-based 129

strategies to explore input spaces; however, their 130

reliance on random bit-level mutations often leads 131

to inefficiencies and difficulties in generating valid 132

inputs. To mitigate this, these tools use bitmaps 133

to record execution paths and guide mutations to- 134

ward unexplored code (Wang et al., 2019a), al- 135

though traditional bit-level approaches still strug- 136

gle with highly structured data. Grammar-based 137

fuzzing (Srivastava and Payer, 2021; Blazytko et al., 138

2019; Fioraldi et al., 2020a; Aschermann et al., 139

2019) overcomes these challenges by using human- 140

specified grammars and operators to generate syn- 141

tactically valid and diverse inputs. 142

Recent advances with LLMs offer a promising 143

alternative by effectively capturing complex data 144

structures to guide seed mutations (Deng et al., 145

2023; Xia et al., 2024, 2023; Huang et al., 2024; 146

Yang et al., 2024b), as demonstrated by CHAT- 147

FUZZ (Hu et al., 2023) and compressed-language 148
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models (Pérez et al., 2024), thereby enhancing149

both efficiency and bug discovery in fuzzing. Our150

method leverages LLMs to learn valid input struc-151

tures, enabling dynamic, structure-preserving mu-152

tations. This approach boosts mutation efficiency,153

code coverage, and bug detection compared to grey-154

box and grammar-based techniques.155

3 Method156

3.1 Architecture157

We introduce LLAMAFUZZ, an LLM-enhanced158

greybox fuzzer designed to mutate structured data159

efficiently. As illustrated in Figure 1a, our approach160

consisted of two primary stages. First, paired struc-161

tured data was pre-processed ( Figure 1b) and used162

to fine-tune the LLM, enabling LLMs to learn the163

underlying structural patterns and mutation trans-164

formation. Second, we integrated the fuzzer with165

LLM, which generated structured seeds based on166

existing inputs.167

Our workflow included three parts: 1. Fine-tune168

preparation: We collected training data from di-169

verse sources. Also, we introduced a data con-170

version method that enables the LLM to mutate171

various data formats. 2. Fine-tuning LLM for mu-172

tation: We fine-tuned the LLM to perform struc-173

ture-aware mutations. 3. Integrate fuzzer and174

LLM: We integrated the fuzzer with the LLM via175

an asynchronous communication mechanism.176

Notably, we excluded seeds used in evaluation177

from the fine-tuning datasets to preempt potential178

data leakage, limiting the possibility that the LLM179

replays memorized seeds to trigger bugs.180

3.2 Fine-tune preparation181

We followed the LLMs training process by gen-182

erative pre-training of a language model on a di-183

verse corpus of unlabeled text, followed by dis-184

criminative fine-tuning on specific tasks (LeCun185

et al., 2015). The fine-tuning data were collected186

from real-world fuzzing processes (Metzman et al.,187

2021). We used these data to teach LLM the pat-188

tern and mutation of structured data, enabling LLM189

to modify a given seed to generate valuable seeds190

while keeping the original structure.191

3.2.1 Fine-tuning data collection192

We expected the LLM to be able to understand the193

structure of data and generate structured seeds for194

testing, thus we needed to collect a training set195

first. Specifically, we collected valuable seeds from196

FuzzBench (Metzman et al., 2021) history experi- 197

ment data and AFL++ fuzzing data that (1) found 198

new paths, (2) had different hit-counts, (3) trig- 199

gered crashes. The reasons are intuitive: improving 200

coverage will help fuzzer explore target programs 201

to find vulnerabilities in the unvisited path since 202

bugs can not be found in undiscovered paths. While 203

seeds with different hit counts (number of times a 204

seed exercises a specific path) may not directly im- 205

prove coverage, they execute the program in varied 206

ways, potentially uncovering vulnerabilities in al- 207

ready visited paths. Ultimately, the goal of fuzzing 208

is to find vulnerabilities, so any seed that triggers 209

crashes is valuable. 210

3.2.2 Data conversion and pre-processing 211

We construct a generic seed mutation model by 212

converting binary input files to a uniform hexadec- 213

imal representation following (Pérez et al., 2024). 214

This conversion serves three purposes. First, to 215

enable LLAMAFUZZ to handle various data for- 216

mats, we need a uniform data reading method, as 217

adapting to each format is impractical. Second, 218

traditional fuzzers operate at the bit level on binary 219

seeds, whereas LLMs typically require natural lan- 220

guage input. Therefore, it is essential to convert the 221

training data to a format that LLMs can understand. 222

Third, the conversion is expected to be efficient, 223

as delay would directly impact fuzzing throughput. 224

Compared to other encoding schemes like base64, 225

hexadecimal is more intuitive, easier to convert 226

from binary. Note that this conversion applies only 227

to binary data; for text-based data, we only add 228

prompts to the seeds, as CHATFUZZ (Hu et al., 229

2023) has shown LLM can process them directly. 230

As shown in Figure 1b, our data conversion pro- 231

cess involves three steps. Initially, the binary seed 232

file is converted into a hexadecimal representation. 233

Next, every two contiguous hexadecimal characters 234

are combined into a single unit. This approach not 235

only reduced the token length of the input string, 236

which was crucial given the limited maximum in- 237

put token length of most current LLMs but also 238

minimized the need to add new vocabulary to the 239

tokenizer, compared to combining three or more 240

hex characters. Finally, we add a prompt to each 241

fine-tuning instance. In addition to data conversion, 242

we incorporate noise data into our training set to 243

mitigate overfitting and training data replay. Each 244

training example consists of a pair of seeds: the 245

original seed and its corresponding mutated version. 246

This setup enables the LLM to learn both the muta- 247
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tion transformation and the underlying structure of248

