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Abstract

Despite widespread adoption, multimodal large language models (MLLMs) suffer
performance degradation when encountering unfamiliar queries under distribution
shifts. Existing methods to improve MLLM generalization typically require either
more instruction data or larger advanced model architectures, both of which incur
non-trivial human labor or computational costs. In this work, we take an alternative
approach to enhance the generalization and robustness of MLLMs under distri-
bution shifts, from a representation learning perspective. Inspired by information
bottleneck (IB) principle, we derive a variational lower bound of the IB for MLLMs
and devise a practical implementation, Visual Instruction Bottleneck Tuning
(Vittle). We then provide a theoretical justification of Vittle by revealing its
connection to an information-theoretic robustness metric of MLLM. Empirical
validation of multiple MLLMs on open-ended and closed-form question answering
and object hallucination detection tasks over 45 datasets, including 30 shift sce-
narios, demonstrates that Vittle consistently improves the MLLM’s robustness
under shifts by pursuing the learning of a minimal sufficient representation.
Code: https://github.com/deeplearning-wisc/vittle

1 Introduction

In intensive races on the track of frontier-level AI models, we have observed unprecedented achieve-
ments through the form of a general-purpose chat assistant known as multimodal large language
models (MLLMs) [1, 2, 3, 4] that combine a visual encoder with a large language model. Their
universal yet flexible question-answering interface enables MLLMs to easily permeate our lives from
general problem-solving [5, 6] to practical applications [7, 8, 9, 10]. While these models may achieve
human-like or even surpass human-level performance on certain tasks, a critical gap remains in their
robustness—particularly in handling input variations that humans process effortlessly.

Human intelligence thrives on the ability to distill a large amount of sensory and cognitive inputs
into concise abstract representations, a process akin to conceptual compression [11, 12]. By priori-
tizing sparse salient features while discarding redundancy, humans can shape a robust prototypical
representation of complex data instances that captures a proper level of invariance to low-level
superficial features for generalization, yet maintains sensitivity to high-level abstract features
for discrimination [13, 14, 15]. Unfortunately, there are consistent reports implying that the current
MLLMs still lag far behind this desired trade-off between invariance and sensitivity [16, 17, 18, 19].

Specifically, MLLMs fail to produce relevant responses under query distribution shifts. That is, they
are vulnerable to processing subtly perturbed samples and long-tailed samples [19]. This limitation
partially stems from the difficulty of acquiring diverse high-quality multimodal instruction data
at scale. When trained using standard maximum likelihood estimation on this relatively limited
amount of instruction data, MLLM tends to fit to data-specific patterns and results in a brittle
solution [20, 21, 22]. To enhance generalization, existing efforts typically fall into two categories (1)
data-centric approaches, which collect more instruction data [23, 24, 25] and processes input in a
finer granularity [26, 27], and (2) model-centric approaches, which scale up the underlying model
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Figure 1: Illustration of distribution shifts for an MLLM (a) and performance degeneration
and embedding shifts of the MLLM (b). An MLLM (LLaVA-v1.5-7B) receives arbitrary queries
that might be visually and/or textually perturbed by unexpected noise. These distribution shifts
result in performance drops, as shown in the middle bar plot. A visualization of intermediate layer
representations of the MLLM on LLaVA-Bench-COCO and its variants indicates that MLLM fails to
learn a proper level of invariance to generalize multimodal queries in the representation space.

using more expressive or specialized backbones [28, 29, 30, 31]. However, both data scaling and
model scaling are resource-intensive—requiring significant annotation or computational cost.

In this work, we propose a new approach from a representation-centric view to improve the ro-
bustness of MLLMs under distribution shifts. Rather than scaling data or model, we introduce a
lightweight, theoretically grounded module that enhances the internal representations of MLLMs via
the information bottleneck (IB) principle. While the IB framework has been explored in small-scale
or classification settings [32, 33, 34, 35, 36], integrating it to autoregressive multimodal instruction
tuning poses unique challenges due to the complexity of modeling mutual information across high-
dimensional, sequential, and heterogeneous modalities. We overcome these barriers by formulating
a novel variational lower bound of the IB objective specifically tailored to the multimodal and
sequential nature of MLLMs. We further instantiate this formulation as a modular and scalable imple-
mentation—Visual Instruction Bottleneck Tuning (Vittle), which inserts one simple bottleneck
layer within the LLM backbone. Vittle pursues minimal sufficient representations [37] that try to
preserve only response-relevant information while discarding non-essential residual features. To our
knowledge, this is the first work to investigate the IB framework for end-to-end instruction tuning of
multimodal LLMs, offering a model-agnostic pathway toward building more robust AI systems.

We conduct an extensive evaluation of Vittle across a wide spectrum of multimodal benchmarks to
assess its robustness and generalization under distribution shift. Our experiments span 30 distribution
shifts covering diverse forms of perturbation (in both vision and language) and long-tail distributions.
Through these evaluations, we demonstrate that Vittle consistently improves robustness over
standard instruction tuning baselines, without sacrificing performance on standard benchmarks and
canonical tasks. Notably, we find that the bottlenecked representations induced by Vittle lead to
enhanced invariance in the latent space, aligning semantically similar inputs more closely—even under
input shifts—while reducing overfitting to modality-specific artifacts. We also show that Vittle is
compatible with different MLLMs, offering robustness gains while maintaining similar inference-time
cost. These results underscore the practical benefit and theoretical promise of information-regularized
representation learning for robust multimodal instruction tuning.

Contributions: (1) We propose a new representation-centric framework for improving the robustness
of MLLMs under distribution shifts, grounded in the information bottleneck principle. (2) We
explore the IB-based end-to-end learning objective of an MLLM for the first time by inducing a new
variational lower bound of IB for MLLM and devising a practical instantiation, Vittle, supported by
theoretical analysis. (3) Through experiments on 30 diverse types of distribution shifts, we thoroughly
validate the robustness of MLLMs on open-ended/closed-form QA and object hallucination detection
tasks and show advantages of compressive representation induced by pursuing the IB principle.

2 Background, Related Work, and Motivation
Multimodal large language models (MLLMs). Recent advances in MLLMs integrate a pre-trained
language model with a vision encoder through visual instruction tuning [38, 39]. To be specific,
let X = (Xv, Xt) denote a multimodal input query consisting of visual and textual input, e.g.,
an image and a corresponding instruction or a question given that image, and Y denote a desired
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response given the input query. An MLLM fθ with parameter θ is trained to produce the desired
response given an input query with a conditional autoregressive language modeling objective, i.e.,
argminθ EX,Y [

∑M
m=1 log fθ(Ym|Xv, Xt, Y<m)] for a sequence of M -length responses, where the

visual input Xv go through a visual encoder and projector modules to be converted as a sequence of
tokens that have the same dimension as text embeddings and can be processed by an LLM backbone1.
After being trained, these models process a wide array of multimodal instructions to solve arbitrary
visual question answering tasks [40].

Robustness problem in MLLMs. Despite their impressive performance on standard benchmarks
and their growing deployment in real-world applications [8, 41, 42], MLLMs remain vulnerable to
input perturbations [43, 44, 45]. For example, MLLMs undergo a systematic performance drop [19]
when they encounter samples of superficial perturbations (e.g., varying brightness of image and typo
in text) illustrated in Figure 1 (a). As shown in the bar plot of Figure 1 (b), LLaVA-v1.5-7B model
undergoes severe performance degradation on LLaVA-Bench-COCO (LB-COCO; [38]) under the
perturbations from visual input, textual input, and their joint (V, T, and J Pert.).

We posit that these vulnerabilities arise from the way MLLMs structure their internal representation
space. In particular, inputs affected by perturbations are often embedded far from their intact
(clean) counterparts, reflecting a distribution shift in the representation space that leads to poor
generalization from an information-theoretic perspective [19]. The right side of Figure 1 (b) illustrates
this phenomenon: using LLaVA-v1.5, we visualize representations of LB-COCO alongside its
challenging variant, where the image and text inputs are perturbed. In this setting, semantically
equivalent examples are mapped to distinct and distant regions in the latent space, suggesting a lack
of invariance to superficial input variations, which is crucial for robustness to distribution shifts.

Motivated by this, our work aims to enhance the robustness of MLLMs by explicitly regularizing
their internal representations, encouraging them to retain task-relevant information while discarding
input-specific noise—thereby finding a good balance between invariance to low-level superficial
features and sensitivity to high-level abstract features for better generalization.

Information bottleneck principle. The information bottleneck framework provides a principled
approach to measure the quality of representations that are maximally predictive of a target variable
while compressing redundant information from an input variable [46, 47]. Numerous works have
explored the use of IB training objective [32], across computer vision [48, 49], natural language pro-
cessing [35, 36], graph learning [34, 50], and time-series modeling [51]. These efforts are supported
by theoretical insights suggesting that optimizing for the IB objective can reduce generalization
error [33, 52]. However, most prior work focused on classification settings [35, 36] and/or relatively
small-scale models [32, 53, 35]. Although a recent study explored IB for MLLMs [54], the authors
adopted IB training on a lightweight projector module while keeping the LLM backbone frozen. In
contrast, our work is the first to investigate the IB framework for end-to-end training of large-scale
autoregressive multimodal language models. Beyond shallow adaptations, we directly modify the
internal structure of the LLM to promote IB-consistent behavior throughout the training process. We
focus specifically on instruction tuning for MLLMs—which have become increasingly central to
modern AI ecosystems but remain largely unexplored from the perspective of IB-based learning.

3 Method

3.1 Preliminary: Information Bottleneck As a Learning Objective

Let X be a multimodal input query (e.g., image-text pair), Y the desired output, and Z = f(X)
an intermediate representation extracted by the MLLM encoder f(·). The Information Bottleneck
principle aims to learn representations that are maximally informative about the output Y while being
minimally informative about the input X . Formally, this is expressed as the optimization objective:

max
f

IBf (X,Y ) := I(Z, Y )︸ ︷︷ ︸
acquiring information from desired output

−β I(Z,X)︸ ︷︷ ︸
compressing input-specific redundant information

, (1)

where I(·, ·) denotes mutual information and β is the trade-off coefficient. Minimizing I(Z,X)
encourages removing redundant or input-specific variations, while maximizing I(Z, Y ) ensures that
the representation retains task-relevant signals necessary to predict the desired output.

1For simplicity, we will omit the visual encoder and projector in our learning objective at following sections.
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In other words, the IB objective promotes representations that discard non-essential features tied
to the input domain, while preserving those critical for solving the task. This property is desirable
for robust instruction tuning, where user queries that have the same latent goal must be mapped to
consistent responses under varied conditions (e.g., visual and textual perturbations). Despite its appeal,
integrating the IB objective into MLLM training is highly non-trivial due to the intractability of
mutual information estimation and the complexity of autoregressive and multimodal architectures.

