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ABSTRACT

We address the challenge of getting efficient yet accurate recognition systems that
can be trained with limited labels. Many specialized applications of computer vi-
sion (e.g. analyzing X-rays or satellite images) have severe resource constraints
both during training and inference. While transfer learning is an effective solution
for training on small labeled datasets it still often requires a large base model for
fine-tuning. In this paper we present a weighted multi-source distillation method;
we distill multiple (diverse) source models trained on different domains, weighted
by their relevance for the target task, into a single efficient model using limited
labeled data. When the goal is accurate recognition under computational con-
straints, our approach outperforms both transfer learning from strong ImageNet
initializations as well as state-of-the-art semi-supervised techniques such as Fix-
Match. When averaged over 8 diverse target tasks our method outperform the
baselines by 5.6%-points and 4.5%-points, respectively.

1 INTRODUCTION
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Figure 1: Overview of our paper and method.

With recent advances in recognition, there is an
increasing interest in deploying deep networks in
a variety of downstream applications, be it an-
alyzing X-rays, skin conditions, or satellite im-
ages. However, in contrast to the increasingly
massive training datasets and large networks that
power advances in deep learning, many of these
downstream applications have severe resource
constraints. In particular, labeled training data
is expensive. In addition, we often require fast
and cheap inference as privacy and availability
concerns, as well as practical limitations often re-
quire deployment to be on local devices. These
constraints immediately rule out the standard ap-
proach of training a large neural network on mas-
sive amounts of training data. A key research
question for these applications is thus: how do
we get efficient but accurate recognition systems
that we can train with limited labels?

A common approach for dealing with small labeled datasets is transfer learning. Here, one pre-trains
a base model on a different problem where large labeled datasets are available, and then fine-tunes
this model on the application of interest. This transferred model will often be large, but can then
be distilled into a smaller model for deployment (Ba & Caruana, 2014; Hinton et al., 2015). While
in principle this approach can be effective, in practice this relies heavily on having a good source
model that is relevant to the target task. There are many ways to compare and choose the best base
model (Achille et al., 2019; Kornblith et al., 2019b; Recht et al., 2019; Bolya et al., 2021). But this
assumes that a single optimal base model exists. What if no single source model matches the target
task, as is likely going to be the case for new problem domains?
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Figure 2: While common multi-source distillation usually weighs a set of S source models,
Ms = hs ◦ ϕs, equally for every target task, we propose to weight the source models by using
task similarity metrics to estimate the alignment of each source model with the particular target task
using a small subset of labeled data, Dp

τ . Since the task similarity metrics are independent of feature
dimension, we can utilize source models of any architecture and from any source task. We show
that choosing the weighting, α1, . . . , αS , this way we are able to improve performance over transfer
from ImageNet and training with FixMatch (see e.g. Table 1 and Figure 3).

This challenge motivates our approach. We propose to produce efficient yet accurate models for new
tasks with few labels by task-similarity-weighted multi-source distillation (see Figure 2). That is,
we distill multiple (diverse) source models trained on different domains, weighted by their relevance
for the target task. All this is done without access to any other data than that of the target task.
Specifically, we propose to first rank a diverse set (both in architecture and task) of source models
for a particular target task using a task similarity metric. This ranking is used to select and weight
the most relevant source models to distill into a target model of some suitable target-architecture in
a semi-supervised learning setting using multi-source distillation (see Figure 1).

Contributions. We summarize our contributions as follows: 1) By analyzing over 200 distilled
models we extensively verify that, for single-source cross-domain distillation, the choice of source
model is important for the predictive performance of the target model. 2) We show that task similar-
ity metrics can be used to select and weight source models for single- and multi-source distillation
without access to any source data. 3) We show that our approach yields the best accuracy on multiple
target tasks under compute and data constraints. We compare our task similarity-weighted multi-
source distillation to two baselines; classical transfer learning and FixMatch, as well as the special
case of multi-source distillation with equal weighting. Averaged over 8 diverse datasets, our method
outperforms the baselines with at least 4.5%-points and in particular 17.5%-points on CUB200.

2 RELATED WORK

We review several research areas relevant to our problem setup and approach.

Knowledge Distillation One key aspect of our problem is to figure out how to compress multiple
models into an efficient target model. A common approach is knowledge distillation (Ba & Caruana,
2014; Hinton et al., 2015) where an efficient student model is trained to mimic the output of a larger
teacher model. However, most single-teacher (Adriana et al., 2015; Mirzadeh et al., 2019; Park et al.,
2019; Cho & Hariharan, 2019; Borup & Andersen, 2021) or multi-teacher knowledge distillation
(You et al., 2017; Fukuda et al., 2017; Tan et al., 2019; Liu et al., 2020) research focuses on the
closed set setup, where the teacher(s) and the student both attempts to tackle the same task. To the
best of our knowledge, compressing multiple models specializing in various tasks different from the
target task has rarely been explored in the literature. Our paper explores this setup and illustrate that
carefully distilling multiple source models can bring forth efficient yet accurate models.
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Semi-Supervised Learning and Semi-Supervised Transfer Given our target task is specified in
a semi-supervised setting, it is customary to review semi-supervised learning (SSL). The key to SSL
approaches is how to effectively propagate label information from a small labeled dataset to a large
unlabeled dataset. Along this vein, methods such as pseudo-labeling/self-training (Lee et al., 2013;
Xie et al., 2020) or consistency regularization (Tarvainen & Valpola, 2017; Berthelot et al., 2019;
Sohn et al., 2020) have shown remarkable results in reducing deep networks dependencies on large
labeled datasets via unlabeled data. However, most SSL approaches focus on training models from
scratch without considering the availability of pre-trained models. Given the increasing availability
of large pre-trained models (Paszke et al., 2019; Wolf et al., 2019), recent work has started exploring
the intersection between transfer learning and SSL (Phoo & Hariharan, 2021; Islam et al., 2021;
Abuduweili et al., 2021). However, most of these works focus on how to transfer from a single
pre-trained model to the target task. Our paper, however, explores an even more practical setup:
how to transfer from multiple pre-trained models to a downstream task where in-domain unlabeled
data are available. In principle, we could combine our approach with a lot of previous work on
SSL to (potentially) gain even larger improvements, but to keep our method simple we leave such
exploration to future work and focus on how to better utilize the available set of pre-trained models.