the data formats.249

3.2.3 Tokenization250

As aforementioned, each pair of contiguous hex-251

adecimal characters was compiled into a phrase.252

However, not all such phrases were present in the253

tokenizer’s vocabulary. To tackle this, we em-254

ployed a tokenizer that uses the Byte-Pair Encod-255

ing algorithm (Sennrich et al., 2015; Touvron et al.,256

2023), which splits unknown phrases into smaller257

subword units. This allows the LLAMAFUZZ to258

generate and understand various data formats.259

3.3 Fine-tuning LLM for mutation260

Fine-tuning pre-trained models is a common261

paradigm for achieving proficiency in specific262

downstream tasks (LeCun et al., 2015; von Werra263

et al., 2020; Ding et al., 2023; Han et al., 2024).264

This process builds upon the pre-trained model’s265

general understanding and adapts it to specific tasks266

through supervised learning. Similarly, supervised267

fine-tuning (SFT) is necessary when employing a268

general-purpose LLM for structured data mutation.269

As shown in Figure 1b, Pair 1 to Pair n provides270

example prompts to guide the model in structured271

data mutation. Each prompt consists of the original272

structured data and its desired mutated result in hex-273

adecimal representation. Subsequently, we prompt274

the format keywords allowing LLM to take the gen-275

eral understanding of the format from pre-trained276

knowledge to do the mutation. Prompt examples277

are provided in subsection A.2278

Following prior works (Xia et al., 2024; Yang279

et al., 2024c), we apply SFT (von Werra et al.,280

2020) to adapt the LLM. The supervised fine-281

tuning objective is defined as:282

L(θ) = − 1

N

N∑
i=1

logP
(
y(i) | x(i); θ

)
283

where x(i) denotes the i-th original seed, y(i) its284

corresponding target mutated seed, and θ represents285

the model parameters. The model is trained to286

generate y(i) conditioned on x(i).287

Additionally, we apply model quantization288

(Polino et al., 2018) with mixed-precision fp16289

and integrate LoRA (Hu et al., 2021) to speedup290

training and inference while maintaining accuracy.291

Training details are provided in subsection A.1.292

3.4 Integrate Fuzzer and LLM 293

Speed is paramount for greybox fuzzers, which can 294

execute hundreds or even thousands of seeds per 295

second (Yun et al., 2018; Zheng et al., 2019). Any 296

additional processes integrated into the greybox 297

fuzzer, could potentially impair overall through- 298

put and negatively impact fuzzing performance. 299

Particularly, LLM generation is slower and more 300

resource-intensive, primarily requiring substantial 301

GPU resources. 302

To address this speed mismatch, we designed 303

an asynchronous job queue for communication be- 304

tween the LLM and the fuzzer. The fuzzing process 305

is formulated as follows: 306

QLLM = {(x(i), ti) | x(i) ∈ X, ti ∈ T},
QAFL = {(x(i), ei) | x(i) ∈ X, ei ∈ E},

F (t) =

{
FLLM(x(i)) if QLLM ̸= ∅,
FAFL(x

(i)) otherwise

(1) 307

where x(i) ∈ X denotes the current seed test in- 308

put chosen by the fuzzer. QLLM and QAFL are 309

the asynchronous job queues for LLM mutation 310

and AFL++ fuzzing respectively, with ti and ei 311

representing their timestamps. The function F (t) 312

defines the dual-layer fuzzing strategy. The seed 313

selection process prioritizes test cases from both 314

queues according to their coverage impact: 315

xi+1 = argmax
x∈QLLM∪QAFL

{is_interesting(x)} 316

This asynchronous process eliminates waiting 317

time, enabling the fuzzer to run at high speed with- 318

out delays from LLM mutation tasks. This ensures 319

that integrating the LLM enhances the fuzzer’s ca- 320

pabilities without compromising efficiency. Ad- 321

ditionally, the dual-layer structure allows easy re- 322

placement of different LLMs. An ablation study is 323

provided in subsection B.3. 324

4 Experiment 325

We investigate the following research questions 326

to reveal the power of LLAMAFUZZ: RQ1 Does 327

LLAMAFUZZ perform better than traditional grey- 328

box fuzzers in finding bugs? RQ2 How effectively 329

does LLAMAFUZZ perform on real-world pro- 330

grams? RQ3 How does LLAMAFUZZ improve 331

the fuzzing process? 332

4.1 Implementation 333

To evaluate the potential of LLMs in addressing 334

the limitations of traditional fuzzing for structured 335
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data, we implemented LLAMAFUZZ by extending336