3.2 Variational Inference for Information Bottleneck in MLLMs

Directly optimizing the IB objective is generally intractable, as it involves mutual information terms
over unknown data distributions. In this work, we introduce a tractable variational bound on the IB
objective, specifically tailored to the autoregressive and multimodal structure of MLLMs. We outline
the key steps below and provide full derivations in the Appendix D.

We begin with the mutual information term I(Z,X). Given the sequential nature of MLLMs, we
decompose both the input X = (Xv, Xt) and the latent representation Z = (Zv, Zt) into visual and
textual components. We can then derive the following upper bound for I(Z,X):

I(Z,X) = Ex,z[log
p(z|x)
p(z)

] ≤ Ex,z[log
p(z|x)
r(z)

] = Exv,xt,zv,zt [log
p(zt|xv, xt)p(zv|xv)

r(zv)r(zt)
]

= Exv,xt
[Ezt|xv,xt

[Ezv|xv
[log

p(zv|xv)
r(zv)

]]] + Exv,xt
[Ezv|xv

[Ezt|xv,xt
[log

p(zt|xv, xt)
r(zt)

]]]

= Exv
[DKL(p(zv|xv)||r(zv))] + Exv,xt

[DKL(p(zt|xv, xt)||r(zt))], (2)

where the first inequality holds given the non-negativity of Kullback-Leibler divergence (KLD),
DKL(r(z)||p(z)), and p(zv|xv, xt) = p(zv|xv) due to causal mask in MLLM. Here, we introduce
r(z) = r(zv, zt) = r(zv)r(zt) as a factorizable variational approximation of the true prior p(z).

Next, for the output-relevant term I(Z, Y ), we have the lower bound as the same as Alemi et al. [32]:

I(Z, Y ) = Ey,z
[
log

p(y|z)
p(y)

]
≥ Ex,y,z [log q(y|z)]− Ey[log p(y)] ≥ Ex,y

[
Ez|x [log q(y|z)]

]
,

(3)

where we replace the true posterior p(y|z) with a variational approximation q(y|z) that will be
parameterized by a model component (will be elucidated in Section 3.3).

Finally, combining the lower bound of I(Z, Y ) and the upper bound of I(Z,X) yields a variational
lower bound for the IB objective as follows,

IB(X,Y ) ≥ Ex,y
[
Ez|x[log q(y|z)]

]
− β (Exv [DKL(p(zv|xv)||r(zv))] + Exv,xt [DKL(p(zt|xv, xt)||r(zt))]), (4)

In the next section, we elaborate on how we can implement this variational lower bound for MLLM
instruction tuning in practice.

3.3 Vittle: A Practical Implementation of Visual Instruction Bottleneck Tuning

By using a Monte Carlo approximation of expectations over data, Eq. (4) can be written as follows,

Lβ =
1

N

N∑
i=1

Ez|xi [log q(yi|z)]− β (DKL(p(zv|xiv)||r(zv)) +DKL(p(zt|xiv, xit)||r(zt))), (5)

where, xi = (xiv, x
t
v) denotes the i-th sample query from an instruction tuning dataset. To compute

this empirical estimate of the IB lower bound, we need to model the posterior distributions, p(zv|xv)
and p(zt|xv, xt), and prior distributions r(zv) and r(zt), of the MLLM’s inner representation Z.
Although in principle these distributions can take arbitrary forms, multivariate Gaussian distributions
with simplified covariance matrices have been widely adopted in variational inference and proba-
bilistic embedding literature [55, 56, 57, 32, 58, 59, 60, 61] due to their mathematical tractability
and empirical effectiveness. By following this common standard, we set the posteriors and priors as
Gaussian with diagonal covariance, and will elucidate how exactly they are defined below.
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Figure 2: Vittle architecture. We insert a learnable bottleneck layer gϕ = {gϕv
, gϕt

} on top of l
blocks of LLM backbone (i.e., LLM-stem fθl ) to estimate posterior distributions of token embeddings.
After obtaining a sample per token {z̃v, z̃t} from posteriors, we interpolate it with a pre-bottlenecked
token representation {zv, zt} and pass it through the remaining LLM blocks (i.e., LLM-head fθl+ ).

Posterior distributions. As illustrated in Figure 2, we parameterize the posteriors p(zv|xv) and
p(zt|xv, xt) using simple feed-forward blocks. Specifically, they are non-linear mappings, gϕ· :
Rd → R2d implemented by multi-layer perceptron (MLP) for each modalities, which map each
d-dimensional token embedding to the posterior Gaussian parameter vectors µ ∈ Rd and σ2 ∈ Rd+.
Given an intermediate l-th layer output representation (zv, zt) = fθl(xv, xt), we define:

p(zv|xv) := N (zv;µv, σ
2
v · I), p(zt|xv, xt) := N (zt;µt, σ

2
t · I),

where [µv, σ2
v ] = gϕv

(fθl(xv)) and [µt, σ
2
t ] = gϕt

(fθl(xv, xt)), with the mean and variance parame-
ters are bipartited along the output dimensions of the MLP. These MLPs are applied position-wise in
the same manner as Transformer’s feed-forward layers [62], producing token-wise variational posteri-
ors. Now, we can sample from the posterior distributions of MLLM representation by z̃v ∼ p(zv|xv)
and z̃t ∼ p(zt|xv, xt). Then, to strike a balance between invariance and sensitivity, we interpolate the
original representation z (pre-bottleneck) with the post-bottleneck counterpart z̃ as ẑ = (1−α)z+αz̃2.
These representations are fed into the remaining layers to compute the predictive distribution over
outputs, i.e., q(y|z) := fθl+(y|ẑv, ẑt). While direct sampling introduces non-differentiability, we can
enable the gradient flow using the reparameterization trick [56] to sample z̃ via z̃ = µ+ σ ⊙ ϵ with
ϵ ∼ N (0, I) where µ and σ are the outputs of the bottleneck MLP module given input x.

Prior distributions. We consider two instantiations of the prior distribution for both Zv and Zt:
(1) a fixed standard3 Gaussian N (0, I), which is input-independent and enforces strong isotropy, and
(2) a learnable Gaussian N (µψ, σ

2
ψ · I), where µψ and σ2

ψ are two learnable vectors shared across
samples. Each prior affects the formation of representations differently—the fixed prior imposes
stronger regularization and robustness, while the learnable prior introduces additional flexibility by
allowing the model to adapt to the instruction tuning distribution. We name the former Vittle (F)
and the latter Vittle (L), and validate them altogether for all the evaluations in Section 4.

Overall objective and implementation. The first term of Lβ(Eq. (5)) can be easily computed
through the standard cross-entropy, and our Gaussian instantiation of posteriors and priors allows
us to derive closed-form expressions of KLD terms that can be computed from simple arithmetic
between µ and σ2 parameters (See Appendix A.2). We set β = 0.1

d where d is the hidden dimension
of the MLLM, to normalize the KL regularization terms relative to the size of the latent dimension.
The interpolation coefficient α in ẑ = (1 − α)z + αz̃ increases progressively following a cosine
schedule up to 0.5. During inference, we consistently use an averaged representation ẑ = (z + z̃)/2
with a deterministic posterior representation z̃ = µ rather than using a random sample. The target
layer to apply the bottleneck module can differ between visual and textual tokens, but we set l = 24
for both modalities among 32 layers in a 7B-size LLM, i.e., top 25% layer, by default for simplicity
(See Appendix B.1 for the ablation study). Figure 2 depicts the architecture overview.

2This interpolation yields an asymmetric posterior specification for I(Z,X) and I(Z, Y ) (Appendix D).
3An alternative is to use the representation statistics (mean and variance) from a pre-instruction-tune model

to host informative priors similar to mixout [63], which may relax the need for interpolation (1− α)z + αz̃.
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3.4 Theoretical Justification

The learning objective of Vittle has an attractive theoretical interpretation that can support the
improvement in robustness of Vittle. In this section, we first introduce a recently proposed
information-theoretic measure of MLLM’s robustness under distribution shifts, effective mutual
information difference, EMID [19], and show how Vittle can contribute to reducing EMID.
Definition 3.1 (EMID). Let PΘ : X → Y be an MLLM with parameters Θ that produces an output
response YΘ given an input instruction X . For joint distributions PXY and QXY , effective mutual
information difference of PΘ over distributions P and Q is defined as below,

EMID(PXY , QXY ;PΘ) := [I(PXYΘ
)− I(PXY )]− [I(QXYΘ

)− I(QXY )]. (6)

where I denotes the mutual information that measures the relevance between input query and response.
A higher value of EMID indicates that MLLM PΘ undergoes query-response relavance degeneration
in the distribution Q (e.g., test-time) compared to P (e.g., train-time), so we want to achieve a lower
value of it to ensure robustness. We now derive an upper bound for the EMID (See Appendix E).
Proposition 3.2 (EMID upper bound). Let PΘ be an MLLM that maps X = {Xv, Xt} to Z =
{Zv, Zt}, and then subsequently maps Z to YΘ. Given joint distributions PXY = PX × PY |X and
QXY = QX×QY |X (resp. PZY and QZY ), by assuming consistent conditionals over Zv|Zt, Zt|Zv ,
and Y |X between P and Q, we have an upper bound for EMID(PXY , QXY ;PΘ) as below,

Ĥ
(
D

1
2
JS(PZv ||QZv ) +D

1
2
JS(PZt ||QZt) +

√
∆X|Z

)
+ |H(PYΘ)−H(PY )|+ |H(QYΘ)−H(QY )|, (7)

where H and D
1
2

JS indicate the entropy and square root of Jensen-Shannon divergence (JSD), respec-
tively, ∆X|Z := Ez∼P [DKL(PX|z||MX|z)]+Ez∼Q[DKL(QX|z||MX|z)] with a mixture distribution
M = P+Q

2 , and Ĥ := maxx∈X [H(QY |x)+H(PYΘ
)]. As we are interested in the terms related to Θ

being optimized, the terms H(PY ), H(QY ), and maxH(QY |X), can be ignored from Eq. 7 which
are fixed across model parameters. We can also ignore

√
∆X|Z term because it cannot directly affect

YΘ given the conditional independence X⊥YΘ|Z. That is, the upper bound of EMID is boiled down
to the multiplication and summation between the output entropy and the representational divergence.