Multi-Source Domain Adaptation Our setup also bears a resemblance with multi-source domain
adaptation (MSDA) (Peng et al., 2019) in which the goal is to create a target model by leveraging
multiple source models. However, MSDA methods often assume that the source and target models
share the same label space to perform domain alignment. We do not make such an assumption and
in fact, focus on the case where the label space for source and target tasks has minimal to no overlap.
Besides, a lot of the MSDA approaches (Zhao et al., 2018; Xu et al., 2018; Peng et al., 2019; Zhao
et al., 2020) rely on the availability of source data or the fact that the source and target tasks share the
same model architecture to build domain invariant features. Given the discrepancy in assumptions
between multi-source domain adaptation and our setup, we do not consider any methods from this
line of work as baselines.

Transfer Learning From Multiple Sources Transfer learning from multiple different pre-trained
models has been explored in different setups. Bolya et al. (2021) focuses on how to select a single
good pre-trained model to use as a model initialization whereas we explore how to construct an
efficient model from the pre-trained models (i.e. our target architecture could be different from
those of the source models). Agostinelli et al. (2022) focuses on how to select a subset of pre-
trained models to construct an (fine-tuned) ensemble, whereas we focus on creating a single model
that could potentially have different architecture complying with computational constraints. Li et al.
(2021) focuses on creating a generalist representation by distilling multiple pre-trained models using
proxy/source data (which often requires high capacity models) whereas our goal is to construct an
efficient specialist model using the target data. All these works have indicated the importance of
exploring how to best leverage a large collection of pre-trained models but due to differences in
setup and assumptions, we do not (and could not) compare to them.

Task Similarity / Transferability Metrics The key insight of our approach is to leverage the
similarity between the target and source tasks to weigh different pre-trained source models during
distillation. Characterizing tasks (or similarities between tasks) is an open research question that
has had various successes. A common approach is to embed tasks into a common vector space and
characterize similarities between tasks by distances in said space. Representative research along this
line of work include Achille et al. (2019); Peng et al. (2020); Wallace et al. (2021). Another related
line of work investigates transferability metrics (Tran et al., 2019; Bao et al., 2019; Nguyen et al.,
2020; Dwivedi et al., 2020; Dwivedi & Roig, 2019; Bolya et al., 2021). After all, one of the biggest
use cases of task similarities is to predict how well a model transfers to new tasks (models trained
on similar tasks likely are good candidates for transfer learning). Since it is not our intention to
establish which task similarity/transferability metric is the best for distillation, we use established
metrics that capture the similarity between source representations and one-hot labels to weigh the
source models. Under this purview, metrics that characterize similarities between features such
as CKA (Cortes et al., 2012; Kornblith et al., 2019a) and transferability metrics based on features
(Dwivedi & Roig, 2019; Bolya et al., 2021) fits the bill. We evaluate the correlation between these
metrics and distillation performance in Section 4.2.1.
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Figure 3: Distillation results for multiple target tasks with each dot representing the test accuracy
after distillation from a source model. The coloring represents the task similarity associated with the
particular source model (from small to large; ). We include the performance when fine-tuning
ImageNet ( ), distilling the source model highest ranked by task similarity (▶), and performing
multi-source distillation with equal weights (◀), and weights proportional to task similarity at power
1 (◀), and 12 (◀), respectively. The numbers in parentheses are Spearman correlations between the
task similarity and test accuracy for the single-source distilled models of each target task.

3 PROBLEM SETUP AND METHOD

We want to train an accurate model for a target task, where we have limited labeled data and compu-
tational constraints (e.g. limited compute resources/storage) during inference. As discussed above,
we want to leverage various pre-trained models (i.e. different architectures trained on different pre-
training tasks). Formally, we assume that our target task is specified via a small labeled training set
Dl

τ . To mitigate the data problem, we propose to leverage: (a) a set S = {Ms}Ss=1 of S source
models Ms trained on various source tasks different from the target task and (b) a set of unlabeled
data Du

τ associated to the target task.

To reflect computational constraints, we assume that the architecture of the target model Mτ must
be chosen to fit these constraints. This might mean that the architecture we need may not be available
among the source models in S. We also assume no access to any source data which could be practical
due to storage, privacy, and computational constraints.

3.1 MULTI-SOURCE DISTILLATION

Since the target model might not share the same architecture with any of the source models, we
propose to train our target model by distilling from multiple source models, with each source model
weighted based on its relevance for the target task (See Figure 2). For simplicity, we restrict our
models (regardless of source or target) to classification models that could be parameterized as M =
h ◦ ϕ (the feature extractor ϕ embeds input x into a feature representation and the classifier head, h
maps the feature ϕ(x) into predicted class probabilities, P (y | x)).
To train the target model Mτ = hτ ◦ ϕτ , we utilize a weighted sum of two loss functions. The first
loss function is the standard supervised objective,

Llabeled def
=

1

Nl

∑
(xi,yi)∈Dl

τ

ℓCE (hτ (ϕτ (xi)),yi) ,

where ℓCE(·, ·) is the classical cross-entropy loss. The second loss function consists of a distillation
objective for each source model Ms = hs ◦ ϕs. Specifically, for each source model (indexed by s)
the distillation objective is

Ldistill
s

def
=

1

Nu

∑
xi∈Du

τ

ℓCE (hs
τ (ϕτ (xi)), hs(ϕs(xi))) for s = 1, . . . , S,

where hs
τ is an additional classifier head that maps the features from the target task feature extractor

ϕτ to the label space of the source task (to account for the difference in label space). Note, we
discard all these classifier heads hs

τ after training and merely keep the target classifier head hτ .
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Combined, the overall objective function is as follows,

L def
= λLlabeled + (1− λ)

S∑
s=1

αsLdistill
s ,

where λ, α1, . . . , αS ∈ [0, 1]. Here αs is the relative weight assigned to each source model such that∑S
s=1 αs = 1. In principle, we could add additional semi-supervised losses, such as the FixMatch

loss (Sohn et al., 2020) to propagate label information from the labeled set Dl
τ to the unlabeled set

Du
τ for better performance, but we avoid such additional complexities (e.g hyperparameters) and

confounding the effect of distilling from multiple models. We leave such exploration to future work.