AFL++ (version 61e27c6). We used llama2-7b-337

chat-hf (Touvron et al., 2023) as the base model,338

which was powerful and efficient on hardware.339

Since LLAMAFUZZ was built on top of AFL++,340

any observed difference can be attributed to our341

changes to the implementation of LLM mutation.342

To prevent seed memorization, we excluded all343

experimental seeds from the fine-tuning dataset.344

Regarding the build process for targets we had345

selected from OSS-Fuzz, Fuzzbench, and Magma,346

we followed the standard instructions provided by347

the benchmark developers (Serebryany, 2017; Met-348

zman et al., 2021; Hazimeh et al., 2020). For real-349

world programs tested under OSS-Fuzz, we uti-350

lized the default initial seed corpus as outlined by351

OSS-FUZZ (Serebryany, 2017). Similarly, during352

our experiments with the Magma benchmark, we353

selected default initial seeds specified by the bench-354

mark developers. More details, source code, and355

related artifacts are provided in subsection A.3.356

4.2 Experimental Setup and Metrics357

For RQ1, we employed Magma V1.2 (Hazimeh358

et al., 2020), a ground-truth fuzzing benchmark359

suite based on real programs with real bugs. Table 3360

outlines details of fuzz targets, where four columns361

indicate benchmark, project, fuzz target, and ex-362

pected file format. In the Magma experiment, we363

compared LLAMAFUZZ with AFL++, Moptafl,364

Honggfuzz, and Fairfuzz. All baseline fuzzers ex-365

cept for AFL++ were provided in Magma. We used366

a more recent version of AFL++ (version 61e27c6)367

than the one provided in Magma, ensuring that we368

have access to the latest enhancements.369

To answer the latter RQs, we evaluated a set of370

real-world programs from OSS-Fuzz (Serebryany,371

2017). For fairness and consistency in the evalua-372

tion process (Klees et al., 2018), we evaluated in a373

standard benchmark, FuzzBench (Metzman et al.,374

2021). The specific applications are detailed in375

Table 3. The chosen benchmark encompassed 12376

open-source programs that process different struc-377

tured data in their latest versions. As suggested by378

Klees et al. (2018) and Hazimeh et al. (2020), each379

experiment lasted for 24 hours. Due to GPU con-380

straints, LLAMAFUZZ was repeated three times,381

while other fuzzers were repeated ten times.382

To assess bug-finding effectiveness, we followed383

the Magma setup, using the number of detected384

bugs and the time to trigger them as key metrics.385

Additionally, we evaluated code coverage using386

established measures (Böhme et al., 2022; Klees 387

et al., 2018; Wei et al., 2022), ensuring consistency 388

by reporting branch coverage via afl-cov. Statistical 389

significance was analyzed using the Mann-Whitney 390

U test (Klees et al., 2018), and the Vargha-Delaney 391

statistic (Olsthoorn et al., 2020) quantified effect 392

size. Further details are provided in subsection A.4. 393

4.3 RQ1: Can LLAMAFUZZ find more bugs? 394

We assessed LLAMAFUZZ performance against 395

other popular fuzzers by checking whether it is able 396

to discover more bugs on Magma. 397

Figure 2a illustrates the distribution of the aver- 398

age number of bugs triggered by LLAMAFUZZ, 399

AFL++, Moptafl, Honggfuzz, and Fairfuzz at the 400

end of the 24-hour trial. According to Figure 2a, 401

LLAMAFUZZ outperforms all other fuzzers in 402

terms of the average number of bugs triggered for 403

each trail. As aforementioned, LLAMAFUZZ was 404

built upon AFL++. Any improvement of LLAMA- 405

FUZZ over AFL++ can be attributed to the contri- 406

bution of LLM. These results highlighted LLAMA- 407

FUZZ’s competitiveness and robustness with the 408

SOTA in bug-triggering capabilities. 409

To further investigate the performance of LLA- 410

MAFUZZ across different fuzzing targets, Fig- 411

ure 2b presents the arithmetic mean number of 412

bugs identified for each project per trial per day. 413

According to the results, LLAMAFUZZ triggered 414

the most unique bugs among the evaluated fuzzers. 415

It discovered 47 unique bugs in Magma, while 416

AFL++, Moptafl, Honggfuzz, and Fairfuzz found 417

46, 42, 37, and 31 errors, respectively. Vulnerabil- 418

ities were found in 9 tested implementations and 419

encompassed various types of memory vulnerabili- 420

ties, including use-after-free, buffer overflow, and 421

memory leaks. Notably, SQL003, XML006, and 422

XML002 were never found by any other fuzzers. 423

In terms of library-specific performance, LLAMA- 424

FUZZ ranked #1 on libsndfile, libtiff, libxml2, lua 425

Targets, php, and sqlite3. #2 on libpng. #3 on 426

openssl and poppler. 427

Compared to honggfuzz, LLAMAFUZZ found 428

three unique bugs in libpng. We investigated the 429

missing bug: PNG001, which was triggered by 430

falsely calculating the row_factor leading to a mem- 431

ory leak, especially for large images and high di- 432

mensionally or multi-channel images. In poppler, 433

LLAMAFUZZ only found six unique bugs, while 434

AFL++ and Mopafl found seven unique bugs. This 435

was because most PDF seeds were large, often ex- 436

ceeding the maximum token length that the LLM 437

5



LLAMAFUZZ

aflplusplus
fairfuzz

honggfuzz
moptafl

20

25

30

35

40
# 

of
 b

ug
s t

rig
ge

re
d

(a) Distribution of the average number of bugs
triggered over 24 hours of LLAMAFUZZ,
AFL++, Moptafl, Honggfuzz, and Fairfuzz.

libpng libsndfile libtiff libxml2 lua openssl php poppler sqlite3
Fuzz targets

0
1
2
3
4
5
6
7
8

# 
of

 b
ug

s t
rig

ge
re

d

LLAMAFUZZ
aflplusplus
fairfuzz
honggfuzz
moptafl

(b) Arithmetic mean number of bugs identified for each project per trial. The
black line denotes the 95% confidence interval.

Figure 2: Bug triggered by each fuzzer among trials and fuzz targets

can process.438

To understand the contributions of LLM muta-439

tion, we conducted a more detailed investigation.440

Bug XML006 (CVE-2017-9048) demonstrated that441

randomness-only mutation was insufficient, a com-442

prehension understanding through structure is nec-443

essary. XML006 is a stack-based buffer overflow444

vulnerable in libxml2. To trigger it, the mutator445

must recursively dump the element content defini-446

tion into a char buffer buf of size size. At the end of447

the routine, the mutator appended two more char-448

acters to exceed the size. In our experiment, only449

LLAMAFUZZ triggered this bug, demonstrating450

that LLAMAFUZZ can facilitate the host fuzzers451

with the capability of finding bugs.452

4.4 RQ2: Performance comparison on OSS.453

While performing well on Magma, we are commit-454

ted to further validating its efficacy in real-world455

applications. To this end, we have selected a series456

of open-source programs to conduct a comprehen-457

sive evaluation. This step is crucial for demonstrat-458

ing the practical effectiveness of LLAMAFUZZ’s459

methodologies and techniques in various file for-460

mats under real-world conditions.461

First, we evaluated the performance of LLAMA-462

FUZZ against specialized grammar-based fuzzers,463

including Gramatron (Srivastava and Payer, 2021),464

Grimoire (Blazytko et al., 2019), and Nautilus (As-465

chermann et al., 2019). We selected a common set466

of fuzzing targets compatible with all specialized467

grammar-based fuzzers, including mruby, PHP, and468

quickjs. Next, we conducted a more comprehensive469

evaluation using real-world programs. Given that470

grammar-based fuzzers are limited to well-defined,471

specialized targets, AFL++ was chosen as the ref-472

erence competitor, representing the state-of-the-art 473

in greybox fuzzing subsection 4.3. 474

4.4.1 Compare with grammar-based fuzzers 475

Figure 3a illustrates the discovered bug coverage 476

distribution achieved by LLAMAFUZZ, AFL++, 477

Gramatron, Grimoire, and Nautilus. Across all 478

three targets, LLAMAFUZZ outperformed the 479

baseline AFL++. Specifically, LLAMAFUZZ iden- 480

tified 13 bugs in PHP, ranking #1 among all evalu- 481

ated fuzzers. In the case of mruby, LLAMAFUZZ 482

achieved #2 rank. Notably, each selected grammar- 483

based fuzzer demonstrated significant performance 484

only on a subset of the fuzzing targets. For exam- 485

ple, Nautilus excelled in mruby and quickjs but 486

did not perform competitively on PHP. In contrast, 487

LLAMAFUZZ showed strong performance across 488

all targets. 489

4.4.2 Compare with AFL++ 490

To conduct a more comprehensive evaluation of 491

LLAMAFUZZ on real-world programs, we se- 492

lected AFL++ as the reference competitor, repre- 493

senting the state-of-the-art in greybox fuzzing. 494

Table 1 reports the average branch coverage, the 495

percentage improvement in average branch cover- 496

age over the same timeframe (see column Improv), 497

p-value, and Â12. In 11 out of 15 targets, LLAMA- 498

FUZZ shows statistically significant improvement 499

compared with AFL++ in terms of code coverage. 500

Furthermore, across all evaluated components, ex- 501

cept for zlib, LLAMAFUZZ exhibited medium to 502

large effect sizes. These results underscore LLA- 503

MAFUZZ’s effectiveness in enhancing coverage 504

across a variety of applications. 505

However, performance in other targets, such as 506

6



LLAMAFUZZ
AFL++

Gramatron
Grimoire

Nautilus
0

5

10

15

# 
of

 R
ea

ch
ed

 b
ug

s
mruby-2018-05-23

LLAMAFUZZ
AFL++

Gramatron
Grimoire

Nautilus
0.0

2.5

5.0

7.5

10.0

12.5
php_php-fuzz-execute

LLAMAFUZZ
AFL++

Gramatron
Grimoire

Nautilus
0.0

2.5

5.0

7.5

10.0

12.5
quickjs_eval-2020-01-05

(a)

0 20000 40000 60000 80000

Relative Time (second)

4000

6000

8000

10000

12000

Co
de

 b
ra

nc
h 

co
ve

ra
ge

LLM gen
1st iter

(b)

Figure 3: (a): The distribution of reached bug achieved by LLAMAFUZZ, AFL++, Gramatron, Grimoire, and
Nautilus. (b): Code coverage growth of LLAMAFUZZ and AFL++ on the binutils-nm target over time. Black
triangles mark LLM-generated seeds, while the red vertical line highlights seeds directly sourced from LLM. The
green line represents LLAMAFUZZ’s coverage, and the grey background indicates AFL++’s coverage range across
experiments.