Implication. Vittle maximizes the variational lower bound of IB, which consists of (1)
minimizing a standard negative log-likelihood term representing an expected risk, and (2)
minimizing KLD terms to enforce posterior distributions close to prior distributions. By (1),
MLLM PΘ seeks a solution Θ that minimizes the expected risk and reduces its output entropy
H(PYΘ

) and probably H(QYΘ
) as well [64, 65, 66]. By (2), it may reduce JSD between

representation distributions PZ and QZ by promoting all posterior samples to be laid near the
pre-defined priors [67, 68, 69]. In summary, reduced entropy and JSD terms induce a lower
EMID, which means that Vittle may achieve better robustness to distribution shifts than
the standard training method that neglects the divergence in representation space.

We show that Vittle indeed reduces empirical JSD and EMID under distribution shifts in Table 4,
and demonstrate in Section 4.2 that Vittle’s nice theoretical property is translated into consistent
robustness gains under 30 distribution shift scenarios while maintaining in-distribution performance.

4 Experiment

4.1 Setup

Model and implementation detail. We adopt LLaVA-v1.5 [70] as our main baseline MLLM, where
we set CLIP ViT-L/14-336px [71] as a vision encoder, Vicuna-v1.5-7B [72] as an LLM, and a
two-layer MLP as a projector. We follow the standard two-stage training of LLaVA [38], and replicate
stage-1 for image-text alignment with the same configuration and dataset (LLaVA-pretrain-558k)
of LLaVA-v1.5 [70]. Then, on the LLaVA-mix-665k, we apply Vittle method by inserting the
posterior MLP blocks and training the whole model with our IB objective. To validate the scalability
and broad applicability, we also consider LLaVA-v1.5-13B, Prism-7B [73], LLaVA-Mini-Vicuna-
7B [74], and LLaVA-Llama3-8B-Instruct [75]. Refer to Appendix A for additional details and
Appendix B for the results on LLaVA-v1.5-13B and Prism-7B, respectively.
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Figure 3: Object hallucination detection performance on POPE variants. We enumerate the
hallucination detection accuracy of each method on nine versions of perturbed samples, and observe
consistent gains by Vittle (highlighted by green numbers of relative improvement from baseline).

+5.0% +7.3% +4.3% +5.7% +1.5%

+0.7%
+0.8%

+9.0%

-2.8% +3.4%

+0.4%

+1.6% +4.1%

+3.5%
+1.3%

+3.2%

+1.9% +2.3% +5.0%

+2.6%

Figure 4: Open-ended QA performance on LB-COCO variants. We enumerate the relative
preference score of responses from each model on 18 version of perturbed samples, and observe
consistent gains by Vittle (especially for the Vittle (F)) on most of the textual (top), and joint
(bottom) perturbations (results on visual perturbations are deferred to Appendix B).

Task, metric, and datasets. We evaluate instruction-tuned MLLMs with three representative tasks:
(1) open-ended question answering, (2) object hallucination detection, and (3) closed-form question
answering. All are formatted as a question answering (QA) with a single image input, where we use
the average relative preference score measured by GPT-4o LLM judge [76] with three repeated runs
for open-ended QA, while using exact matching accuracy for hallucination detection and closed-form
QA. For open-ended QA tasks, we adopt four datasets: LB-COCO [38] as a clean and typical dataset,
and LLaVA-Bench in-the-wild (LB-Wild), LLaVA-Bench-Wilder (LB-Wilder), and WildVision-
Bench (WV-Bench) as long-tail datasets. Then, we apply 27 types of image and text perturbations on
LB-COCO samples4 to yield 28 variants of perturbed LB-COCO (one of clean and nine of visual,
textual, and joint perturbations, respectively). For object hallucination detection tasks, we adopt
POPE [77] as a clean and typical dataset. Then, we generate nine variants of perturbed POPE with
visual perturbations. Here, we consider the LB-COCO and POPE as in-distribution (ID) datasets
because they are generated from MS-COCO samples that construct majorities of the instruction
tuning set of modern MLLMs, including LLaVA. For closed-form QA, we adopt four representative
datasets: ScienceQA [78], MMMU [79], MME [5], and MMStar [80]. In summary, we experiment
with 45 datasets (31 of open-ended, 10 of object hallucination detection, and 4 of closed-form tasks).

4.2 Results

Vittle improves robustness under input perturbations. We first evaluate Vittle on ob-
ject hallucination detection tasks with nine variants of POPE perturbed by visual corruptions
in Figure 3. Although MLLMs trained with a standard objective and Vittle similarly suf-
fer from perturbations, two instantiations of Vittle consistently outperform the standard ob-
jective. Interestingly, Vittle outperforms the baseline even in clean POPE (See Appendix B).

4See Appendix A.3 for a comprehensive summary of all perturbations and their generation processes.
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We speculate that Vittle’s information control prevents the reliance on a partial feature of
a single modality [81], e.g., language prior [82], which is a common source of hallucination.

Figure 5: Evaluation under vary-
ing perturbation severity. Vittle
achieves better performance, espe-
cially on severe perturbations.

Next, we present the validation on the open-ended QA task
with 18 types of input perturbations, which are applied to
visual and textual input independently or simultaneously in
Figure 4. As we can see, Vittle greatly enhances perfor-
mance in various perturbation datasets highlighted by green
numbers that indicate the relative improvements of Vittle
(F) compared to the baseline. Among the two variants of
Vittle, Vittle (F) showcases better generalization under
perturbations than Vittle (L), suggesting the benefits of
a conservative zero-centered isotropic prior distribution to
address a variety of subtle input perturbations. Next, we
further explore Vittle’s robustness by evaluating varying
perturbation severity. To be specific, we generate perturba-
tions on three different degrees that determine how significantly the image or text would be changed.
In Figure 5, we see that Vittle achieves better performance in general, where the margin becomes
larger under severe perturbations. In summary, we observe a consistent gain by Vittle on the
perturbed input setting across two tasks, which indicates that Vittle enhances the robustness to
distribution shifts by pursuing the minimal sufficiency of data representation.

Vittle improves generalization to long-tail distributions. Not only subtle perturbations on input,
but long-tail samples are also commonly encountered in many MLLM applications. In Table 1,
we validate Vittle on three long-tail QA tasks constructed with real-world user queries. We see
that Vittle also excels in generalizing long-tailed samples compared to the baseline. Interestingly,
Vittle (L)–learnable prior–exhibits better performance compared with Vittle (F). We speculate
that a learnable prior IB guides the model to learn a better sensitivity for high-level abstractions as
well as an invariance to low-level noise by allowing additional flexibility to shape data-driven priors,
yielding superior performance on tasks that require in-depth understanding of irregular queries.

Table 1: Performance comparison on long-tail
open-ended QA tasks those contain queries that
are quite different from typical training samples
in terms of visual content and textual semantics.

Method LB-Wild LB-Wilder WV-Bench

Baseline 51.6 156.9 60.0

Vittle (L) 54.6 168.8 60.4
Vittle (F) 52.2 166.1 59.7

Table 2: Performance comparison on general
benchmark datasets. These four multi-choice
QA datasets require a higher level of multimodal
understanding across multiple domains.

Method SciQA MMMU MME MMStar Avg.

Baseline 64.6 35.6 69.7 33.7 50.9

Vittle (L) 64.7 35.3 70.5 33.7 51.1
Vittle (F) 65.4 34.5 70.1 33.5 50.9

Vittle preserves competitive performance on general benchmarks. Although the main focus of
Vittle is to improve the model’s robustness under distribution shifts, securing the rich multimodal
understanding capability and knowledge to diverse disciplines is also crucial as an essence of MLLM.
To validate this, we evaluate each method on four representative closed-form knowledge-intensive QA
benchmark datasets covering various fields. In Table 2, we observe that Vittle shows competitive
performance with the standard approach, which implies that Vittle can also be used as a general-
purpose learning objective.

Table 3: Comparison with weight-space com-
pression methods. We compare Vittle with
the LoRA and weight decay (WD) methods on
LB-COCO and its perturbed variants.

Method Clean V Pert. T Pert. J Pert.

Baseline 77.8 73.4 72.2 62.3

LoRA 73.4 70.4 62.7 39.7
WD 74.1 72.1 73.0 59.5
Vittle (L) 76.7 73.9 73.0 62.7
Vittle (F) 76.1 74.2 74.1 64.4

Figure 6: Comparison with other objective
functions. We report the average performance
for all perturbations in POPE and LB-COCO.
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The main focus of the image is a close-up 
of a giraffe's head, with its eyes open and 
looking directly at the camera.

The main focus of the image is a giraffe 
standing in front of a tree.

Q) What is the main 
focus of the image?

The main focus of the image is a close-up 
of a giraffe's head, with its eyes open and 
looking directly at the camera.

The main focus of the image is a 
giraffe's head, with the giraffe looking at 
the camera.

LLaVA-v1.5 Vittle

Q)  What is the man 
doing in the image?

Q)  QNat is the man 
doimN in the image?

The man in the image is sitting at a table, 
talking on his cell phone.

The man in the image is dozing off while 
sitting at a table.

The man in the image is giving a thumbs-
up sign while talking on his cell phone.

The man in the image is sitting at a table, 
talking on his cell phone.

Q) What is the main 
focus of the image?

Visual Perturbation

Textual Perturbation

Figure 7: Case study on LB-COCO under perturbations. Although LLaVA-v1.5 produces
a reasonable response for clean samples, the response and its quality vary under perturbations.
Meanwhile, Vittle maintains the consistency for the responses.

Comparison with alternative learning approaches. Note that the regularization forced by Vittle
works on the representation space to penalize the amount of information encoded in the data rep-
resentations. One of the natural alternatives is to regularize the model weight directly. In Table
3, we compare Vittle with LoRA [83] and the weight decay method (WD) as instantiations of
weight-space regularization, and the results suggest that explicit regularization on weight-space does
not ensure a good balance between adaptability on in-distribution and robustness to distribution
shifts. The other line of alternatives is information maximization during visual instruction tuning
[84, 85], which is the exact opposite of Vittle’s design principle. We compare two recent methods
on this line, ROSS [84] and LIT [85], with Vittle on LB-COCO and POPE under perturbations.
As shown in Figure 6, although these approaches are effective in improving object hallucination
detection performances, they fail to achieve competitive performance on the open-ended QA task (See
Appendix B for more results). This implies the non-trivial challenge of devising a general learning
objective for MLLMs that can consistently improve robustness across diverse tasks, where we can
see the promise of Vittle towards broadly applicable robust instruction tuning.

Qualitative analysis. Figure 7 shows responses of clean queries and their visually or textually
perturbed counterparts. Although the query before and after each perturbation conveys the same
meaning and intention, LLaVA-v1.5 reveals volatility in its responses, whereas Vittle shows stable
behavior by providing consistent responses, i.e., generating exactly the same response in the case of
visual perturbation while keep focusing on the same object in the case of textual perturbation.