3.2 TASK RELEVANCE WEIGHTING FOR MULTI-SOURCE DISTILLATION

Simply assigning equal weight (i.e. α1 = · · · = αS = 1/S) to all source models is usually sub-
optimal (e.g. weighing source models trained on ImageNet and Chest X-ray equally might not be
optimal for recognizing birds). As such, we propose to compute the source weights {αi}i∈[S] as

αi =
epi∑S
s=1 e

p
s

, where ej = 1(ej>0) ej for j = 1, . . . , S,

where es is a similarity between the s-th source tasks and the target task, and p is a hyperparameter
used to rescale the distribution of the weights. Larger p would assign more weight to the most
relevant source models, while p = 0 corresponds to equal weight and p → ∞ assigns all weight to
the single most relevant source model.

Quantifying similarities between tasks is an open research question with various successes (Achille
et al., 2019; Nguyen et al., 2020). For simplicity, we pick our similarity based on one simple intu-
ition: target examples with the same one-hot label should have similar source representations and
vice versa. Along this vein, the recently introduced metric, PARC, fits the bill (Bolya et al., 2021).

For convenience, we briefly review PARC. Given a small labeled probe set Dp
τ = {(xi,yi)}ni=1 and

a source representation of interest ϕs, PARC first constructs two distance matrices Dϕs , DY based
on the Pearson correlations between every pair of examples in the probe set;

Dϕs
= 1− pearson({ϕs(xi)}ni=1), DY = 1− pearson({yi}ni=1).

PARC is computed as the Spearman correlation between the lower triangles of the distance matrices;

es = PARC(ϕs, Y ) = spearman ({Dϕs
[i, j]}i<j , {DY [i, j]}i<j) .

Intuitively, PARC quantifies the similarity of representations via comparing the (dis)similarity struc-
tures of examples within different feature spaces: if two representations are similar, then (dis)similar
examples in one feature space should stay (dis)similar in another feature space. In Figure 3 we show
how ranking source models by PARC correlates well with distillation accuracy, and that selecting
an appropriate source model can yield significant improvements.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Benchmark. For our setting, we modify an existing transfer learning benchmark: Scalable Diverse
Model Selection (SDMS) by Bolya et al. (2021). In particular, we used the publicly available models
to construct the set of source models for each target task. This full set consists 32 models1; 4
architectures (AlexNet, GoogLeNet, ResNet-18, and ResNet-50 (Krizhevsky et al., 2012; He et al.,
2016)) trained on 8 different tasks. For the target tasks, we consider 8 different tasks covering various
image domains (Natural images: CIFAR-10, CUB200, NABird, Oxford Pets, Stanford Dogs; X-
ray: ChestX; Skin Lesion Images: ISIC; Satellite Images: EuroSAT). For the target architecture, we
use MobileNetV3 (Howard et al., 2019) due to its lower computational requirements compared to
any of the source models. We refer the reader to the supplementary material for further details on

1We carefully leave out any source models associated with the target task if such exists.
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Figure 4: Mean test accuracy over the 8 target
tasks compared to compute requirements for a
single forward pass at inference. Using multi-
source distillation allows for training of signif-
icantly smaller models with small to no loss in
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implementation. We also experimented with VTAB (Zhai et al., 2019) where we observe similar
results on the natural and specialized tasks. Results on VTAB can be found in Appendix A.

Baselines. To show the importance of selecting the right source model to distill, we consider two
baselines based on ImageNet initializations: IN+TRANSFER fine-tunes ImageNet representations
using the labeled data, and IN+FIXMATCH fine-tunes the ImageNet representation using labeled
and unlabeled data (via FixMatch). We also consider distilling all source models with equal weights
to show the importance of using task similarity-weighting. Additionally, we report the expected
performance if we were to pick a single source model at random (SINGLE SOURCE (AVG.)).

4.1.1 RESULTS

We present our main results in Figure 3 with exact (and additional) values reported in Table 1.

Distillation is better than fine-tuning from ImageNet. We observe that within the same target
architecture (MobileNetv3), simply fine-tuning ImageNet representations (IN+TRANSFER) is less
optimal than distilling from the most similar SINGLE-SOURCE model (selected with our task simi-
larity metric). In fact, for fine-grained datasets such as CUB200, NABird, Oxford Pets, and Stanford
Dogs, we observe that distilling from an appropriate source model (SINGLE-SOURCE) could yield
much better performance than fine-tuning from a generalist ImageNet representation. More surpris-
ingly, even with the aid of unlabeled data, models fine-tuned from ImageNet representations using
a label propagation style approach (IN+FIXMATCH) still underperform distillation-based methods
by at least 3.9% on average (Table 1).

Distilling all sources equally is not always optimal. Compared to distilling from the most similar
source (SINGLE-SOURCE) or from a set of sources weighted by task similarity (MULTI-SOURCE
p = 12), distilling all source models equally is far less optimal (see also Figure 5). This vindicates
the importance of distillation using weighted source models and accentuates that distilling additional
irrelevant source models can decrease performance.