Table 1: Average branch coverage achieved by our approach (LLAMAFUZZ) and the baseline (AFL++). We report
the average branch coverage, p-values produced by the Mann-Whitney U Test, and the Vargha-Delaney statistics
(Â12). For assessing effect size, we use the labels -, M, and L to represent negligible, medium, and large effects,
respectively.

Fuzz target Fuzz object
Branch coverage (avg)

LLAMAFUZZ AFL++ Improv. p-value Â12

binutils
fuzz_nm 13 958 9017 54.81% <0.01 L(1)
fuzz_objcopy 22 318 12 494 78.64% <0.01 L(1)
fuzz_readelf 6576 4437 48.19% <0.01 L(1)
fuzz_strings 6442 5295 21.65% <0.01 L(1)

bloaty fuzz_target 5972 5722 4.37% <0.01 L(1)

freetype2 freetype2-ftfuzzer 10 521 9978 5.45% <0.01 L(1)

grok grk_decompress_fuzzer 3750 2313 62.12% <0.01 L(1)

kamailio fuzz_parse_msg 3743 2692 39.06% 0.03 L(0.95)
fuzz_uri 1392 1391 0.04% 0.72 M(0.55)

libavc
avc_dec_fuzzer 9872 9838 0.35% 0.01 L(1)
mvc_dec_fuzzer 6463 5933 8.94% 0.87 M(0.55)
svc_dec_fuzzer 11 812 6403 84.48% 0.08 L(0.87)

libhevc hevc_dec_fuzzer 15 154 15 122 0.21% 0.22 L(0.77)

openh264 decoder_fuzzer 7394 7396 -0.03% 0.79 M(0.57)

zlib zlib_uncompress_fuzzer 384 385 -0.47% 0.61 -(0.38)

Table 2: Average branch coverage achieved by LLAMAFUZZ, baseline with default initial seeds (AFL++) and
baseline with default initial seeds combined with trimmed seeds set from LLAMAFUZZ’s fine-tuning dataset
(AFL++∗).

Fuzz target Fuzz object
Branch coverage (avg)

LLAMAFUZZ AFL++ AFL++∗ Improv. p-value Â12

binutils
fuzz_nm 13 958 9017 10 983 27.09% <0.01 L(1)
fuzz_objcopy 22 318 12 494 13 575 64.41% <0.01 L(1)
fuzz_readelf 6576 4437 5789 13.59% <0.01 L(1)
fuzz_strings 6442 5295 5220 23.40% <0.01 L(1)

bloaty fuzz_target 5972 5722 5918 0.90% 0.37 M(0.7)

freetype2 freetype2-ftfuzzer 10 521 9978 10 838 -2.92% 0.01 -

grok grk_decompress_fuzzer 3750 2313 2629 42.63% 0.02 L(1)

kamailio fuzz_parse_msg 3743 2692 2521 48.49% <0.01 L(1)

libavc avc_dec_fuzzer 9872 9838 9847 0.26% 0.01 L(1)

zlib, kamailio-uri, and openh264, showed little to507

no advantage. Additionally, LLAMAFUZZ demon-508

strated less statistically significant improvements in 509

libavc_mvc_dec and libavc_svc_dec. Upon inves- 510
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tigating raw data, one possible reason is that seed511