Representation analysis. We next see how Vittle shapes
the representation space and how it affects robustness. In
Table 4, we measure the average value of empirical JSD and
EMID discussed in Section 3.4 over 27 perturbed variants of
LB-COCO. Both JSD and EMID are computed between two
distributions, clean and one of its perturbed versions, and
then averaged over 27 clean-perturbed pairs (See Appendix
A.4 for details). As our hypothesis, Vittle reduces distri-
butional gaps, e.g., achieving smaller JSDs, between clean
and perturbed samples in its representation space, thereby
achieving a smaller EMID value that indicates better robust-
ness. In Figure 8 (top), we further show PCA visualizations
(in the same axis scale) for representations of LLaVA and
Vittle on clean and image-text perturbed LB-COCO. We
see that Vittle embeds the clean and semantically equiva-
lent perturbed samples more closely. Moreover, the bottom
panel shows that Vittle induces smaller cosine distances
between clean and perturbed pairs in terms of the histogram
and the average value in parentheses. These results indicate
that our learning objective is indeed effective in structuring
a better representation space that drives robustness.

Table 4: JSD and EMID evaluation
on 27 LB-COCO variants.

Method JSD (↓) EMID (↓)

Baseline 0.068 0.026

Vittle (L) 0.048 0.021
Vittle (F) 0.047 0.025

Baseline Vittle (F)

Figure 8: PCA and pair-wise cosine
distance of representations.
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Table 5: Runtime comparison.

Method Tr./
it.

(s)

Tr. (
h)

Te.
(s)

Baseline 7.363 11.06 0.1048
Vittle (F) 9.482 13.36 0.1072

Cost analysis. Vittle introduces a lightweight bottleneck
layer inside of LLM that slightly increases the total number
of trainable parameters (by 1.5%). One may thus wonder
how Vittle’s training and inference time is compared with
a bottleneck-free baseline. In Table 5, we show the wall-
clock training (per iter and total), and inference time per
sample. Although Vittle increases the training time up to
20% compared with baseline, its inference time is almost identical to the original model, which is a
reasonable amount of cost overhead given significant gains in terms of robustness. We also compare
the peak memory in Table 14, showing a negligible amount of memory overhead.

Table 6: Vittle with different model backbones.
Backbone Method POPE POPE Shifts Avg.

LLaVA-Mini [74] Baseline 79.37 77.39
Vittle (F) 81.07 78.32

LLaVA++ [75] Baseline 84.60 80.54
Vittle (F) 85.87 84.08

Varying MLLM specification. As Vittle
is a model-agnostic learning framework with-
out architecture-specific constraint, we now
explore Vittle training on two different
MLLM specifications in Table 6: (1) LLaVA-
Mini that has the same vision encoder and
LLM as LLaVA-v1.5 but has different archi-
tectural design by incorporating visual token
compressor and pre-modality fusion layer; and (2) LLaVA-Llama3-8B-Instruct (denoted in LLaVA++)
that we just replace the LLM backbone with Llama3-8B-Instruct. As we can see, Vittle consis-
tently outperforms the standard LLaVA training in various MLLM specifications, demonstrating its
generality across different model architectures (See Appendix B.5 for more results).

5 Conclusion

This work provided the first investigation on the promise of information bottleneck in the context of
MLLM instruction tuning to ensure the robustness of MLLM under distribution shifts. We proposed
a new theoretically-grounded visual instruction tuning method, Vittle. It injects a bottleneck layer
inside the LLM to induce posterior samples of internal representations that encode useful information
to produce valid responses while discarding other residual information from input queries. With
negligible additional cost, Vittle is easily optimized with a variational lower bound of IB and shows
consistent gains in robustness in 30 types of distribution shifts while also achieving competitive
performance on standard benchmarks, indicating that Vittle promotes a good balance between
invariance and sensitivity during representation learning.

Limitation and future work. One possible concern with Vittle is its reliance on the quality
of Y , i.e., a gold response to given instruction, which is usually generated by another LLM. As
disclosed by Yeh et al. [86], existing datasets for supervised fine-tuning are quite noisy, and we cannot
ensure the advantage of IB on this noisy annotation setup. Moreover, IB alone does not guarantee
the generalization of multi-modal counterfactual samples with conflicting language prior [87, 82]
or samples from completely different domains [88, 89, 90], and may require additional annotations.
Besides, we observed that Vittle slightly hurts the optical character recognition capability of MLLM,
indicating the importance of further exploration to preserve the fine-grained recognition capability
while pursuing robustness to distribution shifts. Investigating the potential of noisy annotation,
counterfactual/domain generalization, and fine-grained recognition setups can be interesting future
research problems. Meanwhile, the noise-robust representation space achieved by IB training can be
helpful for representation steering methods [91, 92] that are also worth exploring for future work.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explicitly mentioned our research problem with scope and contribution in
the abstract and introduction sections. These are consistently stated through the remaining
sections (Sec 2 and 3), and supported by empirical evidence 4.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included the limitations of this work at Appendix ?? due to space constraint
of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We clearly elaborated the full set of assumptions and proof in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4.1 and Section A, we provided the full experimental details for
easy reproduction, and we also provide our code through the GitHub repository link in the
abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We do provide the entire code for the full reproduction (from training to
evaluation) with an appropriate level of instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided all the training and test details, including data splits, hyperparam-
eters, how they were chosen, type of optimizer in Appendix Section A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Given the fact that this is a work on full fine-tuning of large-scale (≥ 7B)
models, learning multiple training runs to claim statistical significance was computationally
intractable for us, but we conduct multiple runs for the GPT-4o-Judge-based evaluation to
provide stable conclusion and mentioned it correctly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We included the computation resource-related details in Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors acknowledged the NeurIPS Code of Ethics, and this work conforms
to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide an impact statement section (Section F) to introduce potential
societal impacts of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: As we propose a learning objective for (M)LLM, it inherently has the risk of
misuse of LLM, and we discuss this in Section F.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the implementation details section (Section A) and the instruction file of our
code, we clearly mentioned the source of all assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented, and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our code through the anonymous repository link, and the code
supports the generation of our new datasets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLM for the purpose of paper editing, logo generation, and model
evaluation for the open-ended question-answer task following the academic benchmarking
standard.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extended Experiment Setup and Implementation Detail

A.1 Model and Training

In this work, we consider LLaVA-v1.5 [70] as our target multimodal large language model
(MLLM) with CLIP ViT-L/14-336px [71] and Vicuna-v1.5-7B [72] as visual encoder and LLM
backbone, respectively, and a two-layer MLP as projector (modality connector that maps features
of the visual encoder into the text embedding space). Although all of the results presented in
the main body of the paper were produced with LLaVA-v1.5-7B, we also experimented with
LLaVA-v1.5-13B (with Vicua-v1.5-13B as the LLM backbone) to validate the scalability of our
method, and consider Prism-7B [73] as an additional MLLM architecture to validate the broad
applicability of Vittle. For fair comparison, all models are trained on the LLaVA-pretrain-558k
and LLaVA-mix-665k datasets, consisting of a mixture of LAION [93], CC [94], SBU [95] datasets
with BLIP captions [96] and a mixture of LLaVA-instruct-158K and academic-task-oriented
(V)QA datasets, respectively. Training configurations such as optimizer, learning rate, and batch
size are summarized in Table 7 and Table 8. All training runs are conducted with eight A100-80GB
GPUs with DeepSpeed ZeRO library. The shortest run takes roughly 11 hours, whereas the longest
run takes about 14 hours. Now, we elaborate on the overall workflow of LLaVA and Prism below.

26



Table 7: Hyperparameter list of Vittle train-
ing. We adopt exactly the same configurations
with LLaVA-v1.5 [70] for Stage 1 and 2.

Config Stage1 Stage2

Global batch size 256 128
Batch size per GPU 32 16
Learning rate 1e-3 2e-5
Learning rate schedule Cosine decay w/ linear warmup
Warmup ratio 0.03
Weight decay 0.0
Epoch 1
Optimizer AdamW
Precision bf16

Table 8: Hyperparameter list of Prism-
Vittle training. We adopt exactly the
same configurations with Prism-DINOSigLIP-
Controlled-7B [73] single stage training.

Config Value

Global batch size 128
Batch size per GPU 16
Learning rate 2e-5
Learning rate schedule cosine decay w/ linear-warmup
Warmup ratio 0.03
Weight decay 0.1
Epoch 1
Optimizer AdamW
Precision bf16

LLaVA is built with a pre-trained visual encoder that takes visual inputs, a pre-trained LLM backbone
that takes text instructions, and a lightweight projector that maps features produced by the visual
encoder into the text embedding space of LLM backbone so that the visually-grounded multimodal
instruction input query can be processed by the LLM backbone. LLaVA undergoes a two-stage
training: (1) The first stage takes into account modality alignment, where the projector is trained
on image and corresponding instruction or caption with a conditional language modeling loss
implemented by aggregating cross-entropy losses across response tokens, while the visual encoder
and LLM backbone are frozen. (2) The second stage stands for the instruction tuning, where the
projector and LLM backbone are jointly trained on multimodal instruction samples with the same
conditional language modeling loss while the visual encoder is still frozen. This two-stage training
has been considered a standard approach for developing MLLMs and is widely adopted [97, 98, 29].

Prism has a model architecture similar to LLaVA, but provides some valuable insight into the design
of the MLLM training recipe, and we note two remarkable design choices of Prism that distinguish it
from LLaVA: (1) incorporating multiple visual encoders rather than hosting a single visual encoder,
and (2) reducing the two-stage alignment-then-instruction tuning into a single-stage instruction
tuning. Note that different self-supervised visual representation learning induces features that have
different strengths, and several works reveal the benefits of ensembling multiple different visual
encoders to leverage complementary advantages [99, 73, 30]. Prism incorporates SigLIP [100] and
DINOv2 [101] to enjoy both a robust global feature and a fine-grained local feature. Meanwhile,
Karamcheti et al. [73] showed that the simplified single-stage training strategy can be a cost-effective
alternative to the standard two-stage training.

To train these MLLMs, we consider five baseline approaches: (1) the standard full LLM fine-
tuning with conditional language modeling loss, (2) parameter-efficient LoRA [83] fine-tuning
with the conditional language modeling loss, (3) conditional language modeling loss with weight
decay regularization, (4) reconstructive visual instruction tuning (ROSS) [84], and (5) learning to
instruct (LIT) [85]. For the LoRA-based training configuration, we use the same one provided
by the official LLaVA-v1.5 repository5, and for the weight decay regularization, we select the
regularization magnitude parameter among {0.1, 0.01, 0.001} based on the POPE evaluation result.
We now elucidate two competitive baseline methods, ROSS and LIT, in the following paragraphs.
It is worth noting that these methods are designed to encode more (visual) information into the
representation space, which is opposite to our Vittle’s design motivation that pursues a minimal
sufficient representation for improving robustness to distribution shifts.