Distilling from multiple source models can outperform distilling a single best source model.
On Oxford Pets (classification of different breeds of cats and dogs), we observe that distilling from
multiple weighted sources (MULTI-SOURCE p = 12) is much better than distilling from the sin-
gle most similar source (SINGLE-SOURCE), which is a ResNet-18 trained on Caltech101 (that can
recognize visual concepts such as Dalmatian dog, spotted cats, cougars, etc.). Although the most
similar source model contains relevant information for recognizing different breeds of dogs and cats,
it might not contain all relevant knowledge from the set of source models that could be conducive
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Table 1: Multi-source distillation compared to baselines. Despite requiring fewer computations,
MobileNetV3 models trained with our method are highly competitive with baseline methods for
more demanding model architectures. We highlight the top 3 methods, which comply with compute
requirements (i.e. MobileNetV3) for each target task by bold, underline, and italic, respectively.
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AlexNet
(0.71 GFLOPs)

IN+Transfer 85.0 18.4 46.2 91.9 67.8 13.0 50.9 29.1 50.3
Fine-tune Selected Source 88.0 30.4 42.9 89.8 74.5 17.9 66.8 41.3 56.5

GoogLeNet
(1.51 GFLOPs)

IN+Transfer 91.8 42.8 41.4 96.8 80.5 36.5 84.8 65.9 67.6
Fine-tune Selected Source 91.6 61.2 48.6 96.9 78.3 33.0 87.8 71.8 71.2

ResNet-18
(1.83 GFLOPs)

IN+Transfer 92.2 37.8 45.2 96.6 80.2 34.0 80.2 58.2 65.6
Fine-tune Selected Source 91.3 58.2 46.4 97.0 75.8 35.4 80.7 69.3 69.3

ResNet-50
(4.14 GFLOPs)

IN+Transfer 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
Fine-tune Selected Source 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

MobileNetV3
(0.24 GFLOPs)

IN+Transfer 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2
IN+FixMatch 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3
Single-Source (Avg.) 89.6 46.5 46.6 97.4 81.8 39.0 79.4 61.9 67.8
(Ours) Multi-Source (Equal) 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3
(Ours) Single-Source (p → ∞) 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2
(Ours) Multi-Source (p = 12) 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8

to recognizing all visual concepts in Oxford Pets. In fact, we observe that the second most similar
model is a GoogLeNet model trained on Stanford Dogs that could recognize more different breeds of
dogs than the most similar source model (but incapable of recognizing cats). By distilling from mul-
tiple weighted sources, we are able to effectively combine knowledge from different source models
for a more accurate target model compared to a target model distilled from a single source.

Distilling to efficient architecture could be better than fine-tuning large models. In Figure
4 (and also Table 1), we include the performance when fine-tuning larger architectures trained on
ImageNet and the source model (of same architecture) most similar to each target task. A few ob-
servations is immediate: (a) our choice of task similarity metric is effective for transfer; across all 4
architectures, we observe at least 4% improvement over simple fine-tuning from ImageNet, which
validates the results by Bolya et al. (2021), and (b) with the aid of unlabeled data and distillation, the
computationally efficient architecture MobileNetV3 can outperform larger architectures fine-tuned
on labeled data from the target task (i.e. AlexNet, GoogLeNet, ResNet-18). Although underper-
forming fine-tuning a ResNet-50 initialized with the most similar (ResNet-50) source model by a
mere average of 2%-points (FINE-TUNE SELECTED SOURCE), using a ResNet-50 would require
17.5× more computations during inference to achieve such improvements.

4.2 ABLATIONS

4.2.1 TASK SIMILARITY FOR DISTILLATION

There are many existing metrics for quantifying task similarities but their effectiveness for distilla-
tion remains unclear. Given the myriads of metrics, we restrict our focus on metrics that can capture
similarities between a source representation of a target example and its one-hot label representation.
Along this vein, two questions arise: which metric to use for comparing representations and which
representations from a source model should be used to represent a target example?

For the first question, we look into multiple metrics in the literature that compares various represen-
tations: CKA (Cortes et al., 2012), RSA (Dwivedi & Roig, 2019), and PARC (Bolya et al., 2021);
for the second question, we look into the common representations from a source model: the feature
ϕ and the probabilistic output h ◦ ϕ. For simplicity, we focus on single-source distillation (i.e. how
to pick the best source model for distillation).
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Table 2: Spearman correlation between test ac-
curacy after all possible single-source distilla-
tions and task similarities associated with the
source models. We do not use any heuristic as
e.g. in Bolya et al. (2021). Generally feature
representations correlate better with distillation
performance compared to pseudo-label repre-
sentations.
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do CKA 0.72 0.62 0.23 0.39 -0.04 0.31 0.69 0.11 0.38
PARC 0.79 0.79 0.02 0.17 0.06 0.48 0.72 0.54 0.45
RSA 0.82 0.31 -0.11 0.30 0.10 -0.03 0.65 0.38 0.30

Fe
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ur
e CKA 0.82 0.39 0.36 0.21 -0.04 0.47 0.69 0.55 0.43

PARC 0.84 0.84 0.18 0.42 -0.14 0.81 0.81 0.84 0.58
RSA 0.86 0.81 0.03 0.38 0.03 0.28 0.89 0.85 0.52

Table 3: Relative accuracy of top-3 single-
source distilled target models selected by task
similarity over the average of the 3 best models
found in hindsight. We compute the average test
accuracy of the top-3 highest ranked target mod-
els (ranked by some task similarity) and divide
this average with the average of the test accu-
racy of the 3 best performing target models.
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Figure 6: Test accuracy of single-source distil-
lation and (unnormalized) task similarity score
calculated using PARC on the feature represen-
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tween test accuracy and task similarity.
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els, and p = ∞ the single highest ranked model.

To establish the effectiveness of our choice of similarity metric, we report the Spearman correlation
between the task similarities and the test accuracy of the distilled models in Table 2. We see that
features from the source models can better capture the correlation between the source models and
the test accuracy of the distilled models, than the probabilistic pseudo-labels. In addition, we also
see a much higher correlation among natural tasks (compared to specialized tasks such as ChestX,
EuroSAT, and ISIC) which suggests that our choice of task similarity is effective at selecting similar
tasks. Besides, we also observe a much higher correlation when using PARC compared to the other
metric, thus validating our choice of using PARC as the default metric.