sizes exceed what LLM can effectively process,512

hindering its ability to generate useful mutations.513

Another factor might be a deficiency in fine-tuning514

datasets specific to those targets, which could limit515

LLM’s capability to learn and apply effective mu-516

tations in those formats.517

4.5 RQ3: Ablation study518

We have demonstrated the superiority of LLAMA-519

FUZZ among standard benchmark and real-world520

programs. Moving forward, we first establish that521

the performance improvements of LLAMAFUZZ522

are attributable to LLM’s inference capabilities523

rather than the replay of fine-tuning data. Lastly,524

we explore how LLM enhances the fuzzing.525

4.5.1 Did LLM enhance the fuzzing process526

by replaying fine-tuning data?527

Although subsection 4.3 and subsection 4.4 demon-528

strate the effectiveness of LLAMAFUZZ, we need529

to investigate whether the performance gains are530

due to fine-tuning data replay. To address this, we531

conducted an ablation study focusing on the signif-532

icant performance improvements observed in sub-533

section 4.4. We used default initial seeds from OSS-534

FUZZ used by LLAMAFUZZ and compared it to535

the default initial seeds combined with trimmed536

seeds set from LLAMAFUZZ’s fine-tuning dataset537

as initial seeds for AFL++ (see column AFL++∗ in538

Table 2). If LLAMAFUZZ were naively replaying539

fine-tuning data, we would expect AFL++∗ to out-540

perform LLAMAFUZZ across all fuzzing targets.541

As detailed in Table 2, LLAMAFUZZ signif-542

icantly outperformed AFL++∗ across all targets543

except for bloaty and freetype2, demonstrating that544

LLM enhances the fuzzing process by interpreting545

structured data rather than simply replaying fine-546

tuning data. In the cases of freetype2 and bloaty,547

however, the performance was similar. This is at-548

tributed to the fact that trimmed initial seeds set549

allowed AFL++∗ to achieve high coverage in the550

early fuzzing process, which introduces a bias in fa-551

vor of AFL++∗. Despite this, the comparable final552

performance demonstrates that LLM augments the553

fuzzing process through its intrinsic understanding554

and inference capabilities.555

Interestingly, we observed a slight performance556

decline in kamailio and binutils_fuzz_strings when557

comparing AFL++∗ with AFL++. This may due558

to the inherent randomness in the AFL++. On the559

other hand, this also indicates that the fine-tuning560

dataset collection has successfully avoided overlap 561

with the testing data. 562

4.5.2 How did LLM augment the fuzzing 563

process? 564

During the fuzzing process, seeds that can trigger 565

new behavior are considered valuable and are used 566

for further fuzzing. Therefore, understanding the 567

relationship between these seeds and code coverage 568

improvements is crucial for optimizing the fuzzing 569

process. Figure 3b displays the code coverage of 570

LLAMAFUZZ and AFL++, highlighting seeds that 571

originated from LLM-generated seeds. The black 572

triangle marks seeds directly generated by the LLM. 573

The subsequent generations of seeds, which are di- 574

rectly sourced from these LLM seeds, are indicated 575

by red vertical lines. 576

Figure 3b shows the growth of coverage over 577

time. The seeds generated by LLM and the AFL++ 578

seeds sourced from LLM seeds span the whole 579

fuzzing process, which brings steady coverage im- 580

provement. This indicates that LLM-generated 581

seeds not only directly impact the fuzzing process 582

but also have a profound and indirect influence 583

on its development. When compared to the grey 584

area, which represents the interval of AFL++ cov- 585

erage, LLAMAFUZZ achieved both higher and 586

faster coverage. This observation further reinforces 587

the LLM can understand the format structure and 588

mutation strategies during fine-tuning instead of re- 589

playing the fine-tuning data. It also aligns with the 590

outcomes from previous experiments conducted 591

in subsection 4.4. 592

5 Conclusion 593

Mutation is a critical step in greybox fuzzing that di- 594

rectly impacts performance. Although randomized 595

bit-level mutations work well in many cases, state- 596

of-the-art fuzzers struggle with structured data be- 597

cause generating valid, highly structured inputs 598

typically requires many attempts and relies heavily 599

on randomness. In this paper, we propose lever- 600

aging LLMs to learn structured data patterns and 601

guide seed mutation. We evaluate LLAMAFUZZ 602

on a ground-truth fuzzing benchmark and a diverse 603

set of real-world programs handling structured data. 604

Our results are promising: LLAMAFUZZ achieves 605

significantly higher coverage than AFL++, discov- 606

ers on average 41 more bugs, and identifies 47 607

unique bugs across all trials. These experiments 608

demonstrate that LLMs can effectively and effi- 609

ciently enable structure-aware mutation. 610
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6 Limitation611

6.1 Model Size And Budget612

Our experiments utilize the following LLMs613

to balance performance and computational cost:614

llama2-7b-chat-hf (Touvron et al., 2023), LLaMA-615

3-8B-Instruct(Dubey et al., 2024), Mistral-7B-616

Instruct-v0.2(Jiang et al., 2023), and Qwen2-7B-617

Instruct(Yang et al., 2024a). The fine-tuning stage618

requires approximately 6 GPU hours per fuzzing619

target, while the fuzzing process lasts for 24 hours,620

resulting in a total of 30 GPU hours per fuzzing621

target.622

As aforementioned, our dual-layer structure al-623

lows easy replacement of different LLMs, includ-624

ing both open-source and closed-source models.625

We present an ablation study in subsection B.3 to626

evaluate the generalizability and effectiveness of627

our approach across different LLMs. However, due628

to GPU and budget limitations, we are unable to629

repeat all experiments on every selected LLM.630
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A Implementation details1007

A.1 Fine-tuning1008

For fine-tuning, we utilized a dataset of approxi-1009

mately 10,000 samples per target. The base model,1010

LLaMA 2-7B, was fine-tuned using LoRA (Low-1011

Rank Adaptation) with an adaptation rank of 8,1012

lora_alpha set to 16, and a dropout rate of 0.05.1013

The training was conducted over 20 epochs with1014

a batch size of 1 per device and a maximum se-1015

quence length of 1400 tokens on a single A1001016

GPU. Overall, the fine-tuning process took around1017

6 hours per fuzzing target. We employed a cosine1018

learning rate scheduler with a learning rate of 2e-4,1019

30 warm-up steps, and a weight decay of 0.001.1020

Optimization was performed using AdamW. Gradi-1021

ent checkpointing was enabled to reduce memory1022

usage, and 4-bit quantization with bfloat16 com-1023

pute precision was applied for efficiency. To ensure1024

consistency across runs, branch coverage was com-1025

puted using afl-cov, and the final model checkpoint1026

was saved for deployment.1027

A.2 Fine-tuning Prompt example1028

A.2.1 Fine-tuning Prompt Template1029

### Input: “‘Based on below hex
{fuzzing_target} seed, mutate a new
{fuzzing_target} seed. Make sure the exam-
ple is complete and valid."
{hex_seed}
### Output:

1030

A.3 Implementations1031

As described in subsection 3.4, we developed an1032

asynchronous job queue to communicate between1033

the fuzzer and LLM. Besides, we revised AFL++1034

source code (e.g. afl-fuzz-bitmap.c) to incorporate1035

LLAMAFUZZ’s functionalities, such as message1036

queue and seeds evaluations.1037

Following previous work (Radford et al., 2019;1038

Wang et al., 2022), we selected a temperature of 1.01039

to mutate the structured data for precise and factual1040

responses. In addition, we adopted the model quan-1041

tization (Polino et al., 2018) into mixed precision1042

floating-point 16fp and enabled Lora (Hu et al.,1043

2021) to freeze some of the parameters, increasing1044

training and inference speed without sacrificing too1045

much accuracy.1046

A.4 Experiment Setup and Metrics 1047

We chose Magma for several reasons. First, Magma 1048

involves a wide range of popular programs that 1049

process diverse structured data with real-world 1050

environments, including 9 libraries and 21 ob- 1051

jects. Second, unlike LAVA-M (Dolan-Gavitt et al., 1052

2016), which primarily employs synthetic bugs 1053

and magic byte comparisons, Magma offers a di- 1054

verse range of real vulnerabilities, with a total of 1055

138 bugs spanning integer errors, divide-by-zero 1056

faults, memory overflows, use-after-free, double- 1057

free, and null-pointer dereference scenarios. It in- 1058

corporates real-world bugs from older versions of 1059

software updated to their latest releases, ensuring 1060

the benchmark’s relevance and practical applica- 1061

bility. Third, Magma focuses on bug counts and 1062

time-to-bug metrics as more direct surrogates for 1063

performance (Hazimeh et al., 2020). In addition, 1064

we chose FuzzBench in later real-world experi- 1065

ments, because it employed Docker containers to 1066

standardize the testing environment for each fuzzer. 1067

This setup guaranteed fairness that all fuzzers op- 1068

erated under identical conditions, thus ensuring 1069

comparability of results. 1070

Table 3 summarizes the fuzzing targets used in 1071

our experiments, covering both Magma and real- 1072

world programs. The Magma benchmark includes 1073

9 projects, comprising 21 fuzz targets across 12 1074

different file formats. The real-world benchmark 1075

features 12 projects, with 18 fuzz targets spanning 1076

19 file formats. Our selection followed three cri- 1077

teria. First, the benchmark had to have a diverse 1078

structure format. Second, the program needed to 1079

handle complex structured data. Third, the program 1080

had to be popular and important. 1081

To assess the statistical significance of our re- 1082

sults, we applied the Mann-Whitney U Test (Klees 1083

et al., 2018). As per the Mann-Whitney U-test, a 1084

result is statistically significant if the p-value is less 1085

than 0.05. In addition, we used the Vargha-Delaney 1086

statistic (Olsthoorn et al., 2020) to quantify effect 1087

size, providing insight into the magnitude of ob- 1088

served differences. The result was classified as 1089

negligible if Â12 was less than 0.5, as medium if it 1090

was greater than 0.5 but not exceeding 0.8, and as 1091

large if it was greater than 0.8. 1092

B More Experiment Result 1093

B.1 Preliminary: Mutation example 1094

Figure 4 presents an example of a PNG seed mu- 1095

tated by the LLM, where the bytes highlighted in 1096
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Table 3: Targets information. The programs tested under the Magma are utilized in their default versions. For
programs included in the real-world bench, we specify the exact versions used by listing the Git SHA identifiers
behind each project name.

Project & version Fuzz Target File format

M
ag

m
a

V
1.

2

libpng libpng_read_fuzzer PNG
libsndfile sndfile_fuzzer Audio

libtiff tiff_read_rgba_fuzzer TIFFtiffcp

libxml2 read_memory_fuzzer XMLxmllint
lua Targets lua Lua

openssl
asn1, asn1parse, bignum,
server, client, x509 Binary blobs

php

json JSON
exif EXIF
unserialize Serialize object
parser PHP

poppler pdf_fuzzer, pdfimages,
pdftoppm PDF

sqlite3 sqlite3_fuzz SQL query

R
ea

l-w
or

ld
pr

og
ra

m
s

mruby 14c2179 mruby_fuzzer mruby
php afa034d php_exec php
quickjs 91459fb eval javascript

binutils 7320840

fuzz_nm, fuzz_objcopy,
fuzz_readelf ELF
fuzz_strings String

bloaty 34f4a66 fuzz_target ELF, Mach-O, We-
bAssembly

freetype2 cd02d35 ftfuzzer TTF, OTF, WOFF
grok b9286c2 decompress_fuzzer JPEG 2000

kamailio 3f774f3 fuzz_parse_msg sip_msg
fuzz_uri URI

libavc 828cdb7
avc_dec_fuzzer AVC
mvc_dec_fuzzer MVC
svc_dec_fuzzer SVC

libhevc d0897de hevc_dec_fuzzer HEVC
openh264 decoder_fuzzer H.264/MPEG-4
1c23887 AVC
zlib 0f51fb4 uncompress_fuzzer Zlib compressed

Figure 4: PNG example of sample input and LLM mutated result. The left section demonstrates the raw data of
example files in 010 editor (Software) view. Two tables on the right highlight the modifications introduced by the
LLM, with changes marked in red. Notably, in this example, the PNG file includes the signature, IHDR chunk,
gAMA chunk, and data represented in blue, green, yellow, and white, respectively. LLM targeted modification on
IHDR, gAMA chunk, and data while keeping the integrity of format and effectively mutating.
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Table 4: Average branch coverage achieved by LLAMAFUZZ, baseline with default initial seeds (AFL++) and
baseline with default initial seeds combined with trimmed seeds set from LLAMAFUZZ’s fine-tuning dataset
(AFL++∗).

Fuzz target Fuzz object

Branch coverage (avg)

AFL++
LLAMAFUZZ integrated

llama2-7b-chat-hf LLaMA-3-8B-Instruct Mistral-7B-Instruct-v0.2 Qwen2-7B-Instruct

binutils fuzz_nm 9017 13 958 14 423 14 929 15 041

grok grk_decompress_fuzzer 2313 3750 4028 3839 4123

kamailio fuzz_parse_msg 2692 3743 3821 3911 4013

red indicate the modifications. In this example, the1097

PNG file comprises a signature, an IHDR chunk,1098

a gAMA chunk, and raw data chunks. The signa-1099

ture, commonly known as the file header, is a fixed1100

sequence of eight bytes that marks the file’s be-1101

ginning. The IHDR chunk, immediately following1102

the signature, contains essential image information1103

such as width, and height. The gAMA chunk spec-1104

ifies the relationship between the image and the1105

desired display output, while subsequent chunks1106

are typically ancillary.1107

In this example, the LLM selectively modifies1108

the IHDR, gAMA, and data chunks. It not only1109

preserves the original format’s integrity but also in-1110

troduces valid modifications that enhance the seed’s1111

potential to expose vulnerabilities.1112

B.2 Performance on bug triggered time1113

Consequently, we listed all the unique bugs trig-1114

gered, including bug ID and the expected time1115

taken to trigger it in Figure 5. The reported time ac-1116

counts for missed measurements (where the fuzzer1117

only triggered a bug in M out of N campaigns) and1118

fits the distribution of time-to-bug samples onto an1119

exponential distribution (Hazimeh et al., 2020).1120

Compared to AFL++, LLAMAFUZZ triggered1121

a greater number of bugs and significantly sped up,1122

with darker blue grid cells representing faster bug1123

triggering. Specifically, LLAMAFUZZ achieved1124

significant speedups in 29 of 43 bugs that were1125

triggered in both LLAMAFUZZ and AFL++ with1126

the remaining bugs exhibiting similar trigger times.1127

In comparison to moptafl, honggfuzz, and fairfuzz,1128

LLAMAFUZZ triggered bugs faster in 25, 23, and1129

21 cases respectively. Overall, the results indi-1130

cate a substantial advantage of LLAMAFUZZ over1131

AFL++, Moptafl, Honggfuzz, and Fairfuzz in ex-1132

ploring bugs.1133

Figure 5: Heatmap of expected bug trigger time
achieved by LLAMAFUZZ, AFL++, Moptafl, Hong-
gfuzz, and Fairfuzz at the end of each 24-hour trail.
Within each block, more intense blue shades denote
shorter expected trigger times, while the grey parts rep-
resent bugs that were not triggered in any trials by that
fuzzer.