Reconstructive visual instruction tuning (ROSS) follows the two-stage training of LLaVA, but
tries to reconstruct the visual inputs from the LLM backbone by adopting a regression or denoising
learning objective in addition to language modeling loss during its second stage. By doing so, ROSS
guides the MLLM to learn a much richer visual understanding, which is usually lacking in modern
MLLMs [99, 81]. The reconstruction target can be a raw RGB pixel value or the latent representation
from an external visual encoder such as VQGAN [102] or VAE [56], and ROSS requires an additional
trainable module to reconstruct visual content, which is discarded during inference. We follow
the training recipe from the official code repository6 to replicate ROSS-D-7B with the same visual
encoder and LLM backbone to LLaVA-v1.5. For a fair comparison with LLaVA and Vittle, we

5https://github.com/haotian-liu/LLaVA
6https://github.com/Haochen-Wang409/ross
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train the ROSS with the same dataset (that of LLaVA-v1.5) for both training stages, while the original
ROSS model was trained on a slightly larger dataset in the second stage.

Learning to Instruct (LIT) also focuses on the visual shortcomings of current MLLM and tries to
improve the visual understanding capability of MLLM by incorporating an additional loss term that
incentivizes the encoding of additional visual information. To be specific, while the cross-entropy loss
in LLaVA’s conditional language modeling objective is aggregated through the response tokens only,
LIT introduces an extra cross-entropy loss term, which is aggregated over the instruction (question)
tokens only, thereby enforcing MLLM to learn to predict a proper textual instruction given an image.
As LIT uses the same visual and language backbone model and training dataset as LLaVA-v1.5, we
use the pre-trained checkpoint of LIT from Hugging Face7 for evaluation.

In Figure 6, we observe that while ROSS and LIT are somewhat effective in improving performance
on object hallucination detection tasks with the aid of enhanced visual understanding capability, they
significantly underperform Vittle and even the original LLaVA on the open-ended QA task under
distribution shifts. This implies that pursuing more information encoding during visual instruction
tuning may not result in better robustness to distribution shifts, but aiming to learn a minimal sufficient
representation via Vittle can be a promising solution for this (See Table 12 for details).

A.2 Vittle Implementation Details

This section provides additional details on implementing Vittle through Python-style pseudo
code in Figure 9 and text below. Following the standard two-stage LLaVA training recipe, we
freeze the visual encoder and LLM backbone during the first stage and only train the projector
module. In the second stage, Vittle inserts a bottleneck layer gϕ, consisting of two of the two-
layer MLPs {gϕv

, gϕt
} for visual and textual modalities, inside the LLM backbone to estimate the

distributional parameters (mean and diagonal covariance) of the posterior Gaussian distributions
for each visual and textual token. Each bottleneck module is constructed with {nn.Linear(d,d),
nn.GELU(), nn.Linear(d,2*d)} where d denotes the hidden dimension of the LLM backbone,
and this results in a slightly increased number of model parameters (up to 1.5% from the baseline).
We use these estimated distribution parameters to sample a representation from this posterior via
z̃ = µ+ σ ⊙ ϵ where ϵ ∼ N (0, I). Then, for a given bottleneck layer index l and for the maximum
length of visual Mv and textual input tokens Mt, the bottleneck layer gϕ takes a sequence of token
representations z = {zv,1, ..., zv,Mv , zt,1, ..., zt,Mt} produced from the layer l to build information-
penalized representations ẑ = {ẑv,1, ..., ẑv,Mv , z̃t,1, ..., z̃t,Mt}, where ẑ = (1− α)z + αgϕ(z). Here,
we use an interpolated representation between the original pre-bottleneck representation z and the
post-bottleneck representation gϕ(z) with an interpolation coefficient α that progressively grows
from 0 to 0.5 by a cosine schedule during training. We observe that solely using the post-bottleneck
representation induces a diverging language modeling loss at the later steps of training, and speculate
that it is hard to generate a valid response with the information-penalized representation only8.

Then, we jointly train the LLM backbone, the projector, and this bottleneck layer together during the
second stage of training with the objective function 5. As we assume a diagonal covariance Gaussian
for the prior and posterior distributions, Kullback–Leibler divergence (KLD) between the prior p and
posterior q can be easily expressed as below,

DKL(q, p) =
1

2

d∑
j=1

(
log

σ2
p[j]

σ2
q [j]

− 1 +
(µp[j]− µq[j])

2

σ2
p[j]

+
σ2
q [j]

σ2
p[j]

)
(8)

where µ· and σ· denote d-dimensional distributional parameter vectors and [j] indicates j-th element
from the vectors. Vittle has two important hyperparameters: (1) target layer index l for bottleneck
application, and (2) posterior KLD regularization strength parameter β. After tuning across l ∈
{24, 28, 31} and β ∈ { 0.01

d , 0.05
d , 0.1

d , 0.2
d , 1.0

d } where d denotes the latent dimension of the LLM
backbone, we set l = 24 and β = 0.1/d based on the average performance of POPE and LB-COCO
clean datasets. The interpolation coefficient α can also be tuned, but we found that increasing α
beyond 0.5 hinders stable training and observing increased language modeling loss at the later parts
of training progress. Figure 12 and Table 11 present the results of hyperparameter ablation study.

7https://huggingface.co/zhihanzhou/LIT-LLaVA-1.5-Vicuna-7B/tree/main
8We suspect that this is because the initial parameter of MLLM’s instruction tuning are far from random

standard Gaussian or zero therefore induces unstable learning signal from the KLD term.
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def reparam(mu, logvar ):
std = (logvar / 2). exp()
batch_size , seq_len , hidden_dim = mu.shape
z = torch.randn(batch_size , seq_len , hidden_dim)
return mu + std * z

def forward(self , input_embeds , img_seq_len , a, ** kwargs ):
...
hidden_states = input_embeds
for l_idx , llm_layer in enumerate(self.llm.layers ):

layer_outputs = llm_layer(hidden_states , ** kwargs)
hidden_states = layer_outputs [0]
if l_idx == self.bottleneck_layer_idx:

# posterior inference
v_params = self.g_v(hidden_states [:,:i_seq_len ,:])
t_params = self.g_t(hidden_states [:,i_seq_len :,:])
v_mean = v_params [:,:,:self.h_dim]
v_logvar = v_params [:,:,self.h_dim :]
t_mean = t_params [:,:,:self.h_dim]
t_logvar = t_params [:,:,self.h_dim :]
v_post = reparam(v_mean , v_logvar)
t_post = reparam(t_mean , t_logvar)
z_post = torch.cat((v_post , t_post ))
# interpolation between original and bottlenecked
hidden_states = (1-a) * hidden_states + a * z_post

...

Listing 1: Forward pass of Vittle

def normalized_kld(mu , logvar , modality=None):
if modality is None:

# vittle (F) - fixed prior N(0,I)
kl_loss = -0.5 * (1+logvar -mu**2- logvar.exp ()). mean()

else:
# vittle (L) - learnable prior
mu_pr , logvar_pr = self.l_prior[modality]
logvar_d = logvar -logvar_pr
scaled_mu_d = (mu-mu_pr).pow (2)/ logvar_pr.exp()
var_ratio = logvar.exp()/ logvar_pr.exp()
kl_loss = -0.5 * (1+ logvar_d -scaled_mu_d -var_ratio ).mean()

return kl_loss

def loss(self , logits , labels , v_mean , v_logvar , t_mean , t_logvar ):
lm_loss = self.llm.loss_function(logits , labels)
if self.learnable_prior:

flag_v , flag_t = "v", "t"
else:

flag_v , flag_t = None , None
kld_v = self.normalized_kld(v_mean , v_logvar , flag_v)
kld_t = self.normalized_kld(t_mean , t_logvar , flag_t)
return lm_loss + self.beta * (kld_v + kld_t)

Listing 2: Training objective of Vittle

Figure 9: PyTorch-style pseudo code for the forward pass and training objective of Vittle
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A.3 Downstream Task Benchmark Construction

Open-ended QA task. One of the most representative applications of an MLLM is the generation
of free-form responses given multimodal instruction queries. We consider LLaVA-Bench COCO
(LB-COCO; [38]) as a typical in-distribution (ID) open-ended QA dataset, which is constructed
from MS-COCO images [103] with GPT-generated text queries that have 90 pairs of image and
text. We then generate 27 variants of this LB-COCO by applying nine types of image perturbations,
nine types of text perturbations, and nine types of image-text joint perturbations, to benchmark
MLLMs’ robustness under various distribution shifts (which will be elaborated at the end of this
section). Meanwhile, we also consider three datasets LLaVA-Bench in-the-wild (LB-Wild; [38]),
LLaVA-Bench Wilder (LB-Wilder; [104]), and WildVision-Bench (WV-Bench; [105]) constructed by
real-world web users’ image-text paired queries of 60, 128, and 500 samples, respectively, to validate
models’ capability to address long-tailed queries in practice. This results in 31 different open-ended
QA datasets in total: clean and 27 perturbed LB-COCO variants, and three long-tail datasets.

Object hallucination detection task. Meanwhile, one of the most crucial evaluation aspects of
an MLLM is the degree of hallucination of its output. A representative benchmark for this is the
POPE dataset [77], where the model is tasked to answer in binary {Yes, No} form given a question
about the object’s existence given an image. The POPE dataset was also created from the MS-COCO
source images with 9,000 corresponding questions, and we consider this dataset as an ID dataset. As
we did for the LB-COCO dataset, we generated 9 variants of POPE by applying nine types of visual
perturbations to images. Textual perturbations were not considered here because the text query of this
dataset is relatively short, so perturbing the core object word token can distort the desired semantics
of the question. In summary, we conducted validation on 10 different POPE variants.

Closed-form QA task. There are numerous closed-form QA datasets that assess the internal
knowledge of MLLMs from various perspectives. In this paper, we consider four representative
datasets: ScienceQA [78], MMMU [79], MME [5], and MMStar [80], which are designed to validate
multimodal knowledge and understanding capability across various domains.

Distribution shift simulation. The goal of this study is to improve the robustness of MLLM under
distribution shifts. We mainly focus on subtle perturbations on image and text, which is worth-noting
problem given the fact that current MLLMs undergo systematic performance degradation under
perturbations. We consider nine visual perturbations listed in Table 9, nine textual perturbations listed
in Table 10, and nine image-text joint perturbations: {zoom_blur, frost, gaussian_noise} × {arabic,
greek, hindi}. The translations for Arabic, Greek, and Hindi languages from English are conducted
by OpenAI GPT-4o with a prompt: "Please translate a {SOURCE} sentence provided by the user
into {TARGET}.", and all the remaining perturbations are generated MMRobustness source code9.
The actual examples of each visual textual perturbation are presented in Figure 11 and Figure 10.