To further establish that our choice of metric can be used to rank various source models, we look at
the relative test accuracy between the top-3 models most similar to the target task and the top-3 best
models after performing distillation (see Table 3). Again, we observe that all of the three metrics are
capable of ranking affinity between source models, but ranking the models with PARC outperforms
the other two metrics.
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4.2.2 SHOULD YOU WEIGH BASED ON TASK SIMILARITY?

We have established that our choice of similarity metric can capture the correlation between the
source model representations and the test accuracy of the distilled models. However, it is not a prior
clear that weighing different sources based on the ranking of their affinity to the target task would
yield better performance for multi-source distillation. As such, we investigate different choices of
weighing schemes for a subset of 5 target tasks across different domains (CUB200, EuroSAT, ISIC,
Oxford Pets, Stanford Dogs): INVERSE (source model weights are inversely proportional to task
similarity), RANDOM (weights are samples from a 4-simplex), EQUAL (setting equal weights for all
source models), TASK SIMILARITY (default), and SINGLE (distilling from the most similar source).

Through Figure 5, we find that distilling from a single or set of source models ranked using the
similarity metric (SINGLE, TASK SIMILARITY) is much more effective than distilling from source
models that are weighted randomly or equally (RANDOM or EQUAL). In addition, the fact that
INVERSE underperforms IN+TRANSFER on average suggests that it is crucial to follow the ranking
induced by the similarity metrics when distilling the sources and that the metric ranks not only the
most similar source models appropriately, but also the least similar source models.

4.2.3 WHAT IS THE EFFECT OF P?

Our task similarity metric gives a good ranking of which source models to select for distillation but
it is unclear whether the similarity score could be used directly without any post-processing. To
investigate, we start by visualizing the relationship between the test accuracy of the models distilled
from a single source and our task similarity. From Figure 6, it is clear that the distribution of task
similarities is dependent on the target task. This observation motivates our normalization scheme.

In addition, it is not apriori clear that the appropriate weights should scale linearly with respect to
the similarity scores. Thus, we investigate the effect of the rescaling factor, p, for constructing the
weights for distillation. In Figure 7, we see that although no rescaling (p = 1) outperforms equal
weighting (p = 0), it is far less optimal than rescaling with p = 12 (our default). This suggests that
the relationship between our task similarity and good weights is monotonic but non-linear.

4.3 ADDITIONAL ABLATIONS AND RESULTS

We include additional ablations and results in Appendix A, but summarize these findings as follows.

• MULTI-SOURCE distillation with ResNet-50 as target model; averaged over 8 tasks, task
similarity-weighted multi-source distillation outperforms both IN+TRANSFER and equally
weighted multi-source distillation. Furthermore, when initializing our target model with the
most similar ResNet-50 from the set of source models, performing multi-source distillation
improves over multi-source distillation from an ImageNet initialization.

• Multi-source distillation on VTAB; both MULTI-SOURCE and SINGLE-SOURCE outper-
form IN+TRANSFER averaged over the Natural and Specialized tasks.

• Multi-source distillation with even fewer labeled samples; MULTI-SOURCE and SINGLE-
SOURCE both improve in predictive performance over IN+TRANSFER, indicating our
method works with even fewer labeled samples.

• Additional investigations of task similarity metrics; we consider both Spearman, Pearson,
and Kendall Tau correlation as well as additional measures of relative accuracy of the top-k
selected models - all supporting the usefulness of task similarity to weigh source models.

5 CONCLUSION

We investigate the use of diverse source models to obtain efficient and accurate models for visual
recognition with limited labeled data. In particular, we propose to distill multiple diverse source
models from different domains weighted by their relevance to the target task without access to any
source data. We show that under computational constraints and averaged over a diverse set of target
tasks, our method outperforms both transfer learning from ImageNet initializations and state-of-the-
art semi-supervised techniques.
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A ADDITIONAL RESULTS

A.1 RESULTS ON VTAB

We report the results of our VTAB experiment in Table 4. On VTAB, We find that both MULTI-
SOURCE and SINGLE-SOURCE distillation outperforms IN+TRANSFER on each of the Natural
tasks. Particularly, MULTI-SOURCE outperform IN+TRANSFER with 13.9%-points on CIFAR-
10 and 10.6%-points on Sun397 and averaged across Natural MULTI-SOURCE outperforms
IN+TRANSFER with 5.1%-points. Average over Specialized both MULTI-SOURCE and SINGLE-
SOURCE outperforms IN+TRANSFER, although with a small margin. Finally, averaged over
Structured IN+TRANSFER outperform our methods, but due to the nature of these tasks, we do
not expect source models to transfer well to these tasks.2 Yet, we still obtain the best accuracy on
DMLab, dSpr-Loc, and sNORB-Azimuth.

Table 4: Top-1 accuracy by dataset in VTAB. The accuracy for each task is in grey, and the average
accuracy for each category of tasks is in black. Note, the Mean is the average across all tasks,
not categories. The largest value in each column is marked in bold. Here MULTI-SOURCE is with
p = 9.
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IN+Transfer 88.1 47.0 57.4 85.8 82.8 75.3 27.8 66.3 81.0 95.0 80.0 72.7 82.2 73.1 55.9 43.6 75.7 18.7 58.6 21.2 46.0 49.1 62.4
Multi-Source 88.6 60.9 62.4 86.1 84.4 79.0 38.4 71.4 80.6 95.9 83.3 72.2 83.0 57.4 45.6 44.6 67.7 27.4 44.9 23.9 38.2 43.7 62.2
Single-Source 88.9 59.5 61.9 86.2 84.5 79.5 37.6 71.1 80.5 95.8 83.2 71.7 82.8 60.5 45.4 45.2 67.9 20.8 40.6 24.2 36.5 42.6 61.6

A.2 RELATIVE ACCURACY OF SINGLE-SOURCE DISTILLATION

Similarly to Table 3, we extend on our evaluation of how well the task similarity selects the best
source models for single-source distillation. We report the ratio between the average test accuracy
of the top-k target models ranked using the task similarity and the average test accuracy for the
actual top-k target models found after the fact in Table 5, Table 3, and Table 7 for k = 1, k = 3, and
k = 5, respectively.