B.3 Different models comparison 1134

Constrained by GPU resources, we selected a small 1135

set of real-world programs to demonstrate the gen- 1136

eralizability of our method across different LLMs. 1137

We select llama2-7b-chat-hf (Touvron et al., 2023), 1138

LLaMA-3-8B-Instruct(Dubey et al., 2024), Mistral- 1139

7B-Instruct-v0.2(Jiang et al., 2023), and Qwen2- 1140

7B-Instruct(Yang et al., 2024a) in this experiment 1141

to balance GPU cost. Table 4 outlines the results, 1142

comparing the performance of our LLM-enhanced 1143

fuzzing approaches against the baseline AFL++. 1144

Across all evaluated targets, LLM-enhanced meth- 1145

ods outperformed AFL++, achieving higher branch 1146

coverage. Notably, more recent LLMs, such as 1147

LLaMA3-8B, Mistral, and Qwen-7B, exhibited su- 1148
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perior performance, likely due to their improved1149

inference capabilities and better contextual under-1150

standing. The result demonstrates the generalizabil-1151

ity of our method, confirming its adaptability to var-1152

ious LLMs while consistently enhancing fuzzing1153

effectiveness.1154

C Related work1155

C.1 Fuzzing1156

Fuzzing (Zalewski, 2016; Fioraldi et al., 2020b;1157

Xu et al., 2024; Pham et al., 2019; Swiecki) is1158

an automated random software testing technique1159

to discover vulnerabilities and bugs in the tar-1160

get programs or applications. Traditional fuzzers1161

can be categorized into black-box fuzzers (Feng1162

et al., 2021; Pferscher and Aichernig, 2022; Li1163

et al., 2018; Liu et al., 2024; Borcherding et al.,1164

2023; Householder and Foote, 2012), white-box1165

fuzzers (Yang et al., 2024b; Borkar et al., 2024;1166

Zhang et al., 2023; Arcuri et al., 2024), and grey-1167

box fuzzers (Blackwell et al., 2025; Pham et al.,1168

2019; Böhme et al., 2017; Kim et al., 2023; Fio-1169

raldi et al., 2020a; Huang et al., 2022; Wang et al.,1170

2019b) depending on whether fuzzers are aware1171

of the program structure. The black-box fuzzer1172

threat targets a black box, and it’s unaware of the1173

program structure. Usually, a black-box fuzzer has1174

a high execution volume since it randomly gen-1175

erates test input, but it only scratches the surface.1176

YARPGen (Livinskii et al., 2020) applies random1177

mutation rigorously applies language specifications1178

to ensure the validity of test cases to test C and C++1179

compilers. Similarly, Csmith (Yang et al., 2011)1180

generates programs that cover a large subset of C1181

while avoiding undefined and unspecified behav-1182

iors.1183

White-box fuzzers utilize program analysis to1184

improve the code coverage to explore certain code1185

regions, which can be efficient in revealing vulner-1186

abilities in complex logic. WhisperFuzz (Borkar1187

et al., 2024) introduces a static analysis method1188

designed specifically to detect and locate timing1189

vulnerabilities in processors. The tool focuses on1190

evaluating the coverage of microarchitectural tim-1191

ing behaviors, providing a targeted and comprehen-1192

sive assessment that aids in identifying potential1193

security risks associated with timing flaws.1194

However, program analysis and defining special-1195

ized seed generation grammar could be extremely1196

time-consuming. Greybox fuzzer combines the ef-1197

fectiveness of white-box fuzzer and the efficiency1198

of black-box fuzzer. It leverages instrumentation 1199

to get feedback from target programs and leading 1200

fuzzers to generate more valuable seeds resulting 1201

in higher code coverage. Greybox fuzzers usually 1202

combined with mutation strategies rely on iterative 1203

modifications of existing seeds to produce novel 1204

fuzzing inputs. In addition to basic mutations, re- 1205

cent researchers have developed complex transfor- 1206

mations to maintain type consistency (Jain et al., 1207

2018; Chaliasos et al., 2022), adding historical 1208

bug-triggering code snippets (Holler et al., 2012; 1209

Zhao et al., 2022), and coverage feedback (Ascher- 1210

mann et al., 2019; Fioraldi et al., 2020b) for im- 1211

proved testing efficiency. American Fuzzy Lop 1212

(AFL) (Zalewski, 2016) and its variations (Fio- 1213

raldi et al., 2020b; Lyu et al., 2019; Crump et al., 1214

2023), employ genetic algorithms with a fitness 1215

function to prioritize fuzzing inputs for further mu- 1216

tations aimed at enhancing coverage, concentrating 1217

on byte-level changes. 1218

C.2 Coverage-guided greybox fuzzing 1219

To overcome the inherent randomness challenges 1220

in fuzzing, researchers suggest using bit-map to 1221

record coverage information as feedback to more 1222

effectively guide the fuzzing process (Zalewski, 1223

2016). Since vulnerabilities cannot be detected in 1224

uncovered paths, focusing on expanding the cover- 1225

age of execution paths is a reasonable step toward 1226

improving the performance of fuzzing techniques. 1227

Given a program under test and a set of initial 1228

seeds, the coverage-guided greybox fuzzing pro- 1229

cess mainly consists of four stages. 1230

Seeds queue: a seed was selected from the seeds 1231

pool for mutation. 1232

Seed mutation: the selected seed was mutated 1233

by various mutation strategies to generate new test 1234

seeds. 1235

Execution: Execute the current seed into the 1236

program. 1237

Behavior monitoring: Each new seed will be 1238

fed into the instrumented program for execution 1239

and evaluated by coverage metric. If the seed trig- 1240

gers a new coverage, it will be added to the seeds 1241

queue for further fuzzing. 1242

As the fuzzing loop continues, more code 1243

branches will be reached, which holds the potential 1244

to trigger a bug (Wang et al., 2019a). 1245

C.3 Fuzzing for structured data 1246

Coverage-guided greybox fuzzing has been effec- 1247

tive in identifying vulnerabilities in many real- 1248
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world programs. However, with the increasing1249