Table 9: List of visual perturbations. We con-
sider nine visual perturbations from four cate-
gories: (1) Blur, (2) Digital, (3) Weather, and
(4) Noise, to validate the robustness of MLLMs
under diverse types of visual perturbations.

Name Category

Defocus Blur Blur
Zoom Blur Blur

Contrast Digital

Brightness Weather
Fog Weather

Frost Weather

Gaussian Noise Noise
Shot Noise Noise

Speckle Noise Noise

Table 10: List of textual perturbations. We
consider nine textual perturbations from three
categories: (1) character-level, (2) word-level,
and (3) sentence-level, to validate the robustness
of MLLMs under diverse types of textual pertur-
bations.

Name Category

Char Typo Character-level Perturbation
Char Delete Character-level Perturbation
Char Insert Character-level Perturbation

Word Swap Word-level Perturbation
Word Delete Word-level Perturbation
Word Insert Word-level Perturbation

Arabic Translation Sentence-level Perturbation
Greek Translation Sentence-level Perturbation
Hindi Translation Sentence-level Perturbation

9https://github.com/Jielin-Qiu/MM_Robustness
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Original

Defocus Blur Zoom Blur Contrast

Fog FrostBrightness

Gaussian Noise Shot Noise Speckle Noise

Figure 10: Examples of visual perturbations.

What is the main 
focus of the image?

!haH is the main 
focus of the kmagR?

Wh is the main fos 
of the image?

DWwhat is the um(ain 
focus of the image?

Char Typo Char Delete Char Insert

is the main focus
of image

Word Delete
what exist is the main 
focus of the image

Word Insert
the is the main 
focus of what image

Word Swap

؟ةروصلليسیئرلازیكرتلاوھام

Arabic Greek Hindi
छ"वका मु(यफोकस -या है?

Ποιο είναι το κύριο 
επίκεντρο της εικόνας;

Original

Figure 11: Examples of textual perturbations.

A.4 Evaluation Details

Open-ended QA task. Compared to multi-choice closed-form QA tasks that have a unique ground-
truth answer per question, open-ended free-form generation-style QA tasks do not provide a single
ground-truth answer. We follow the current standard evaluation paradigm, (M)LLM-as-a-Judge, that
uses an external (usually more powerful) MLLM to gauge the quality of our target MLLM of interest
via prompting. To be specific, for a given input query x, reference answer y, MLLM fθ : X → Y ,
and the judge model r : X × Y → Z+, relative preference score is defined as, Ex,y[ r(x,fθ(x))r(x,y) ].

For all of our open-ended QA evaluations, we used the same system prompt template provided by
LLaVA authors10, and we also adopted the MS-COCO annotation11-based GPT-4 response12 and the
gpt_answer13 released by LLaVA-NeXT authors as reference answers for LB-COCO variants and
LB-Wilder, respectively. For LB-Wild and WV-Bench, we generated reference answers with GPT-4o.

10https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/rule.json
11https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/caps_boxes_

coco2014_val_80.jsonl
12https://github.com/haotian-liu/LLaVA/blob/main/playground/data/coco2014_val_qa_

eval/qa90_gpt4_answer.jsonl
13https://huggingface.co/datasets/lmms-lab/LLaVA-Bench-Wilder
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Object hallucination detection and closed-form QA task. In contrast to open-ended tasks, all
object hallucination detection and closed-form QA tasks provide a single ground truth answer as a
form of discrete labels such as {Yes, No} and {A, B, C, D, ...}. For the multi-choice QA datasets,
MMMU, MMStar, and ScienceQA, we attached a subfix prompt: "Answer in a character from the
given choices directly." at the end of each question for answer formatting, while using the original
question text for YES-or-NO datasets, MME and POPE, without a formatting prompt. We measured
the exact matching accuracy Ex,y[I(θ(x) = y)] for these tasks.

Effective Mutual Information Difference (EMID) and Jensen-Shannon Divergence (JSD). In
addition to the evaluation with traditional metrics, we also consider the EMID and JSD-based evalua-
tion, which was recently proposed as an information-theoretic approach to measure the robustness
of MLLMs [19]. To compute the empirical estimates of MI, which is required for EMID compu-
tation, we use the CLUB estimator [106] and reproduce the training and inference process of [19]
by adopting image and text embeddings for the input image and text from CLIP-ViT-B/32 [71] and
XLM-RoBERTa-Base [107] to replace Xv and Xt, and also the text embeddings of XLM-RoBERTa-
Base for responses Y and YΘ. To compute empirical estimates of JSD, we adopted the representation
JSD estimator [108] on top of the CLIP-ViT-B/32 and XLM-RoBERTa-Base, too.

Representation analysis. Inspired by a recent work that reveals the importance of intermediate
layer representation of the LLM backbone [109], we use the last input token embedding of the 24th
layer (out of 32 layers in a 7B LLM backbone) for all experiments carried out in the representation
space (Figure 1 (b) right, Figure 8, Figure 13, and the JSD computation in Table 4).

B Additional Results

B.1 Ablation Study

We first investigate two important hyperparameters for Vittle: (1) bottleneck layer index l and (2)
KLD regularization strength β, where we determined those parameter values based on the average
performance on the clean POPE and LB-COCO, while not observing performance on perturbation
datasets for fair model selection. We then further explore the impact of the interpolation coefficient α,
which plays a role in controlling the balance between the original representation and the bottleneck
representation. Note that we could not conduct such an extensive search due to the computational
burden of training 7B 13B scale models, so the hyperparameter values found here may not be optimal,
and Vittle can achieve better results with further hyperparameter tuning.

Figure 12: Ablation study for the bottleneck layer index (left) and KLD regularization magnitude
parameter β (right).

For bottleneck target layer ablation (Figure 12 left), we swept across {8, 16, 20, 24, 28, 31} out
of 32 layers of the 7B-size LLM backbone. However, applying the bottleneck on the early layer
failed to make the language modeling loss converge, so we only provided results for 24, 28, and 31
layers. We observed that intermediate layers (L24 and L28) achieve better results than the penultimate
layer (L31), and L24 shows better results on POPE while L28 outperforms L24 on LB-COCO. In
conclusion, applying the bottleneck to too early parts hinders shaping some shallow syntactic features
that will be actively used at later parts of the layers [110], whereas applying it to too late parts hurts
output-specific alignment or formatting [111], which guide us to decide intermediate layer, i.e., 24th,
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as a default choice. This is in line with a recent finding that the intermediate layer of LLM matters
more than the early or later layers by showing that the quality measurements of the intermediate layer
representations have a stronger correlation with performance in downstream tasks [109]. Although
we can search different layer indices for visual and textual tokens, we leave this to future work.

For KLD regularization strength parameter ablation (Figure 12 right), we swept across
{0.01, 0.05, 0.1, 0.2, 1.0}, and found that in the POPE dataset, strong regularization results in better
performance, whereas it is not the case for LB-COCO. We choose 0.1/d as our default, which induces
balanced clean-data performance on these two tasks.

Table 11: Ablation study for the representation interpolation coefficient α of the bottleneck
layer. We observe that using the bottlenecked representation beyond the half portion of the total
hinders the convergence of the language modeling loss.

Alpha POPE POPE V Shifts Avg. LB-COCO LB-COCO T Shifts Avg.

Baseline 86.98 84.12 77.8 72.3

0.1 87.22 84.20 77.9 73.1
0.25 87.34 84.47 75.6 73.1
0.5 87.71 84.90 76.7 73.0
0.75 Failed to converge
1 Failed to converge

We also explore the effect of the representation interpolation parameter α ∈ [0, 1], which can be
interpreted as a gating mechanism to control the information flow. As α approaches one, the later
parts of the LLM backbone (LLM head in our notation) mainly use the information-penalized
representation, while if α becomes smaller, the model strongly relies on the original representation.
In Table 11, we observe that using too large values of α results in diverging language modeling loss,
indicating that using a strongly penalized representation only cannot predict proper response tokens
in sequence. Meanwhile, the larger value of α induces better POPE performance, whereas the trend
is inconsistent in the LB-COCO data set, which is consistent with the observations from the previous
ablation study in β.

B.2 Full Results of Pair-wise Cosine Distance Comparison

We speculate that the performance degradation of MLLMs under perturbations originates from
the representation discrepancy between clean and perturbed samples. That is, in the ideal case, a
clean sample and its semantically equivalent perturbed sample should be closely mapped in the
representation space, but current MLLMs did not shape the representation space in that way (see
Figure 1 and Figure 8). In Figure 13, we provide the histograms of representation space pair-wise
cosine distance between clean and perturbed examples in 27 types of perturbations. As we can see,
Vittle (F) consistently mitigates the representation gap by reducing the pair-wise distance over
diverse types of perturbations.

B.3 Full Results with LLaVA-v1.5-7B and LLaVA-v1.5-13B

Table 12 summarizes the overall results of our perturbation benchmarks on object hallucination
detection (POPE) and open-ended QA tasks (LB-COCO). We note two findings here: (1) weight-
space regularization methods, such as LoRA and WD failed to achieve reasonable performance;
(2) although information maximization-based instruction tuning methods, such as ROSS and LIT,
somewhat improve performance on POPE and its perturbation datasets, they greatly underperform
Vittle, indicating a non-trivial challenge to design a versatile instruction tuning objective that can
improve MLLMs on broad tasks. Meanwhile, we explore whether Vittle can be effective for a much
larger model, e.g., a 13B-scale model. Table 13 shows that Vittle achieves consistent performance
gains in object hallucination detection and open-ended QA tasks under distribution shifts, implying
the scalability of our method.
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Figure 13: Pair-wise cosine distance of intermediate representations between clean LB-COCO
and 27 versions of perturbed LB-COCO datasets. Vittle (F) consistently reduces the representa-
tion gap between the clean samples and their semantically equivalent perturbed ones.
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Table 12: Comparison with alternative training approaches. We compare Vittle with weight-
space regularization methods, LoRA [83] and weight decay (WD), and two recent visual instruction
tuning learning objectives, ROSS [84] and LIT [85] on LLaVA-v1.5-7B model. Evaluations are
conducted on POPE, its nine visually perturbed variants (POPE V Pert.), LB-COCO, and its nine
{visually/textually/jointly} perturbed variants, where we mark the best one as bold and the second
best one as underlined.
Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 86.98 84.12 77.8 73.4 72.2 62.3