We find that generally, using task similarity on feature representations rather than the corresponding
pseudo-labels yields better rankings, but also that PARC show very little difference between features
and pseudo-labels for all considered k ∈ {1, 3, 5}.

Relative accuracy over all k. The relative accuracy measure reported above is sensitive to k and
the actual accuracy values of the models. I.e. if a metric flips the order of the best and second best
model when there is a notable performance gap between the two models, the relative accuracy for
k = 1 will be low, and we might be mistaken to believe the metric is not working well. However,
the metric might rank every model for k > 2 perfectly correct, and since we typically utilize the full
set of source models, the initial mistake should not be detrimental to the selection of task similarity
metric. Thus, in Figure 8 we plot the relative accuracy for each task similarity metric and all k ∈
{1, . . . , S}. We find that while PARC on feature representations is outperformed by both PARC and
CKA on pseudo-labels for k < 3, PARC on feature representations outperforms all the other metrics
for k ≥ 3. In particular, from Table 8 we have that on average over all k < S, PARC, performs the
best.

A.3 ABLATION OF p FOR TASK SIMILARITY-WEIGHTED MULTI-SOURCE DISTILLATION

We report the values associated with Figure 7 for each target task and all considered choices of p in
Table 9.

2The Structured tasks are mainly (ordinal) regression tasks transformed into classification tasks, and thus
it seems reasonable to expect very general features (such as those from an ImageNet pre-trained model) to
generalize better to such constructed tasks than specialized source models.
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Table 5: Relative accuracy of top-1 single-
source distilled target model selected by task
similarity over the best model found in hind-
sight. We compute the test accuracy of the high-
est ranked target model (ranked by some task
similarity) and divide this with the test accuracy
of the performing target model.
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Table 6: (Identical to Table 3) Relative accu-
racy of top-3 single-source distilled target mod-
els selected by task similarity over the average
of the 3 best models found in hindsight. We
compute the average test accuracy of the top-
3 highest ranked target models and divide this
average with the average test accuracy of the 3
best performing target models.
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Table 7: Relative accuracy of top-5 single-
source distilled target models selected by task
similarity over the average of the 5 best mod-
els found in hindsight. We compute the results
analogously to Table 3 with k = 5.
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do CKA 99.3 98.7 98.3 99.7 99.0 92.9 99.2 98.4 98.2
PARC 99.7 100.0 96.7 99.7 98.9 94.5 99.4 98.4 98.4
RSA 99.7 83.2 97.6 99.8 99.0 84.9 99.2 92.8 94.5

Fe
at

ur
e CKA 99.7 97.4 97.7 99.8 98.9 96.5 99.2 97.8 98.4

PARC 99.7 100.0 97.9 99.8 99.1 99.7 97.5 99.7 99.2
RSA 99.7 99.7 97.9 99.8 99.2 97.9 98.9 99.7 99.1

Table 8: The mean relative accuracy, across all
k, for each metric in Figure 8. The average is
bounded in (0, 1], and 1 corresponds to perfect
ordering by task similarity. We find that using
feature representations consistently outperforms
pseudo-labels and that for both feature represen-
tations and pseudo-labels PARC performs the
best.

CKA PARC RSA

Pseudo 0.985 0.990 0.974
Feature 0.986 0.993 0.991

A.4 MULTI-SOURCE DISTILLATION WITH RESNET-50 AS TARGET ARCHITECTURE

In the main part of the article, we consider the computationally constrained setting, where some
compute budget restricts the possible size of our target model. Thus, we use MobileNetV3 models
as target models throughout the main paper. However, in Table 10 we remove the computational
budget and allow the target model to be of any architecture, and particularly we use a ResNet-50 as
the target model.

We compare multi-source distillation (with p = 0 and p = 12) initialized with either ImageNet
pre-trained weights or the weights of the highest ranked ResNet-50 source model to TRANSFER and
FINE-TUNE SELECTED SOURCE. We find that multi-source distillation initialized from ImageNet
outperform TRANSFER on average for both equal weighting and p = 12, but underperform FINE-
TUNE SELECTED SOURCE for both p. However, since FINE-TUNE SELECTED SOURCE is initial-
ized from well-selected source model weights, the comparison is not entirely fair. Thus, we also
consider the case where we initialize the target model for multi-source distillation with the weights
of the highest ranked ResNet-50 source model, and find that for p = 12 multi-source distillation
performs on par with FINE-TUNE SELECTED SOURCE.
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Figure 8: Relative accuracy of top-k single-source distilled target models selected by task similarity
over the average of the top-k actual best target models found in hindsight. If the ordering by task
similarity is perfectly correct, the relative accuracy would be 1 for all k. See Table 8 for the average
of each metric across all k.