complexity of software development, many pro-1250

grams use highly structured data in special formats,1251

which poses significant challenges for traditional1252

fuzzing techniques. Traditional fuzzers primarily1253

perform mutations at the bit level, requiring exces-1254

sive attempts to mutate such structured data effec-1255

tively. Moreover, blind random mutation strategies1256

often disrupt the consistency of data formats, lead-1257

ing to the generation of numerous inefficient and1258

ineffective test cases.1259

Fuzzers for structured data (Wang et al., 2019b;1260

Le et al., 2021; Mallissery and Wu, 2023; Zhang1261

et al., 2024; Meng et al., 2024; Koffi et al., 2024;1262

Shi et al., 2023) can accurately identify the target1263

input format. They can generate test cases that1264

maintain the consistency of the format. This ap-1265

proach ensures that the generated test cases are not1266

only valid but also effective in triggering and ex-1267

ploring potential vulnerabilities or issues within1268

the application. Three grammar-aware mutation1269

operators have been found to be particularly effec-1270

tive in uncovering deep bugs (Srivastava and Payer,1271

2021; Aschermann et al., 2019): random muta-1272

tion, which involves selecting a random non-leaf1273

non-terminal node and creating a new context-free1274

grammars derivation subtree. Random recursive un-1275

rolling, which finds recursive production rules and1276

expands them up to n times. Splicing, which com-1277

bines two inputs while preserving their syntactic1278

validity. In addition, Langfuzz (Holler et al., 2012)1279

combines grammar-based fuzz testing and reusing1280

project-specific issue-related fragments, maintain-1281

ing the integrity of format and having a higher1282

chance to cause new problems than random input.1283

QuickFuzz (Grieco et al., 2016) leverages Haskell’s1284

QuickCheck and the Hackage to fuzz structured1285

data. This integration, combined with conventional1286

bit-level mutational fuzzers, negates the need for1287

an external set of input files and eliminates the re-1288

quirement to develop specific models for the file1289

types being tested. Alternatively, WEIZZ (Fioraldi1290

et al., 2020a) employs a chunk-based mutator to1291

generate and mutate inputs for unknown binary for-1292

mats. Nevertheless, WEIZZ struggles to handle1293

grammar-based formats such as JSON, XML, and1294

programming languages.1295

C.4 Augment fuzzing through machine1296

learning1297

Current research primarily concentrates on two as-1298

pects: employing machine-learning models as gen-1299

erators and leveraging machine-learning models to 1300

guide the fuzzing process. 1301

C. Pérez (Pérez et al., 2024) explored the abil- 1302

ity of Compressed-Language Models (CLMs) to 1303

interpret files compressed by standard file formats. 1304

Their findings revealed that CLMs are capable of 1305

understanding the semantics of compressed data 1306

directly from the byte streams, opening a new path 1307

for processing raw compressed files. In a related 1308

study, CHATFUZZ(Hu et al., 2023) investigates 1309

the mutation capabilities of LLM on text-based 1310

seeds, achieving 12.77% edge coverage improve- 1311

ment over the SOTA greybox fuzzer (AFL++). Sim- 1312

ilarly, SmartSeed (Lyu et al., 2018) combines deep 1313

learning models to generate new inputs for evaluat- 1314

ing 12 different applications. 1315

Prior work (Eom et al., 2024) integrates an LLM- 1316

based mutator with a reinforcement learning ap- 1317

proach, utilizing the Term Frequency-Inverse Doc- 1318

ument Frequency technique to develop a weighted 1319

coverage map. This method capitalizes on coverage 1320

feedback to enhance the effectiveness of the muta- 1321

tion process. Similarly, Xia et al. (Xia et al., 2024) 1322

introduce an auto-prompting phase that employs 1323

LLMs to produce and mutate test cases across six 1324

programming languages. Their findings indicate 1325

that LLMs can surpass the coverage achieved by 1326

cutting-edge tools. 1327

Additionally, WhiteFox (Yang et al., 2023) em- 1328

ploys dual LLMs within their framework: one 1329

analyzes low-level optimization source code to 1330

inform optimization strategies, while the other 1331

generates test programs based on this analysis. 1332

CHATAFL (Meng et al., 2024) utilizes LLMs to 1333

understand protocol message types and assesses 1334

their ability to identify "states" in stateful protocol 1335

implementations. LLM4FUZZ (Shou et al., 2024) 1336

leverages LLMs to guide fuzzers towards more crit- 1337

ical code areas and input sequences that are more 1338

likely to reveal vulnerabilities, showcasing the po- 1339

tential of LLMs in prioritizing and refining fuzzing 1340

efforts. 1341

C.5 Large Language Model 1342

In recent studies, pre-trained Large Language Mod- 1343

els (LLMs) have shown impressive performance on 1344

natural language tasks, including Natural language 1345

understanding, reasoning, natural language gener- 1346

ation, multilingual, and factuality (Chang et al., 1347

2023; Menon and Vondrick, 2022; Madani et al., 1348

2023; Li et al., 2022). 1349

Utilizing unsupervised learning, Large Lan- 1350

17



guage Models are pre-trained on extensive textual1351

data, enabling LLM with a broad range of knowl-1352

edge. Additionally, with billions or trillions of1353

parameters, LLM can not only capture the pat-1354

terns in context but also understand the textual1355

data at a deeper level such as format and chunk1356

information within files. Such capabilities have fa-1357

cilitated LLMs to exhibit remarkable competencies1358

beyond traditional Natural Language Processing1359

tasks. Evidence of their versatility includes visual1360

classification (Menon and Vondrick, 2022), protein1361

sequence generation (Madani et al., 2023), code1362

generation (Li et al., 2022).1363

Building upon this versatile foundation. This1364

inherent capability to interpret and process differ-1365

ent data structures renders LLMs particularly ef-1366

fective in the mutation stage of fuzzing processes.1367

CHATFUZZ (Hu et al., 2023) employs LLMs to1368

directly generate seeds, though its application is1369

limited to text-based target programs such as JSON1370

and XML. Moreover, Pérez et al. demonstrate1371

that Compressed-Language Models can understand1372

files compressed by Compressed File Formats.1373

D Data Availability1374

D.1 LLAMAFUZZ1375

The LLAMAFUZZ system comprises two primary1376

components: a greybox fuzzer and a large language1377

model (LLM). The greybox fuzzer (AFL++) in1378

LLAMAFUZZ is available in two versions to cater1379

to different types of seeds:1380

Binary Seeds Version: This version of the fuzzer1381

is designed to handle binary seeds, providing effi-1382

cient and effective fuzzing for binary-based tar-1383

gets. https://anonymous.4open.science/r/1384

AFLplusplus-binary-seeds1385

Text-Based Seeds Version: This version is tai-1386

lored for text-based seeds, ensuring comprehen-1387

sive coverage and mutation for text-based tar-1388

gets. https://anonymous.4open.science/r/1389

AFLplusplus-text-based1390

The link below provided the LLM component of1391

LLAMAFUZZ:1392

https://anonymous.4open.science/r/1393

LLAMAFUZZ-CDC51394

D.2 Experiment benchmarks1395

We have extended the base version of benchmark1396

frameworks to support LLAMAFUZZ. This in-1397

cludes added functionality to seamlessly integrate1398

the greybox fuzzer and LLM into the benchmark- 1399

ing process. 1400

Magma Experiment Version: 1401

https://anonymous.4open.science/r/ 1402

magma-llamafuzz/ 1403

Fuzzbench Experiment Version: 1404

https://anonymous.4open.science/r/ 1405

fuzzbench-llamafuzz/ 1406

D.3 Experimental Data 1407

To facilitate further research, we provide all experi- 1408

mental data from the two benchmarks: 1409

Magma Experiment Data: 1410

https://zenodo.org/records/11522337 1411

https://zenodo.org/records/13754925 1412

Fuzzbench Experiment Data: 1413

https://zenodo.org/records/11523710 1414
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