LoRA 83.33 80.23 73.4 70.4 62.7 39.7
WD 87.22 83.97 74.1 72.1 73.0 59.5
ROSS 87.79 84.67 74.4 72.0 71.3 60.0
LIT 87.38 84.21 77.5 72.1 72.9 58.9

Vittle (L) 87.71 84.91 76.7 73.9 73.0 62.7
Vittle (F) 87.81 84.99 76.1 74.2 74.1 64.4

Table 13: Vittle on LLaVA-v1.5-13B model. We compare Vittle with the standard learning
objective on LLaVA-v1.5-13B model that uses Vicuna-v1.5-13B as an LLM backbone. We set the
bottleneck layer index l = 36, interpolation coefficient α = 0.5, and bottleneck KLD regularization
strength β = 0.1

d . Vittle outperforms baseline on perturbed datasets while showing rivaling
performance on the clean dataset.
Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 87.14 84.02 76.9 73.5 73.8 64.6
Vittle (L) 87.22 84.85 76.6 74.5 74.0 65.4
Vittle (F) 87.32 84.65 76.8 74.2 73.9 65.3

B.4 Further Investigation on Vittle

Peak memory allocation. Vittle hosts MLP blocks inside the LLM backbone to model the
posterior distributions of the inner representations, and compute additional learning signals, e.g.,
KLD between priors and posteriors. In Table 5, we reported the wall-clock runtime, and here, we
compare the maximum peak memory allocation across GPU chips (8 chips during the training and
1 chip during the inference) in Table 14. We see that the memory overhead induced by Vittle is
marginal across both training and inference.

Table 14: Memory comparison. We compare baseline and Vittle (F) in terms of the maximum
peak memory allocation (gigabytes; GB) across GPU chips during training and inference.

Method Peak Mem GB (train) Peak Mem GB (test)

Baseline 37.55 15.62
Vittle 38.98 15.84

Table 15: Response diversity comparison. We report scores of four representative measurements of
text diversity on the models’ responses to LB-COCO clean data queries.

Method Distinct-1 (↑) Distinct-2 (↑) CR (↓) Hom RL (↓)

Baseline 0.2356 0.6117 3.234 0.155
Vittle (L) 0.2413 0.6279 3.212 0.147
Vittle (F) 0.2382 0.6260 3.238 0.144

Output diversity comparison. One may be concerned that learning a compressive representation
with Vittle can hurt the diversity of the textual output, which is undesirable for a chat assistant.
To investigate the output text diversity with and without bottleneck training, we evaluate with four
common textual diversity metrics, Distinct n-gram [112], as well as the compression ratio (CR) and
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Figure 14: Object hallucination detection performance on POPE perturbation datasets (top),
and Open-ended QA performance on LB-COCO perturbation datasets (three below) of Prism-
7B. We enumerate the accuracy for the object hallucination detection task and relative preference
score for the open-ended QA task of each method on perturbed datasets, where we observe consistent
performance gains by Vittle.

the homogeneity score driven by Rouge-L (Hom RL) [113] over the outputs from each model trained
by the baseline method and Vittle on the LB-COCO clean dataset.

B.5 Applicability to Other MLLMs

We now investigate Vittle’s effectiveness on another recent MLLM, Prism-7B, beyond LLaVA. As
noted in Section A.1, Prism has quite a different design principle than LLaVA with respect to the
visual encoder and the training strategy, so it is suitable for investigating the versatility of Vittle
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between models. Table 16 shows summarized results on our perturbation benchmarks14. In object
hallucination detection tasks, Vittle outperforms the standard cross-entropy only training baseline
on clean and perturbed datasets. In open-ended QA tasks, Vittle consistently boosts performance
in perturbation scenarios with large margins while maintaining performance on the clean dataset. The
results of the perturbation-specific performance comparison are provided in Figure 14.

Table 16: Vittle on Prism-7B model. We compare Vittle (F) with the standard learning objective
under the Prism-7B model training regime that adopts two visual encoders (DINOv2 and SigLIP) and
the single-stage training rather than two-stage training with a single CLIP visual encoder. Vittle
significantly improves perturbation-robustness compared with a naive learning objective.
Method POPE POPE V Pert. LB-COCO LB-COCO V Pert. LB-COCO T Pert. LB-COCO J Pert.

Baseline 87.54 85.29 79.4 75.3 71.9 53.8
Vittle (F) 88.11 85.52 79.0 76.2 75.4 63.2

C Extended Literature Review

Compression for generalization. There is a rich history in the machine learning field that connects
compression of the model or its inner representation to generalization [114], from the classical
learning theory with Occam’s razor [115, 116] and Minimal Description Length [117, 118, 119] to
IB principle [46, 47], by suggesting models that provide minimal and simplest representation of data
generalize better [33, 118, 52, 120] analogy to human perception [13, 121, 15]. Recently, Wilson
[122] proposed a new generalization bound for contemporary large-scale models where the compress-
ibility of a learning algorithm plays a key role in better generalization. According to that discussion,
even the maximally flexible billion-scale model can have a small effective dimensionality (indicating
the higher compressibility) by embracing soft inductive biases [123], such as, a regularization term, to
the learning problem. On top of these, IB-objective of Vittle can be understood as a soft inductive
bias to seek a minimal sufficient representation that helps generalization for the challenging queries.

Robustness of fine-tuned foundation models. Although large-scale pre-trained models have
appealing generalization capability across diverse data instances from different domains, their fine-
tuned counterparts usually hurts that strong generalization capability while being adapting on task-
specific in-distribution samples [124, 125]. This undesirable performance compromise between
adaptation to in-distribution samples and generalization to samples from broad domains has spurred
the community to work on robust fine-tuning of foundation models [124, 125, 126, 127, 128, 129, 130].
This line of work addresses the adaptation-robustness trade-off by (1) introducing a regularization
term [128, 129], (2) tweaking the training procedure [124, 126], or (3) merging multiple models in
the weight space [125, 131]. However, almost all of the existing robust fine-tuning literature has
focused on a discriminative model, such as CLIP [71], under classification setups. Although there are
a few works on robust instruction tuning of MLLMs [132, 133], they do not specifically focus on
improving robustness under diverse types of distribution shifts and propose a data-centric approach,
i.e., expanding instruction tuning datasets in terms of quantity or diversity, that requires external
MLLM-based data generation process and/or careful post-processing from humans. In this work, we
take a representation-centric approach that modifies the learning objective of visual instruction tuning
to efficiently enhance the robustness of MLLM under diverse distribution shifts (27 types in total).

14Due to resource constraints, we only explore Vittle (F) one of our prior distribution instantiations.
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D Derivation of Variational Bound for IB in MLLM

Here we provide a full derivation for the variational lower bound for IB. The derivation skeleton was
mainly inspired by existing works [134, 32]. We begin with the mutual information term I(Z,X).
Given the sequential nature of MLLM, we decompose both the input X = (Xv, Xt) and the latent
representation Z = (Zv, Zt) into visual and textual components. We can then derive the following
upper bound for I(Z,X):

I(Z,X) =

∫
p(x, z) log

p(x, z)

p(x)p(z)
dxdz =

∫
p(x, z) log

p(z|x)
p(z)

dxdz

=

∫
p(x, z) log

p(z|x)
r(z)

dxdz −DKL(p(z)||r(z))

≤
∫

p(x, z) log
p(z|x)
r(z)

dxdz

=

∫
p(xv, xt, zv, zt) log

p(zt|xv, xt)p(zv|xv)
r(zv)r(zt)

dxvdxtdzvdzt

=

∫
p(xv, xt)

∫
p(zt|xv, xt)

∫
p(zv|xv) log

p(zv|xv)
r(zv)

dxvdxtdzvdzt

+

∫
p(xv, xt)

∫
p(zv|xv)

∫
p(zt|xv, xt) log

p(zt|xv, xt)
r(zt)

dxvdxtdzvdzt

= Exv [DKL(p(zv|xv)||r(zv))] + Exv,xt [DKL(p(zt|xv, xt)||r(zt))], (9)

where the first inequality holds given the non-negativity of DKL[r(z), p(z)] and p(zv|xv, xt) =
p(zv|xv) due to causal attention in MLLM. Here, we introduce r(z) = r(zv, zt) = r(zv)r(zt) as a
factorizable variational approximation of the true prior for the latent representation p(z). Next, for
the output-relevant term I(Z, Y ), we have the lower bound:

I(Z, Y ) =

∫
p(y, z) log

p(y, z)

p(y)p(z)
dydz =

∫
p(y, z) log

p(y|z)
p(y)

dydz

=

∫
p(y, z) log q(y|z)dydz +DKL(p(y|z)||q(y|z))−

∫
p(y) log p(y)dy

≥
∫

p(y, z) log q(y|z)dydz

=

∫
p(x, y, z) log q(y|z)dxdydz =

∫
p(x)p(y|x)p(z|x) log q(y|z)dxdydz,

= Ex,yEz|x [log q(y|z)] . (10)

where p(x, y, z) = p(x)p(z|x)p(y|x) given the Markov assumption Y ↔ X ↔ Z, and p(z|x, y) =
p(z|x) holds given that the representation Z can not directly depend on Y , and the entropy term
of y, i.e.,

∫
−p(y) log p(y)dy = H(Y ), is ruled out due to its independence for optimization

problem. Here, we replace the intractable p(y|z) with a variational approximation q(y|z) that will be
parameterized by a model. Finally, combining the lower bound of I(Z, Y ) and the upper bound of
I(Z,X) yields a variational lower bound for the IB objective as follows,

IB(X,Y ) ≥ Ex,y
[
Ez|x[log q(y|z)]

]
− β (Exv [DKL(p(zv|xv)||r(zv))] + Exv,xt [DKL(p(zt|xv, xt)||r(zt))]). (11)

Asymmetric posterior p(z|x) modeling in practice. As we fed the (pre/post-bottleneck) rep-
resentation interpolation ẑ = (1 − α)z + αz̃ into the LLM-head fθl+ for output decoding
q(y|ẑ), this yields an asymmetric specification of p(z|x) being modeled in I(Z,X) and I(Z, Y ).
To be precise, given our posterior instantiation p(z|x) := N (z;µ(x), σ2(x) · I) in the upper
bound of I(Z,X), which is modeled by the LLM-stem fθl plus the bottleneck layer gϕ, we use
N (z;αµ(x) + (1 − α)c, α2σ2(x) · I), where c = fθl(x) denotes a constant vector, to model the
p(z|x) in the lower bound of I(Z, Y ).
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E Missing Proof

E.1 Preliminary

We start by providing a definition of Mutual Information (MI) below.
Definition E.1 (Mutual Information (MI)). For a joint distribution PXY over X × Y , the mutual
information with respect to PXY is defined as,

I(PXY ) := Ex,y∼PXY
[log

PXY (x, y)

PX(x)PY (y)
]. (12)

If X is an instruction and Y is a corresponding response, we regard I(PXY ) as a relevance between
the instruction and the response that can be seen as a possible quantification of instruction following
capability of MLLMs. Effective MI is defined based on the MI as follows:
Definition E.2 (Effective Mutual Information (EMI) [19]). Given the joint distribution PXY and
MLLM PΘ parameterized with Θ, the effective mutual information between the input and model
response is defined as,

EMI(PXY ;PΘ) := I(PXYΘ
)− I(PXY ), (13)

where PXYΘ
denotes the joint distribution between the input X and the output of the model YΘ.