Table 9: Test accuracy of multi-source distillation with various choices of p, compared to the base-
line methods of IN+TRANSFER and IN+FIXMATCH. We highlight the largest value for each target
task in bold, and the results are also visualised in Figure 7.
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IN+FixMatch 93.5 41.9 38.5 98.1 82.6 42.8 83.4 65.8 68.3
IN+Transfer 92.4 42.8 47.3 97.4 81.6 37.3 75.9 62.6 67.2

Multi-Source (Equal) 90.8 53.5 45.7 97.5 81.5 41.4 82.1 62.1 69.3
Multi-Source (p = 1) 91.1 55.6 46.5 97.9 81.5 42.5 83.3 64.4 70.3
Multi-Source (p = 3) 91.6 57.7 46.5 97.7 82.3 44.5 84.6 67.4 71.6
Multi-Source (p = 6) 91.8 59.0 46.7 97.5 82.5 46.7 84.7 69.1 72.3
Multi-Source (p = 9) 92.0 59.6 46.8 97.6 82.4 47.6 84.5 69.5 72.5
Multi-Source (p = 12) 92.0 60.0 47.7 97.6 82.2 48.3 84.4 69.9 72.8
Multi-Source (p = 15) 92.6 60.3 46.7 97.5 81.7 48.2 83.9 70.2 72.6
Single-Source 92.0 59.6 46.8 97.4 81.0 47.4 81.9 71.3 72.2

A.5 NORMALIZATION OF TASK SIMILARITY FOR SOURCE MODEL WEIGHTING

We propose to choose the weights α = (α1, . . . , αS) as

αi =
epi∑S
s=1 e

p
s

, where ej = 1(ej>0) ej for j = 1, . . . , S,

and es is the task similarity for source model Ms, evaluated on the target task, normalized to sat-
isfy es ∈ [0, 1] with min-max normalization over all es. Here, the hyperparameter, p can be used
to increase/decrease the relative weight on the highest ranked source models, with the extremes
p = 0 and p → ∞ corresponding to equal weight and single-source distillation, respectively. An
alternative way to obtain our normalization is to use the softmax function on the task similarities,

αi =
exp

(
ei
T

)∑S
s=1 exp

(
es
T

) .
This does not require clipping the task similarity at 0, and with the temperature, T , we can adjust
the relative weight on particular source models. Here, large T flattens the weights, and T → ∞
corresponds to an equal weighting of all source models, while small T increases the weight on
the highest ranked source models. Quantitatively, the two normalization methods can yield similar
transformations with appropriate choices of p and T - see Figure 9.
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Table 10: Multi-Source Distillation with ResNet-50 as target model architecture. We compare fine-
tuning of the highest ranked source model (Bolya et al., 2021) with multi-source distillation to both
ImageNet-initialized target models and target models initialized from the highest ranked ResNet-50
source model. For p = 12, multi-source distillation performs on par with fine-tuning the selected
source model. Largest value for each target tasks is in bold.
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Transfer ImageNet 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
Fine-tune Selected Source Source Model 93.0 70.8 43.9 97.2 81.3 47.4 84.8 79.3 74.7

Multi-Source (Equal) ImageNet 87.8 57.3 46.1 97.0 78.9 42.4 84.1 64.5 69.8
Multi-Source (p = 12) ImageNet 91.5 64.5 45.4 97.0 78.9 49.8 87.1 74.2 73.6

Multi-Source (Equal) Source Model 87.5 68.8 45.5 97.4 81.2 43.2 81.9 65.1 71.3
Multi-Source (p = 12) Source Model 91.6 70.0 47.6 97.0 80.8 50.0 85.7 73.8 74.6
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Figure 9: Transformation of weights for various choices of power (left) or softmax temperature
(right). Here S is the number of source models, and we consider equidistantly distributed normalized
metrics.

Table 11: Multi-Source Distillation on a variation of SDMS with only 5% labeled samples per task.
Again, we compare to the baseline of IN+TRANSFER. Largest value for each target tasks is in bold.
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IN+Transfer 88.0 16.8 43.5 94.8 73.9 14.4 55.0 38.9 53.2

Multi-Source (p = 1) 88.1 29.2 42.3 95.9 76.3 20.5 66.6 42.1 57.6
Multi-Source (p = 9) 90.2 32.3 42.6 95.9 76.7 24.8 68.2 49.0 60.0
Single-Source 87.2 31.4 39.7 95.1 75.4 24.0 58.9 49.7 57.7

A.6 SMALLER AMOUNT OF LABELED DATA

We now repeat the experiment of the main paper across the 8 target datasets with a reduced amount
of labeled samples. Here, we reduce the number of labeled samples to 5% (rather than 20%) of the
training set and report the accuracy in Table 11. We find a similar pattern as observed in the main
experiment, where MULTI-SOURCE distillation on average outperforms TRANSFER irrespective of
the choice of p. For p = 9 MULTI-SOURCE outperforms TRANSFER by 6.8%-point on average and
in particular 15.5%-points on CUB200, whereas the only loss in performance is on ChestX with a
drop of 0.9%-point.
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Table 12: Pearson correlation between test ac-
curacy after all possible single-source distilla-
tions and task similarity associated with the
source models. Similar to Table 2.
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do CKA 0.62 0.85 0.07 0.30 -0.06 0.33 0.67 0.21 0.37
PARC 0.75 0.74 -0.03 0.27 -0.00 0.36 0.63 0.51 0.40
RSA 0.75 0.13 -0.07 0.38 0.04 -0.09 0.66 0.40 0.27

Fe
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e CKA 0.84 0.60 0.39 0.29 0.00 0.30 0.71 0.54 0.46

PARC 0.86 0.73 0.17 0.46 -0.06 0.58 0.77 0.78 0.54
RSA 0.90 0.85 0.07 0.45 0.04 0.27 0.87 0.83 0.54

Table 13: Kendall Tau correlation between test
accuracy after all possible single-source distil-
lations and task similarity associated with the
source models. Similar to Table 2.

C
IF

A
R

-1
0

C
U

B
20

0

C
he

st
X

E
ur

oS
A

T

IS
IC

N
A

B
ir

d

O
xf

or
d

Pe
ts

St
an

fo
rd

D
og

s

M
ea

n

Ps
eu

do CKA 0.51 0.46 0.16 0.28 -0.05 0.24 0.49 0.07 0.27
PARC 0.61 0.64 0.01 0.12 0.02 0.36 0.54 0.39 0.34
RSA 0.62 0.17 -0.07 0.22 0.08 -0.01 0.48 0.29 0.22

Fe
at

ur
e CKA 0.67 0.34 0.25 0.14 -0.05 0.40 0.50 0.38 0.33

PARC 0.69 0.67 0.14 0.31 -0.10 0.65 0.62 0.67 0.46
RSA 0.72 0.65 0.02 0.28 0.02 0.19 0.72 0.67 0.41

A.7 DIFFERENT MEASURES OF CORRELATION

In order to evaluate the quality of a task similarity metric to estimate the performance of a target
model after distillation, we consider the correlation between the computed metric and the actual ob-
served performance after distillation. However, since we have no reason to believe that the relation-
ship is linear, we consider the Spearman correlation in the main paper. However, for completeness
of exposition we report Pearson correlation and Kendall’s Tau in Table 12 and Table 13, respectively.
For both these correlation measures, the overall conclusions are the same: Using feature represen-
tations is preferable to pseudo-labels, and PARC generally outperforms both CKA and RSA, albeit
not by much over CKA.

A.8 CHOICE OF TASK SIMILARITY METRICS

Recently, multiple measures intended to estimate the transferability of a source model have been
proposed. However, despite the very recently published Multi-Source Leep (MS-LEEP) and En-
semble Leep (E-Leep) no task similarity metric consider the estimation over multiple models at
once (Agostinelli et al., 2022). Thus, we consider each source model separately and compute the
metrics independent of other source models. This has the added benefit of reducing the number
of metric computations required as we do not need to compute the task similarity for all possible
combinations of n models from S possible (i.e.

(
n
S

)
), which grows fast with S.

Assume X ∈ RN×dX and Y ∈ RN×dY , and that Kij = k(xi,xj) for and Lij = l(yi,yj) where
k, and l are two (similarity) kernels as well as xi,xj and yi,yj are rows of X and Y, respectively.
Then we have that CKA is defined as

ρCKA(X,Y)
def
=

HSIC(K,L)√
HSIC(K,K)HSIC(L,L)

,

where K,L ∈ RN×N and HSIC is the Hilbert-Schmidt Independence Criterion,

HSIC(K,L)
def
=

1

(N − 1)2
tr (KHNLHN ) , with HN

def
= IN − 1

N
11⊺.

In particular, if both k and l are linear kernels, then we have that

ρCKA(X,Y) =
∥Y⊺X∥2F

∥X⊺X∥F ∥Y⊺Y∥F
,

where ∥·∥F is the Frobenius norm. We use the linear kernel throughout this paper and refer to Cortes
et al. (2012) for additional details on CKA.

For RSA, we consider the dissimilarity matrices given by

Kij
def
= 1− corrcoef(xi,xj) and Lij

def
= 1− corrcoef(yi,yj),
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where X and Y are assumed normalized to have mean 0 and variance 1. We then compute RSA as
the Spearman correlation between the lower triangles of K and L,

ρRSA(X,Y)
def
= spearman ({Kij | i < j}, {Lij | i < j}) .

For additional details on RSA, we refer the reader to Dwivedi & Roig (2019). While Bolya et al.
(2021) introduces PARC alongside a heuristic and feature reduction, the PARC metric is almost
identical to RSA. However, RSA was introduced to compute similarities between two sets of rep-
resentations, and PARC was aimed at computing similarities between a set of representations and a
set of labels associated with the dataset. Thus, in our use of PARC, it merely differs from RSA in
the lack of normalization of Y, which is assumed to be one-hot encoded vectors of class labels from
the probe dataset.

B EXPERIMENTAL DETAILS

In the following, we provide some experimental details.

B.1 MAIN EXPERIMENTS

Unless otherwise mentioned, we use SGD with a learning rate of 0.01, weight decay of 0.0001,
batch size of 128, and loss weighting of λ = 0.8. We initialize our target models with the
ImageNet pre-trained weights available in torchvision (https://pytorch.org/vision/
stable/models), and consider the 31 fine-tuned models from Bolya et al. (2021) publicly avail-
able at github.com/dbolya/parc as our set of source models. The source models consist of
each of the architectures (AlexNet, GoogLeNet, ResNet-18, and ResNet-50) trained on CIFAR-10,
Caltech101, CUB200, NABird, Oxford Pets, Stanford Dogs, VOC2007, and ImageNet.3 Note, we
always exclude any source model trained on the particular target task, thus effectively reducing the
number of source models for some target tasks. For FixMatch we use a batch size of 128 (with a
1:1 ratio of labeled to unlabeled samples for each batch) and fix the confidence threshold at 0.95
and the temperature at 1. We keep the loss weighting between the supervised loss and the unlabeled
FixMatch loss at λ = 0.8.

B.2 VTAB EXPERIMENTS

For each VTAB experiment we consider the full training set (as introduced in Zhai et al. (2019))
as the unlabeled set, Du

τ , and the VTAB-1K subset as the labeled set, Dl
τ . We use the Pytorch

implementation from Jia et al. (2022) available at github.com/KMnP/vpt.

We use SGD with a learning rate of 0.005, weight decay of 0.0001, batch size of 128 equally split
in 64 labeled and unlabeled samples, and loss weighting of λ = 0.9. We train our models for 100
epochs, where we define one epoch as the number of steps required to traverse the set of unlabeled
target data, Du

τ when using semi-supervised methods, or merely as the number of steps to traverse
the labeled set, Dl

τ , for supervised transfer methods. We initialize our target models with the BiT-
M ResNet-50x1 model fine-tuned on ILSVRC-2012 from BiT (Kolesnikov et al., 2020) publicly
available at github.com/google-research/big_transfer.

We consider the 19 BiT-M ResNet-50x1 models fine-tuned on the VTAB-1K target tasks from
Kolesnikov et al. (2020) as the set of source models. We always exclude the source model asso-
ciated with the target task from the set of source models, and thus effectively have 18 source models
available for each target task in VTAB. We use the PARC metric on the source model features to
compute the source weighting, but also only use the top-5 highest ranked source models to reduce
the computational costs of training. Furthermore, we use p = 9 for multi-source distillation.

3Note, there is no ResNet-50 trained on ImageNet in the set of source models, thus the total number of
models is 31 and not 32 as otherwise expected.
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