Although the vanilla MI can also be used as a metric to evaluate models’ output response by I(PXYΘ
),

the scale of it varies depending on the target data distribution which is undesired when our interest is
to compare performance of model across multiple domains which can be addressed by EMI. Recall
that we are ultimately interested in the performance difference of MLLMs across two different
datasets, and this can be captured by the EMI difference (EMID) as follows:
Definition E.3 (EMID). Let PΘ : X → Y be an MLLM with parameters Θ that produces an output
response YΘ given an input instruction X . For joint distributions PXY and QXY , effective mutual
information difference of PΘ over P and Q is defined as below,

EMID(PXY , QXY ;PΘ) := [I(PXYΘ
)− I(PXY )]− [I(QXYΘ

)− I(QXY )]. (14)

By setting P as an instruction tuning distribution (training data) and Q as an arbitrary test time
distribution (evaluation data), we prefer a model that has a smaller EMID value, which indicates
better robustness under distribution shifts between P and Q. Now, based on the original theorem
provided by Oh et al. [19], we are ready to derive a new upper bound for EMID tailored to our
representation-centric visual instruction tuning setup.

E.2 A New Upper Bound for Effective Mutual Information Difference

We first review Lemma 1 of Shui et al. [135] and its adapted version, a conditional entropy bound [19]
as follows,
Lemma E.4 (Lemma 1 from Shui et al. [135]). Let Z ∈ Z be the real-valued integrable random
variable, and denoting two distributions on a common space Z by P and Q such that Q is absolutely
continuous w.r.t. P . If for any function f and λ ∈ R such that EP [exp(λ(f(z)− EP (f(z))))] < ∞,
then we have:

λ(Ez∼Q[f(z)]− Ez∼P [f(z)]) ≤ DKL(Q||P )

+ logEz∼P [exp(λ(f(z)− Ez∼P [f(z)]))]

Lemma E.5 (Conditional entropy bound [19]). Let f(x) := H(QY |x) and Ĥ(QY |x) :=
maxx∈X H(QY |x), given the marginal distributions PX and QX , and conditional distributions
PY |X and QY |X , according to Lemma E.4, we have a conditional upper bound:

i) Ex∼P [H(QY |x)]− Ex∼Q[H(QY |x)] ≤ Ĥ(QY |x)
√
2DJS(PX ||QX).

Similarly, given the marginal distribution PX and QX , and an MLLM PΘ, let f(x) := H(PΘ(·|x))
and Ĥ(PΘ) := maxx∈X H(PΘ(·|x)), then, according to Lemma E.4, we have another conditional
upper bound:

ii) Ex∼Q[H(PΘ(·|x)]− Ex∼P [H(PΘ(·|x))] ≤ Ĥ(PΘ)
√

2DJS(PX ||QX).
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Next, we should also need to formulate the relationship between JSD in the input space and JSD in
the representation space, which is done through Lemma E.6.
Lemma E.6. Let f : X → Z be an encoder that maps an input X to a representation Z, for the
input distributions PX and QX and f -induced representation distribution PZ and QZ , we have an
inequality below,√
2DJS(PX ||QX) ≤

√
2DJS(PZ ||QZ)+

√
Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)]

(15)

where MX|z :=
PX|z +QX|z

2 .

Proof. We start from the definition of JSD,

DJS(PX ||QX) =
1

2
DKL(PX ||MX) +

1

2
DKL(QX ||MX), MX =

PX +QX

2
.

By applying the chain rule of KLD under a deterministic map15 X → Z, we know that,

DKL(PXZ ||MXZ) = DKL(PZ ||MZ) +

∫
PZ(z)DKL(PX|z||MX|z)dz

= DKL(PX ||MX) +
(((((((((((((∫

PX(x)DKL(PZ|x||MZ|x)dx

⇔ DKL(PX ||MX)

Then, we have,

DJS(PX ||QX) = DJS(PZ ||QZ) +
1

2
(Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)]),

which results in ineq. (15) by applying the triangular inequality after multiplying 2 on both sides.

Now we derive a new upper bound for EMID, which is defined over the representation space rather
than the previous one defined over the input space [19] in Proposition E.7.
Proposition E.7 (EMID upper bound). Let PΘ be an MLLM that maps X = {Xv, Xt} to Z =
{Zv, Zt}, and then subsequently maps Z to YΘ. Given joint distributions PXY = PX × PY |X and
QXY = QX ×QY |X , by assuming consistent conditional distributions over Zv|Zt, Zt|Zv , and Y |X
between P and Q, we have an upper bound for EMID(PXY , QXY ;PΘ) as follow,

Ĥ
(
D

1
2
JS(PZv ||QZv ) +D

1
2
JS(PZt ||QZt) +

√
∆X|Z

)
+ |H(PYΘ)−H(PY )|+ |H(QYΘ)−H(QY )|, (16)

where H and D
1
2

JS indicate the entropy and square root of Jensen-Shannon divergence (JSD), respec-
tively, ∆X|Z := Ez∼P [DKL(PX|z||MX|z)]+Ez∼Q[DKL(QX|z||MX|z)] with a mixture distribution
M = P+Q

2 , and Ĥ := maxx∈X [H(QY |x) +H(PYΘ
)].

Proof. Given the entropy-based definition of the mutual information, I(PXY ) := H(PY ) −
Ex∼P [H(PY |x)], let PYΘ

= Ex∼P [PΘ(·|x)] and QYΘ
= Ex∼Q[PΘ(·|x)], then, EMID can be ex-

pressed as follows,

EMID(PXY , QXY ;PΘ)

= EMI(PXY ;PΘ)− EMI(QXY ;PΘ)

= (H(PYΘ)− Ex∼P [H(PΘ(·|x))]−H(PY ) +H(PY |X))

− (H(QYΘ
)− Ex∼Q[H(PΘ(·|x))]−H(QY ) +H(QY |X))

≤ (H(PY |X)−H(QY |X)) +
(
Ex∼Q[H(PΘ(·|x))]− Ex∼P [H(PΘ(·|x))]

)
+ |H(PYΘ)−H(PY ) +H(QY )−H(QYΘ)|
≤ (H(PY |X)−H(QY |X))

(A)
+
(
Ex∼Q[H(PΘ(·|x))]− Ex∼P [H(PΘ(·|x))]

)
(B)

+ |H(PYΘ
)−H(PY )|+ |H(QY )−H(QYΘ

)|. (17)

15Note that although Vittle governs a probabilistic encoder during training, it produces deterministic output
during inference by using the learned posterior mean rather than a random sample (Section 3.3).
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Moreover, we have the following inequality for H(PY |X) proposed by [19],

H(PY |X)−H(QY |X) ≤ 4Ex∼P [D
1
4
JS(PY |x||QY |x)] + Ex∼P [H(QY |x)] + Ex∼Q[H(QY |x)] (18)

By plugging inequalities in Lemma E.5 and ineq. (18) into the ineq. (17) to replace the terms (A)
and (B), and given the consistent conditional distribution assumption for Y |X , i.e., PY |X = QY |X ,
we have a much simpler upper bound as follows,

EMID(PXY , QXY ;PΘ) ≤ Ĥ
√
2DJS(PX ||QX) + |H(PYΘ

)−H(PY )|+ |H(QY )−H(QYΘ
)|,

where Ĥ := maxx∈X [H(QY |x) +H(PYΘ
)]. Then, we can further replace the term DJS(PX ||QX)

by using Lemma E.6 to get a bound defined by representation divergence as below,

EMID(PXY , QXY ;PΘ)

≤ Ĥ(
√

2DJS(PZ ||QZ) +
√

Ez∼P [DKL(PX|z||MX|z)] + Ez∼Q[DKL(QX|z||MX|z)])

+ |H(PYΘ)−H(PY )|+ |H(QY )−H(QYΘ)|. (19)

Meanwhile, the chain rule of KLD and the definition of JSD with our consistency assumption for
conditional distributions for Zv|Zt and Zt|Zv , one can easily show below.

2DJS(PZvZt
||QZvZt

) = DKL(PZvZt
||MZvZt

) +DKL(QZvZt
||MZvZt

)

= DJS(PZv
||QZv

) +DJS(PZt
||QZt

) (20)

Plugging Eq. 20 into ineq. (19) and applying the triangular inequality complete the proof.

F Impact Statement

Multimodal large language models (MLLMs) today have many societal applications. This work
tackles the robustness of MLLMs to distribution shifts between training and test time data. We
observed a consistent improvement of our proposal Vittle in various types of visual and textual
shifts, allowing users to trust the model more than before to safely use AI in a variety of environments.
Moreover, although we focused on the robustness perspective in this work, improved invariance-
sensitivity trade-off also benefits the fairness-discriminativeness trade-off, which is another crucial
desideratum towards reliable AI. Meanwhile, even though its robustness to distribution shifts was
improved, there are still potential misuse cases with MLLMs that can affect humanity by producing
systematically biased outputs, given the existence of some adversarial data providers or attackers.

41


	Introduction
	Background, Related Work, and Motivation
	Method
	Preliminary: Information Bottleneck As a Learning Objective
	Variational Inference for Information Bottleneck in MLLMs
	Vittle: A Practical Implementation of Visual Instruction Bottleneck Tuning
	Theoretical Justification

	Experiment
	Setup
	Results

	Conclusion
	Extended Experiment Setup and Implementation Detail
	Model and Training
	Vittle Implementation Details
	Downstream Task Benchmark Construction
	Evaluation Details

	Additional Results
	Ablation Study
	Full Results of Pair-wise Cosine Distance Comparison
	Full Results with LLaVA-v1.5-7B and LLaVA-v1.5-13B
	Further Investigation on Vittle
	Applicability to Other MLLMs

	Extended Literature Review
	Derivation of Variational Bound for IB in MLLM
	Missing Proof
	Preliminary
	A New Upper Bound for Effective Mutual Information Difference

	Impact Statement

